深圳深圳菁华中英文实验中学数学三角形解答题单元测试题(Word版 含解析)

合集下载

深圳菁华中英文实验中学八年级数学上册第十二章《全等三角形》阶段练习(含答案解析)

深圳菁华中英文实验中学八年级数学上册第十二章《全等三角形》阶段练习(含答案解析)

一、选择题1.如图,在ABC 中,8AB AC ==厘米,6BC =厘米,点D 为AB 的中点.如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上,由C 点向A 点运动,为了使BPD CPQ △≌△,点Q 的运动速度应为( )A .1厘米/秒B .2厘米/秒C .3厘米/秒D .4厘米/秒 2.如图,在ABC 中,ABC 的面积为10,4AB =,BD 平分ABC ∠,E 、F 分别为BC 、BD 上的动点,则CF EF +的最小值是( )A .2B .3C .4D .53.如图,在ABC 中,AD BC ⊥于D ,CE AB ⊥于E ,AD 与CE 交于点F .请你添加一个适当的条件,使AEF ≌CEB △.下列添加的条件不正确的是( )A .EF EB = B .EA EC = C .AF CB =D .AFE B ∠=∠ 4.如图,OP 平分AOB ∠,PC OA ⊥于点C ,PD OB ⊥于点D ,延长CP ,DP 交OB , OA 于点E ,F ,下列结论错误的是( )A .PC PD =B .OC OD = C .CPO DPO ∠=∠ D .PC PE =5.如图,AD 平分BAC ∠交BC 于点D ,DE AB ⊥于点E ,DF AC ⊥于点F ,若ABC S 12=,DF 2=,AC 3=,则AB 的长是 ( )A .2B .4C .7D .96.在以下图形中,根据尺规作图痕迹,能判定射线AD 平分∠BAC 的是( )A .图2B .图1与图2C .图1与图3D .图2与图3 7.下列命题的逆命题是假命题的是( )A .直角三角形两锐角互余B .全等三角形对应角相等C .两直线平行,同位角相等D .角平分线上的点到角两边的距离相等 8.如图,∠ACB=90°,AC=BC ,AD ⊥CE ,BE ⊥CE ,垂足分别是点D 、E ,AD=3,BE=1,则DE 的长是( )A .1.5B .2C .22D 109.如图,已知△ABC 的周长是20,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于,且OD=2,△ABC 的面积是( )A .20B .24C .32D .4010.如图,在ABC 和△FED 中,AD FC =,AB FE =,下列条件中不能证明F ABC ED ≌△△的是( )A .BC ED =B .A F ∠=∠C .B E ∠=∠D .//AB EF 11.根据下列已知条件,能画出唯一的△ABC 的是( )A .AB =3,BC =4,∠C =40°B .∠A =60°,∠B =45°,AB =4C .∠C =90°,AB =6D .AB =4,BC =3,∠A =30°12.如图,在OAB 和OCD 中,OA OB =,OC OD =,OA OC >,40AOB COD ∠=∠=︒,连接AC 、BD 交于点M ,连接OM ,下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠,其中正确的为( )A .①②③B .①②④C .②③④D .①②③④ 13.如图,在△ABC 中,点E 和F 分别是AC ,BC 上一点,EF ∥AB ,∠BCA 的平分线交AB 于点D ,∠MAC 是△ABC 的外角,若∠MAC =α,∠EFC =β,∠ADC =γ,则α、β、γ三者间的数量关系是( )A .β=α+γB .β=2γ﹣αC .β=α+2γD .β=2α﹣2γ 14.如图,AD 是ABC 的高,AD BD 8==,E 是AD 上的一点,BE AC 10==,AE 2=,BE 的延长线交AC 于点F ,则EF 的长为( )A .1.2B .1.5C .2.5D .315.如图,AD 是ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连结BF ,CE .下列说法:①CE BF =;②ACE △和CDE △面积相;③//BF CE ;④BDF CDE ≌.其中正确的有( )A .1个B .2个C .3个D .4个二、填空题16.如图,四边形ABCD 中,180B D ∠+∠=︒,AC 平分DAB ∠,CM AB ⊥于点M ,若4cm AM =, 2.5cm BC =,则四边形ABCD 的周长为______cm .17.如图,已知在ABC ∆和ADC ∆中,,ACB ACD ∠=∠请你添加一个条件:_________,使ABC ADC ∆≅∆(只添一个即可).18.如图,四边形ABCD 中,AC BC =,90ACB ADC ∠=∠=︒,10CD =,则BCD ∆的面积为______.19.如图,D ,E 分别是AB ,AC 上的点,AD=AE ,请添加一个条件,使得ABE ≌ACD .这个条件可以为_____(只填一个条件即可).20.在ABC 中,48ABC ︒∠=,点D 在BC 边上,且满足18,BAD DC AB ︒∠==,则CAD ∠=________度. 21.如图,在△ABC 中,AD 是∠BAC 的平分线,AB =8 cm ,AC =6 cm ,S △ABD ∶S △ACD =________.22.如图,在四边形ABCD 中,90A ∠=︒,3AD =,连接BD ,BD CD ⊥,BD 平分ABC ∠.若P 是BC 边上一动点,则DP 长的最小值为______.23.如图,在ABC 中,AD 平分BAC ∠,P 为线段AD 上的一个动点,PE AD ⊥交直线BC 于点E .若35B ∠=︒,85ACB ∠=︒,则E ∠的度数为______.24.如图,在直角坐标系中,AD 是Rt △OAB 的角平分线,已知点D 的坐标是(0,-3),AB 的长为12,则△ABD 的面积是_____25.如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,垂足为A ,B ,S △AOM =8cm 2,OA=4cm ,则MB=___.26.如图,//AD BC ,ABC ∠的角平分线BP 与BAD ∠的角平分线AP 相交于点P ,作PE AB ⊥于点E .若9PE =,则两平行线AD 与BC 间的距离为_______.三、解答题27.如图1是一个平分角的仪器,其中OD=OE ,FD=FE .(1)如图2,将仪器放置在△ABC 上,使点O 与顶点A 重合,D 、E 分别在边AB 、AC 上,沿AF 画一条射线AP ,交BC 于点P .则AP 就是∠BAC 的平分线吗?请给出判断并说明理由.(2)如图3,在(1)的前提下,过点P 作PQ ⊥AB 于点Q ,已知PQ=4,AC=7,△ABC 的面积是32,求AB 的长.28.如图,在Rt ABC △和Rt DEF △中,90C F ∠=∠=︒,点A 、E 、B 、D 在同一直线上,BC 、EF 交于点M ,AC DF =,AB DE =.求证:(1)CBA FED ∠=∠;(2)AM DM =.29.如图所示,A ,C ,E 三点在同一直线上,且ABC DAE △△≌.(1)求证:BC DE CE =+;(2)当ABC 满足什么条件时,//BC DE ?30.(1)问题背景:如图1:在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°,E 、F 分别是BC ,CD 上的点且∠EAF =60°,探究图中线段BE 、EF 、FD 之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明ABE≌ADG,再证明AEF≌AGF,可得出结论,他的结论应是______________;(2)探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF12∠BAD,上述结论是否仍然成立,并说明理由;(3)实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A 处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以45海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以60海里/小时的速度前进,2小时后,指挥中心观测到甲、乙两地分别到达E、F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.。

深圳深圳菁华中英文实验中学数学全等三角形单元测试题(Word版 含解析)

深圳深圳菁华中英文实验中学数学全等三角形单元测试题(Word版 含解析)

