2014年广西玉林市陆川丶博白两县联考中考数学模拟试卷
2014中考数学模拟试题含答案(精选5套)
2014年中考数学模拟试卷(一)数 学(全卷满分120分,考试时间120分钟)注意事项:1. 本试卷分选择题和非选择题两部分. 在本试题卷上作答无效..........;2. 答题前,请认真阅读答题.......卷.上的注意事项......;3. 考试结束后,将本试卷和答题.......卷一并交回..... 一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑) 1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=1圆弧 角 扇形 菱形 等腰梯形A. B. C. D.(第9题图)(第7题图)9. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为 A. 3 B. 23 C.23 D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 . 17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)(第11题图)(第12题图) (第17题图)(第18题图)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第21题图)(第23题图)(第24题图)°25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2013年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x2400-x %)201(2400 = 8;(第26题图)17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a为整数,∴a = 78,79,80∴共有3种方案. ………………6分设购买课桌凳总费用为y元,则y = 180a + 220(200 - a)=-40a + 44000. …………… 7分∵-40<0,y随a的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分即总费用最低的方案是:购买A型80套,购买B型120套. ………………10分2014年中考数学模拟试题(二)一、选择题1、数2-中最大的数是()A 、1- BC 、0D 、2 2、9的立方根是()A 、3±B 、3 C、 D3、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷=13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角20α=︒,则飞机A 到控制点B 的距离约为 。
玉林市2014年中考二模数学试卷及答案
广西玉林市2014年中考二模数学试卷有答案一、选择题(本大题共12小题,每小题3分,满分36分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案的标号填在答题卡内相应的位置上).2.如图,AO⊥OB于点O,∠AOC=50°,则∠BOC等于()4.已知方程,则x+y的值是()6.分式的值为0,则()7.如图,OA=OB,OE是∠AOB的平分线,BD⊥OA于点D,AC⊥BO于点C,则关于直线OE对称的三角形共有()8.已知x1,x2是关于x的一元二次方程x2﹣2x﹣a=0的两个实数根,且x12+x22+3x1x2=5,2....10.甲、乙、丙、丁四名选手参加100米决赛,赛场只设1、2、3、4四个跑道,选手以随...11.如图,在梯形ABCD中,AD∥BC,∠BCD=90°,BC=2AD,F、E分别是BA、BC的中点,则下列结论不正确的是()S12.如图,正方形ABCD的顶点A、B分别在x轴、y轴的正半轴上,反比例函数的图象经过另外两个顶点C、D,且点D(4,n)(0<n<4),则k的值为()二、填空题(本大题共6小题,每小题3分,共18分。
把答案填在答题卡中的横线上)13.2的相反数是_________.14.函数中,自变量x的取值范围是_________.15.在平面直角坐标系中,点(2,﹣1)关于原点对称的点的坐标是_________.16.若数据3,4,5,6,x的众数为3,则这组数据的中位数是_________.17.如图,将Rt△ABC绕点C顺时针旋转30°,得到Rt△A′B′C′,点B′恰好落在斜边AC上,连接AA′,则∠AA′B′= _________.18.如图,已知正方形ABCD的边长为1,以顶点A、B为圆心,1为半径的两弧交于点E,以顶点C、D为圆心,1为半径的两弧交于点F,则EF的长为_________.三、解答题(本大题共8小题,满分66分。
广西壮族自治区玉林市陆川县2024届中考联考数学试题含解析
广西壮族自治区玉林市陆川县2024届中考联考数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)1.下列叙述,错误的是( )A.对角线互相垂直且相等的平行四边形是正方形B.对角线互相垂直平分的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线相等的四边形是矩形2.小昱和阿帆均从同一本书的第1页开始,逐页依顺序在每一页上写一个数.小昱在第1页写1,且之后每一页写的数均为他在前一页写的数加2;阿帆在第1页写1,且之后每一页写的数均为他在前一页写的数加1.若小昱在某页写的数为101,则阿帆在该页写的数为何?()A.350 B.351 C.356 D.3583.已知⊙O的半径为5,弦AB=6,P是AB上任意一点,点C是劣弧AB的中点,若△POC为直角三角形,则PB 的长度()A.1 B.5 C.1或5 D.2或44.如图,“赵爽弦图”是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,大正方形与小正方形的边长之比是2∶1,若随机在大正方形及其内部区域投针,则针孔扎到小正方形(阴影部分)的概率是()A.0.2 B.0.25 C.0.4 D.0.55.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数k yx(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k的值是( )A .92B .74C .245D .126.七年级1班甲、乙两个小组的14名同学身高(单位:厘米)如下: 甲组 158 159 160 160 160 161 169 乙组158159160161161163165以下叙述错误的是( ) A .甲组同学身高的众数是160 B .乙组同学身高的中位数是161 C .甲组同学身高的平均数是161 D .两组相比,乙组同学身高的方差大 7.下列函数是二次函数的是( ) A .y x =B .1y x=C .22y x x =-+D .21y x=8.如图,在平面直角坐标系中,△OAB 的顶点A 在x 轴正半轴上,OC 是△OAB 的中线,点B 、C 在反比例函数y=2x(x >0)的图象上,则△OAB 的面积等于( )A .2B .3C . 4D .69.在以下三个图形中,根据尺规作图的痕迹,能判断射线AD 平分∠BAC 的是( )A.图2 B.图1与图2 C.图1与图3 D.图2与图310.下列图形中,是中心对称图形,但不是轴对称图形的是( )A.B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,线段AB 是⊙O 的直径,弦CD⊥AB,AB=8,∠CAB=22.5°,则CD的长等于___________________________.12.如图,在△ABC中,AB=4,AC=3,以BC为边在三角形外作正方形BCDE,连接BD,CE交于点O,则线段AO的最大值为_____.13.如图所示,直线y=x+b交x轴A点,交y轴于B点,交双曲线8(0)y xx=>于P点,连OP,则OP2﹣OA2=__.14.计算(-2)×3+(-3)=_______________.15.已知方程x2﹣5x+2=0的两个解分别为x1、x2,则x1+x2﹣x1•x2的值为______.16.抛物线y=x2﹣2x+3的对称轴是直线_____.三、解答题(共8题,共72分)17.(8分)嘉兴市2010~2014年社会消费品零售总额及增速统计图如下:请根据图中信息,解答下列问题:(1)求嘉兴市2010~2014年社会消费品零售总额增速..这组数据的中位数. (2)求嘉兴市近三年(2012~2014年)的社会消费品零售总额....这组数据的平均数. (3)用适当的方法预测嘉兴市2015年社会消费品零售总额(只要求列出算式,不必计算出结果).18.(8分)“不出城郭而获山水之怡,身居闹市而有林泉之致”,合肥市某区不断推进“园林城市”建设,今春种植了四类花苗,园林部门从种植的这批花苗中随机抽取了2000株,将四类花苗的种植株数绘制成扇形统计图,将四类花苗的成活株数绘制成条形统图.经统计这批2000株的花苗总成活率为90%,其中玉兰和月季的成活率较高,根据图表中的信息解答下列问题:扇形统计图中玉兰所对的圆心角为 ,并补全条形统计图;该区今年共种植月季8000株,成活了约 株;园林部门决定明年从这四类花苗中选两类种植,请用列表法或画树状图求恰好选到成活率较高的两类花苗的概率.19.(8分)如图1,B (2m ,0),C (3m ,0)是平面直角坐标系中两点,其中m 为常数,且m >0,E (0,n )为y 轴上一动点,以BC 为边在x 轴上方作矩形ABCD ,使AB=2BC ,画射线OA ,把△ADC 绕点C 逆时针旋转90°得△A′D′C′,连接ED′,抛物线2y ax bx c =++(0a ≠)过E ,A′两点.(1)填空:∠AOB= °,用m表示点A′的坐标:A′(,);(2)当抛物线的顶点为A′,抛物线与线段AB交于点P,且13BPAP时,△D′OE与△ABC是否相似?说明理由;(3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过M作MN⊥y轴,垂足为N:①求a,b,m满足的关系式;②当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10,请你探究a的取值范围.20.(8分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D均在小正方形的顶点上;在图中画出以线段AB为一腰,底边长为22的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.21.(8分)如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点,(1)求证:△ACE≌△BCD;(2)若DE=13,BD=12,求线段AB的长.22.(10分)某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2018年春节期间旅游情况统计图(如图),根据图中信息解答下列问题:(1)2018年春节期间,该市A、B、C、D、E这五个景点共接待游客人数为多少?(2)扇形统计图中E景点所对应的圆心角的度数是,并补全条形统计图.(3)甲,乙两个旅行团在A、B、D三个景点中随机选择一个,求这两个旅行团选中同一景点的概率.23.(12分)在Rt△ABC中,∠BAC=,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCFD 的面积.24.有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨. 请问1辆大货车和1辆小货车一次可以分别运货多少吨?目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完,其中每辆大货车一次运费花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解题分析】【分析】根据正方形的判定、平行四边形的判定、菱形的判定和矩形的判定定理对选项逐一进行分析,即可判断出答案.【题目详解】A. 对角线互相垂直且相等的平行四边形是正方形,正确,不符合题意;B. 对角线互相垂直平分的四边形是菱形,正确,不符合题意;C. 对角线互相平分的四边形是平行四边形,正确,不符合题意;D. 对角线相等的平行四边形是矩形,故D选项错误,符合题意,故选D.【题目点拨】本题考查了正方形的判定、平行四边形的判定、菱形的判定和矩形的判定等,熟练掌握相关判定定理是解答此类问题的关键.2、B【解题分析】根据题意确定出小昱和阿帆所写的数字,设小昱所写的第n个数为101,根据规律确定出n的值,即可确定出阿帆在该页写的数.【题目详解】解:小昱所写的数为1,3,5,1,…,101,…;阿帆所写的数为1,8,15,22,…,设小昱所写的第n个数为101,根据题意得:101=1+(n-1)×2,整理得:2(n-1)=100,即n-1=50,解得:n=51,则阿帆所写的第51个数为1+(51-1)×1=1+50×1=1+350=2.故选B.【题目点拨】此题考查了有理数的混合运算,弄清题中的规律是解本题的关键.3、C【解题分析】由点C是劣弧AB的中点,得到OC垂直平分AB,求得DA=DB=3,根据勾股定理得到OD==1,若△POC为直角三角形,只能是∠OPC=90°,则根据相似三角形的性质得到PD=2,于是得到结论.【题目详解】∵点C是劣弧AB的中点,∴OC垂直平分AB,∴DA=DB=3,∴OD=22534-=,若△POC为直角三角形,只能是∠OPC=90°,则△POD∽△CPD,∴PD CD OD PD=,∴PD2=4×1=4,∴PD=2,∴PB=3﹣2=1,根据对称性得,当P在OC的左侧时,PB=3+2=5,∴PB的长度为1或5.故选C.【题目点拨】考查了圆周角,弧,弦的关系,勾股定理,垂径定理,正确左侧图形是解题的关键.4、B【解题分析】设大正方形边长为2,则小正方形边长为1,所以大正方形面积为4,小正方形面积为1,则针孔扎到小正方形(阴影部分)的概率是0.1.【题目详解】解:设大正方形边长为2,则小正方形边长为1,因为面积比是相似比的平方,所以大正方形面积为4,小正方形面积为1,则针孔扎到小正方形(阴影部分)的概率是10.25 4=;故选:B.【题目点拨】本题考查了概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A 的概率()m P A n=. 5、C 【解题分析】设B 点的坐标为(a ,b ),由BD=3AD ,得D (4a,b ),根据反比例函数定义求出关键点坐标,根据S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE = 9求出k.【题目详解】∵四边形OCBA 是矩形, ∴AB=OC ,OA=BC , 设B 点的坐标为(a ,b ), ∵BD=3AD , ∴D (4a,b ), ∵点D ,E 在反比例函数的图象上,∴4ab=k , ∴E (a , ka),∵S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE =ab-12•4ab -12•4ab -12•34a •(b-k a)=9, ∴k=245, 故选:C 【题目点拨】考核知识点:反比例函数系数k 的几何意义. 结合图形,分析图形面积关系是关键. 6、D 【解题分析】根据众数、中位数和平均数及方差的定义逐一判断可得. 【题目详解】A .甲组同学身高的众数是160,此选项正确;B .乙组同学身高的中位数是161,此选项正确;C .甲组同学身高的平均数是15815916031611697++⨯++=161,此选项正确;D .甲组的方差为807,乙组的方差为347,甲组的方差大,此选项错误.故选D .【题目点拨】本题考查了众数、中位数和平均数及方差,掌握众数、中位数和平均数及方差的定义和计算公式是解题的关键. 7、C 【解题分析】根据一次函数的定义,二次函数的定义对各选项分析判断利用排除法求解. 【题目详解】A. y=x 是一次函数,故本选项错误;B. y=1x是反比例函数,故本选项错误; C.y=x-2+x 2是二次函数,故本选项正确; D.y=21x 右边不是整式,不是二次函数,故本选项错误. 故答案选C. 【题目点拨】本题考查的知识点是二次函数的定义,解题的关键是熟练的掌握二次函数的定义. 8、B 【解题分析】作BD ⊥x 轴于D ,CE ⊥x 轴于E ,∴BD ∥CE , ∴CE AE ACBD AD AB ==, ∵OC 是△OAB 的中线, ∴12CE AE AC BD AD AB ===, 设CE=x ,则BD=2x , ∴C 的横坐标为2x,B 的横坐标为1x ,∴OD=1x ,OE=2x,∴DE=OE-OD=2x﹣1x=1x,∴AE=DE=1x,∴OA=OE+AE=213x x x +=,∴S△OAB=12OA•BD=12×32xx⨯=1.故选B.点睛:本题是反比例函数与几何的综合题,熟知反比例函数的图象上点的特征和相似三角形的判定和性质是解题的关键.9、C【解题分析】【分析】根据角平分线的作图方法可判断图1,根据图2的作图痕迹可知D为BC中点,不是角平分线,图3中根据作图痕迹可通过判断三角形全等推导得出AD是角平分线.【题目详解】图1中,根据作图痕迹可知AD是角平分线;图2中,根据作图痕迹可知作的是BC的垂直平分线,则D为BC边的中点,因此AD不是角平分线;图3:由作图方法可知AM=AE,AN=AF,∠BAC为公共角,∴△AMN≌△AEF,∴∠3=∠4,∵AM=AE,AN=AF,∴MF=EN,又∵∠MDF=∠EDN,∴△FDM≌△NDE,∴DM=DE,又∵AD是公共边,∴△ADM≌△ADE,∴∠1=∠2,即AD平分∠BAC,故选C.【题目点拨】本题考查了尺规作图,三角形全等的判定与性质等,熟知角平分的尺规作图方法、全等三角形的判定与性质是解题的关键.10、A【解题分析】分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.详解:A、此图形是中心对称图形,不是轴对称图形,故此选项正确;B、此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形是中心对称图形,也是轴对称图形,故此选项错误;D、此图形不是中心对称图形,是轴对称图形,故此选项错误.故选A.点睛:此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解题分析】连接OC,如图所示,由直径AB 垂直于CD,利用垂径定理得到E 为CD 的中点,即CE=DE,由OA=OC,利用等边对等角得到一对角相等,确定出三角形COE 为等腰直角三角形,求出CE 的长,进而得出CD.【题目详解】连接OC,如图所示:∵AB 是⊙O 的直径,弦CD⊥AB,∴OC= 12AB=4,∵OA=OC,∴∠A=∠OCA=22.5°,∵∠COE 为△AOC 的外角,∴∠COE=45°,∴△COE 为等腰直角三角形,∴CE= =∴CD=2CE=,故答案为【题目点拨】考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键.12、2【解题分析】过O作OF⊥AO且使OF=AO,连接AF、CF,可知△AOF是等腰直角三角形,进而可得AO,根据正方形的性质可得OB=OC,∠BOC=90°,由锐角互余的关系可得∠AOB=∠COF,进而可得△AOB≌△COF,即可证明AB=CF,当点A、C、F三点不共线时,根据三角形的三边关系可得AC+CF>AF,当点A、C、F三点共线时可得AC+CF=AC+AB=AF=7,即可得AF的最大值,由AO即可得答案.【题目详解】如图,过O作OF⊥AO且使OF=AO,连接AF、CF,∴∠AOF=90°,△AOF是等腰直角三角形,∴AO,∵四边形BCDE是正方形,∴OB=OC,∠BOC=90°,∵∠BOC=∠AOF=90°,∴∠AOB+∠AOC=∠COF+∠AOC,∴∠AOB=∠COF,又∵OB=OC,AO=OF,∴△AOB≌△COF,∴CF=AB=4,当点A、C、F三点不共线时,AC+CF>AF,当点A、C、F三点共线时,AC+CF=AC+AB=AF=7,∴AF≤AC+CF=7,∴AF的最大值是7,∴AO=7,.∴AO=272【题目点拨】本题考查正方形的性质,全等三角形的判定与性质,熟练掌握相关定理及性质是解题关键.13、1【解题分析】解:∵直线y=x+b与双曲线8yx=(x>0)交于点P,设P点的坐标(x,y),∴x﹣y=﹣b,xy=8,而直线y=x+b与x轴交于A点,∴OA=b.又∵OP2=x2+y2,OA2=b2,∴OP2﹣OA2=x2+y2﹣b2=(x﹣y)2+2xy﹣b2=1.故答案为1.14、-9【解题分析】根据有理数的计算即可求解.【题目详解】(-2)×3+(-3)=-6-3=-9【题目点拨】此题主要考查有理数的混合运算,解题的关键是熟知有理数的运算法则.15、1【解题分析】解:根据题意可得x1+x2=ba-=5,x1x2=ca=2,∴x1+x2﹣x1x2=5﹣2=1.故答案为:1.点睛:本题主要考查了根据与系数的关系,利用一元二次方程的两个根x1、x2具有这样的关系:x1+x2=ba,x1x2=ca是解题的关键.16、x=1【解题分析】把解析式化为顶点式可求得答案.【题目详解】解:∵y=x2-2x+3=(x-1)2+2,∴对称轴是直线x=1,故答案为x=1.【题目点拨】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,对称轴为x=h,顶点坐标为(h,k).三、解答题(共8题,共72分)17、(115)这组数据的中位数为15.116%;(116)这组数据的平均数是115 11609.116亿元;(15)116016年社会消费品零售总额为115 15167×(115+15.116%)亿元.【解题分析】试题分析:(115)根据中位数的定义把这组数据从小到大排列,找出最中间的数即可得出答案;(116)根据平均数的定义,求解即可;(15)根据增长率的中位数,可得116016年的销售额.试题解析:解:(115)数据从小到大排列115.16%,116.5%,15.116%,16.115%,5.7%,则嘉兴市1160115~116015年社会消费品零售总额增速这组数据的中位数是15.116%;(116)嘉兴市近三年(1160116~116015年)的社会消费品零售总额这组数据的平均数是:(6.16+7.6+515.7+9.9+1150.0)÷5=11575.116(亿元);(15)从增速中位数分析,嘉兴市116016年社会消费品零售总额为1150×(115+15.116%)=16158.116716(亿元).考点:115.折线统计图;116.条形统计图;15.算术平均数;16.中位数..18、(1)72°,见解析;(2)7280;(3).【解题分析】(1)根据题意列式计算,补全条形统计图即可;(2)根据题意列式计算即可;(3)画树状图得出所有等可能的情况数,找出选到成活率较高的两类树苗的情况数,即可求出所求的概率.【题目详解】(1)扇形统计图中玉兰所对的圆心角为360°×(1-40%-15%-25%)=72°月季的株数为2000×90%-380-422-270=728(株), 补全条形统计图如图所示:(2)月季的成活率为所以月季成活株数为8000×91%=7280(株). 故答案为:7280.(3)由题意知,成活率较高的两类花苗是玉兰和月季,玉兰、月季、桂花、腊梅分别用A 、B 、C 、D 表示,画树状图如下:所有等可能的情况有12种,其中恰好选到成活率较高的两类花苗有2种.∴P(恰好选到成活率较高的两类花苗)【题目点拨】此题主要考查了条形统计图以及扇形统计图的应用,根据统计图得出正确信息是解题关键.19、(1)45;(m ,﹣m );(2)相似;(3)①1b am =--;②114a ≤≤. 【解题分析】试题分析:(1)由B 与C 的坐标求出OB 与OC 的长,进一步表示出BC 的长,再证三角形AOB 为等腰直角三角形,即可求出所求角的度数;由旋转的性质得,即可确定出A′坐标;(2)△D′OE ∽△ABC .表示出A 与B 的坐标,由13BP AP =,表示出P 坐标,由抛物线的顶点为A′,表示出抛物线解析式,把点E 坐标代入即可得到m 与n 的关系式,利用三角形相似即可得证;(3)①当E 与原点重合时,把A 与E 坐标代入2y ax bx c =++,整理即可得到a ,b ,m 的关系式;②抛物线与四边形ABCD 有公共点,可得出抛物线过点C 时的开口最大,过点A 时的开口最小,分两种情况考虑:若抛物线过点C (3m ,0),此时MN 的最大值为10,求出此时a 的值;若抛物线过点A (2m ,2m ),求出此时a 的值,即可确定出抛物线与四边形ABCD 有公共点时a 的范围.试题解析:(1)∵B (2m ,0),C (3m ,0),∴OB=2m ,OC=3m ,即BC=m ,∵AB=2BC ,∴AB=2m=0B ,∵∠ABO=90°,∴△ABO 为等腰直角三角形,∴∠AOB=45°,由旋转的性质得:OD′=D′A′=m ,即A′(m ,﹣m );故答案为45;m ,﹣m ;(2)△D′OE ∽△ABC ,理由如下:由已知得:A (2m ,2m ),B (2m ,0),∵13BP AP =,∴P (2m ,12m ),∵A′为抛物线的顶点,∴设抛物线解析式为2()y a x m m =--,∵抛物线过点E (0,n ),∴2(0)n a m m =--,即m=2n ,∴OE :O D′=BC :AB=1:2,∵∠EOD′=∠ABC=90°,∴△D′OE ∽△ABC ;(3)①当点E 与点O 重合时,E (0,0),∵抛物线2y ax bx c =++过点E ,A ,∴20{n am bm n m =++=-,整理得:1am b +=-,即1b am =--;②∵抛物线与四边形ABCD 有公共点,∴抛物线过点C 时的开口最大,过点A 时的开口最小,若抛物线过点C (3m ,0),此时MN 的最大值为10,∴a (3m )2﹣(1+am )•3m=0,整理得:am=12,即抛物线解析式为21322y x x m =-,由A (2m ,2m ),可得直线OA 解析式为y=x ,联立抛物线与直线OA 解析式得:2{1322y xy x x m ==-,解得:x=5m ,y=5m ,即M (5m ,5m ),令5m=10,即m=2,当m=2时,a=14; 若抛物线过点A (2m ,2m ),则2(2)(1)22a m am m m --⋅=,解得:am=2,∵m=2,∴a=1,则抛物线与四边形ABCD有公共点时a 的范围为114a ≤≤. 考点:1.二次函数综合题;2.压轴题;3.探究型;4.最值问题.20、作图见解析;CE=4.【解题分析】分析:利用数形结合的思想解决问题即可.详解:如图所示,矩形ABCD 和△ABE 即为所求;CE=4.点睛:本题考查作图-应用与设计、等腰三角形的性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会利用思想结合的思想解决问题.21、(3)证明见解析; (3)AB=3.【解题分析】(3)由等腰直角三角形得出AC=BC,CE=CD,∠ACB=∠ECD=90°,得出∠BCD=∠ACE,根据SAS推出△ACE≌△BCD即可;(3)求出AD=5,根据全等得出AE=BD=33,在Rt△AED中,由勾股定理求出DE即可.【题目详解】证明:(3)如图,∵△ACB与△ECD都是等腰直角三角形,∴AC=BC,CE=CD,∵∠ACB=∠ECD=90°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,∴∠BCD=∠ACE,在△BCD和△ACE中,∵BC=AC,∠BCD=∠ACE,CD=CE,∴△BCD≌△ACE(SAS);(3)由(3)知△BCD≌△ACE,则∠DBC=∠EAC,AE=BD=33,∵∠CAD+∠DBC=90°,∴∠EAC+∠CAD=90°,即∠EAD=90°,∵AE=33,ED=33,∴22,1312∴AB=AD+BD=33+5=3.【题目点拨】本题考查了全等三角形的判定与性质,也考查了等腰直角三角形的性质和勾股定理的应用.考点:3.全等三角形的判定与性质;3.等腰直角三角形.22、(1)50万人;(2)43.2°;统计图见解析(3)13.【解题分析】(1)根据A景点的人数以及百分比进行计算即可得到该市景点共接待游客数;(2)先用360°乘以E的百分比求得E景点所对应的圆心角的度数,再根据B、D景点接待游客数补全条形统计图;(3)根据甲、乙两个旅行团在A、B、D三个景点中各选择一个景点,画出树状图,根据概率公式进行计算,即可得到同时选择去同一景点的概率.