深圳深圳菁华中英文实验中学数学全等三角形单元测试题(Word 版含解析)一、八年级数学轴对称三角形填空题(难)1.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.【答案】(-4,2)或(-4,3)【解析】【分析】【详解】把点C 向下平移1个单位得到点D (4,2),这时△ABD 与△ABC 全等,分别作点C ,D 关于y 轴的对称点(-4,3)和(-4,2),所得到的△ABD 与△ABC 全等.故答案为(-4,2)或(-4,3).2.在锐角三角形ABC 中.BC=32,∠ABC=45°,BD 平分∠ABC .若M ,N 分别是边BD ,BC 上的动点,则CM +MN 的最小值是____.【答案】4【解析】【分析】过点C 作CE ⊥AB 于点E ,交BD 于点M′,过点M′作M′N′⊥BC 于N′,则CE 即为CM+MN 的最小值,再根据32ABC=45°,BD 平分∠ABC 可知△BCE 是等腰直角三角形,由锐角三角函数的定义即可求出CE 的长.【详解】解:过点C 作CE ⊥AB 于点E ,交BD 于点M′,过点M′作M′N′⊥BC 于N′,则CE 即为CM+MN 的最小值,∵32ABC=45°,BD 平分∠ABC ,∴△BCE 是等腰直角三角形, ∴CE=BC•cos45°=32×22=4. ∴CM+MN 的最小值为4.【点睛】本题考查了轴对称最短路线问题,难度较大,根据题意作出辅助线,构造出等腰直角三角形,利用锐角三角函数的定义求解是解答此题的关键.3.等腰三角形顶角为30°,腰长是4cm ,则三角形的面积为__________【答案】4【解析】如图,根据30°角所对直角边等于斜边的一半的性质,可由等腰三角形的顶角为30°,腰长是4cm ,可求得BD=12AB =4×12=2,因此此三角形的面积为:S=12AC•BD=12×4×2=8×12=4(cm 2).故答案是:4.4.如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作//EF BC 交AB 于E ,交AC 于F ,过点O 作OD AC ⊥于D 下列结论:①EF BE CF =+;②点O 到ABC ∆各边的距离相等;③1902BOC A ∠=+∠;④设OD m =,AE AF n +=,则AEF S mn ∆=;⑤1()2AD AB AC BC =+-.其中正确的结论是.__________.【答案】①②③⑤【解析】【分析】由在△ABC中,∠ABC和∠ACB的平分线相交于点O,根据角平分线的定义与三角形内角和定理,即可求得③∠BOC=90°+12∠A正确;由平行线的性质和角平分线的定义得出△BEO和△CFO是等腰三角形得出EF=BE+CF故①正确;由角平分线的性质得出点O到△ABC各边的距离相等,故②正确;由角平分线定理与三角形面积的求解方法,即可求得④设OD=m,AE+AF=n,则S△AEF=12mn,故④错误,根据HL证明△AMO≌△ADO得到AM=AD,同理可证BM=BN,CD=CN,变形即可得到⑤正确.【详解】∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∠A+∠ABC+∠ACB=180°,∴∠OBC+∠OCB=90°﹣12∠A,∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+12∠A;故③正确;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠OBE,∠OCB=∠OCF.∵EF∥BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∴∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,故①正确;过点O作OM⊥AB于M,作ON⊥BC于N,连接OA.∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴ON=OD=OM=m,∴S△AEF=S△AOE+S△AOF=12AE•OM+12AF•OD=12OD•(AE+AF)=12mn;故④错误;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴点O到△ABC各边的距离相等,故②正确;∵AO=AO,MO=DO,∴△AMO≌△ADO(HL),∴AM=AD;同理可证:BM=BN,CD=CN.∵AM+BM=AB,AD+CD=AC,BN+CN=BC,∴AD=12(AB+AC﹣BC)故⑤正确.故答案为:①②③⑤.【点睛】本题考查了角平分线的定义与性质,等腰三角形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用.5.如图,在等腰直角三角形ABC 中,90ACB ∠=︒,4AC BC ==,D 为BC 中点,E 为AC 边上一动点,连接DE ,以DE 为边并在DE 的右侧作等边DEF ∆,连接BF ,则BF 的最小值为______.【答案】3【解析】【分析】由60°联想旋转全等,转换动长为定点到定线的长,构建等边三角形BDG ,利用△BDF ≌△GDE ,转换BF=GE ,然后即可求得其最小值.【详解】以BD 为边作等边三角形BDG ,连接GE ,如图所示:∵等边三角形BDG ,等边三角形DEF∴∠BDG=∠EDF=60°,BD=GD=BG ,DE=DF=EF∴∠BDG+∠GFD=∠EDF+∠GFD ,即∠BDF=∠GDE∴△BDF ≌△GDE (SAS )∴BF=GE当GE ⊥AC 时,GE 有最小值,如图所示GE′,作DH ⊥GE′∴BF=GE= CD+12DG=2+1=3 故答案为:3.【点睛】此题主要考查等边三角形的性质以及全等三角形的判定与性质,解题关键是由60°联想旋转全等,转换动长为定点到定线的长.6.如图,已知AB=A 1B ,A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4,…若∠A=70°,则锐角∠A n 的度数为______.【答案】1702n -︒ 【解析】【分析】根据等腰三角形的性质以及三角形的内角和定理和外角的性质即可得出答案. 【详解】在△1ABA 中,AB=A 1B ,∠A=70°可得:∠1BAA =∠1BA A =70°在△112B A A 中,A 1B 1=A 1A 2可得:∠112A B A =∠121A A B根据外角和定理可得:∠1BA A =∠112A B A +∠121A A B∴∠112A B A =∠121A A B =702︒ 同理可得:∠232A A B =2702︒ ∠343A A B =3702︒ …….以此类推:∠A n =1702n -︒ 故答案为:1702n -︒. 【点睛】 本题主要考查等腰三角形、三角形的基本概念以及规律的探索,准确识图,熟练掌握和灵活运用相关知识是解题的关键..7.如图,在3×3的正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形.图中的△ABC 为格点三角形,在图中最多能画出_____个格点三角形与△ABC 成轴对称.【答案】6【解析】【分析】根据网格结构分别确定出不同的对称轴,然后作出轴对称三角形即可得解.【详解】如图,最多能画出6个格点三角形与△ABC 成轴对称.故答案为:6.【点睛】本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键,本题难点在于确定出不同的对称轴.8.如图,已知30AOB ∠=︒,点P 在边OA 上,14OD DP ==,点E ,F 在边OB 上,PE PF =.若6EF =,则OF 的长为____.【答案】18【解析】【分析】由30°角我们经常想到作垂线,那么我们可以作DM 垂直于OA 于M ,作PN 垂直于OB 于点N ,证明△PMD ≌△PND ,进而求出DF 长度,从而求出OF 的长度.【详解】如图所示,作DM 垂直于OA 于M ,作PN 垂直于OB 于点N.∵∠AOB=30°,∠DMO=90°,PD=DO=14,∴DM=7,∠NPO=60°,∠DPO=30°,∴∠NPD=∠DPO=30°,∵DP=DP ,∠PND=∠PMD=90°,∴△PND ≌△PMD ,∴ND=7,∵EF=6,∴DF=ND-NF=7-3=4,∴OF=DF+OD=14+4=18.【点睛】本题考查了全等三角形的判定及性质定理,作辅助线构造全等三角形是解题的关键.9.如图,30AOB ∠=︒,P 是AOB ∠内一点,10PO =.若Q 、R 分别是边OA 、OB 上的动点,则PQR ∆周长的最小值为_______.【答案】10【解析】【分析】作点P关于OB的对称点P′,点P关于OA的对称点P″,连接P′P″交OB于R,交OA于Q,连接PR、PQ,如图3,利用对称的性质得到△PQR周长=P′P″,根据两点之间线段最短可判断此时△PQR周长最小,最小值为P′P″的长,再证明△P′OP″为等边三角形得到P′P″=OP′=OP=10,从而得到△PQR周长的最小值【详解】解:作点P关于OB的对称点P′,点P关于OA的对称点P″,连接P′P″交OB于R,交OA于Q,连接PR、PQ,如图3,则OP=OP′,OP=OP″,RP=RP′,QP=QP″,∴△PQR周长=PR+RQ+PQ=RP′+RQ+QP″=P′P″,∴此时△PQR周长最小,最小值为P′P″的长,∵由对称性可知OP=OP′,OP=OP″,PP′⊥OB,PP″⊥OA,∴∠1=∠2,∠3=∠4,∴∠P′OP″=∠1+∠2+∠3+∠4=2∠2+2∠3=2∠BOA=60°,∴△P′OP″为等边三角形,∴P′P″=OP′=OP=10,故答案是:10.【点睛】本题考查了几何变换综合题:熟练掌握轴对称的性质和等边三角形的性质;会利用两点之间线段最短解决最短路径问题.∠=_______度.10.如图,正五边形ABCDE中,对角线AC与BE相交于点F,则AFE【答案】72.【解析】【分析】根据五边形的内角和公式求出EAB ∠,根据等腰三角形的性质,三角形外角的性质计算即可.【详解】解:∵五边形ABCDE 是正五边形,(52)1801085EAB ABC ︒︒-⨯∴∠=∠==,BA BC =,36BAC BCA ︒∴∠=∠=,同理36ABE ∠︒=,363672AFE ABF BAF ∴∠∠+∠︒+︒︒===.故答案为:72【点睛】本题考查的是正多边形的内角与外角,掌握正多边形的内角的计算公式、等腰三角形的性质是解题的关键.二、八年级数学轴对称三角形选择题(难)11.如图所示,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A 、B .下列结论中不一定成立的是( ).A .PA PB =B .PO 平分APB ∠C .OA OB =D .AB 垂直平分OP【答案】D 【解析】【分析】根据角平分线上的点到角的两边距离相等可得出PA=PB ,再利用“HL ”证明△AOP 和△BOP 全等,可得出APO BPO ∠=∠,OA=OB ,即可得出答案.【详解】解:∵OP 平分AOB ∠,PA OA ⊥,PB OB ⊥∴PA PB =,选项A 正确;在△AOP 和△BOP 中,PO PO PA PB =⎧⎨=⎩, ∴AOP BOP ≅∴APO BPO ∠=∠,OA=OB ,选项B ,C 正确;由等腰三角形三线合一的性质,OP 垂直平分AB ,AB 不一定垂直平分OP ,选项D 错误. 故选:D .【点睛】本题考查的知识点是角平分线的性质以及垂直平分线的性质,熟记性质定理是解此题的关键.12.边长为a 的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),…,按此方式依次操作,则第6个正六边形的边长为( )A .511a 32⨯() B .511a 23⨯() C .611a 32⨯() D .611a 23⨯() 【答案】A【解析】 连接AD 、DB 、DF ,求出∠AFD=∠ABD=90°,根据HL 证两三角形全等得出∠FAD=60°,求出AD ∥EF ∥GI ,过F 作FZ ⊥GI ,过E 作EN ⊥GI 于N ,得出平行四边形FZNE 得出EF=ZN=13a ,求出GI 的长,求出第一个正六边形的边长是13a ,是等边三角形QKM 的边长的13;同理第二个正六边形的边长是等边三角形GHI的边长的13;求出第五个等边三角形的边长,乘以13即可得出第六个正六边形的边长.