【题目详解】解:(1)该市景点共接待游客数为:15÷30%=50(万人);(2)扇形统计图中E景点所对应的圆心角的度数是:650×360°=43.2°,B景点的人数为50×24%=12(万人)、D景点的人数为50×18%=9(万人),补全条形统计图如下:故答案为43.2°;(3)画树状图可得:∵共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,∴P (同时选择去同一个景点)31.93== 【题目点拨】本题考查的是统计以及用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.23、(1)证明详见解析;(2)证明详见解析;(3)1.【解题分析】(1)利用平行线的性质及中点的定义,可利用AAS 证得结论;(2)由(1)可得AF=BD ,结合条件可求得AF=DC ,则可证明四边形ADCF 为平行四边形,再利用直角三角形的性质可证得AD=CD ,可证得四边形ADCF 为菱形;(3)连接DF ,可证得四边形ABDF 为平行四边形,则可求得DF 的长,利用菱形的面积公式可求得答案.【题目详解】(1)证明:∵AF ∥BC ,∴∠AFE =∠DBE ,∵E 是AD 的中点,∴AE =DE ,在△AFE 和△DBE 中, AFE DBE FEA BED AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AFE ≌△DBE (AAS );(2)证明:由(1)知,△AFE ≌△DBE ,则AF =DB .∵AD 为BC 边上的中线∴DB =DC ,∴AF =CD .∵AF ∥BC ,∴四边形ADCF 是平行四边形,∵∠BAC =90°,D 是BC 的中点,E 是AD 的中点,∴AD =DC =12BC , ∴四边形ADCF 是菱形;(3)连接DF ,∵AF ∥BD ,AF =BD ,∴四边形ABDF 是平行四边形,∴DF =AB =5,∵四边形ADCF 是菱形,∴S 菱形ADCF =12AC ▪DF =12×4×5=1. 【题目点拨】本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD 是解题的关键,注意菱形面积公式的应用.24、(1)1辆大货车一次可以运货4吨,1辆小货车一次可以运货32吨;(2)货运公司应安排大货车8辆时,小货车2辆时最节省费用.【解题分析】(1)设1辆大货车和1辆小货车一次可以分别运货x 吨和y 吨,根据“3辆大货车与4辆小货车一次可以运货18吨、2辆大货车与6辆小货车一次可以运货17吨”列方程组求解可得;(2)因运输33吨且用10辆车一次运完,故10辆车所运货不低于10吨,所以列不等式,大货车运费高于小货车,故用大货车少费用就小进行安排即可.【题目详解】(1)解:设1辆大货车一次可以运货x 吨,1辆小货车一次可以运货y 吨,依题可得: 34182617x y x y +=⎧⎨+=⎩ , 解得:432x y =⎧⎪⎨=⎪⎩. 答:1辆大货车一次可以运货4吨,1辆小货车一次可以运货32吨. (2)解:设大货车有m 辆,则小货车10-m 辆,依题可得: 4m+32(10-m )≥33 m≥010-m≥0解得:365≤m≤10,∴m=8,9,10;∴当大货车8辆时,则小货车2辆;当大货车9辆时,则小货车1辆;当大货车10辆时,则小货车0辆;设运费为W=130m+100(10-m)=30m+1000,∵k=30〉0,∴W随x的增大而增大,∴当m=8时,运费最少,∴W=130×8+100×2=1240(元),答:货运公司应安排大货车8辆时,小货车2辆时最节省费用.【题目点拨】考查了二元一次方程组和一元一次不等式的应用,体现了数学建模思想,考查了学生用方程解实际问题的能力,解题的关键是根据题意建立方程组,并利用不等式求解大货车的数量,解题时注意题意中一次运完的含义,此类试题常用的方法为建立方程,利用不等式或者一次函数性质确定方案.。
广西玉林市博白县2014届高考模拟试题(博白统测)数学(文)试题
广西玉林市博白县2014届高考模拟试题(博白统测)数学(文)试题 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R = 如果事件A B ,相互独立,那么其中R 表示球的半径()()()P A B P A P B =球的体积公式 34π3VR =如果事件A 在一次试验中发生的概率是p ,那么其中R 表示球的半径n 次独立重复试验中事件A 恰好发生k 次的概率()(1)(012)k k n kn n P k C p p k n -=-=,,,…, 一、选择题1、已知集合301x M xx +⎧⎫=⎨⎬-⎩⎭>,{}3N x x =≤-,则{}1x x ≥等于 A .()R C M N B .()R MC N C .()R C M ND .()R C MN2、“ p 或q 是假命题”是“非p 为真命题”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3、已知3sin cos()65παα+-=,则cos()3πα-的值等于A .BC .45-D .454、已知4a =,3b =,(23)(2)61a b a b -∙+=,则a 与b 的夹角θ为 A .30B .45C .60D .1205、已知ABC ∆的顶点B 、C 在椭圆2221()x y a a+=>1上,顶点A 是椭圆的一个焦点,且椭圆的另一个焦点在BC 边上,ABC ∆的周长为率为A B C D .236、正四棱柱1111ABCD A B C D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为 A .15B . 25C .351B1A1D1CD .457、已知函数()23g x x =-,23(())1x f g x x =-,则1()2f =A .2-B .12C .15-D .308、等比数列{}n a 的前n 项和为n S ,若102S =,3014S =,则40S =A .80B .30C .26D .169、从8名学生中,男生选2人,女生选1人,分别参加语、数、英三科比赛,共有90种不同方案,那么男、女生人数是 A .2男6女 B .6男2女 C .5男3女 D .3男5女 10、有一块直角三角板ABC ,30A ∠=,90C ∠=,BC 边在桌面上,当三角板和桌面成45时,AB 边与桌面所成角的正弦值为 A .12B C D11、当x y 、满足条件1x y +<时,变量3x Z y =-的取值范围是A .(3,3)-B .11(,)33- C .11(,)(,)33-∞-+∞ D .11(,0)(0,)33- 12、双曲线221(1)x y n n-=>的两焦点分别为12F 、F ,点P 在双曲线上,且满足12PF PF +=,则12PF F ∆的面积是 A .12B .1C .2D .4第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.(注意:在试题卷上作答无效)132x ≤-的解集为14、ABC ∆中,已知(4,)A b ,(4,0)B -,(4,0)C ,D 为BC 上一点,且AD 平分BAC ∠,则AD 所在的直线方程为 .OPBDAE15、64(1(1展开式中的常数项为 .16、已知正四棱锥S ABCD -中,AB =2,则当该棱锥外接球体积最小时,它的高等于 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17、(本小题满分10分)(注意:在试题卷上作答无效) 已知等差数列{}n a 的前n 项和为n S ,点51052,120.a a S ==且求n n a S 和 18、(本小题满分12分)(注意:在试题卷上作答无效)在ABC ∆中,内角A B C 、、的对边分别为a b c 、、,且 tan 21+tan A cBb=.(1)求角A ;(2)若a =ABC ∆面积的最大值.19、(本小题满分12分)(注意:在试题卷上作答无效)某化妆品生产公司计划在郑州的“五一社区”举行为期三天的“健康使用化妆品知识讲座”。
广西陆川县乌石镇初级中学2014届九年级下学期中考模拟考试数学试题3
广西陆川县乌石镇初级中学2014届九年级下学期中考模拟考试数学试题3全卷共三大题,共4页,满分120分,考试时间为120分钟.注意事项:1.答选择题必须用2B 铅笔将答题卷上对应题目中的选项标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题.2.考生答题必须答在答题卷上,保持卷面清洁,答在试卷和草稿纸上一律无效。
一、选择题(本大题共12小题,每小题3分,共36分。
)每小题都给出代号为A 、B 、C 、D 的四个结论,其中只有一个是正确的,请用2B 铅笔在答题卷上将选定的答案代号涂黑。
1. 在下列实数中,无理数是( )A. 2B. 3.14C. 3D. -132.某风景区去年全年旅游总收入达10.04亿元.将10.04亿元用科学记数法可表示为( )A .10.04×108元B .10.04×109元C .1.004×1010元D .1.004×109元3. 下列运算正确的是( )A. a •a 2=a 2B. a 6÷a 2=a 4C. (ab )2=ab 2D. (a 2)3=a 54. 下列几何体中,有一个几何体的主视图的形状与其它三个不一样,这个几何体是( )5. 如图1,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐弯处的∠A 是72°,第二次拐弯处的角是∠B ,第三次拐弯处的∠C 是153°,这时道路恰好和第一次拐弯之前的道路平行,则∠B 等于( )A. 81°B. 99°C. 108°D. 120° 6. 一元二次方程x 2+2x -3=0根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定7. 九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为A .4,4B .5,4C .4,5D .5,58. 在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为( )A. 12B. 13C. 14D. 349. 如图2,正方形网格中,网格线的交点称为格点.已知A 、B 是两格点,如果C 也是图中的格点,且使得△ABC 为等腰直角三角形,则点C 的个数是( )A.2B. 4C. 6D.810. 已知分式方程112=-+x m x 的解是非负数,则m 的值是( )A. 1-≤mB. 21-≠-≤m m 且C. 1-≥mD. 21≠-≥m m 且11.如图3,已知梯形ABCD 中 AD ∥BC,BD 平分∠ABC,∠A=120°,BD=BC=34,则=ABCD S 梯形( )A. 34B. 12C. 1234-D. 1234+ 图312.已知反比例函数x k y =,一次函数n k x km y ++=4,若它们的图象对于任意的非零实数k 都只有一个公共点,则n m ,的值分别为A .0,1=-=n mB .1,0-==n mC .1,1-==n mD .1,1=-=n m二、填空题(本大题共6小题,每小题3分,共18分) 13. =⨯-21 .14. 如图4是一个时钟的钟面,下午1点30分,时钟的分针与时针所夹的角等于 °. 图415. 若方程组⎩⎨⎧ax +y =5,x +by =-1的解为⎩⎨⎧x =2,y =1,则点P (a ,b )在第 象限.16. 如图5,在△ABC 中,AB =AC ,cos ∠ABC =45,点D 在BC 边上,BD =6,CD =AB ,则AD 的长为 . 17. 如图6,R t △A B C 中,∠A C B =90°,∠A B C =30°,A C =1,将△A B C 绕点C 逆时针旋转至△A ′B ′C ,使得点A ′恰好落在A B 上,连接B B ′,则B B ′的长度为 .18. 如图7,点P (t ,0)是x 轴正半轴上的一个动点,过点P 作y 轴的平行线,分别与直线y =12x ,直线y =-x 交于A , B 两点,以AB 为边向右侧作正方形ABCD 。
2024届广西玉林陆川县联考数学八年级第二学期期末联考模拟试题含解析