连接AD、DF、DB.∵六边形ABCDEF是正六边形,∴∠ABC=∠BAF=∠AFE,AB=AF,∠E=∠C=120°,EF=DE=BC=CD,∴∠EFD=∠EDF=∠CBD=∠BDC=30°,∵∠AFE=∠ABC=120°,∴∠AFD=∠ABD=90°,在Rt△ABD和RtAFD中AF=AB{AD=AD∴Rt△ABD≌Rt△AFD(HL),∴∠BAD=∠FAD=12×120°=60°,∴∠FAD+∠AFE=60°+120°=180°,∴AD∥EF,∵G、I分别为AF、DE中点,∴GI∥EF∥AD,∴∠FGI=∠FAD=60°,∵六边形ABCDEF是正六边形,△QKM是等边三角形,∴∠EDM=60°=∠M,∴ED=EM,同理AF=QF,即AF=QF=EF=EM,∵等边三角形QKM的边长是a,∴第一个正六边形ABCDEF的边长是13a,即等边三角形QKM的边长的13,过F作FZ⊥GI于Z,过E作EN⊥GI于N,则FZ∥EN,∵EF∥GI,∴四边形FZNE是平行四边形,∴EF=ZN=13a,∵GF=12AF=12×13a=16a,∠FGI=60°(已证),∴∠GFZ=30°,∴GZ=12GF=112a,同理IN=112a,∴GI=112a+13a+112a=12a,即第二个等边三角形的边长是12a,与上面求出的第一个正六边形的边长的方法类似,可求出第二个正六边形的边长是13×12a;同理第第三个等边三角形的边长是12×12a,与上面求出的第一个正六边形的边长的方法类似,可求出第三个正六边形的边长是13×12×12a;同理第四个等边三角形的边长是12×12×12a,第四个正六边形的边长是13×12×12×12a;第五个等边三角形的边长是12×12×12×12a,第五个正六边形的边长是1 3×12×12×12×12a;第六个等边三角形的边长是12×12×12×12×12a,第六个正六边形的边长是1 3×12×12×12×12×12a,即第六个正六边形的边长是13×512()a,故选A.13.如图,在△ABC中,分别以点A和点B为圆心,大于12AB的长为半径画弧,两弧相交于点M 、N ,作直线MN ,交BC 于点D ,连接AD ,若△ADC 的周长为14,BC=8,则AC 的长为A .5B .6C .7D .8【答案】A【解析】【分析】 根据题意可得MN 是直线AB 的中点,所以可得AD=BD ,BC=BD+CD ,而△ADC 为AC+CD+AD=14,即AC+CD+BD=14,因此可得AC+BC=14,已知BC 即可求出AC .【详解】根据题意可得MN 是直线AB 的中点AD BD ∴=ADC 的周长为14AC CD AD ++=14AC CD BD ++=∴BC BD CD =+14AC BC =∴+已知8BD =6AC ∴= ,故选B【点睛】本题主要考查几何中的等量替换,关键在于MN 是直线AB 的中点,这样所有的问题就解决了.14.如图所示,在ABC 中,AC BC =,90ACB ︒∠=,AD 平分BAC ∠,BE AD ⊥交AC 的延长线F ,E 为垂足.则有:①AD BF =;②CF CD =;③AC CD AB +=;④BE CF =;⑤2BF BE =,其中正确结论的个数是( )A .1B .2C .3D .4【答案】D【解析】【分析】利用全等三角形的判定定理及其性质以及等腰三角形的三线合一的性质逐项分析即可得出答案.【详解】解:∵AC BC =,90ACB ︒∠=∴45CAB ABC ︒∠=∠=∵AD 平分BAC ∠∴22.5BAE EAF ︒∠=∠=∵90EAF F FBC F ︒∠+∠=∠+∠=∴EAF FBC ∠=∠∴ADC BFC ≅∴AD=BF ,CF=CD ,故①②正确;∵CD=CF,∴AC+CD=AC+CF=AF∵67.5F ︒∠=∵18018067.54567.5ABF F CAB ︒︒︒︒︒∠=-∠-∠=--=∴AF=AB ,即AC+CD=AB ,故③正确;由③可知,三角形ABF 是等腰三角形,∵BE AD ⊥∴12BE BF = 若BE CF =,则30CBF ∠=︒与②中结论相矛盾,故④错误;∵三角形ABF 是等腰三角形,∵BE AD ⊥∴12BE BF = ∴BF=2BE ,故⑤正确;综上所述,正确的选项有4个.故选:D .【点睛】本题考查的知识点是全等三角形的判定定理及其性质,等腰三角形的判定与性质,等腰直角三角形的性质,掌握以上知识点是解此题的关键.15.如图,△ABC 的周长为32,点D 、E 都在边BC 上,∠ABC 的平分线垂直于AE ,垂足为Q ,∠ACB 的平分线垂直于AD ,垂足为P ,若BC =12,则PQ 的长为( )A.3 B.4 C.5 D.6【答案】B【解析】【分析】首先判断△BAE、△CAD是等腰三角形,从而得出BA=BE,CA=CD,由△ABC的周长为32以及BC=12,可得DE=8,利用中位线定理可求出PQ.【详解】∵BQ平分∠ABC,BQ⊥AE,∴∠ABQ=∠EBQ,∵∠ABQ+∠BAQ=90°,∠EBQ+∠BEQ=90°,∴∠BAQ=∠BEQ,∴AB=BE,同理:CA=CD,∴点Q是AE中点,点P是AD中点(三线合一),∴PQ是△ADE的中位线,∵BE+CD=AB+AC=32﹣BC=32﹣12=20,∴DE=BE+CD﹣BC=8,∴PQ=12DE=4.故选:B.【点睛】本题考查了三角形的中位线定理和等腰三角形的性质和判定,解答本题的关键是判断出△BAE、△CAD是等腰三角形,利用等腰三角形的性质确定PQ是△ADE的中位线.16.在一个33的正方形网格中,A,B是如图所示的两个格点,如果C也是格点,且ABC是等腰三角形,则符合条件的C点的个数是()A.6B.7C.8D.9【答案】C【解析】【分析】根据题意、结合图形,画出图形即可确定答案.【详解】解:根据题意,画出图形如图:共8个.故答案为C.【点睛】本题主要考查了等腰三角形的判定,根据题意、画出符合实际条件的图形是解答本题的关键.17.如图,△ABC、△CDE都是等腰三角形,且CA=CB, CD=CE,∠ACB=∠DCE=α,AD,BE相交于点O,点M,N分别是线段AD,BE的中点,以下4个结论:①AD=BE;②∠DOB=180°-α;③△CMN是等边三角形;④连OC,则OC平分∠AOE.正确的是()A.①②③B.①②④C.①③④D.①②③④【答案】B【解析】【分析】①根据全等三角形的判定定理得到△ACD≌△BCE(SAS),由全等三角形的性质得到AD=BE;故①正确;②设CD与BE交于F,根据全等三角形的性质得到∠ADC=∠BEC,得到∠DOE=∠DCE=α,根据平角的定义得到∠BOD=180°-∠DOE=180°-α,故②正确;③根据全等三角形的性质得到∠CAD=∠CBE,AD=BE,AC=BC根据线段的中点的定义得到AM=BN,根据全等三角形的性质得到CM=CN,∠ACM=∠BCN,得到∠MCN=α,推出△MNC不一定是等边三角形,故③不符合题意;④过C作CG⊥BE于G,CH⊥AD于H,根据全等三角形的性质得到CH=CG,根据角平分线的判定定理即可得到OC平分∠AOE,故④正确.【详解】解:①∵CA=CB,CD=CE,∠ACB=∠DCE=α,∴∠ACB+∠BCD=∠DCE+∠BCD,∴∠ACD=∠BCE,在△ACD和△BCE中AC BC ACD BCE CD CE ⎪∠⎪⎩∠⎧⎨=== ∴△ACD ≌△BCE (SAS ),∴AD=BE ;故①正确;②设CD 与BE 交于F ,∵△ACD ≌△BCE ,∴∠ADC=∠BEC ,∵∠CFE=∠DFO ,∴∠DOE=∠DCE=α,∴∠BOD=180°-∠DOE=180°-α,故②正确;③∵△ACD ≌△BCE ,∴∠CAD=∠CBE ,AD=BE ,AC=BC又∵点M 、N 分别是线段AD 、BE 的中点,∴AM=12AD ,BN=12BE , ∴AM=BN ,在△ACM 和△BCN 中 AC BC CAM CBN AM BN ⎪∠⎪⎩∠⎧⎨=== ∴△ACM ≌△BCN (SAS ),∴CM=CN ,∠ACM=∠BCN ,又∠ACB=α,∴∠ACM+∠MCB=α,∴∠BCN+∠MCB=α,∴∠MCN=α,∴△MNC 不一定是等边三角形,故③不符合题意;④过C 作CG ⊥BE 于G ,CH ⊥AD 于H ,∴∠CHD=∠ECG=90°,∵∠CEG=∠CDH ,CE=CD ,∴△CGE ≌△CHD (AAS ),∴OC平分∠AOE,故④正确,故选:B.【点睛】本题综合考查了全等三角形的性质和判定,三角形的内角和定理,等边三角形的性质和判定等知识点的应用,解此题的关键是根据性质进行推理,此题综合性比较强,有一定的代表性.18.如图,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且速度都为1cm/s,连接AQ、CP交于点M,下面四个结论:①BP=CM;②△ABQ≌△CAP;③∠CMQ的度数不变,始终等于60°;④当第43秒或第83秒时,△PBQ为直角三角形,正确的有几个 ( )A.1 B.2 C.3 D.4【答案】C【解析】【分析】①等边三角形ABC中,AB=BC,而AP=BQ,所以BP=CQ.②根据等边三角形的性质,利用SAS证明△ABQ≌△CAP;③由△ABQ≌△CAP根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠CMQ=60°;④设时间为t秒,则AP=BQ=tcm,PB=(4-t)cm,当∠PQB=90°时,因为∠B=60°,所以PB=2BQ,即4-t=2t故可得出t的值,当∠BPQ=90°时,同理可得BQ=2BP,即t=2(4-t),由此两种情况即可得出结论.【详解】①在等边△ABC中,AB=BC.∵点P、Q的速度都为1cm/s,∴AP=BQ,∴BP=CQ.只有当CM=CQ时,BP=CM.故①错误;②∵△ABC是等边三角形∴∠ABQ=∠CAP,AB=CA,又∵点P、Q运动速度相同,在△ABQ与△CAP中,∵AB CAABQ CAP AP BQ⎧⎪∠∠⎨⎪⎩===,∴△ABQ≌△CAP(SAS).故②正确;③点P、Q在运动的过程中,∠QMC不变.理由:∵△ABQ≌△CAP,∴∠BAQ=∠ACP,∵∠QMC=∠ACP+∠MAC,∴∠CMQ=∠BAQ+∠MAC=∠BAC=60°.故③正确;④设时间为t秒,则AP=BQ=tcm,PB=(4-t)cm,当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,即4-t=2t,t=43,当∠BPQ=90°时,∵∠B=60°,∴BQ=2BP,得t=2(4-t),t=83,∴当第43秒或第83秒时,△PBQ为直角三角形.故④正确.正确的是②③④,故选C.【点睛】此题是一个综合性题目,主要考查等边三角形的性质、全等三角形的判定与性质等知识.熟知等边三角形的三个内角都是60°是解答此题的关键.19.如图,将△ABC沿DE、EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠CDO+∠CFO=108°,则∠C的度数为()A.40°B.41°C.32°D.36°【解析】分析:如图,连接AO、BO.由题意EA=EB=EO,推出∠AOB=90°,∠OAB+∠OBA=90°,由DO=DA,FO=FB,推出∠DAO=∠DOA,∠FOB=∠FBO,推出∠CDO=2∠DAO,∠CFO=2∠FBO,由∠CDO+∠CFO=108°,推出2∠DAO+2∠FBO=98°,推出∠DAO+∠FBO=49°,由此即可解决问题.详解:如图,连接AO、BO.由题意得:EA=EB=EO,∴∠AOB=90°,∠OAB+∠OBA=90°.∵DO=DA,FO=FB,∴∠DAO=∠DOA,∠FOB=∠FBO,∴∠CDO=2∠DAO,∠CFO=2∠FBO.∵∠CDO+∠CFO=108°,∴2∠DAO+2∠FBO=108°,∴∠DAO+∠FBO=54°,∴∠CAB+∠CBA=∠DAO+∠OAB+∠OBA+∠FBO=144°,∴∠C=180°﹣(∠CAB+∠CBA)=180°﹣144°=36°.故选D.点睛:本题考查了三角形内角和定理、直角三角形的判定和性质、等腰三角形的性质等知识,解题的关键是灵活运用这些知识解决问题,学会把条件转化的思想,属于中考常考题型.20.如图所示,把腰长为1的等腰直角三角形折叠两次后,得到的一个小三角形的周长是()A.2B.1+22C.2D2-1【答案】B 【解析】第一次折叠后,等腰三角形的底边长为1,腰长为22;第一次折叠后,等腰三角形的底边长为22,腰长为12,所以周长为11221 2222 ++=+.故答案为B.。