2024届广西玉林陆川县联考数学八年级第二学期期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)1.如图,在矩形ABCD 中,对角线AC ,BD 交于点O ,若∠COD=58°,则∠CAD 的度数是( )A .22°B .29°C .32D .61°2.1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .3.已知平行四边形ABCD 中,∠B =2∠A ,则∠A =( )A .36°B .60°C .45°D .80°4.当x=3时,函数y=-2x+1的值是( )A .3B .-5C .7D .55.下列式子:①35y x =-;②2y x =;③y x =;④1y x =-.其中y 是x 的函数的个数是( ) A .1 B .2 C .3 D .46.下列运算错误的是A .532-=B .632÷=C .6332⨯=D .2333-=7.下列字母中既是中心对称图形又是轴对称图形的是( )A .B .C .D .8.如图,平行四边形ABCD 中,对角线AC 和BD 相交于点O ,若AC=12,BD=10,AB=7,则△DOC 的周长为()A .29B .24C .23D .189.下列各表达式不是表示与x 的函数的是( )A .B .C .D .10.已知一次函数y kx b =+的图象不经过第三象限,则k 、b 的符号是( )A .k 0<,0b >B .0k >,0b ≥C .k 0<,0b ≥D .0k >,0b ≤11.下列命题是真命题的是( )A .若a b >,则11a b ->-B .若22ac bc >,则a b >C .若225x kx ++是一个完全平方公式,则k 的值等于10D .将点()2,3A -向上平移3个单位长度后得到的点的坐标为()1,312.如图,点P 是正方形ABCD 内一点,连接AP 并延长,交BC 于点Q .连接DP ,将ADP ∆绕点A 顺时针旋转90°至ABP '∆,连结PP '.若1AP =,22PB =,10PD =,则线段AQ 的长为( )A .10B .4C .154D .133二、填空题(每题4分,共24分)13.如图,若△DEF 是由△ABC 沿BC 方向平移得到的,EF =5,EC =3,则平移的距离是_____.14.观察下列按顺序排列的等式:12341111111a 1a a a 3243546=-=-=-=-⋯,,,,,试猜想第n 个等式(n 为正整数):a n =_____.15.数据5,5,6,6,6,7,7的众数为_____16.若整数x 满足|x|≤3,则使7x -为整数的x 的值是 (只需填一个).17.如图所示,为估计池塘两岸边A ,B 两点间的距离,在池塘的一侧选取点C ,分别取CA 、CB 的中点E ,F ,测的18EF m =,则A ,B 两点间的距离是______m .18.如图,△ABC 中,已知AB=8,∠C=90°,∠A=30°,DE 是中位线,则DE 的长为_____.三、解答题(共78分)19.(8分)将含有45°角的直角三角板ABC 和直尺如图摆放在桌子上,然后分别过A 、B 两个顶点向直尺作两条垂线段AD ,BE .(1)请写出图中的一对全等三角形并证明;(2)你能发现并证明线段AD ,BE ,DE 之间的关系吗?20.(8分) (1)()()2363x x x +=+(2)()2558x x x -=-21.(8分)如图,在平面直角坐标系中,直线EF 交x ,y 轴子点F ,E ,交反比例函数k y x=(x >0)图象于点C ,D ,OE=OF=52CD 为边作矩形ABCD ,顶点A 与B 恰好落在y 轴与x 轴上.(1)若矩形ABCD是正方形,求CD的长;(2)若AD:DC=2:1,求k的值.22.(10分)如图,在△ABC中,∠ACB=90°,AC=30cm,BC=40cm.点P从点A出发,以5cm/s的速度沿AC 向终点C匀速移动.过点P作PQ⊥AB,垂足为点Q,以PQ为边作正方形PQMN,点M在AB边上,连接CN.设点P移动的时间为t(s).(1)PQ=______;(用含t的代数式表示)(2)当点N分别满足下列条件时,求出相应的t的值;①点C,N,M在同一条直线上;②点N落在BC边上;(3)当△PCN为等腰三角形时,求t的值.23.(10分)某高速公路要对承建的工程进行招标,现在甲、乙两个工程队前来投标,根据两队的申报材料估计:若甲、乙两队合作,24天可以完成;若由甲队单独做20天后,余下的工程由乙队做,还需40天完成,求甲、乙两队单独完成这项工程各需多少天?24.(10分)我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做等对角四边形.请解决下列问题:(1)已知:如图1,四边形ABCD是等对角四边形,∠A≠∠C,∠A=70°,∠B=75°,则∠C= °,∠D= °(2)在探究等对角四边形性质时:小红画了一个如图2所示的等对角四边形ABCD,其中,∠ABC=∠ADC,AB=AD,此时她发现CB=CD 成立,请你证明该结论;(3)图①、图②均为4×4的正方形网格,线段AB、BC的端点均在网点上.按要求在图①、图②中以AB和BC为边各画一个等对角四边形ABCD.要求:四边形ABCD的顶点D在格点上,所画的两个四边形不全等.(4)已知:在等对角四边形ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4,求对角线AC的长.25.(12分)先化简,再求值22226951222a ab b ba ba ab a b a⎛⎫-+÷---⎪--⎝⎭,其中a=3,b=﹣1.26.分解因式:(1)2xy-x2-y2;(2)2ax3-8ax.参考答案一、选择题(每题4分,共48分)1、B【解题分析】只要证明OA=OD,根据三角形的外角的性质即可解决问题.【题目详解】∵四边形ABCD是矩形,∴OA=OD,∴∠OAD=∠ODA,∵∠COD=∠CAD+∠ODA=58°,∴∠CAD=29°故选B.【题目点拨】本题考查矩形的性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.2、D【解题分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【题目详解】A、不是轴对称图形,故A不符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、是轴对称图形,故D符合题意.故选D.【题目点拨】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3、B【解题分析】根据平行四边形的性质得出BC∥AD,推出∠A+∠B=180°,求出∠A的度数即可.【题目详解】∵四边形ABCD是平行四边形,∴BC∥AD,∴∠A+∠B=180°.∵∠B=2∠A,∴∠A=60°.故选B.【题目点拨】本题考查了平行四边形的性质,平行线的性质的应用,关键是平行四边形的邻角互补.4、B【解题分析】把x=3代入解析式进行计算即可得.【题目详解】当x=3时,y=-2x+1=-2×3+1=-5,故选B.【题目点拨】本题考查了求函数值,正确把握求解方法是解题的关键.5、C【解题分析】根据以下特征进行判断即可:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即单对应.【题目详解】解:①y=3x-5,y是x的函数;②y2=x,当x取一个值时,有两个y值与之对应,故y不是x的函数;③y=|x|,y是x的函数.④y=y是x的函数.以上y是x的函数的个数是3个.故选:C.【题目点拨】本题主要考查的是函数的概念,掌握函数的定义是解题的关键.6、A【解题分析】根据二次根式的加减法、乘法、除法逐项进行计算即可得.【题目详解】A.B. =,正确,不符合题意;C. =,正确,不符合题意;D. =,正确,不符合题意.故选A.【题目点拨】本题考查了二次根式的运算,熟练掌握二次根式的乘除法、加减法的运算法则是解题的关键.7、A【解题分析】根据中心对称图形及轴对称图形的概念即可解答.【题目详解】选项A是轴对称图形,也是中心对称图形;选项B是轴对称图形,不是中心对称图形;选项C不是轴对称图形,也不是中心对称图形;选项D不是轴对称图形,是中心对称图形.故选A.【题目点拨】本题考查了中心对称图形及轴对称图形的概念,熟知中心对称图形及轴对称图形的判定方法是解决问题的关键.8、D【解题分析】根据平行四边形的对角线互相平分可求出DO与CO的长,然后求出△DOC的周长即可得出答案.【题目详解】在平行四边形ABCD中,∵CD=AB=7,152DO BD==,162CO AC==,∴△DOC的周长为:DO+CO+CD=5+6+7=18.故选D.【题目点拨】本题考查了平行四边形的性质.熟练掌握平行四边形的性质是解题的关键.9、C【解题分析】根据函数的概念进行判断。
广西陆川县乌石镇初级中学2014届九年级下学期中考模拟考试数学试题1
广西陆川县乌石镇初级中学2014届九年级下学期中考模拟考试数学试题1一、选择题(本大题共12小题,每小题3分,共36分。
)每小题都给出代号为A 、B 、C 、D 的四个结论,其中只有一个是正确的,请用2B 铅笔在答题卷上将选定的答案代号涂黑。
1.2014的相反数是A .-2014B .2014C .-12014D .120142.如图1,AB ∥ED ,∠ECF=70°,则∠BAF 的度数为 A .130° B .110° C .70° D .20° 3.下列运算正确的是A .2x +3y =5xyB .4x 8÷2x 2=2x 4C .5x 2·x 3=5x 5D .(-x 3)2=x 54.在“百度”搜索引擎输入“马航飞机失踪”,能搜索到与之相关的结果个数约为32300000, 这个数用科学记数法表示为A .32.3×106B .0.323×108C .3.23×108D .3.23×107 5.由5个相同的正方体组成的几何体如图所示,则它的主视图是( )6.某校九年级五班有7个合作学习小组,各学习小组的人数分别为:5,6,6,x ,7,8,9,已知这组数据的平均数是7,则这组数据的中位数是A .7B .6C .9D .8 7.甲、乙、丙三个同学排成一排拍照,则甲排在中间的概率是 A .21 B .31 C .41 D .61 8.如图2,若AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD=55°, 则∠BCD 的度数为A.55°B.45°C. 35°D.25°9. 如图3,在平行四边形ABCD 中,对角线AC ,BD 相交于点O , 则图中是全等的三角形有A .2对B .3对C .4对D .5对 10. 如图4,在等腰梯形ABCD 中,AB∥CD,AD=BC=4,∠A=60°, BD 平分∠ABC,则这个梯形的面积是A .36B .38C .310D . 31211.如图5,火车匀速通过隧道(隧道长大于火车长)时,火车进入隧道的时间x 与火车在隧道内的长度y 之间的关系用图象描述大致是12.已知二次函数122+-=x kx y 与一次函数4)1(kx k y --=的图象对于任意的非零实数k 都有公共点,则k 的取值范围是A .011≠≤≤-k k 且B .11≤≤-kC .11≥-≤k k 或D .任意实数 二、填空题(本大题共6小题,每小题3分,共18分) 13.比-2小1的数是 。
广西玉林市博白县2014届高三数学模拟试题(博白统测)文 新人教A版
广西玉林市博白县2014届高三数学模拟试题(博白统测)文 新人教A版参考公式:如果事件A B ,互斥,那么球的表面积公式 ()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式 34π3V R =如果事件A 在一次试验中发生的概率是p ,那么 其中R 表示球的半径n 次独立重复试验中事件A 恰好发生k 次的概率 ()(1)(012)k k n k n n P k C p p k n -=-=,,,…,一、选择题1、已知集合301x M xx+⎧⎫=⎨⎬-⎩⎭>,{}3N x x =≤-,则{}1x x ≥等于 A .()R C M N B .()R MC N C .()R C M ND .()R C MN2、“ p 或q 是假命题”是“非p 为真命题”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 3、已知3sin cos()65παα+-=,则cos()3πα-的值等于A .BC .45-D .454、已知4a =,3b =,(23)(2)61a b a b -∙+=,则a 与b 的夹角θ为 A .30B .45C .60D .1205、已知ABC ∆的顶点B 、C 在椭圆2221()x y a a+=>1上,顶点A 是椭圆的一个焦点,且椭圆的另一个焦点在BC 边上,ABC ∆的周长为A B C D .236、正四棱柱1111ABCD A B C D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为 A .15B . 25C .35D .457、已知函数()23g x x =-,23(())1x f g x x =-,则1()2f =A .2-B .12C .15-D .308、等比数列{}n a 的前n 项和为n S ,若102S =,3014S =,则40S =A .80B .30C .26D .169、从8名学生中,男生选2人,女生选1人,分别参加语、数、英三科比赛,共有90种不同方案,那么男、女生人数是A .2男6女B .6男2女C .5男3女D .3男5女 10、有一块直角三角板ABC ,30A ∠=,90C ∠=,BC 边在桌面上,当三角板和桌面成45时,AB 边与桌面所成角的正弦值为 A .12BCD11、当x y 、满足条件1x y +<时,变量3x Z y =-的取值范围是 A .(3,3)-B .11(,)33-C .11(,)(,)33-∞-+∞ D .11(,0)(0,)33- 12、双曲线221(1)x y n n-=>的两焦点分别为12F 、F ,点P 在双曲线上,且满足12PF PF +=,则12PF F ∆的面积是A .12B .1C .2D .4第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答. 二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.(注意:在试题卷上作答无效)132x ≤-的解集为14、ABC ∆中,已知(4,)A b ,(4,0)B -,(4,0)C ,D 为BC 上一点,且AD 平分BAC ∠,则ADAB1B1A1D1C CDOPBDAE所在的直线方程为.15、64(1(1-展开式中的常数项为 .16、已知正四棱锥S ABCD -中,AB =2,则当该棱锥外接球体积最小时,它的高等于 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17、(本小题满分10分)(注意:在试题卷上作答无效) 已知等差数列{}n a 的前n 项和为n S ,点51052,120.a a S ==且求n n a S 和 18、(本小题满分12分)(注意:在试题卷上作答无效)在ABC ∆中,内角A B C 、、的对边分别为a b c 、、,且 tan 21+tan A c Bb=.(1)求角A ; (2)若a =,求ABC ∆面积的最大值.19、(本小题满分12分)(注意:在试题卷上作答无效)某化妆品生产公司计划在郑州的“五一社区”举行为期三天的“健康使用化妆品知识讲座”。
2014年广西玉林市中考数学试卷