深圳华南中英文学校数学三角形解答题单元测试卷附答案

深圳华南中英文学校数学三角形解答题单元测试卷附答案

深圳华南中英文学校数学三角形解答题单元测试卷附答案一、八年级数学三角形解答题压轴题(难)1.如图1,直线MN 与直线AB 、CD 分别交于点E 、F ,1∠与2∠互补.(1)试判断直线AB 与直线CD 的位置关系,并说明理由.(2)如图2,BEF ∠与EFD ∠的角平分线交于点P ,EP 与CD 交于点G ,点H 是MN 上一点,且GH EG ⊥,求证://PF GH .(3)如图3,在(2)的条件下,连接PH ,K 是GH 上一点使PHK HPK ∠=∠,作PQ 平分EPK ∠,求HPQ ∠的度数.【答案】(1)AB//CD ,理由见解析;(2)证明见解析;(3)45HPQ ∠=.【解析】【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF 、∠CFE 互补,即可证明; (2)利用(1)中平行线的性质、角平分线的性质、三角形内角和定理可得∠EPF=90°,即EG ⊥PF ,再结合GH ⊥EG ,即可证明;(3)利用三角形外角定理、三角形内角和定理求得∠A=90°-∠3=90°-2∠2;然后由邻补角的定义、角平分线的定义推知∠QPK=-12∠EPK=45°+∠2,最后根据角与角间的和差关系即可求解.【详解】(1)//AB CD ,理由如下:如图1, 图1∵1∠与2∠互补,∴12180∠+∠=︒,又∵1AEF ∠=∠,2CFE ∠=∠,∴180AEF CFE ∠+∠=︒,∴//AB CD ;(2)如图2,由(1)知,//AB CD ,图2∴180BEF EFD ∠+∠=︒.又∵BEF ∠与EFD ∠的角平分线交于点P ,∴1(2)90FEP EFP BEF EFD ∠+∠=∠+∠=︒, ∴90EPF ∠=︒,即EG PF ⊥.∵GH EG ⊥,∴//PF GH ;(3)如图3,∵PHK HPK ∠=∠,2PKG HPK ∴∠=∠.又∵GH EG ⊥,∴90902KPG PKG HPK ∠=-∠=-∠.∴180902EPK KPG HPK ∠=-∠=+∠.∵PQ 平分EPK ∠,∴1452QPK EPK HPK ∠=∠=+∠. ∴45HPQ QPK HPK ∠=∠-∠=.【点睛】本题主要考查了平行线的判定与性质、角平分线的性质、三角形内角和定理等知识.解题过程关注中“数形结合”思想是解答本题的关键.2.图(1)是我们常见的“箭头图”,其中隐藏着哪些数学知识呢?下面请你解决以下问题:(1)观察如图(1)“箭头图”,试探究∠BDC与∠A、∠B、∠C之间大小的关系,并说明理由;(2)请你直接利用以上结论,回答下列两个问题:①如图(2),把一块三角板XYZ放置在△ABC上,使其两条直角边XY、XZ恰好经过点B、C.若∠A=50°,则∠ABX+∠ACX= ;②如图(3),∠ABD,∠ACD的五等分线分别相交于点G1、G2、G3、G4,若∠BDC=135°,∠BG1C=67°,求∠A的度数.【答案】(1)∠BDC=∠A+∠B+∠C(2)①40°②50°【解析】试题分析:(1)连接AD并延长,根据三角形的外角和内角关系解答;(2)①利用(1)的结论,直接计算出∠ABX+∠ACX的度数;②图(3)利用(1)的结论,根据∠BDC=135°,∠BG1C=67°,计算出相等的角:∠DBG4+∠DCG4的和,再次利用(1)的结论,求出∠A的度数.试题解析:(1)∠BDC=∠A+∠B+∠C.理由:连接AD并延长到M.因为∠BDM=∠BAD+∠B,∠CDM=∠CAD+∠C,所以∠BDM+∠CDM=∠BAD+∠B+∠CAD+∠C,即∠BDC=∠BAC+∠B+∠C.(2)①由(1)知:∠BXC=∠A+∠ABX+∠ACX,由于∠BXC=90°,∠A=50°所以∠ABX+∠ACX=∠BXC﹣∠A=90°﹣50°=40°.②在箭头图G1BDC中因为∠BDC=∠G1+∠G1BD+∠G1CD,又∵∠BDC=135°,∠BG1C=67°∵∠ABD,∠ACD的五等分线分别相交于点G1、G2、G3、G4∴4(∠DBG4+∠DCG4)=135°﹣67°∴∠DBG4+∠DCG4=17°.∴∠ABG1+∠ACG1=17°∵在箭头图G1BAC中∵∠BG1C=∠A+∠G1BA+∠G1CA,又∵∠BG1C=67°,∴∠A=50°.答:∠A的度数是50°.3.(1)如图1,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,①写出图中一对全等的三角形,并写出它们的所有对应角;的度数为x,∠ADE的度数为y,那么∠1,∠2的度数分别是多少?(用含②设AED有x或y的代数式表示)③∠A与∠1、∠2之间有一种数量关系始终保持不变,请找出这个规律.(2)如图2,把△ABC纸片沿DE折叠,当点A落在四边形BCDE外部时,∠A与∠1、∠2的数量关系是否发生变化?如果发生变化,求出∠A与∠1、∠2的数量关系;如果不发生变化,请说明理由.【答案】(1)①△EAD≌△EA′D,其中∠EAD=∠EA′D,∠AED=∠A′ED,∠ADE=∠A′DE;②∠1=180°−2x,∠2=180°−2y;③∠A=12(∠1+∠2);(2)变化,∠A=12(∠2-∠1),见详解【解析】【分析】(1)①根据翻折方法可得△ADE≌△A′DE;②根据翻折方法可得∠AEA′=2x,∠ADA′=2y,再根据平角定义可得∠1=180°-2x,∠2=180°-2y;③首先由∠1=180°-2x,2=180°-2y,可得x=90-12∠1,y=90-12∠2,再根据三角形内角和定理可得∠A=180°-x-y,再利用等量代换可得∠A=12(∠1+∠2);(2)根据折叠的性质和三角形内角和定理解答即可.【详解】(1)①根据翻折的性质知△EAD≌△EA′D,其中∠EAD=∠EA′D,∠AED=∠A′ED,∠ADE=∠A′DE;②)∵∠AED=x,∠ADE=y,∴∠AEA′=2x,∠ADA′=2y,∴∠1=180°-2x,∠2=180°-2y;③∠A=12(∠1+∠2);∵∠1=180°-2x,∠2=180°-2y,∴x=90-12∠1,y=90-12∠2,∴∠A=180°-x-y=190-(90-12∠1)-(90-12∠2)=12(∠1+∠2).(2))∵△A′DE是△ADE沿DE折叠得到,∴∠A′=∠A,又∵∠AEA′=180°-∠2,∠3=∠A′+∠1,∴∠A+∠AEA′+∠3=180°,即∠A+180°-∠2+∠A′+∠1=180°,整理得,2∠A=∠2-∠1.∴∠A=12(∠2-∠1).【点睛】此题主要考查了翻折变换,关键是掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.4.探究:(1)如图1,在△ABC中,BP平分∠ABC,CP平分∠ACB.求证:∠P=90°+12∠A.(2)如图2,在△ABC中,BP平分∠ABC,CP平分外角∠ACE.猜想∠P和∠A有何数量关系,并证明你的结论.(3)如图3,BP平分∠CBF,CP平分∠BCE.猜想∠P和∠A有何数量关系,请直接写出结论.【答案】(1)见解析;(2)12∠A=∠P,理由见解析;(3)∠P=90°﹣12∠A,理由见解析【解析】【分析】(1)根据三角形内角和定理以及角平分线的性质进行解答即可:(2)根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠A的度数,根据补角的定义求出∠ACB的度数,根据三角形的内角和即可求出∠P的度数,即可求出结果,(3)根据三角形的外角性质、内角和定理、角平分线的定义探求并证明.【详解】证明:(1)∵△ABC中,∠ABC+∠ACB=180°﹣∠A.又∵BP平分∠ABC,CP平分∠ACB,∴∠PBC=12∠ABC,∠PCB=12∠ACB,∴∠PBC+∠PCB=12(180°﹣∠A),根据三角形内角和定理可知∠BPC=180°﹣12(180°﹣∠A)=90°+12∠A;(2)12∠A=∠P,理由如下:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠PBC=12∠ABC,∠PCE=12∠ACE.∵∠ACE是△ABC的外角,∠PCE是△BPC的外角,∴∠ACE=∠ABC+∠A,∠PCE=∠PBC+∠P,∴12∠ACP=12∠ABC+12∠A,∴12∠ABC+12∠A=∠PBC+∠P,∴12∠A=∠P.(3)∠P=90°﹣12∠A,理由如下:∵P点是外角∠CBF和∠BCE的平分线的交点,∠P+∠PBC+∠PCB=180°∴∠P=180°﹣(∠PBC+∠PCB)=180°﹣12(∠FBC+∠ECB)=180°﹣12(∠A+∠ACB+∠A+∠ABC)=180°﹣12(∠A+180°)=90°﹣12∠A.【点睛】本题考查了角平分线的定义,一个三角形的外角等于与它不相邻的两个内角和以及补角的定义以及三角形的内角和为180°,此类题解题的关键是找出角平分线平分的两个角的和的度数,从而利用三角形内角和定理求解.5.如图四边形ABCD中,AD∥BC,∠BCD=90°,∠BAD的平分线AG交BC于点G.(1)求证:∠BAG=∠BGA;(2)如图2,∠BCD的平分线CE交AD于点E,与射线GA相交于点F,∠B=50°.①若点E在线段AD上,求∠AFC的度数;②若点E在DA的延长线上,直接写出∠AFC的度数;(3)如图3,点P在线段AG上,∠ABP=2∠PBG,CH∥AG,在直线AG上取一点M,使∠PBM=∠DCH,请直接写出∠ABM:∠PBM的值.【答案】(1)证明见解析;(2)①20°;②160°;(3)13或73【解析】【分析】(1)根据AD//BC可知∠GAD=∠BGA,由AG平分∠BAD可知∠BAG=∠GAD,即可得答案.(2)①根据CF平分∠BCD,∠BCD=90°,可求出∠GCF的度数,由AD//BC可求出∠AEF 和∠DAB的度数,根据三角形外角的性质求出∠AFC的度数即可;②根据三角形外角性质求出即可;(3)根据M点在BP的上面和下面两种情况讨论,分别求出∠PBM和∠ABM 的值即可.【详解】(1)∵AD∥BC,∴∠GAD=∠BGA,∵AG平分∠BAD,∴∠BAG=∠GAD,∴∠BAG=∠BGA;(2)①∵CF平分∠BCD,∠BCD=90°,∴∠GCF=45°,∵AD∥BC,∠ABC=50°,∴∠AEF=∠GCF=45°;∠DAB=180°﹣50°=130°,∵AG平分∠BAD,∴∠BAG=∠GAD=65°,∴∠AFC=65°﹣45°=20°;②如图:∵∠AGB=65°,∠BCF=45°,∴∠AFC=∠CGF+∠BCF=115°+45°=160°;(3)有两种情况:①当M在BC的下方时,如图:∵∠ABC=50°,∠ABP=2∠PBG,∴∠ABP=(1003)°,∠PBG=(503)°,∵AG∥CH,∴∠BCH=∠AGB=65°,∵∠BCD=90°,∴∠DCH=∠PBM=90°﹣65°=25°,∴∠ABM=∠ABP+∠PBM=(1003+25)°=(1753)°,∴∠ABM:∠PBM=(1753)°:25°=73;②当M在BC的上方时,如图:同理得:∠ABM=∠ABP﹣∠PBM=(1003﹣25)°=(253)°,∴∠ABM:∠PBM=(253)°:25°=13;综上,∠ABM:∠PBM的值是13或73.【点睛】本题考查平行线的性质和三角形外角性质,熟练掌握平行线性质是解题关键.6.数学活动课上,老师提出了一个问题:我们知道,三角形的一个外角等于和它不相邻的两个内角的和,那么三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系?(1)独立思考,请你完成老师提出的问题:如图所示,已知∠DBC和∠BCE分别为△ABC的两个外角,试探究∠A和∠DBC,∠BCE之间的数量关系.解:⑵合作交流,“创新小组”受此问题的启发:分别作外角∠CBD和∠BCE的平分线BF和CF,交于点F(如图所示),那么∠A与∠F之间有何数量关系?请写出解答过程.【答案】(1)∠DBC+∠BCE-∠A=180º(2)12∠A+∠F=90º【解析】【分析】(1)根据三角形的一个外角等于和它不相邻的两个内角的和,三角形内角和定理计算即可.(2)根据角平分线可知∠FBC+∠FCB=12(∠DBC+∠BCE,)再根据三角形内角和定理,结合(1)即可解答.【详解】⑴∠DBC+∠BCE-∠A=180º.∠DBC+∠BCE=∠ABC+∠A+∠ACB+∠A=180°+∠A即∠DBC+∠BCE-∠A=180º.(2)12∠A+∠F=90°∵BF和CF分别平分∠CBD和∠BCE,∴∠CBF=12∠CBD,∠BCF=12∠BCE.∴∠CBF+∠BCF=12(∠CBD+∠BCE).∵∠CBF+∠BCF=180º-∠F,∠DBC+∠BCE=180º+∠A.∴180º-∠F =12(∠CBD+∠BCE)=12(180º+∠A)∴12∠A+∠F=90º.【点睛】本题考查了三角形外角性质及三角形内角和定理,熟练掌握三角形外角性质是解题的关键.7.如图①,在△ABC中,AE平分∠BAC,∠C>∠B,F是AE上一点,且FD⊥BC于D点.(1)试猜想∠EFD,∠B,∠C的关系,并说明理由;(2)如图②,当点F在AE的延长线上时,其余条件不变,(1)中的结论还成立吗?说明理由.①②【答案】(1)∠EFD=12∠C-12∠B.()成立,理由见解析.【解析】【分析】先根据AE平分∠BAC推出∠BAE=12∠BAC=12[180°-(∠B+∠C)],再根据外角的定义求出∠FED=∠B+∠BAE,然后利用直角三角形的性质求出∠EFD=90°-∠FED.【详解】解:(1)∠EFD=12∠C-12∠B.理由如下:由AE是∠BAC的平分线知∠BAE=12∠BAC.由三角形外角的性质知∠FED=∠B+12∠BAC,故∠B+12∠BAC+∠EFD=90°①.在△ABC中,由三角形内角和定理得∠B+∠BAC+∠C=180°,即12∠C+12∠B+12∠BAC=90°②.②-①,得∠EFD=12∠C-12∠B.(2)成立.理由如下:由对顶角相等和三角形的外角性质知:∠FED=∠AEC=∠B+12∠BAC,故∠B+12∠BAC+∠EFD=90°①.在△ABC中,由三角形内角和定理得:∠B+∠BAC+∠C=180°,即12∠B+12∠BAC+12∠C=90°②.②-①,得∠EFD=12∠C-12∠B.【点睛】此题主要考查了角平分线的性质、三角形内角和定理和直角三角形的性质,命题时经常将多个知识点联系在一起进行考查,这样更能训练学生的解题能力.8.在△ABC中,点D、E分别在边AC、BC上(不与点A、B、C重合),点P是直线AB上的任意一点(不与点A、B重合).设∠PDA=x,∠PEB=y,∠DPE=m,∠C=n.(1)如图,当点P在线段AB上运动,且n=90°时①若PD∥BC,PE∥AC,则m=_____;②若m=50°,求x+y的值.(2)当点P在直线AB上运动时,直接写出x、y、m、n之间的数量关系.【答案】(1)①90°,②140°;(2)详见解析.【解析】分析:(1)①证明四边形DPEC为平行四边形可得结论;②根据四边形内角和为360°,列等式求出x+y的值;(2)根据P、D、E位置的不同,分五种情况:①y-x=m+n,如图2,点P在BA的延长线上时,根据三角形的内角和与外角定理列等式,化简后得出结论;②x-y=m-n,如图3,点P在BA的延长线上时,根据三角形的内角和与外角定理列等式,化简后得出结论;③x+y=m+n,如图4,点P在线段BA上时,根据四边形的内角和为360°列等式,化简后得④x-y=m+n,如图5,同理得出结论;⑤y-x=m-n,如图6,同理得出结论.详解:(1)①如图1,∵PD∥BC,PE∥AC,∴四边形DPEC为平行四边形,∴∠DPE=∠C,∵∠DPE=m,∠C=n=90°,∴m=90°;②∵∠ADP=x,∠PEB=y,∴∠CDP=180°-x,∠CEP=180°-y,∵∠C+∠CDP+∠DPE+∠CEP=360°,∠C=90°,∠DPE=50°,∴90°+180°-x+50°+180°-y=360°,∴x+y=140°;(2)分五种情况:①y﹣x=m+n,如图2,理由是:∵∠DFP=n+∠FEC,∠FEC=180°﹣y,∴∠DFP=n+180°﹣y,∵x+m+∠DFP=180°,∴x+m+n+180°﹣y=180°,∴y﹣x=m+n;②x﹣y=m﹣n,如图3,同理得:m+180°﹣x=n+180°﹣y,∴x﹣y=m﹣n;③x+y=m+n,如图4,理由是:由四边形内角和为360°得:180°﹣x+m+180°﹣y+n=360°,∴x+y=m+n;④x﹣y=m+n,如图5,理由是:同理得:180°=m+n+y+180°﹣x,∴x﹣y=m+n;⑤y﹣x=m﹣n,如图6,理由是:同理得:n+180°﹣x=m+180°﹣y,∴y﹣x=m﹣n.点睛:本题考查了三角形综合、平行四边形的判定.9.已知△ABC,(1)如图1,若D点是△ABC内任一点、求证:∠D=∠A+∠ABD+∠ACD.(2)若D点是△ABC外一点,位置如图2所示.猜想∠D、∠A、∠ABD、∠ACD有怎样的关系?请直接写出所满足的关系式.(不需要证明)(3)若D点是△ABC外一点,位置如图3所示、猜想∠D、∠A、∠ABD、∠ACD之间有怎样的关系,并证明你的结论.【答案】(1)证明见解析;(2)∠D+∠A+∠ABD+∠ACD=360°;(3)∠D+∠ACD=∠A+∠ABD,证明见解析.【解析】试题分析:(1)由∠BDC=∠2+∠CED,∠CED=∠A+∠1,可以得出∠D=∠A+∠ABD+∠ACD.(2)由∠D+∠A+∠ABD+∠ACD=∠A+∠ABC+∠ACB+∠D+∠DBC+DCB,∠A+∠ABC+∠ACB=180°,∠D+∠DBC+DCB=180°,可以得出∠D+∠A+∠ABD+∠ACD=360°.(3)根据三角形的外角性质定理即三角形的一个外角等于与它不相邻的两个内角之和,可知∠AED=∠1+∠A,∠AED=∠D+∠2,所以可知∠A+∠1=∠D+∠2即∠D+∠ACD=∠A+∠ABD.试题解析:(1)证明:延长BD交AC于点E.∵∠BDC是△CDE的外角,∴∠BDC=∠2+∠CED,∵∠CED是△ABE的外角,∴∠CED=∠A+∠1.∴∠BDC=∠A+∠1+∠2.即∠D=∠A+∠ABD+∠ACD.(2)∵∠D+∠A+∠ABD+∠ACD=∠A+∠ABC+∠ACB+∠D+∠DBC+DCB,∠A+∠ABC+∠ACB=180°,∠D+∠DBC+∠DCB=180°,∴∠D+∠A+∠ABD+∠ACD=360°.(3)证明:令BD、AC交于点E,∵∠AED是△ABE的外角,∴∠AED=∠1+∠A,∵∠AED是△CDE的外角,∴∠AED=∠D+∠2.∴∠A+∠1=∠D+∠2即∠D+∠ACD=∠A+∠ABD.点睛:本题主要考查三角形的外角性质及三角形的内角和定理,解题的关键是熟练掌握三角形的外角性质定理即三角形的一个外角等于与它不相邻的两个内角之和.10.已知,如图甲,在△ABC中,AE平分∠BAC(∠C>∠B),F为AE上一点,且FD⊥BC 于D.(1)试说明:∠EFD=(∠C﹣∠B);(2)当F在AE的延长线上时,如图乙,其余条件不变,(1)中的结论还成立吗?请说明理由.【答案】(1)见详解;(2)成立,证明见详解.【解析】【分析】(1) 根据三角形内角和定理以及角平分线的定义得到∠BAE=12∠BAC=12(180°﹣∠B﹣∠C)=90°﹣12(∠B+∠C),然后根据三角形的外角的性质可以得到∠FEC=∠B+∠BAE,求得∠FEC,再根据直角三角形的两个锐角互余即可求得结论;(2)根据(1)可以得到∠AEC=90°+12(∠B﹣∠C),根据对顶角相等即可求得∠DEF,然后利用直角三角形的两个锐角互余即可求解.【详解】解:(1)∵AE平分∠BAC,∴∠BAE=12∠BAC=12(180°﹣∠B﹣∠C)=90°﹣12(∠B+∠C),∵∠FEC=∠B+∠BAE,则∠FEC=∠B+90°﹣12(∠B+∠C)=90°+12(∠B﹣∠C),∵FD⊥EC,∴∠EFD=90°﹣∠FEC,则∠EFD=90°﹣[90°+12(∠B﹣∠C)]=12(∠C﹣∠B);(2)成立.证明:同(1)可证:∠AEC=90°+12(∠B﹣∠C),∴∠DEF=∠AEC=90°+12(∠B﹣∠C),∴∠EFD=90°﹣[90°+12(∠B﹣∠C)]=12(∠C﹣∠B).【点睛】此题主要考查了角平分线的性质、三角形内角和定理和直角三角形的性质,命题时经常将多个知识点联系在一起进行考查,这样更能训练学生的解题能力.。

深圳菁华中英文实验中学九年级数学下册第三单元《锐角三角函数》检测(包含答案解析)

深圳菁华中英文实验中学九年级数学下册第三单元《锐角三角函数》检测(包含答案解析)

一、选择题1.如图,在矩形ABCD 中,G 是AB 边上一点,连结GC ,取线段CG 上点E ,使ED DC =且90AED ∠=︒,AF CG ⊥于F ,2AF =,1FG =,则EC 的长( )A .4B .5C .163D .832.如图,四边形ABCD 中,AB AC AD ==,E 是BC 的中点,AE CE =,3BAC CBD ∠=∠,6266BD =+,则AB 的长为( )A .6B .62C .12D .102 3.菱形的周长为8cm ,高为1cm ,则该菱形两邻角度数比为( )A .5:1B .4:1C .3:1D .2:1 4.小明在学完《解直角三角形》一章后,利用测角仪和校园旗杆的拉绳测量校园旗杆的高度,如图,旗杆PA 的高度与拉绳PB 的长度相等,小明先将PB 拉到'PB 的位置,测得(''PB C a B C ∠=为水平线),测角仪/B D 的高度为1米,则旗杆PA 的高度为( )A .11sin a +米B .11cos a -米C .11sin a -米D .11cos a +米 5.如图,在4×5的正方形网格中,每个小正方形的边长都是1,ΔABC 的顶点都在这些小正方形的顶点上,那么cos ∠ACB 值为( )A .355B .175C .35D .456.如图,半径为5的O 中, OA BC ⊥,30ADC ∠=︒,则BC 的长为( )A .52B .53C .522D .5327.如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,则sinB 的值等于( )A .43B .34C .45D .358.如图,一块矩形木板ABCD 斜靠在墙边,( OC ⊥OB ,点A 、B 、C 、D 、O 在同一平面内),已知AB a ,AD b ,∠BCO =α.则点A 到OC 的距离等于( )A .asinα+bsinαB .acosα+bcosαC .asinα+bcosαD .acosα+bsinα 9.如图,ABC ∆的三个项点均在格点上,则tan A 的值为( )A .12B .55C .2D .25510.如图,在△ABC 中,sinB=13, tanC=2,AB=3,则AC 的长为( )A .2B .5C .5D .211.若菱形的周长为16,高为2,则菱形两个邻角的比为( )A .6:1B .5:1C .4:1D .3:112.在Rt △ABC 中,∠C =90°,AB =13,AC =5,则sin A 的值为( )A .513B .1213C .512D .125二、填空题13.小芳同学在学习了图形的镶嵌和拼接以后,设计了一幅瓷砖贴纸(图1),它是由图2这种基本图形拼接而成。

深圳中英公学数学三角形解答题章末练习卷(Word版 含解析)

深圳中英公学数学三角形解答题章末练习卷(Word版 含解析)