2014年广西玉林市中考数学试卷一、单项选择题(共12小题,每小题3分,满分36分)1.(3分)下面的数中,与﹣2的和为0的是()A.2B.﹣2C.D.2.(3分)将6.18×10﹣3化为小数的是()A.0.000618B.0.00618C.0.0618D.0.618 3.(3分)计算(2a2)3的结果是()A.2a6B.6a6C.8a6D.8a5 4.(3分)下面的多项式在实数范围内能因式分解的是()A.x2+y2B.x2﹣y C.x2+x+1D.x2﹣2x+1 5.(3分)如图的几何体的三视图是()A.B.C.D.6.(3分)下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形7.(3分)△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是()A.3B.6C.9D.128.(3分)一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.B.C.D.9.(3分)x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,是否存在实数m使0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在10.(3分)在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是()A.1cm<AB<4cm B.5cm<AB<10cmC.4cm<AB<8cm D.4cm<AB<10cm11.(3分)蜂巢的构造非常美丽、科学,如图是由7个形状、大小完全相同的正六边形组成的网络,正六边形的顶点称为格点,△ABC的顶点都在格点上.设定AB边如图所示,则△ABC是直角三角形的个数有()A.4个B.6个C.8个D.10个12.(3分)如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)13.(3分)3的倒数是.14.(3分)在平面直角坐标系中,点(﹣4,4)在第象限.15.(3分)下表是我市某一天在不同时段测得的气温情况则这一天气温的极差是℃.16.(3分)如图,直线MN与⊙O相切于点M,ME=EF且EF∥MN,则cos∠E=.17.(3分)如图,在直角梯形ABCD中,AD∥BC,∠C=90°,∠A=120°,AD=2,BD 平分∠ABC,则梯形ABCD的周长是.18.(3分)如图,OABC是平行四边形,对角线OB在轴正半轴上,位于第一象限的点A 和第二象限的点C分别在双曲线y和y的一支上,分别过点A、C作x轴的垂线,垂足分别为M和N,则有以下的结论:①;②阴影部分面积是(k1+k2);③当∠AOC=90°时,|k1|=|k2|;④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是(把所有正确的结论的序号都填上).三、解答题(共8小题,满分66分。
广西壮族自治区玉林市陆川县2024届中考数学模拟预测题含解析
广西壮族自治区玉林市陆川县2024年中考数学模拟预测题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.某车间20名工人日加工零件数如表所示: 日加工零件数45 6 7 8人数 2 6 5 4 3 这些工人日加工零件数的众数、中位数、平均数分别是( )A .5、6、5B .5、5、6C .6、5、6D .5、6、62.如图,已知在Rt △ABC 中,∠ABC=90°,点D 是BC 边的中点,分别以B 、C 为圆心,大于线段BC 长度一半的长为半径圆弧,两弧在直线BC 上方的交点为P ,直线PD 交AC 于点E ,连接BE ,则下列结论:①ED ⊥BC ;②∠A=∠EBA ;③EB 平分∠AED ;④ED=12AB 中,一定正确的是( )A .①②③B .①②④C .①③④D .②③④3.如图所示,有一条线段是ABC ∆(AB AC >)的中线,该线段是( ).A .线段GHB .线段ADC .线段AED .线段AF4.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b+1),则a 与b 的数量关系为A .a=bB .2a+b=﹣1C .2a ﹣b=1D .2a+b=15.如图,正方形ABCD 内接于圆O ,AB =4,则图中阴影部分的面积是( )A .416π-B .816π-C .1632π-D .3216π-6.在平面直角坐标系中,正方形A 1B 1C 1D 1、D 1 E 1E 2B 2、A 2B 2 C 2D 2、D 2E 3E4B 3…按如图所示的方式放置,其中点B 1在y 轴上,点C 1、E 1、E 2、C 2、E 3、E 4、C 3…在x 轴上,已知正方形A 1B 1C 1D 1的边长为l ,∠B 1C 1O=60°,B 1C 1∥B 2C 2∥B 3C 3…,则正方形A 2017B 2017C 2017D 2017的边长是( )A .()2016B .()2017C .()2016D .()20177.正方形ABCD 在直角坐标系中的位置如图所示,将正方形ABCD 绕点A 按顺时针方向旋转180°后,C 点的坐标是( )A .(2,0)B .(3,0)C .(2,-1)D .(2,1)8.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n 、m 的大矩形,则图中阴影部分的周长是( )A.6(m﹣n)B.3(m+n)C.4n D.4m9.二次函数y=x2+bx–1的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2–2x–1–t=0(t为实数)在–1<x<4的范围内有实数解,则t的取值范围是A.t≥–2 B.–2≤t<7C.–2≤t<2 D.2<t<710.下列图形中,是中心对称但不是轴对称图形的为()A.B.C.D.二、填空题(共7小题,每小题3分,满分21分)11.如图,每个小正方形边长为1,则△ABC边AC上的高BD的长为_____.12.四张背面完全相同的卡片上分别写有0、·3、9、2、227四个实数,如果将卡片字面朝下随意放在桌子上,任意取一张,那么抽到有理数的概率为___________.13.在实数范围内分解因式:x2y﹣2y=_____.14.甲、乙两个搬运工搬运某种货物.已知乙比甲每小时多搬运600kg,甲搬运5000kg所用的时间与乙搬运8000kg所用的时间相等.设甲每小时搬运xkg 货物,则可列方程为_____.15.因式分解:x 3﹣4x=_____.16.如图,在矩形ABCD 中,AB=2,AD=6,E .F 分别是线段AD ,BC 上的点,连接EF ,使四边形ABFE 为正方形,若点G 是AD 上的动点,连接FG ,将矩形沿FG 折叠使得点C 落在正方形ABFE 的对角线所在的直线上,对应点为P ,则线段AP 的长为______.17.如图,在△ABC 中,BC=8,高AD=6,矩形EFGH 的一边EF 在边BC 上,其余两个顶点G 、H 分别在边AC 、AB 上,则矩形EFGH 的面积最大值为_____.三、解答题(共7小题,满分69分)18.(10分)如图,在△ABC 中,∠ACB=90°,O 是边AC 上一点,以O 为圆心,以OA 为半径的圆分别交AB 、AC 于点E 、D ,在BC 的延长线上取点F ,使得BF=EF .(1)判断直线EF 与⊙O 的位置关系,并说明理由;(2)若∠A=30°,求证:DG=12DA ; (3)若∠A=30°,且图中阴影部分的面积等于2233,求⊙O 的半径的长.19.(5分)先化简,再求值:2311221x x x x x x -⎛⎫-÷- ⎪+++⎝⎭,其中x 满足210x x --=. 20.(8分)如图,在平面直角坐标系中,抛物线2(0)y ax bx c a =++≠的图象经过(1,0)M 和(3,0)N 两点,且与y 轴交于(0,3)D ,直线l 是抛物线的对称轴,过点(1,0)A -的直线AB 与直线相交于点B ,且点B 在第一象限.(1)求该抛物线的解析式;(2)若直线AB 和直线l 、x 轴围成的三角形面积为6,求此直线的解析式;(3)点P 在抛物线的对称轴上,P 与直线AB 和x 轴都相切,求点P 的坐标.21.(10分)如图,在ABCD 中,6090B ︒<∠<︒,且2AB =,4BC =,F 为AD 的中点,CE AB ⊥于点E ,连结EF ,CF .(1)求证:3EFD AEF ∠=∠;(2)当BE 为何值时,22CE CF -的值最大?并求此时sin B 的值.22.(10分)如图,菱形ABCD 中,已知∠BAD=120°,∠EGF=60°, ∠EGF 的顶点G 在菱形对角线AC 上运动,角的两边分别交边BC 、CD 于E 、F .(1)如图甲,当顶点G 运动到与点A 重合时,求证:EC+CF=BC ;(2)知识探究:①如图乙,当顶点G 运动到AC 的中点时,请直接写出线段EC 、CF 与BC 的数量关系(不需要写出证明过程);②如图丙,在顶点G 运动的过程中,若AC t GC=,探究线段EC 、CF 与BC 的数量关系; (3)问题解决:如图丙,已知菱形的边长为8,BG=7,CF=65,当t >2时,求EC 的长度.23.(12分)为奖励优秀学生,某校准备购买一批文具袋和圆规作为奖品,已知购买1个文具袋和2个圆规需21元,购买2个文具袋和3个圆规需39元。
广西玉林市中考二模数学试卷及答案.doc
广西玉林市 2014 年中考二模数学试卷一、选择题(本大题共 12 小题,每小题 3 分,满分 36 分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案的标号填在答题卡内相应的位置上)1.计算: 1×(﹣ 2)的结果是()A .﹣ 2B .C .﹣1D .22.如图, AO ⊥ OB 于点 O ,∠ AOC=50 °,则∠ BOC 等于( )30° B . 40° C . 50°60°A .D .3.下列图形中,不能镶嵌成平面图案的()A .正 三角形B .正 四边形C .正五边形D .正 六边形4.已知方程,则 x+y 的值是( )A .3B .1C .﹣3D .﹣ 15.李华在下面的计算中只做错了一道题,他做错的题目是()A .2 )33 22 2( ﹣ 2a=﹣B .( a ﹣1)( a+1)C .a ÷a =aD .﹣ 162( a ﹣ 1) =a8a=a ﹣ 16.分式的值为 0,则()A .x=2B .x=﹣2C .x=±2D .x=07.如图, OA=OB ,OE 是∠ AOB 的平分线, BD ⊥ OA 于点 D ,AC ⊥ BO 于点 C ,则关于直 线 OE 对称的三角形共有()A .2 对B .3 对C .4 对D .5 对8.已知 x1,x2是关于 x 的一元二次方程2﹣ a=0 的两个实数根,且2 21x2=5,x ﹣ 2x x1 +x 2 +3x则 a 的值是()2B .﹣ 2 C.1D.﹣ 1A .9.在同一坐标系中,函数 y=ax 2与 y=ax ﹣ a( a≠0)的图象的大致位置可能是()A .B .C.D.10.甲、乙、丙、丁四名选手参加100 米决赛,赛场只设1、2、 3、 4 四个跑道,选手以随机抽签的方式决定各自的跑道,若甲首先抽签,则甲抽到 1 号跑道的概率是()1B .C.D.A .11.如图,在梯形ABCD 中, AD ∥BC ,∠ BCD=90 °, BC=2AD , F、 E 分别是 BA 、 BC 的中点,则下列结论不正确的是()A .△ ABC 是等腰B .四边形 EFAM三角形是菱形C.D.DE 平分∠ CDFS△BEF= S△ACD12.如图,正方形 ABCD 的图象经过另外两个顶点的顶点 A、B 分别在 x 轴、y 轴的正半轴上,反比例函数C、 D,且点 D( 4,n)( 0<n< 4),则 k 的值为()A .12B .8 C.6 D.4二、填空题(本大题共 6 小题,每小题13. 2 的相反数是_________ .3 分,共18 分。
广西玉林陆川县联考2024届中考数学押题卷含解析
广西玉林陆川县联考2024届中考数学押题卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(共10小题,每小题3分,共30分)1.在同一平面直角坐标系中,函数y=x+k与kyx(k为常数,k≠0)的图象大致是()A.B.C.D.2.济南市某天的气温:-5~8℃,则当天最高与最低的温差为()A.13 B.3 C.-13 D.-33.如图,△ABC内接于⊙O,BC为直径,AB=8,AC=6,D是弧AB的中点,CD与AB的交点为E,则CE:DE 等于()A.3:1 B.4:1 C.5:2 D.7:24.我国的钓鱼岛面积约为4400000m2,用科学记数法表示为()A.4.4×106B.44×105C.4×106D.0.44×1075.在平面直角坐标系中,将点P (﹣4,2)绕原点O 顺时针旋转90°,则其对应点Q 的坐标为( )A.(2,4) B.(2,﹣4) C.(﹣2,4) D.(﹣2,﹣4)6.如图,四边形ABCD是边长为1的正方形,动点E、F分别从点C,D出发,以相同速度分别沿CB,DC运动(点E到达C时,两点同时停止运动).连接AE,BF交于点P,过点P分别作PM∥CD,PN∥BC,则线段MN的长度的最小值为()A .52B .512-C .12D .17.对于点A (x 1,y 1),B (x 2,y 2),定义一种运算:()()1212A B x x y y ⊕=+++.例如,A (-5,4),B (2,﹣3),()()A B 52432⊕=-++-=-.若互不重合的四点C ,D ,E ,F ,满足C D D E E F F D ⊕=⊕=⊕=⊕,则C ,D ,E ,F 四点【 】A .在同一条直线上B .在同一条抛物线上C .在同一反比例函数图象上D .是同一个正方形的四个顶点8.如图,在平行四边形ABCD 中,F 是边AD 上的一点,射线CF 和BA 的延长线交于点E ,如果12C EAF C CDF =,那么S EAF S EBC的值是( )A .12B .13C .14D .199.下列运算正确的是( )A .(﹣2a )3=﹣6a 3B .﹣3a 2•4a 3=﹣12a 5C .﹣3a (2﹣a )=6a ﹣3a 2D .2a 3﹣a 2=2a10.如图,△ABC 绕点A 顺时针旋转45°得到△AB′C′,若∠BAC =90°,AB =AC 2于( )A .2﹣2B .1C .2D .2﹣l二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,AB 是⊙O 的直径,弦CD 交AB 于点P ,AP =2,BP =6,∠APC =30°,则CD 的长为_______.12.如图,直线a ,b 被直线c 所截,a ∥b ,∠1=∠2,若∠3=40°,则∠4等于________.13.如图,直线123y x =+与x 轴交于点A ,与y 轴交于点B ,点D 在x 轴的正半轴上,OD OA =,过点D 作CD x ⊥轴交直线AB 于点C ,若反比例函数(0)k y k x=≠的图象经过点C ,则k 的值为_________________.14.