深圳中英公学数学三角形解答题章末练习卷(Word版含解析)一、八年级数学三角形解答题压轴题(难)1.如图1,已知线段AB、CD相交于点O,连接AC、BD,则我们把形如这样的图形称为“8字型”.(1)求证:∠A+∠C=∠B+D;(2)如图2,若∠CAB和∠BDC的平分线AP和DP相交于点P,且与CD、AB分别相交于点M、N.①以线段AC为边的“8字型”有个,以点O为交点的“8字型”有个;②若∠B=100°,∠C=120°,求∠P的度数;③若角平分线中角的关系改为“∠CAP=13∠CAB,∠CDP=13∠CDB”,试探究∠P与∠B、∠C之间存在的数量关系,并证明理由.【答案】(1)证明见解析;(2)①3, 4;②∠P=110°;③3∠P=∠B+2∠C,理由见解析.【解析】【分析】(1)由三角形内角和得到∠A+∠C=180°﹣∠AOC,∠B+∠D=180°﹣∠BOD,由对顶角相等,得到∠AOC=∠BOD,因而∠A+∠C=∠B+∠D;(2)①以线段AC为边的“8字形”有3个,以O为交点的“8字形”有4个;②根据(1)的结论,以M为交点“8字型”中,∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,∠P+∠BAP=∠B+∠BDP,两等式相加得到2∠P+∠BAP+∠CDP=∠B+∠C+∠CAP+∠BDP,由AP和DP是角平分线,得到∠BAP=∠CAP,∠CDP=∠BDP,从而∠P=12(∠B+∠C),然后将∠B=100º,∠C=120º代入计算即可;③与②的证明方法一样得到3∠P=∠B+2∠C.【详解】解:(1)在图1中,有∠A+∠C=180°﹣∠AOC,∠B+∠D=180°﹣∠BOD,∵∠AOC=∠BOD,∴∠A+∠C=∠B+∠D;(2)解:①以线段AC为边的“8字型”有3个:以点O为交点的“8字型”有4个:②以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP∴2∠P+∠BAP+∠CDP=∠B+∠C+∠CAP+∠BDP,∵AP、DP分别平分∠CAB和∠BDC,∴∠BAP=∠CAP,∠CDP=∠BDP,∴2∠P=∠B+∠C,∵∠B=100°,∠C=120°,∴∠P=12(∠B+∠C)=12(100°+120°)=110°;③3∠P=∠B+2∠C,其理由是:∵∠CAP=13∠CAB,∠CDP=13∠CDB,∴∠BAP=23∠CAB,∠BDP=23∠CDB,以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP∴∠C﹣∠P=∠CDP﹣∠CAP=13(∠CDB﹣∠CAB),∠P﹣∠B=∠BDP﹣∠BAP=23(∠CDB﹣∠CAB).∴2(∠C﹣∠P)=∠P﹣∠B,∴3∠P=∠B+2∠C.故答案为:(1)证明见解析;(2)①3, 4;②∠P=110°;③3∠P=∠B+2∠C,理由见解析.【点睛】本题考查了三角形内角和定理:三角形内角和是180°.也考查了角平分线的定义.2.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2= °;(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为:;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间的关系为:.【答案】(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由见解析;(4)∠2=90°+∠1﹣α.【解析】试题分析:(1)根据四边形内角和定理以及邻补角的定义,得出∠1+∠2=∠C+∠α,进而得出即可;(2)利用(1)中所求的结论得出∠α、∠1、∠2之间的关系即可;(3)利用三角外角的性质,得出∠1=∠C+∠2+α=90°+∠2+α;(4)利用三角形内角和定理以及邻补角的性质可得出∠α、∠1、∠2之间的关系.试题分析:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∴∠1+∠2=∠C+∠α,∵∠C=90°,∠α=50°,∴∠1+∠2=140°,故答案为140;(2)由(1)得∠α+∠C=∠1+∠2,∴∠1+∠2=90°+∠α.故答案为∠1+∠2=90°+∠α.(3)∠1=90°+∠2+∠α.理由如下:如图③,设DP与BE的交点为M,∵∠2+∠α=∠DME,∠DME+∠C=∠1,∴∠1=∠C+∠2+∠α=90°+∠2+∠α.(4)如图④,设PE 与AC 的交点为F , ∵∠PFD =∠EFC ,∴180°-∠PFD =180°-∠EFC , ∴∠α+180°-∠1=∠C +180°-∠2, ∴∠2=90°+∠1-∠α. 故答案为∠2=90°+∠1-∠α点睛:本题考查了三角形内角和定理和外角的性质、对顶角相等的性质,熟练掌握三角形外角的性质是解决问题的关键.3.如图1:ABC 中,AD 是高,AE 是BAC ∠的平分线,=40=70ABC ACB ,∠︒∠︒. (1)求EAD ∠的度数(2)当==ABC ACB αβ∠∠,,请用αβ,表示EAD ∠,并写出推导过程(3)当AE 是BAC ∠的外角FAC ∠的平分线,如图2则此时EAD ∠的度数是多少,用,αβ表示,直接写出结果.【答案】(1)15o ;(2) -2EAD βα∠=;(3) 902EAD αβ-∠=︒+【解析】 【分析】(1)先根据三角形的内角和定理求得∠BAC=180°-∠B-∠C=70°,利用角平分线的定义得∠EAC=12∠BAC=35°,而∠DAC=90°-∠C=20°,通过∠EAD=∠EAC-∠DAC 即可得到结果. (2)猜想∠DAE=12(β-α),重复(1)的过程找出∠BAD 和∠BAE 的度数,二者做差即可得出结论;(3)作∠BAC 的内角平分线AE ′,根据角平分线的性质求出∠EAE′=∠CAE+∠CAE′=12∠CAB+12∠CAF=90°,进而求出∠DAE 的度数. 【详解】 解:(1)40,70,ABC ACB ∠=︒∠=︒180704070BAC ∴∠=︒-︒-︒=︒,AE 是BAC ∠的平分线,1=352BAE CAE BAC ∴∠=∠=∠︒,在ACD Rt 中,9020CAD C ∠=︒-∠=︒, 15EAD EAC CAD ∴∠=∠-∠=︒. (2),,ABC ACB αβ∠=∠=180BAC αβ∴∠=︒--,AE 是BAC ∠的平分线,1111=180--=90--2222BAE CAE BAC αβαβ∴∠=∠=∠︒︒(),在Rt △ACD 中,90CAD β∠=︒-,-=2EAD CAE CAD βα∴∠=∠-∠.(3)902EAD αβ-∠=︒+.如图,作∠CAB 的内角平分线AE′,则∠DAE′=-2βα.因为AE 是∠ACB 的外角平分线, 所以∠EAE′=∠CAE+∠CAE′=12∠CAB+12∠CAF=12(∠CAB+∠CAF )=90°, 所以∠DAE=90°-∠DAE′=90°--2βα=902αβ-︒+.即∠DAE 的度数为902αβ-︒+.【点睛】本题考查三角形外角的性质及三角形的内角和定理,解答的关键是沟通外角和内角的关系.解决(3)作辅助线是关键.4.如图①,在△ABC 中,AE 平分∠BAC ,∠C >∠B ,F 是AE 上一点,且FD ⊥BC 于D 点. (1)试猜想∠EFD ,∠B ,∠C 的关系,并说明理由;(2)如图②,当点F 在AE 的延长线上时,其余条件不变,(1)中的结论还成立吗?说明理由.①②【答案】(1)∠EFD=12∠C-12∠B.()成立,理由见解析.【解析】【分析】先根据AE平分∠BAC推出∠BAE=12∠BAC=12[180°-(∠B+∠C)],再根据外角的定义求出∠FED=∠B+∠BAE,然后利用直角三角形的性质求出∠EFD=90°-∠FED.【详解】解:(1)∠EFD=12∠C-12∠B.理由如下:由AE是∠BAC的平分线知∠BAE=12∠BAC.由三角形外角的性质知∠FED=∠B+12∠BAC,故∠B+12∠BAC+∠EFD=90°①.在△ABC中,由三角形内角和定理得∠B+∠BAC+∠C=180°,即12∠C+12∠B+12∠BAC=90°②.②-①,得∠EFD=12∠C-12∠B.(2)成立.理由如下:由对顶角相等和三角形的外角性质知:∠FED=∠AEC=∠B+12∠BAC,故∠B+12∠BAC+∠EFD=90°①.在△ABC中,由三角形内角和定理得:∠B+∠BAC+∠C=180°,即12∠B+12∠BAC+12∠C=90°②.②-①,得∠EFD=12∠C-12∠B.【点睛】此题主要考查了角平分线的性质、三角形内角和定理和直角三角形的性质,命题时经常将多个知识点联系在一起进行考查,这样更能训练学生的解题能力.5.在△ABC中,点D、E分别在边AC、BC上(不与点A、B、C重合),点P是直线AB上的任意一点(不与点A、B重合).设∠PDA=x,∠PEB=y,∠DPE=m,∠C=n.(1)如图,当点P在线段AB上运动,且n=90°时①若PD∥BC,PE∥AC,则m=_____;②若m=50°,求x+y的值.(2)当点P在直线AB上运动时,直接写出x、y、m、n之间的数量关系.【答案】(1)①90°,②140°;(2)详见解析.【解析】分析:(1)①证明四边形DPEC为平行四边形可得结论;②根据四边形内角和为360°,列等式求出x+y的值;(2)根据P、D、E位置的不同,分五种情况:①y-x=m+n,如图2,点P在BA的延长线上时,根据三角形的内角和与外角定理列等式,化简后得出结论;②x-y=m-n,如图3,点P在BA的延长线上时,根据三角形的内角和与外角定理列等式,化简后得出结论;③x+y=m+n,如图4,点P在线段BA上时,根据四边形的内角和为360°列等式,化简后得出结论;④x-y=m+n,如图5,同理得出结论;⑤y-x=m-n,如图6,同理得出结论.详解:(1)①如图1,∵PD∥BC,PE∥AC,∴四边形DPEC为平行四边形,∴∠DPE=∠C,∵∠DPE=m,∠C=n=90°,∴m=90°;②∵∠ADP=x,∠PEB=y,∴∠CDP=180°-x,∠CEP=180°-y,∵∠C+∠CDP+∠DPE+∠CEP=360°,∠C=90°,∠DPE=50°,∴90°+180°-x+50°+180°-y=360°,∴x+y=140°;(2)分五种情况:①y﹣x=m+n,如图2,理由是:∵∠DFP=n+∠FEC,∠FEC=180°﹣y,∴∠DFP=n+180°﹣y,∵x+m+∠DFP=180°,∴x+m+n+180°﹣y=180°,∴y﹣x=m+n;②x﹣y=m﹣n,如图3,理由是:同理得:m+180°﹣x=n+180°﹣y,∴x﹣y=m﹣n;③x+y=m+n,如图4,理由是:由四边形内角和为360°得:180°﹣x+m+180°﹣y+n=360°,∴x+y=m+n;④x﹣y=m+n,如图5,理由是:同理得:180°=m+n+y+180°﹣x,∴x﹣y=m+n;⑤y﹣x=m﹣n,如图6,理由是:同理得:n+180°﹣x=m+180°﹣y,∴y﹣x=m﹣n.点睛:本题考查了三角形综合、平行四边形的判定.6.根据题意解答:(1)如图1的图形我们把它称为“8字形”,请说明∠A+∠B=∠C+∠D.(2)阅读下面的内容,并解决后面的问题:如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=36°,∠ADC=16°,求∠P的度数.解:∵AP、CP分别平分∠BAD、∠BCD∴∠1=∠2,∠3=∠4由(1)的结论得:∠P+∠3=∠1+∠B①,∠P+∠2=∠4+∠D②,①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D∴∠P= 12(∠B+∠D)=26°.①如图3,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,请猜想∠P的度数,并说明理由.②在图4中,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的关系,直接写出结论,无需说明理由.③在图5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的关系,直接写出结论,无需说明理由.【答案】(1)证明见解析;(2)①∠P=26゜;②∠P=180°﹣12(∠B+∠D);③∠P=90°+ 12(∠B+∠D).【解析】试题分析:(1)根据三角形的内角和等于180°列式整理即可得证;(2)根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据(1)的结论列出整理即可得解;①表示出∠PAD和∠PCD,再根据(1)的结论列出等式并整理即可得解;②根据四边形的内角和等于360°,可得(180°﹣∠1)+∠P+∠4+∠B=360°,∠2+∠P+(180°﹣∠3)+∠D=360°,然后整理即可得解;③根据(1)的结论∠B+∠BAD=∠D+∠BCD,∠PAD+∠P=∠D+∠PCD,然后整理即可得解.试题解析:(1)∵∠A+∠B+∠AOB=180°,∠C+∠D+∠COD=180゜,∴∠A+∠B+∠AOB=∠C+∠D+∠COD.∵∠AOB=∠COD,∴∠A+∠B=∠C+∠D.(2)①∠P=26゜.∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4.由(1)的结论得:∠PAD+∠P=∠PCD+∠D①,∠PAB+∠P=∠PCB+∠B②,∵∠PAB=∠1,∠1=∠2,∴∠PAB=∠2,∴∠2+∠P=∠3+∠B③,①+③得∠2+∠P+∠PAD+∠P=∠3+∠B+∠PCD+∠D,即2∠P+180°=∠B+∠D+180°,∴∠P=12(∠B+∠D)=26°.②如图4,∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∴(180°﹣2∠1)+∠B=(180°﹣2∠4)+∠D,在四边形APCB中,(180°﹣∠1)+∠P+∠4+∠B=360°,在四边形APCD中,∠2+∠P+(180°﹣∠3)+∠D=360°,∴2∠P+∠B+∠D=360°,∴∠P=180°﹣12(∠B+∠D);③如图5,∵AP平分∠BAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∵(∠1+∠2)+∠B=(180°﹣2∠3)+∠D,∠2+∠P=(180°﹣∠3)+∠D,∴2∠P=180°+∠D+∠B,∴∠P=90°+ 12(∠B+∠D).点睛:本题考查了三角形的内角和定理,角平分线的定义,准确识图并运用好“8字形”的结论,然后列出两个等式是解题的关键,用阿拉伯数字加弧线表示角更形象直观.7.已知△ABC,(1)如图1,若D点是△ABC内任一点、求证:∠D=∠A+∠ABD+∠ACD.(2)若D点是△ABC外一点,位置如图2所示.猜想∠D、∠A、∠ABD、∠ACD有怎样的关系?请直接写出所满足的关系式.(不需要证明)(3)若D点是△ABC外一点,位置如图3所示、猜想∠D、∠A、∠ABD、∠ACD之间有怎样的关系,并证明你的结论.【答案】(1)证明见解析;(2)∠D+∠A+∠ABD+∠ACD=360°;(3)∠D+∠ACD=∠A+∠ABD,证明见解析.【解析】试题分析:(1)由∠BDC=∠2+∠CED,∠CED=∠A+∠1,可以得出∠D=∠A+∠ABD+∠ACD.(2)由∠D+∠A+∠ABD+∠ACD=∠A+∠ABC+∠ACB+∠D+∠DBC+DCB,∠A+∠ABC+∠ACB=180°,∠D+∠DBC+DCB=180°,可以得出∠D+∠A+∠ABD+∠ACD=360°.(3)根据三角形的外角性质定理即三角形的一个外角等于与它不相邻的两个内角之和,可知∠AED=∠1+∠A,∠AED=∠D+∠2,所以可知∠A+∠1=∠D+∠2即∠D+∠ACD=∠A+∠ABD. 试题解析:(1)证明:延长BD 交AC 于点E .∵∠BDC 是△CDE 的外角,∴∠BDC=∠2+∠CED,∵∠CED 是△ABE 的外角,∴∠CED=∠A+∠1.∴∠BDC=∠A+∠1+∠2.即∠D=∠A+∠ABD+∠ACD.(2)∵∠D+∠A+∠ABD+∠ACD=∠A+∠ABC+∠ACB+∠D+∠DBC+DCB,∠A+∠ABC+∠ACB=180°,∠D+∠DBC+∠DCB=180°,∴∠D+∠A+∠ABD+∠ACD=360°.(3)证明:令BD 、AC 交于点E ,∵∠AED 是△ABE 的外角,∴∠AED=∠1+∠A,∵∠AED 是△CDE 的外角,∴∠AED=∠D+∠2.∴∠A+∠1=∠D+∠2即∠D+∠ACD=∠A+∠ABD.点睛:本题主要考查三角形的外角性质及三角形的内角和定理,解题的关键是熟练掌握三角形的外角性质定理即三角形的一个外角等于与它不相邻的两个内角之和.8.已知,在ABC 中,∠A =60°,(1)如图①,∠ABC 和∠ACB 的角平分线交于点O ,则∠BOC= ;(2)如图②,∠ABC 和∠ACB 的三等分线分别对应交于点O 1,O 2,则2_________BO C ∠=;(3)如图③,∠ABC 和∠ACB 的n 等分线分别对应交于点O 1,O 2,……,1n O -(内部有1n -个点),则1-∠=n BO C ;(4)如图③,∠ABC 和∠ACB 的n 等分线分别对应交于点O 1,O 2,……,1n O -,若190-∠=︒n BO C ,求n 的值.【答案】(1)120°;(2)100°;(3)60120+⎛⎫︒ ⎪⎝⎭n n ;(4)n=4 【解析】【分析】(1)根据三角形的内角和定理即可求出∠ABC +∠ABC ,然后根据角平分线的定义即可求出∠OBC +∠OCB ,再根据三角形的内角和定理即可求出结论;(2)根据三角形的内角和定理即可求出∠ABC +∠ABC ,然后根据三等分线的定义即可求出∠O 2BC +∠O 2CB ,再根据三角形的内角和定理即可求出结论;(3)根据三角形的内角和定理即可求出∠ABC +∠ABC ,然后根据n 等分线的定义即可求出∠O n -1BC +∠O n -1CB ,再根据三角形的内角和定理即可求出结论;(4)根据(3)的结论列出方程即可求出结论.【详解】解:(1)∵在ABC 中,∠A =60°,∴∠ABC +∠ABC=180°-∠A=120°∵∠ABC 和∠ACB 的角平分线交于点O ,∴∠OBC=12∠ABC ,∠OCB=12∠ACB ∴∠OBC +∠OCB=12∠ABC +12∠ACB =12(∠ABC +∠ACB ) =60°∴∠BOC=180°-(∠OBC +∠OCB )=120°故答案为:120°.(2)∵在ABC 中,∠A =60°,∴∠ABC +∠ABC=180°-∠A=120°∵∠ABC 和∠ACB 的三等分线分别对应交于点O 1,O 2,∴∠O 2BC=23∠ABC ,∠O 2CB=23∠ACB ∴∠O 2BC +∠O 2CB=23∠ABC +23∠ACB =23(∠ABC +∠ACB ) =80°∴2∠=BO C 180°-(∠O 2BC +∠O 2CB )=100°故答案为:100°.(3)∵在ABC 中,∠A =60°,∴∠ABC +∠ABC=180°-∠A=120°∵∠ABC 和∠ACB 的n 等分线分别对应交于点O 1,O 2,……,1n O -∴∠O n -1BC=1n n -∠ABC ,∠O n -1CB=1n n-∠ACB ∴∠O n -1BC +∠O n -1CB=1n n -∠ABC +1n n -∠ACB =1n n-(∠ABC +∠ACB )=120120-⎛⎫ ⎪⎝⎭n n ° ∴1-∠=n BO C 180°-(∠O 2BC +∠O 2CB )=60120+⎛⎫︒⎪⎝⎭n n 故答案为:60120+⎛⎫︒ ⎪⎝⎭n n (4)由(3)知:1-∠=n BO C 60120+⎛⎫︒⎪⎝⎭n n ∴6012090+=n n解得:n=4 经检验:n=4是原方程的解.【点睛】本题考查了n 等分线的定义和三角形的内角和定理,掌握n 等分线的定义和三角形的内角和定理是解决此题的关键.9.如图①.ABC 中,AB AC =,P 为底边BC 上一点,PE AB ⊥,PF AC ⊥,CH AB ⊥,垂足分别为E 、F 、H .易证PE PF CH +=.证明过程如下:如图①,连接AP .∵PE AB ⊥,PF AC ⊥,CH AB ⊥,∴12ABP S AB PE =⋅,12ACP S AC PF =⋅,12ABC S AB CH =⋅ 又∵ABP ACP ABC S S S +=,∴AB PE AC PF AB CH ⋅+⋅=⋅∵AB AC =,∴PE PF CH +=.如图②,P 为BC 延长线上的点时,其它条件不变,PE 、PF 、CH 又有怎样的数量关系?请写出你的猜想,并加以证明.【答案】PE PF CH -=【解析】【分析】参考题设的证明过程,主要思路就是等面积法:ABP ACP ABC SS S +=,同样,P 为BC 延长线上的点时,也可以用类似的等面积法:ABP ACP ABC SS S =-,即可得出结论. 【详解】∵PE AB ⊥,PF AC ⊥,CH AB ⊥,∴12ABP S AB PE =⋅,12ACP S AC PF =⋅,12ABC S AB CH =⋅ 又∵ABP ACP ABC S S S =-,∴AB PE AC PF AB CH ⋅-⋅=⋅∵AB AC =,∴PE PF CH -=.故答案为:PE PF CH -=.【点睛】本题考查几何图形中等面积法的应用,读懂题目,灵活运用题设条件是解题的关键.10.图1,线段AB 、CD 相交于点O ,连接AD 、CB ,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB 和∠BCD 的平分线AP 和CP 相交于点P ,并且与CD 、AB 分别相交于M 、N.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D 之间的数量关系: ;(2)图2中,当∠D=50度,∠B=40度时,求∠P 的度数.(3)图2中∠D 和∠B 为任意角时,其他条件不变,试问∠P 与∠D、∠B 之间存在着怎样的数量关系.【答案】(1)∠A+∠D=∠C+∠B;(2)∠P=45°;(3)2∠P=∠D+∠B.【解析】【分析】(1)根据三角形内角和定理即可得出∠A+∠D=∠C+∠B ;(2)由(1)得,∠DAP+∠D=∠P+∠DCP①,∠PCB+∠B=∠PAB+∠P②,再根据角平分线的定义可得∠DAP=∠PAB ,∠DCP=∠PCB ,将①+②整理可得2∠P=∠D+∠B ,进而求得∠P 的度数;(3)同(2)根据“8字形”中的角的规律和角平分线的定义,即可得出2∠P=∠D+∠B.【详解】解(1)∵∠A+∠D+∠AOD=∠C+∠B+∠BOC=180°,∠AOD=∠BOC ,∴∠A+∠D=∠C+∠B ;(2)由(1)得,∠DAP+∠D=∠P+∠DCP ,①∠PCB+∠B=∠PAB+∠P,②∵∠DAB和∠BCD的平分线AP和CP相交于点P,∴∠DAP=∠PAB,∠DCP=∠PCB,①+②得:∠DAP+∠D+∠PCB+∠B=∠P+∠DCP+∠PAB+∠P,即2∠P=∠D+∠B=50°+40°,∴∠P=45°;(3)关系:2∠P=∠D+∠B;证明过程同(2).。