圆锥的底面半径为2,母线长为6,则它的侧面积为_____.15.如图△EDB 由△ABC 绕点B 逆时针旋转而来,D 点落在AC 上,DE 交AB 于点F ,若AB =AC ,DB =BF ,则AF 与BF 的比值为_____.16.已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为.三、解答题(共8题,共72分)17.(8分)先化简,22211121x x xx xx x--+⋅-++,其中x=12.18.(8分)如图1,矩形ABCD中,E是AD的中点,以点E直角顶点的直角三角形EFG的两边EF,EG分别过点B,C,∠F=30°.(1)求证:BE=CE(2)将△EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF,EG分别与AB,BC相交于点M,N.(如图2)①求证:△BEM≌△CEN;②若AB=2,求△BMN面积的最大值;③当旋转停止时,点B恰好在FG上(如图3),求sin∠EBG的值.19.(8分)如图,已知函数kyx=(x>0)的图象经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图象经过点A、D,与x轴的负半轴交于点E.若AC=32OD,求a、b的值;若BC∥AE,求BC的长.20.(8分)如图,在平行四边形ABCD中,BD为对角线,AE⊥BD,CF⊥BD,垂足分别为E、F,连接AF、CE,求证:AF=CE.21.(8分)(操作发现)(1)如图1,△ABC为等边三角形,先将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB 上取点E,使∠DCE=30°,连接AF,EF.①求∠EAF的度数;②DE与EF相等吗?请说明理由;(类比探究)(2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF.请直接写出探究结果:①∠EAF的度数;②线段AE,ED,DB之间的数量关系.22.(10分)在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a≠0)的图象经过A(0,4),B(2,0),C(-2,0)三点.(1)求二次函数的表达式;(2)在x轴上有一点D(-4,0),将二次函数的图象沿射线DA方向平移,使图象再次经过点B.①求平移后图象顶点E的坐标;②直接写出此二次函数的图象在A,B两点之间(含A,B两点)的曲线部分在平移过程中所扫过的面积.23.(12分)先化简,再求值:(x2x2+-+24x4x4-+)÷xx2-,其中x=1224.为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款.小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元.该产品每月销售量y(万件)与销售单价x(元)万件之间的函数关系如图所示.求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;小王自网店开业起,最快在第几个月可还清10万元的无息贷款?参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解题分析】选项A中,由一次函数y=x+k的图象知k<0,由反比例函数y=的图象知k>0,矛盾,所以选项A错误;选项B中,由一次函数y=x+k的图象知k>0,由反比例函数y=的图象知k>0,正确,所以选项B正确;由一次函数y=x+k的图象知,函数图象从左到右上升,所以选项C、D错误.故选B.2、A【解题分析】由题意可知,当天最高温与最低温的温差为8-(-5)=13℃,故选A.3、A【解题分析】利用垂径定理的推论得出DO⊥AB,AF=BF,进而得出DF的长和△DEF∽△CEA,再利用相似三角形的性质求出即可.【题目详解】连接DO,交AB于点F,∵D是AB的中点,∴DO⊥AB,AF=BF,∵AB=8,∴AF=BF=4,∴FO是△ABC的中位线,AC∥DO,∵BC为直径,AB=8,AC=6,∴BC=10,FO=12AC=1,∴DO=5,∴DF=5-1=2,∵AC∥DO,∴△DEF∽△CEA,∴CE AC DE FD=, ∴CE DE =62=1. 故选:A .【题目点拨】此题主要考查了垂径定理的推论以及相似三角形的判定与性质,根据已知得出△DEF ∽△CEA 是解题关键. 4、A【解题分析】4400000=4.4×1.故选A . 点睛:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.5、A【解题分析】首先求出∠MPO=∠QON ,利用AAS 证明△PMO ≌△ONQ ,即可得到PM=ON ,OM=QN ,进而求出Q 点坐标.【题目详解】作图如下,∵∠MPO+∠POM=90°,∠QON+∠POM=90°,∴∠MPO=∠QON ,在△PMO 和△ONQ 中,∵{PMO ONQMPO NOQ PO OQ∠=∠∠=∠= ,∴△PMO ≌△ONQ ,∴PM=ON ,OM=QN ,∵P 点坐标为(﹣4,2),∴Q 点坐标为(2,4),故选A .【题目点拨】此题主要考查了旋转的性质,以及全等三角形的判定和性质,关键是掌握旋转后对应线段相等.6、B【解题分析】分析:由于点P 在运动中保持∠APD=90°,所以点P 的路径是一段以AD 为直径的弧,设AD 的中点为Q ,连接QC 交弧于点P ,此时CP 的长度最小,再由勾股定理可得QC 的长,再求CP 即可.详解: 由于点P 在运动中保持∠APD=90°, ∴点P 的路径是一段以AD 为直径的弧,设AD 的中点为Q ,连接QC 交弧于点P ,此时CP 的长度最小,在Rt △QDC 中,=, ∴CP=QC -,故选B . 点睛:本题主要考查的是圆的相关知识和勾股定理,属于中等难度的题型.解决这个问题的关键是根据圆的知识得出点P 的运动轨迹.7、A 。
2014-2015年广西玉林市博白县九年级上学期数学期中试卷带答案
2014-2015学年广西玉林市博白县九年级(上)期中数学试卷一、选择题(本大题共12小题,每小题3分,共36分)在每小题给出的四个选项中,只有一个是正确的,请将所选选项的字母涂在相应题号的答题卡上1.(3分)下列图形是中心对称图形而不是轴对称图形的是()A. B.C.D.2.(3分)方程x2﹣4=0的解为()A.2 B.﹣2 C.±2 D.43.(3分)把二次函数y=﹣x2﹣x+3用配方法化成y=a(x﹣h)2+k的形式()A.y=﹣(x﹣2)2+2 B.y=(x﹣2)2+4 C.y=﹣(x+2)2+4D.y=2+34.(3分)下列关于x的一元二次方程有实数根的是()A.x2+1=0 B.x2+x+1=0 C.x2﹣x+1=0 D.x2﹣x﹣1=05.(3分)对抛物线:y=﹣x2+2x﹣3而言,下列结论正确的是()A.与x轴有两个交点B.开口向上C.与y轴的交点坐标是(0,3)D.顶点坐标是(1,﹣2)6.(3分)抛物线y=x2﹣2x+8的顶点坐标为()A.(0,8) B.(1,7) C.(1,9) D.(2,8)7.(3分)已知二次函数y=x2+2x+3,当0≤x≤3时,下列说法正确的是()A.有最小值2,最大值18 B.有最小值3,最大值18C.有最小值0,最大值3 D.有最小值2,最大值128.(3分)将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=3(x﹣2)2﹣1 B.y=3(x﹣2)2+1 C.y=3(x+2)2﹣1 D.y=3(x+2)2+19.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是()A.a<0 B.b2﹣4ac<0C.当﹣1<x<3时,y>0 D.﹣10.(3分)一个面积为120cm2的矩形花圃,它的长比宽多2m,则花圃的长是()A.10m B.12m C.13m D.14m11.(3分)在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()A.B.C.D.12.(3分)把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长为()A.B.5 C.4 D.二、填空题(本大题共6小题,每小题3分,共18分)请把下列各题的正确答案填写在相应题号的答题卡上.13.(3分)点A(﹣3,1)关于原点对称的点的坐标为.14.(3分)抛物线y=2x2﹣bx+3的对称轴是直线x=1,则b的值为.15.(3分)将一个正六边形绕着其中心,至少旋转度可以和原来的图形重合.16.(3分)已知函数y=(x+1)2+1,当x<时,y随x的增大而减小.17.(3分)已知关于x的方程x2+bx+a=0有一个根是﹣a(a≠0),则a﹣b的值为.18.(3分)现定义运算“”,对于任意实数a,b,都有a b=a2﹣a×b+b.如35=32﹣3×5+5.若x2=5,则实数x的值为.三、解答题(本大题共8小题,共66分)19.(6分)解方程:x(x﹣2)+x﹣2=0.20.(6分)已知二次函数y=ax2经过点A(﹣2,﹣8)(1)判断点B(﹣1,﹣4)是否在此抛物线上;(2)求出抛物线上纵坐标为﹣6的点的坐标.21.(6分)在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的三个顶点都在格点上(每个小方格的顶点叫格点).(1)画出△ABC向下平移4个单位后的△A1B1C1;(2)画出△ABC绕点O顺时针旋转90°后的△A2B2C2,并求点A旋转到A2所经过的路线长.22.(8分)已知方程x2+3x+1=0的两个根为x 1,x2,求(1+x1)(1+x2)的值.23.(8分)目前有一种名叫埃博拉的病毒正在西非传播蔓延,若有一个人感染了埃博拉.经过两轮传播后共有121人受到感染,问每轮传播中平均一个人传染了几个人?24.(10分)已知抛物线与x轴有两个不同的交点.(1)求c的取值范围;(2)抛物线与x轴两交点的距离为2,求c的值.25.(10分)从地面竖直上抛物体,已知物体离地面高度h(米)和抛出时间t (秒)符合关系式h=v0t﹣gt2,其中v0是竖直上抛时的初速度,重力加速度g 以10米/秒2计算.设v0=20米/秒的初速度上升,(1)抛出多少时间物体离地面高度是15米?(2)抛出多少时间以后物体回到原处?(3)抛出多少时间物体到达最大高度?最大高度是多少?26.(12分)如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB>1.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设AB=x.(1)求x的取值范围;(2)若△ABC为直角三角形,求x的值.2014-2015学年广西玉林市博白县九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)在每小题给出的四个选项中,只有一个是正确的,请将所选选项的字母涂在相应题号的答题卡上1.(3分)下列图形是中心对称图形而不是轴对称图形的是()A. B.C.D.【解答】解:A、是中心对称图形,不是轴对称图形;故A正确;B、是中心对称图形,也是轴对称图形;故B错误;C、是中心对称图形,也是轴对称图形;故C错误;D、不是中心对称图形,是轴对称图形;故D错误;故选:A.2.(3分)方程x2﹣4=0的解为()A.2 B.﹣2 C.±2 D.4【解答】解:移项得x2=4,解得x=±2.故选:C.3.(3分)把二次函数y=﹣x2﹣x+3用配方法化成y=a(x﹣h)2+k的形式()A.y=﹣(x﹣2)2+2 B.y=(x﹣2)2+4 C.y=﹣(x+2)2+4D.y=2+3【解答】解:y=﹣x2﹣x+3=﹣(x2+4x+4)+1+3=﹣(x+2)2+4故选:C.4.(3分)下列关于x的一元二次方程有实数根的是()A.x2+1=0 B.x2+x+1=0 C.x2﹣x+1=0 D.x2﹣x﹣1=0【解答】解:A、这里a=1,b=0,c=1,∵△=b2﹣4ac=﹣4<0,∴方程没有实数根,本选项不合题意;B、这里a=1,b=1,c=1,∵△=b2﹣4ac=1﹣4=﹣3<0,∴方程没有实数根,本选项不合题意;C、这里a=1,b=﹣1,c=1,∵△=b2﹣4ac=1﹣4=﹣3<0,∴方程没有实数根,本选项不合题意;D、这里a=1,b=﹣1,c=﹣1,∵△=b2﹣4ac=1+4=5>0,∴方程有两个不相等实数根,本选项符合题意;故选:D.5.(3分)对抛物线:y=﹣x2+2x﹣3而言,下列结论正确的是()A.与x轴有两个交点B.开口向上C.与y轴的交点坐标是(0,3)D.顶点坐标是(1,﹣2)【解答】解:A、∵△=22﹣4×(﹣1)×(﹣3)=﹣8<0,抛物线与x轴无交点,本选项错误;B、∵二次项系数﹣1<0,抛物线开口向下,本选项错误;C、当x=0时,y=﹣3,抛物线与y轴交点坐标为(0,﹣3),本选项错误;D、∵y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2,∴抛物线顶点坐标为(1,﹣2),本选项正确.故选:D.6.(3分)抛物线y=x2﹣2x+8的顶点坐标为()A.(0,8) B.(1,7) C.(1,9) D.(2,8)【解答】解:由y=x2﹣2x+8,知y=(x﹣1)2+7;∴抛物线y=x2﹣2x+8的顶点坐标为:(1,7).故选:B.7.(3分)已知二次函数y=x2+2x+3,当0≤x≤3时,下列说法正确的是()A.有最小值2,最大值18 B.有最小值3,最大值18C.有最小值0,最大值3 D.有最小值2,最大值12【解答】解∵y=x2+2x+3=(x+1)2+2,∴该抛物线的开口方向向上,且对称轴是x=﹣1,即在0≤x≤3上,y随x的增大而增大,=3∴当x=0时,y最小值当x=3时,y=(3+1)2+2=18,最大值故选:B.8.(3分)将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=3(x﹣2)2﹣1 B.y=3(x﹣2)2+1 C.y=3(x+2)2﹣1 D.y=3(x+2)2+1【解答】解:抛物线y=3x2向左平移2个单位,再向下平移1个单位后的抛物线顶点坐标为(﹣2,﹣1),所得抛物线为y=3(x+2)2﹣1.故选:C.9.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是()A.a<0 B.b2﹣4ac<0C.当﹣1<x<3时,y>0 D.﹣【解答】解:A、∵抛物线的开口向上,∴a>0,故选项A错误;B、∵抛物线与x轴有两个不同的交点,∴△=b2﹣4ac>0,故选项B错误;C、由函数图象可知,当﹣1<x<3时,y<0,故选项C错误;D、∵抛物线与x轴的两个交点分别是(﹣1,0),(3,0),∴对称轴x=﹣==1,故选项D正确.故选:D.10.(3分)一个面积为120cm2的矩形花圃,它的长比宽多2m,则花圃的长是()A.10m B.12m C.13m D.14m【解答】解:设矩形花圃的宽为x米,则长为(x+2)米,根据题意得:x(x+2)=120,解得:x=10或x=﹣12(舍去)x+2=10+2=12.故花圃的长为12米.故选:B.11.(3分)在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()A.B.C.D.【解答】解:x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选:C.12.(3分)把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长为()A.B.5 C.4 D.【解答】解:∵∠ACB=∠DEC=90°,∠D=30°,∴∠DCE=90°﹣30°=60°,∴∠ACD=90°﹣60°=30°,∵旋转角为15°,∴∠ACD1=30°+15°=45°,又∵∠A=45°,∴△ACO是等腰直角三角形,∴AO=CO=AB=×6=3,AB⊥CO,∵DC=7,∴D1C=DC=7,∴D1O=7﹣3=4,在Rt△AOD1中,AD1===5.故选:B.二、填空题(本大题共6小题,每小题3分,共18分)请把下列各题的正确答案填写在相应题号的答题卡上.13.(3分)点A(﹣3,1)关于原点对称的点的坐标为(3,﹣1).【解答】解:点A(﹣3,1)关于原点对称的点的坐标为(3,﹣1),故答案为:(3,﹣1).14.(3分)抛物线y=2x2﹣bx+3的对称轴是直线x=1,则b的值为4.【解答】解:∵y=2x2﹣bx+3,对称轴是直线x=1,∴=1,即﹣=1,解得b=4.15.(3分)将一个正六边形绕着其中心,至少旋转60度可以和原来的图形重合.【解答】解:∵正六边形的中心角==60°,∴一个正六边形绕着其中心,至少旋转60°可以和原来的图形重合.故答案60.16.(3分)已知函数y=(x+1)2+1,当x<﹣1时,y随x的增大而减小.【解答】解:抛物线y=(x+1)2+1,可知a=2>0,开口向上,对称轴x=﹣1,∴当x<﹣1时,函数值y随x的增大而减小.故答案为:﹣1.17.(3分)已知关于x的方程x2+bx+a=0有一个根是﹣a(a≠0),则a﹣b的值为﹣1.【解答】解:把x=﹣a代入方程得:(﹣a)2﹣ab+a=0,a2﹣ab+a=0,∵a≠0,∴两边都除以a得:a﹣b+1=0,即a﹣b=﹣1,故答案为:﹣1.18.(3分)现定义运算“”,对于任意实数a,b,都有a b=a2﹣a×b+b.如35=32﹣3×5+5.若x2=5,则实数x的值为﹣1,3.【解答】解:根据题意得,x2﹣2x+2=5,移项得,x2﹣2x﹣3=0,因式分解得,(x+1)(x﹣3)=0,解得,x1=﹣1,x2=3.故答案为﹣1,3.三、解答题(本大题共8小题,共66分)19.(6分)解方程:x(x﹣2)+x﹣2=0.【解答】解:x(x﹣2)+x﹣2=0,(x﹣2)(x+1)=0,x﹣2=0,x+1=0,∴x1=2,x2=﹣1.20.(6分)已知二次函数y=ax2经过点A(﹣2,﹣8)(1)判断点B(﹣1,﹣4)是否在此抛物线上;(2)求出抛物线上纵坐标为﹣6的点的坐标.【解答】解:(1)把A(﹣2,﹣8)代入y=ax2得4a=﹣8,解得a=﹣2,所以抛物线解析式为y=﹣2x2,当x=﹣1时,y=﹣2x2=﹣2,所以点B(﹣1,﹣4)不在此抛物线上;(2)当y=﹣6时,﹣2x2=﹣6,解得x1=,x2=﹣,所以抛物线上纵坐标为﹣6的点的坐标为(﹣,﹣6)或(,﹣6).21.(6分)在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的三个顶点都在格点上(每个小方格的顶点叫格点).(1)画出△ABC向下平移4个单位后的△A1B1C1;(2)画出△ABC绕点O顺时针旋转90°后的△A2B2C2,并求点A旋转到A2所经过的路线长.【解答】解:(1)如图所示:△A1B1C1即为所求;(2)如图所示:△A2B2C2,即为所求;点A旋转到A2所经过的路线长为:=.22.(8分)已知方程x2+3x+1=0的两个根为x1,x2,求(1+x1)(1+x2)的值.【解答】解:根据题意x1+x2=﹣3,x1•x2=1,(x1+1)(x2+1)=x1+x2+1+x1•x2=﹣3+1+1=﹣1.即(1+x1)(1+x2)=﹣1.23.(8分)目前有一种名叫埃博拉的病毒正在西非传播蔓延,若有一个人感染了埃博拉.经过两轮传播后共有121人受到感染,问每轮传播中平均一个人传染了几个人?【解答】解:设每轮传播中平均一个人传染了x个人,依题意得1+x+x(1+x)=121,解得x=10或x=﹣12(不合题意,舍去).故每轮传播中平均一个人传染了10个人.24.(10分)已知抛物线与x轴有两个不同的交点.(1)求c的取值范围;(2)抛物线与x轴两交点的距离为2,求c的值.【解答】解:(1)∵抛物线与x轴有两个不同的交点,得出b2﹣4ac>0,∴1﹣4×c>0,解得:c<,(2)设抛物线与x轴的两交点的横坐标为x1,x2,且x1>x2,∵两交点间的距离为2,∴x1﹣x2=2,故(x1﹣x2)2=4,∴(x1+x2)2﹣4x1x2=4,①∵x1+x2=﹣=﹣2②,x1•x2=2c③,∴由①②③得(﹣2)2﹣4×(2c)=4,解得:c=0,即c的值为0.25.(10分)从地面竖直上抛物体,已知物体离地面高度h(米)和抛出时间t (秒)符合关系式h=v0t﹣gt2,其中v0是竖直上抛时的初速度,重力加速度g 以10米/秒2计算.设v0=20米/秒的初速度上升,(1)抛出多少时间物体离地面高度是15米?(2)抛出多少时间以后物体回到原处?(3)抛出多少时间物体到达最大高度?最大高度是多少?【解答】解:(1)把h=15代入关系式h=v0t﹣gt2得,﹣5t2+20t=15,整理得:5t2﹣20t+15=0,即可得:t2﹣4t+3=0,(t﹣1)(t﹣3)=0,解得t1=1,t2=3;答:物体抛出1秒或3秒物体离地面高度是15米.(2)把h=0代入关系式h=v0t﹣gt2得,﹣5t2+20t=0,解得t1=4,t2=0(不合实际,舍去);答:抛出4秒以后物体回到原处.(3)由函数关系式得,h=﹣5t2+20t=﹣5(t﹣2)2+20,即抛出物体2秒时到达最大高度,最大高度是20米.26.(12分)如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB>1.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设AB=x.(1)求x的取值范围;(2)若△ABC为直角三角形,求x的值.【解答】解:(1)在△ABC中,∵AC=1,AB=x,BC=3﹣x.∴,解得1<x<2.(4分)(2)①若AC为斜边,则1=x2+(3﹣x)2,即x2﹣3x+4=0,无解.②若AB为斜边,则x2=(3﹣x)2+1,解得,满足1<x<2.③若BC为斜边,则(3﹣x)2=1+x2,解得,满足1<x<2.∴或.赠送初中数学几何模型【模型二】半角型:图形特征:AB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DF45°DEa +b-a45°A1.2在正方形ABCD 中,点E 、F 分别在BC、CD 上,且EF =BE +DF ,求证:∠FAE =45°E-aaBE挖掘图形特征:x-aa-a运用举例:1.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.DE2.如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.ABFEDCF。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年广西玉林市陆川丶博白两县联考中考数学模拟试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共12小题,共36.0分)1.下列各数中,比-3小的数是()A.-4B.-2C.-1D.0【答案】A【解析】解:|-4|>|-3|,-4<-3,故选:A.根据负数比较大小,绝对值大的数反而小,可得答案.本题考查了有理数比较大小,两个负数比较大小,绝对值大的反而小是解题关键.2.下列运算正确的是()A.a2•a3=a6B.(a2)3=a6C.a2+a3=a5D.a2÷a3=a【答案】B【解析】解:A、应为a2•a3=a2+3=a5,故本选项错误;B、(a2)3=a6,正确;C、a2与a3不是同类项,不能合并,故本选项错误;D、应为a2÷a3=a-1,故本选项错误.故选B.根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项计算后利用排除法求解.本题考查合并同类项,同底数幂的乘法,同底数幂的除法,幂的乘方,熟练掌握运算性质是解题的关键.D选项中,指数相减为负数,法则同样适用.3.下列商标图案,既是轴对称图形,又是中心对称图形的是()A. B. C. D.【答案】A【解析】解:B选项是轴对称但不是中心对称,C既不是中心对称也不是轴对称,D选项是中心对称图形但不是轴对称图形,故选A.依据轴对称图形与中心对称的概念即可解答.对轴对称与中心对称概念的考查:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.4.下列说法正确的是()A.近似数0.010只有一个有效数字B.近似数4.3万精确到千位C.近似数2.8与2.80表示的意义相同D.近似数43.0精确到个位【答案】B【解析】解:A、近似数0.010的“1”后面有一个0,所以,它有两个有效数字;故本选项错误;B、近似数4.3万的3位于千位,所以近似数4.3万精确的了千位;故本选项正确;C、近似数2.8精确到了十分位,2.80精确到了百分位,所以它们表示的意义不一样;故本选项错误;D、近似数43.0的“0”位于十分位,所以它精确到了十分位;故本选项错误.故选B.一个数精确到了哪一位,应当看这个数的末位数字实际在哪一位.本题主要考查学生对近似数的精确度理解是否深刻,这是一个非常好的题目,许多同学不假思考地误选C,通过该题培养学生认真审题的能力和端正学生严谨治学的态度.5.如图,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠CBE的度数是()A.17°B.34°C.56°D.68°【答案】B【解析】解:∵AB∥CD,∴∠ABC=∠C=34°,∵BC平分∠ABE,∴∠CBE=∠ABC=34°.故选B.根据两直线平行,内错角相等可得∠ABC=∠C,再根据角平分线的定义可得∠CBE=∠ABC.本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质并准确识图是解题的关键.6.已知关于x的方程2x-m+5=0的解是x=-2,则m的值为()A.1B.-1C.9D.-9【答案】A【解析】解:把x=-2代入方程,得:-4-m+5=0,解得:m=1.故选A.把x=-2代入方程,即可得到一个关于m的方程,解方程求得m的值.本题考查了方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值.7.若关于x的一元二次方程x2-2x+m=0有两个不相等的实数根,则m的取值范围是()A.m<-1B.m<1C.m>-1D.m>1【答案】B解:根据题意得△=22-4m>0,解得m<1.故选B.根据根的判别式的意义得到△=22-4m>0,然后解不等式即可.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.八(3)班学生到距离学校12千米的烈士陵园扫墓,一部分骑自行车先走,20分钟后,其余的人乘汽车,结果乘汽车的人还早到10分钟,又知汽车的速度是骑车同学的速度的3倍,若同学骑车的速度为x千米/时,列出关于x的方程是()A.=20B.=30C.D.【答案】D【解析】解:骑车的同学用的时间为,坐汽车的同学用的时间可表示为:.方程可列为:.故选D.由题意可知,乘汽车的人用的时间比骑自行车的人所用的时间少20+10=30分钟,即小时.那么等量关系为:骑自行车的人所用的时间-乘汽车的人用的时间=.找到关键描述语,找到等量关系是解决问题的关键.本题用到的等量关系为:工作时间=工作总量÷工作效率.本题要注意:时间的单位要和所设速度的单位相一致.9.如图,在4×4正方形网格中,任选取一个白色的小正方形并涂红,使图中红色部分的图形构成一个轴对称图形的概率是()A. B. C. D.【答案】A【解析】解:∵白色的小正方形有12个,能构成一个轴对称图形的有2个情况(第二行中第4个,还有第四行中第3个),∴使图中红色部分的图形构成一个轴对称图形的概率是:=.故选:A由白色的小正方形有12个,能构成一个轴对称图形的有2个情况,直接利用概率公式求解即可求得答案.此题考查了概率公式的应用与轴对称.注意概率=所求情况数与总情况数之比.10.如图所示,已知⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD.若AD=5,AC=4,则cos B的值为()A. B. C. D.D【解析】解:∵AD是⊙O的直径,∴∠ACD=90°,在R t△ACD中,AD=5,AC=4,∴CD==3,∴cos D==,∵∠B=∠D,∴cos B=.故选D.根据圆周角定理由AD是⊙O的直径得∠ACD=90°,在R t△ACD中,利用勾股定理计算出CD=3,则根据余弦的定义得cos D=,然后根据圆周角定理得∠B=∠D,所以cos B=.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了勾股定理和锐角三角函数的定义.11.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,点E,F分别是边AD,AB的中点,EF交AC于点H,则的值为()A.1B.C.D.