深圳宝安区龙华中英文实验学校八年级数学上册第一单元《三角形》测试题(答案解析)

深圳宝安区龙华中英文实验学校八年级数学上册第一单元《三角形》测试题(答案解析)

一、选择题1.将一副三角板的直角顶点重合按如图所示方式放置,得到下列结论,其中正确的结论有( ) ①13∠=∠;②180BAE CAD ∠+∠=︒; ③若//BC AD ,则230∠=︒; ④若150CAD ∠=︒,则4C ∠=∠.A .1个B .2个C .3个D .4个2.如图,AB 和CD 相交于点O ,A C ∠=∠,则下列结论中不正确的是( ).A .B D ∠=∠ B .1A D ∠=∠+∠C .2D ∠>∠ D .C D ∠=∠3.已知两条线段15cm a =,8cm b =,下列线段能和a ,b 首尾相接组成三角形的是( ) A .20cm B .7cmC .5cmD .2cm4.已知长度分别为3cm ,4cm ,xcm 的三根小棒可以摆成一个三角形,则x 的值不可能是( ) A .2.4 B .3 C .5 D .8.5 5.已知三角形的两边长分别为1和4,则第三边长可能是( ) A .3 B .4 C .5 D .6 6.若一个多边形的每个内角都等于160°,则这个多边形的边数是( )A .18B .19C .20D .217.将一个直角三角板和一把直尺如图放置,如果∠α=47°,则∠β的度数是( )A .43°B .47°C .30°D .60° 8.一个多边形的内角和是外角和的4倍,则这个多边形的边数为( ) A .10 B .8 C .6 D .4 9.将下列长度的三根木棒首尾顺次连接,不能组成三角形的是( ) A .4、5、6 B .3、4、5C .2、3、4D .1、2、3 10.设四边形的内角和等于,a 五边形的外角和等于,b 则a 与b 的关系是( )A .a b =B .120a b =+C .180b a =+︒D .360b a =+︒11.如图,在七边形ABCDEFG 中,AB ,ED 的延长线交于点O .若1,2,3,4∠∠∠∠的外角和于210°,则BOD ∠的度数为( )A .30°B .35°C .40°D .45°12.做一个三角形的木架,以下四组木棒中,符合条件的是( )A .3cm,2cm,1cmB .3cm,4cm,5cmC .6cm,6cm,12cmD .5cm,12cm,6cm二、填空题13.从n 边形的一个顶点出发,连接其余各顶点,可以将这个n 边形分割成17个三角形,则n =______.14.2016年2月6日凌晨,宝岛高雄发生6.7级地震,得知消息后,中国派出武警部队探测队,探测队探测出某建筑物下面有生命迹象,他们在生命迹象上方建筑物的一侧地面上的,A B 两处,用仪器探测生命迹象C ,已知探测线与地面的夹角分别是30︒和60︒(如图),则C ∠的度数是_________.15.若等腰三角形两边的长分别为3cm 和6cm ,则此三角形的周长是______________cm .16.如图,C 为∠AOB 的边OA 上一点,过点C 作CD ∥OB 交∠AOB 的平分线OE 于点F ,作CH ⊥OB 交BO 的延长线于点H ,若∠EFD =α,现有以下结论:①∠COF =α;②∠AOH =180°﹣2α;③CH ⊥CD ;④∠OCH =2α﹣90°.其中正确的是__(填序号).17.用边长相等的正三角形和正六边形铺满地面,一个结点周围有m 块正三角形,n 块正六边形,则m+n =______.18.已知等腰三角形的一边长等于11cm ,一边长等于5cm ,它的周长为______. 19.已知//AB CD ,点P 是平面内一点,若30,20BPD PBA ∠=︒∠=︒,则CDP ∠=___________度.20.一个三角形的三个内角度数之比为2:3:5,那这个三角形一定是三角形__________.三、解答题21.如图,△ABC 中,∠ABC 的角平分线与外角∠ACD 的平分线交于A 1.(1)∵BA 1、CA 1是∠ABC 与∠ACD 的平分线, ∴∠A 1BD =12∠ABD ,∠A 1CD =12∠ACD , ∴∠A 1CD ﹣∠A 1BD =12(∠ACD ﹣∠ABD ), ∵∠A 1CD ﹣∠A 1BD = ,∠ACD ﹣∠ABD =∠ , ∴∠A 1= .(2)如图2,四边形ABCD 中,∠F 为∠ABC 的角平分线及外角∠DCE 的平分线所在的直线构成的角,若∠A +∠D =230°,求∠F 的度数.(3)如图3,△ABC 中,∠ABC 的角平分线与外角∠ACD 的平分线交于A 1,若E 为BA 延长线上一动点,连接EC ,∠AEC 与∠ACE 的角平分线交于Q ,当E 滑动时有下面两个结论:①∠Q +∠A 1的值为定值; ②∠Q ﹣∠A 1的值为定值,其中有且只有一个是正确的,请写出正确的结论,并求出其值.22.如图,已知长方形ABCD 中,10cm AD =,6cm DC =,点F 是DC 的中点,点E 从A 点出发在AD 上以每秒1cm 的速度向D 点运动,运动时间设为t 秒.(假定0t 10<<)(1)当5t =秒时,求阴影部分(即三角形BEF )的面积;(2)用含t 的式子表示阴影部分的面积;并求出当三角形EDF 的面积等于3时,阴影部分的面积是多少?(3)过点E 作//EG AB 交BF 于点G ,过点F 作//FH BC 交BE 于点H ,请直接写出在E 点运动过程中,EG 和FH 的数量关系.23.如图,四边形ABCD 中,ABC ∠和BCD ∠的平分线交于点O . (1)如果130A ∠=︒,110D ∠=︒,求BOC ∠的度数; (2)请直接写出BOC ∠与A D ∠+∠的数量关系.24.题情景:在三角形纸片内部给定-些点,满足这些点连同三角形三个顶点没有三个点在一条直线上,以这些点为顶点,将纸片剪成-些小三角形纸片,一共能得到几个小三角形?问题解决:甲同学绘制了如下三个图,分别在三角形内部取1个点、2个点,如下图所示:继续探究:在三角形内部取三个点,画出分割的图形,并经过观察计数完成表格:成表格:n ,得到三角形的个数是x ,请直接写出x 与m 、n 的关系:______________.25.从7根长度都是1的牙签中选取部分或者全部来摆放三角形(牙签不可以折断),你能摆放出多少种形状不同的三角形(两个全等三角形视为一种三角形)?并请你一一写出每种三角形的三边长.26.如果一个多边形的内角和是外角和的3倍还多180°,那么这个多边形的边数是多少.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用同角的余角相等可判断①,利用角的和差与直角三角形的性质可判断②,利用平行线的性质先求解CAD ∠,再利用结论②可判断③,由150CAD ∠=︒,先求解230∠=︒, 如图,记,AB DE 交于,G 再求解90AGE ∠=︒, 再利用三角形的外角的性质求解4∠, 从而可判断④. 【详解】 解:90BAC DAE ∠=∠=︒, 122390∴∠+∠=∠+∠=︒,13∴∠=∠,故①符合题意, 19090180BAE CAD BAE DAE BAC DAE ∠+∠=∠+∠+∠=∠+∠=︒+︒=︒,故②符合题意; //,BC AD180C CAD ∴∠+∠=︒, 45C ∠=︒, 135CAD ∴∠=︒,218018013545CAD ∴∠=︒-∠=︒-︒=︒,故③不符合题意;150180CAD BAE CAD ∠=︒∠+∠=︒,, 30BAE ∴∠=︒, 如图,记,AB DE 交于,G60E ∠=︒,180306090AGE ∴∠=︒-︒-︒=︒,45,B C ∠=∠=︒4904545.AGE B ∴∠=∠-∠=︒-︒=︒ 4.C ∴∠=∠ 故④符合题意,综上:符合题意的有①②④. 故选:.C 【点睛】本题考查的是角的和差,余角与补角,平行线的性质,三角形的内角和定理,三角形的外角的性质,掌握以上知识是解题的关键.2.D解析:D 【分析】利用三角形的外角性质,对顶角相等逐一判断即可. 【详解】∵∠1=∠2,∠A=∠C ,∠1=∠A+∠D ,∠2=∠B+∠C , ∴∠B=∠D , ∴选项A 、B 正确; ∵∠2=∠A+∠D , ∴2D ∠>∠, ∴选项C 正确; 没有条件说明C D ∠=∠ 故选:D. 【点睛】本题考查了对顶角的性质,三角形外角的性质,熟练掌握并运用两条性质是解题的关键.3.A解析:A 【分析】根据三角形任意两边的和大于第三边,进行分析判断.【详解】A、15+8=23>20,能组成三角形,符合题意;B、7+8=15,不能组成三角形,不合题意;C、5+8=13<15,不能组成三角形,不合题意;D、2+8=10<15,不能组成三角形,不合题意.故选:A.【点睛】本题主要考查了三角形的三边关系,要注意三角形形成的条件:任意两边之和大于第三边,三角形的两边差小于第三边.但通常不需一一验证,其简便方法是将较短两边之和与较长边比较.4.D解析:D【分析】先根据三角形的三边之间的关系求解1<x<7,从而可得答案.【详解】解:长度分别为3cm,4cm,xcm的三根小棒可以摆成一个三角形,+,∴-<x<4343∴<x<7,1x的值不可能是8.5.故选:.D【点睛】本题考查的是三角形的三边之间的关系,掌握三角形的三边之间的关系是解题的关键.5.B解析:B【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围.【详解】解:根据三角形的三边关系,设第三边的长为x,∵三角形两边的长分别是1和4,∴4-1<x<4+1,即3<x<5.故选:B.【点睛】此题考查了三角形的三边关系,关键是正确确定第三边的取值范围.6.A解析:A【分析】设多边形的边数为n,然后根据多边形的内角和公式(n−2)•180°列方程求解即可.设多边形的边数为n,由题意得,(n−2)•180=160•n,解得:n=18,故选:A.【点睛】本题考查了多边形内角和公式,熟记多边形的内角和公式是解题的关键.7.A解析:A【分析】延长BC交刻度尺的一边于D点,利用平行线的性质,对顶角的性质,将已知角与所求角转化到Rt△CDE中,利用内角和定理求解.【详解】如图,延长BC交刻度尺的一边于D点,∵AB∥DE,∴∠β=∠EDC,又∵∠CED=∠α=47°,∠ECD=90°,∴∠β=∠EDC=90°﹣∠CED=90°﹣47°=43°.故选:A.【点睛】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键.8.A解析:A【分析】设这个多边形的边数为n,根据内角和公式以及多边形的外角和为360°即可列出关于n的一元一次方程,解方程即可得出结论.【详解】解:设这个多边形的边数为n,则该多边形的内角和为(n-2)×180°,依题意得:(n-2)×180°=360°×4,解得:n=10,∴这个多边形的边数是10.故选:A本题考查了多边形内角与外角,解题的关键是根据多边形内角和公式得出方程(n-2)×180°=360°×4.9.D解析:D【分析】根据三角形三边关系定理:三角形两边之和大于第三边进行分析即可.【详解】D、4+5>6,能组成三角形,故此选项错误;B、3+4>5,能组成三角形,故此选项错误;A、2+3>4,能组成三角形,故此选项错误;D、1+2=3,不能组成三角形,故此选项正确;故选:D.【点睛】此题主要考查了三角形的三边关系定理,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.10.A解析:A【分析】根据多边形的内角和定理与多边形外角和即可得出结论.【详解】解:∵四边形的内角和等于a,∴a=(4-2)•180°=360°.∵五边形的外角和等于b,∴b=360°,∴a=b.故选:A.【点睛】本题考查的是多边形的内角与外角,熟知多边形的内角和定理是解答此题的关键.11.A解析:A【分析】由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE的内角和,即可求得∠BOD.【详解】解:∵∠1、∠2、∠3、∠4的外角的角度和为210°,∴∠1+∠2+∠3+∠4+210°=4×180°,∴∠1+∠2+∠3+∠4=510°,∵五边形OAGFE内角和=(5-2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°-510°=30°.故选:A.【点睛】本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.12.B解析:B【分析】三角形的任意两边的和大于第三边,根据三角形的三边关系就可以求解.【详解】解:根据三角形的三边关系,知:A中,1+2=3,排除;B中,3+4>5,可以;C中,6+6=12,排除;D中,5+6<12,排除.故选:B.【点睛】本题考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.二、填空题13.19【分析】根据从n边形的一个顶点出发连接这个点与其余各顶点可以把一个n边形分割成(n-2)个三角形的规律作答【详解】解:∵一个多边形从一个顶点出发连接其余各顶点可以把多边形分成(n-2)个三角形∴解析:19【分析】根据从n边形的一个顶点出发,连接这个点与其余各顶点,可以把一个n边形分割成(n-2)个三角形的规律作答.【详解】解:∵一个多边形从一个顶点出发,连接其余各顶点,可以把多边形分成(n-2)个三角形,∴n-2=17,n .∴19故答案为:19.