【答案】B【解析】解:∵点E,F分别是边AD,AB的中点,∴EF是△ABD的中位线,∴点H是OA的中点,在平行四边形ABCD中,OA=OC,∴=.故选B.先判断出EF是△ABD的中位线,然后求出点H是OA的中点,再根据平行四边形的对角线互相平分求出OA=OC,然后求解即可.本题考查了三角形的中位线的定义,平行四边形的对角线互相平分的性质,熟记性质是解题的关键.12.为使我市冬季“天更蓝、房更暖”、政府决定实施“煤改气”供暖改造工程,现甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中:①甲队每天挖100米;②乙队开挖两天后,每天挖50米;③当x=4时,甲、乙两队所挖管道长度相同;④甲队比乙队提前2天完成任务.正确的个数有()A.1个B.2个C.3个D.4个【答案】D【解析】解:由图象,得①600÷6=100米/天,故①正确;②(500-300)÷4=50米/天,故②正确;③甲队4天完成的工作量是:100×4=400米,乙队4天完成的工作量是:300+2×50=400米,∵400=400,∴当x=4时,甲、乙两队所挖管道长度相同,故③正确;④由图象得甲队完成600米的时间是6天,乙队完成600米的时间是:2+300÷50=8天,∵8-6=2天,∴甲队比乙队提前2天完成任务,故④正确;故选D.从图象可以看出甲队完成工程的时间不到6天,故工作效率为100米,乙队挖2天后还剩300米,4天完成了200米,故每天是50米,当x=4时,甲队完成400米,乙队完成400米,甲队完成所用时间是6天,乙队是8天,通过以上的计算就可以得出结论.本题考查了一次函数的应用,施工距离、速度、时间三者之间的关系的运用,但难度不大,读懂图象信息是解题的关键.二、填空题(本大题共6小题,共18.0分)13.分解因式:a2-4= ______ .【答案】(a+2)(a-2)【解析】解:a2-4=(a+2)(a-2).有两项,都能写成完全平方数的形式,并且符号相反,可用平方差公式展开.本题主要考查平方差公式分解因式,熟记公式结构是解题的关键.14.不等式-2x+4<0的解集是______ .【答案】x>2【解析】解:移项,得:-2x<-4,系数化成1得:x>2.故答案是:x>2.移项、系数化成1即可求解.本题考查了不等式的解法,解不等式的依据是等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.15.若(a-1)2+|b-2|=0,则以a、b为边长的等腰三角形的周长为______ .【答案】5【解析】解:根据题意得,a-1=0,b-2=0,解得a=1,b=2,①若a=1是腰长,则底边为2,三角形的三边分别为1、1、2,∵1+1=2,∴不能组成三角形,②若a=2是腰长,则底边为1,三角形的三边分别为2、2、1,能组成三角形,周长=2+2+1=5.故答案为:5.先根据非负数的性质列式求出a、b再分情况讨论求解即可.本题考查了等腰三角形的性质,非负数的性质,以及三角形的三边关系,难点在于要讨论求解.16.在大课间活动中,体育老师对甲、乙两名同学每人进行10次立定跳远测试,他们的平均成绩相同,方差分别是S甲2=0.20,S乙2=0.16,则甲、乙两名同学成绩更稳定的是______ .【答案】乙【解析】解:∵S甲=0.20,S乙=0.16,∴S甲>S乙,∴甲、乙两名同学成绩更稳定的是乙;故答案为:乙.根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.17.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半径为2,圆心角为60°,则图中阴影部分的面积是______ .【答案】【解析】解:如图,连接BD.∵四边形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等边三角形,∴△ABD的高为,∵扇形BEF的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD、BE相交于点G,设BF、DC相交于点H,在△ABG和△DBH中,,∴△ABG≌△DBH(ASA),∴四边形GBHD的面积等于△ABD的面积,∴图中阴影部分的面积是:S扇形EBF-S△ABD=-×2×=-.故答案是:-.根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.此题主要考查了扇形的面积计算以及全等三角形的判定与性质等知识,根据已知得出四边形EBFD的面积等于△ABD的面积是解题关键.18.如图,已知抛物线y=x2+bx+c经过点A(0,-3),与x轴的一个交点在(1,0)和(3,0)之间,另一个交点为B(x1,0),则x1的取值范围是______ .【答案】-3<x1<-1【解析】解:∵抛物线经过点A(0,-3),∴c=-3,y=0时,x2+bx-3=0,∴x1•x2=-3,∵与x轴的一个交点在(1,0)和(3,0)之间,∴1<x2<3,∴-3<x1<-1.故答案为:-3<x1<-1.令y=0,利用两根之积等于c求解即可.本题考查了抛物线与x轴的交点,考虑利用根与系数的关系求解更简便.三、解答题(本大题共3小题,共18.0分)19.计算:-tan45°-(π-3.14)0.解:原式=2-1-1=0.【解析】根据零指数幂、负指数幂、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.先化简,再求值:(x-1)÷(-1),其中x=-2.【答案】解:原式=(x-1)÷=(x-1)•=-x-1.当x=-2时,原式=-(-2)-1=2-1=1.【解析】先根据分式混合运算的法则把原式进行化简,再把x=-2代入进行计算即可.本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.21.如图,已知:EC=AC,∠BCE=∠DCA,BC=DC;求证:AB=DE.【答案】证明:∵∠BCE=∠DCA,∴∠BCE+∠ACE=∠DCA+∠ACE,∴∠ACB=∠ECD,在△ACB和△ECD中,,∴△ACB≌△ECD(SAS),∴AB=DE.【解析】求出∠ACB=∠ECD,根据SAS推出△ACB≌△ECD,根据全等三角形的性质推出即可.本题考查了全等三角形的性质和判定的应用,注意:全等三角形的对应边相等,全等三角形的判定定理有SAS,ASA,AAS,SSS.四、计算题(本大题共1小题,共8.0分)22.配餐公司为某学校提供A、B、C三类午餐供师生选择,三类午餐每份的价格分别是:A餐6元,B餐8元,C餐10元,为做好下阶段的营销工作,配餐公司根据该校上周A、B、C三类午餐购买情况,将所得的数据处理后,制成统计表:根请根据以上信息,解答下列问题:(1)该校师生上周购买午餐费用的众数是______ 元,中位数是______ 元;(2)配餐公司上周在该校销售B餐1500份,每份的利润大约是______ 元;(3)为了确保配餐质量,合同规定:配餐公司在该校销售午餐平均每天的利润不能超过1000元,该配餐公司上周在该校的销售是否遵守这一规定?为什么?【答案】8;8;3【解析】解:(1)根据题意得:该校师生上周购买午餐费用的众数是8元,中位数是8元;(2)根据条形统计图得:配餐公司上周在该校销售B餐1500份,每份的利润大约是3元;(3)根据题意得:1.5×800+3×1500+3×400=1200+4500+1200=6900(元),∵6900÷7=985.7<1000,∴该配餐公司上周在该校的销售遵守合同规定.故答案为:(1)8;8;(2)3.(1)根据表格得出该校师生上周购买午餐费用的众数与中位数即可;(2)根据条形统计图即可得到结果;(3)根据题意列出算式,计算即可得到结果.此题考查了频数(率)分布直方图,中位数,以及众数,弄清题意是解本题的关键.五、解答题(本大题共4小题,共40.0分)23.如图,∠ABM为直角,点C为线段BA的中点,点D是射线BM上的一个动点(不与点B重合),连接AD,作BE⊥AD,垂足为E,连接CE,过点E作EF⊥CE,交BD于F.(1)求证:BF=FD;(2)点D在运动过程中能否使得四边形ACFE为平行四边形?如不能,请说明理由;如能,求出此时∠A的度数.【答案】解:(1)在R t△AEB中,∵AC=BC,∴,∴CB=CE,∴∠CEB=∠CBE.∵∠CEF=∠CBF=90°,∴∠BEF=∠EBF,∴EF=BF.∵∠BEF+∠FED=90°,∠EBD+∠EDB=90°,∴∠FED=∠EDF,∵EF=FD.∴BF=FD.(2)能.理由如下:若四边形ACFE为平行四边形,则AC∥EF,AC=EF,∴BC=BF,∴BA=BD,∠A=45°.∴当∠A=45°时四边形ACFE为平行四边形.【解析】(1)欲证BF=FD,可证BF=EF,FD=EF.欲证BF=EF,在△BEF中,可证∠BEF=∠EBF,由于CE为直角△ABE斜边AB的中线,所以CB=CE,根据等边对等角,得出∠CEB=∠CBE,又∠CEF=∠CBF=90°,由等角的余角相等得出∠BEF=∠EBF;欲证FD=EF,在△FED中,可证∠FED=∠EDF,由于∠BEF+∠FED=90°,∠EBD+∠EDB=90°,而∠BEF=∠EBF,故∠FED=∠EDF.(2)假设点D在运动过程中能使四边形ACFE为平行四边形,则AC∥EF,AC=EF,由(1)知AC=CB=AB,EF=BF=BD,则BC=EF=BF,即BA=BD,∠A=45°.本题考查了平行四边形的判定,在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.24.某大众汽车经销商在销售某款汽车时,以高出进价20%标价.已知按标价的九折销售这款汽车9辆与将标价直降0.2万元销售4辆获利相同.(1)求该款汽车的进价和标价分别是多少万元?(2)若该款汽车的进价不变,按(1)中所求的标价出售,该店平均每月可售出这款汽车20辆;若每辆汽车每降价0.1万元,则每月可多售出2辆.求该款汽车降价多少万元出售每月获利最大?最大利润是多少?【答案】解:(1)设进价为x万元,则标价是1.2x万元,由题意得:1.2x×0.9×9-9x=(1.2x-0.2)×4-4x,解得:x=10,1.2×10=12(万元),答:进价为10万元,标价为12万元;(2)设该款汽车降价a万元,利润为w万元,由题意得:w=(20+×2)(12-10-a),=-20(a-)2+45,∵-20<0,∴当a=时,w最大=45,答:该款汽车降价0.5万元出售每月获利最大,最大利润是45万元.【解析】(1)设进价为x万元,则标价是1.2x万元,根据关键语句:按标价的九折销售这款汽车9辆的利润是1.2x×0.9×9-9x,将标价直降0.2万元销售4辆获利是(1.2x-0.2)×4-4x,根据利润相等可得方程1.2x×0.9×9-9x=(1.2x-0.2)×4-4x,再解方程即可得到进价,进而得到标价;(2)设该款汽车降价a万元,利润为w万元,利用销售量×每辆汽车的利润=总利润列出函数关系式,再利用配方法求最值即可.此题主要考查了二次函数的应用,以及元一次方程的应用,关键是正确理解题意,根据已知得出w与a的关系式,进而求出最值.25.如图,已知R t△ABC中,∠ACB=90°,BC=6,AB=10,以BC为直径的⊙O交AB于D,AC、DO的延长线交于E,点M为线段AC上一点,且CM=4.(1)求证:直线DM是⊙O的切线;(2)求ED的长.【答案】(1)证明:连结CD,∵R t△ABC中,∠ACB=90°,BC=6,AB=10,∴AC=8,∵CM=4,∴AM=4,∴M是AC中点,∵CD⊥AB,∴DM=CM=AM,∠MCD=∠MDC,∠OCD=∠ODC,∴∠ODM=90°,∴DM是⊙O的切线;(2)解:∵DM是⊙O的切线,∴ED⊥DM,∴∠ECO=∠EDM,又∵∠E=∠E,∴△OCE∽△MDE,∴,设EC=3x,ED=4x,则EM=3x+4,EM2=ED2+DM2,∴(3x+4)2=(4x)2+16,解得:,∴ED=4x=.【解析】(1)利用勾股定理得出AC的长,再利用切线的判定定理得出答案;(2)首先得出△OCE∽△MDE,则,进而利用EM2=ED2+DM2,求出ED即可.此题主要考查了切线的判定以及勾股定理和相似三角形的判定与性质等知识,得出△OCE∽△MDE是解题关键.26.如图,点A(2,6)和点B(点B在点A的右侧)在反比例函数的图象上,点C在y轴上,BC∥x轴,tan∠ACB=2,二次函数的图象经过A、B、C三点.(1)求反比例函数解析式;(2)求二次函数的解析式;(3)如果点D在x轴的正半轴上,点E在反比例函数的图象上,四边形ACDE是平行四边形,求点D的坐标.【答案】解:(1)设反比例函数的解析式为y=,∵点A(2,6)在反比例函数的图象上,∴6=,∴k=12,∴反比例函数的解析式为y=,(2)作AM⊥BC,垂足为M,交x轴于N,∴CM=2.在R t△ACM中,AM=CM•tan∠ACB=2×2=4,∵BC∥x轴,OC=MN=AN-AM=6-4=2,∴点C的坐标(0,2).当x=2时,y=6,∴点B的坐标(6,2)设二次函数的解析式为y=ax2+bx+2,则,解得,故二次函数的解析式为y=-x2+3x+2;(3)延长AC交x轴于G,作EH⊥x轴,垂足为H,∵在平行四边形ACDE中,AC∥DE,∴∠AGO=∠EDH,∵BC∥x轴,∴∠ACM=∠AGO,∴∠ACM=∠EDH.在△ACM和△EDH中,,∴△ACM≌△EDH(AAS),∴EH=AM=4,DH=CM=2.∵E点纵坐标为4,点E在反比例函数y=图象上,∴x=3,∴点E(3,4),∴OH=3,OD=OH-DH=1,∴点D的坐标为:(1,0).【解析】(1)设反比例函数的解析式为y=,由A的坐标可求出k的值,(2)作AM⊥BC,垂足为M,交y轴于N,利用已知条件求出点B的坐标(6,2)再设二次函数的解析式为y=ax2+bx+2,把A和B的坐标代入求出a和b的值即可求出二次函数的解析式;(3)延长AC交x轴于G,作EH⊥x轴,垂足为H,利用已知条件可证明△ACM≌△EDH,由全等三角形的性质可得:EH=AM=4,DH=CM=2,进而求出点E(3,4),所以OE=3,OD=OE-DH=1,进而得出点D的坐标.本题考查了利用待定系数法求反比例函数的解析式和二次函数的解析式、全等三角形的判定和性质、平行四边形的性质等知识,题目的综合性很强,难度中等,解题的关键是正确的作出辅助线构造直角三角形.。