【点睛】本题主要考查多边形的性质,解题关键是熟记多边形顶点数与分割成的三角形个数的关系.14.【分析】先由题意得CAB=30°∠ABD=60°再由三角形的外角性质即可得出答案【详解】解:∵探测线与地面的夹角为30°和60°∴∠CAB=30°∠ABD=60°∵∠ABD=∠CAB+∠C∴∠C=6解析:30【分析】先由题意得CAB=30°,∠ABD=60°,再由三角形的外角性质即可得出答案.【详解】解:∵探测线与地面的夹角为30°和60°,∴∠CAB=30°,∠ABD=60°,∵∠ABD=∠CAB+∠C,∴∠C=60°-30°=30°,故答案为:30°.【点睛】本题考查了三角形的外角的性质,对顶角,解题的关键是熟练掌握三角形的外角性质,比较简单.15.15【分析】题中没有指出哪个底哪个是腰故应该分情况进行分析以3为腰6为底以6为腰3为底;然后应用三角形三边关系进行验证能否组成三角形即可【详解】当3cm是腰时3+3=6不符合三角形三边关系故舍去;当解析:15【分析】题中没有指出哪个底哪个是腰,故应该分情况进行分析,以3为腰6为底,以6为腰3为底;然后应用三角形三边关系进行验证能否组成三角形即可.【详解】当3cm是腰时,3+3=6,不符合三角形三边关系,故舍去;当6cm是腰时,6+6=12>3,6-6=0<3,能组成三角形;∴周长=6+6+3=15cm.故它的周长为15cm.故答案为:15.【点睛】此题主要考查等腰三角形的性质及三角形三边关系的运用;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.16.①②③④【分析】分别根据平行线的性质角平分线的定义邻补角的定义直角三角形两锐角互余进行判断即可得出结论【详解】解:∵CD∥OB∠EFD=α∴∠EOB=∠EFD=α∵OE平分∠AOB∴∠COF=∠EO解析:①②③④【分析】分别根据平行线的性质,角平分线的定义,邻补角的定义,直角三角形两锐角互余进行判断即可得出结论.【详解】解:∵CD∥OB,∠EFD=α,∴∠EOB=∠EFD=α,∵OE平分∠AOB,∴∠COF=∠EOB=α,故①正确;∠AOB=2α,∵∠AOB+∠AOH=180°,∴∠AOH=180°﹣2α,故②正确;∵CD∥OB,CH⊥OB,∴CH⊥CD,故③正确;∴∠HCO+∠HOC=90°,∠AOB+∠HOC=180°,∴∠OCH=2α﹣90°,故④正确.故答案为:①②③④.【点睛】本题考查了平行线的性质,角平分线的定义,邻补角的定义,直角三角形两锐角互余等知识,熟练掌握相关知识点是解题关键.17.4或5【分析】先求出正三角形和正六边形的内角大小然后列出关于mn的二元一次方程然后确定mn的值最后求m+n即可【详解】解:∵正三边形和正六边形内角分别为60°120°∴60°m+120°n=360°解析:4或5【分析】先求出正三角形和正六边形的内角大小,然后列出关于m、n的二元一次方程,然后确定m、n的值,最后求m+n即可.【详解】解:∵正三边形和正六边形内角分别为60°、120°∴60°m+120°n=360°,即m+2n=6∴当n=1时,m=4;当n=2时,m=2;∴m+n=5或m+n=4.故答案为:4或5.【点睛】本主要考查了正多边形的组合能否进行平面镶嵌,掌握位于同一顶点处的几个角之和能否为360°成为解答本题的关键.18.【分析】题目给出等腰三角形有两条边长为11和5而没有明确腰底分别是多少所以要进行讨论还要应用三角形的三边关系验证能否组成三角形【详解】分两种情况:当腰为11时11+11>511-11<5所以能构成三解析:27cm【分析】题目给出等腰三角形有两条边长为11和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】分两种情况:当腰为11时,11+11>5,11-11<5,所以能构成三角形,周长是:11+11+5=27cm;当腰为5时,5+5<11,所以不能构成三角形,故答案为:27cm.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.19.10或50【分析】分点P在AB的上方点P在AB与CD的中间点P在CD的下方三种情况再分别根据平行线的性质三角形的外角性质求解即可得【详解】由题意分以下三种情况:(1)如图点P在AB的上方;(2)如图解析:10或50【分析】分点P在AB的上方、点P在AB与CD的中间、点P在CD的下方三种情况,再分别根据平行线的性质、三角形的外角性质求解即可得.【详解】由题意,分以下三种情况:(1)如图,点P在AB的上方,∠=︒∠=︒,BPD PBA30,20∴∠=∠+∠=︒,BPD PBA150AB CD,//∴∠=∠=︒;CDP150(2)如图,点P在AB与CD的中间,延长BP,交CD于点E,∠=︒,//,20AB CD PBA20BED PBA ∴∠=∠=︒,30BPD ∠=︒,10CDP BPD BED ∴∠=∠-∠=︒;(3)如图,点P 在CD 的下方,//,20AB CD PBA ∠=︒,120PBA ∴∠=∠=︒,30BPD ∠=︒,13030CDP BPD CDP ∴∠=∠+∠=∠+︒>︒与120∠=︒不符,即点P 不可能在CD 的下方;综上,10CDP ∠=︒或50CDP ∠=︒,故答案为:10或50.【点睛】本题考查了平行线的性质、三角形的外角性质,依据题意,正确分三种情况讨论是解题关键.20.直角【分析】若三角形三个内角的度数之比为2:3:5利用三角形的内角和定理:三角形的内角和为180°可求出三个内角分别是36°54°90°则这个三角形一定是直角三角形【详解】解:设三角分别为2x3x5解析:直角【分析】若三角形三个内角的度数之比为2:3:5,利用三角形的内角和定理:三角形的内角和为180°,可求出三个内角分别是36°,54°,90°.则这个三角形一定是直角三角形.【详解】解:设三角分别为2x ,3x ,5x ,依题意得2x +3x +5x =180°,解得x =18°.故三个角的度数分别为36°,54°,90°.故答案为:直角.【点睛】此题主要考查了三角形的内角和定理:三角形的内角和为180°,熟练掌握三角形内角和定理是解决本题的关键.三、解答题21.(1)∠A1,A,12∠A;(2)25°;(3)①的结论是正确的,且这个定值为180°.【分析】(1)根据角平分线的定义可得∠A1BD=12∠ABC,∠A1CD=12∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,则可得出答案;(2)先根据四边形内角和等于360°,得出∠ABC+∠DCB=360°﹣(∠A+∠D),根据内角与外角的关系和角平分线的定义得出∠ABC+(180°﹣∠DCE)=2∠FBC+(180°﹣2∠DCF)=180°﹣2(∠DCF﹣∠FBC)=180°﹣2∠F,从而得出结论;(3)依然要用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.【详解】解:(1)∵BA1是∠ABC的平分线,CA1是∠ACD的平分线,∴∠A1BD=12∠ABD,∠A1CD=12∠ACD,∴∠A1CD﹣∠A1BD=12(∠ACD﹣∠ABD),∵∠A1CD﹣∠A1BD=∠A1,∠ACD﹣∠ABD=∠A,∴∠A1=12∠A.故答案为:∠A1,A,12∠A;(2)∵∠ABC+∠DCB=360°﹣(∠A+∠D),∵∠ABC+(180°﹣∠DCE)=2∠FBC+(180°﹣2∠DCF)=180°﹣2(∠DCF﹣∠FBC)=180°﹣2∠F,∴360°﹣(∠A+∠D)=180°﹣2∠F,2∠F=∠A+∠D﹣180°,∴∠F=12(∠A+∠D)﹣90°,∵∠A+∠D=230°,∴∠F=25°;(3)△ABC中,由三角形的外角性质知:∠BAC=∠AEC+∠ACE=2(∠QEC+∠QCE);即:2∠A1=2(180°﹣∠Q),化简得:∠A1+∠Q=180°,因此①的结论是正确的,且这个定值为180°.【点睛】此题考查三角形的角平分线的性质,三角形内角和定理,三角形外角定理,熟练掌握三角形的外角等于与它不相邻的两个内角的和是解题的关键.22.(1)4522cm ;(2)23302t cm ⎛⎫- ⎪⎝⎭;218cm ;(3)53EG FH = 【分析】(1)由长方形的性质得出10cm BC AD ==,6cm AB DC ==,由5t =得AE=5,DE=10-5=5,根据ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形即可求解;(2)由题意得AE=t ,DE=10-t ,根据ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形表示出阴影部分的面积;由12EDF S DE DF =⋅△求出t 的值,代入计算即可; (3)由长方形ABCD 得AD CD ⊥,根据平行线的性质得EG HF ⊥,根据平行线间的距离相等可得DE ,AE ,DF ,CF 分别等于,,,EGF EGB EHF BHF △△△△的高,由BEF S的面积即可得出结论.【详解】解:(1)∵长方形ABCD 中,10cm AD =,6cm DC =,∴10cm BC AD ==,6cm AB DC ==,∵点F 是DC 的中点,∴3cm DF CF ==,当5t =秒时,AE=5cm ,DE=10-5=5 cm ,∵ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形 =()()()1111066510353222⨯-⨯-⨯-⨯ =156015152--- =4522cm ; (2)由题意得AE=t ,DE=10-t ,∵ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形 =()()1111066103310222t t ⨯-⨯-⨯-⨯⨯- =360315152t t ---+ =3302t -, ∴用含t 的式子表示阴影部分的面积为:23302t cm ⎛⎫- ⎪⎝⎭;当三角形EDF 的面积等于3时,12EDF S DE DF =⋅△=()13102t ⨯⨯-=3, 解得:8t =, 8t =时,38=30=182S ⨯-阴影2cm ; (3)∵长方形ABCD ∴AD CD ⊥,//,//AB CD AD BC ,∵//EG AB ,//FH BC ,∴EG HF ⊥,,AD EG CD HF ⊥⊥,∴DE ,AE 分别等于,EGF EGB △△的EG 边上的高,DF ,CF 分别等于,EHF BHF △△的FH 边上的高, ∴11112222BEF S EG DE EG AE HF DF HF CF =⋅+⋅=⋅+⋅△, ∴()()1122EG DE AE HF DF CF +=+,即EG AD HF CD ⋅=⋅, ∵10cm AD =,6cm DC =,∴106EG HF =,即53EG FH =.【点睛】本题是一个动点问题,考查了平行线间的距离,三角形面积的计算,解题的关键是熟练掌握平行线的性质和三角形面积的计算方法.23.(1)120°;(2)1()2BOC A D ∠=∠+∠ 【分析】(1)先由四边形内角和定理求出∠ABC+∠DCB=120°,再由角平分线定义得出∠OBC+∠OCB=60°,最后根据三角形内角和定理求出∠O=120°即可;(2)方法同(1)【详解】解:(1)∵∠A+∠ABC+∠BCD+∠D=360°,且∠A+∠D=130°+110°=240°,∴∠ABC+∠BCD=360°-(∠A+∠D )=360°-240°=120°,∵OB ,OC 分别是∠ABC 和∠BCD 的平分线, ∴∠OBC+∠OCB=111(221)1206220AB ABC DC C BCD B ∠+∠=⨯+∠︒=∠=︒ , ∴∠O=180°-(∠OBC+∠OCB )=180°-60°=120°; (2)1()2BOC A D ∠=∠+∠ 证明:在四边形ABCD 中,360A B C D ∠+∠+∠+∠=︒∴360()ABC DCB A D ∠+∠=︒-∠+∠∵OB ,OC 分别是∠ABC 和∠BCD 的平分线,∴∠OBC+∠OCB=1111((222)180)2ABC BCD AB D A C D CB ∠+∠=︒-∠∠=+∠∠+ ∴180(1)()2O BOC BC OCB A D ∠+∠=︒-∠=∠+∠ 【点睛】 此题主要考查了四边形内角和定理,三角形的内角和定理以及角平分线的性质和应用,要熟练掌握,解答此题的关键是要明确:三角形的内角和是180°;一个角的角平分线把这个角分成两个大小相等的角.24.继续探究:图见解析,7,21n ;拓展联系:4,6,8,22n +;概括提升:22x n m =+-【分析】继续探究:由题意得出这些三角形的个数是从3开始的连续奇数,据此可得结论; 拓展联系:分别画出图形,得到相关数据,总结规律即可;概括提升:根据n 边形的内部的m 个点,共(m+n )个点作为顶点,可把原n 边形分割成(2m+n-2)个互不重叠的小三角形,据此可得.【详解】解:继续探究:如图,在三角形纸片内部给定1个点,得到3个三角形; 在三角形纸片内部给定2个点,得到5个三角形; 在三角形纸片内部给定3个点,得到7个三角形; 在三角形纸片内部给定n 个点,得到(2n+1)个三角形;故填表得:内部点的个数1 2 3 n 得到三角形个数3 5 7 2n+1在四边形纸片内部给定1个点,得到4个三角形; 在四边形纸片内部给定2个点,得到6个三角形; 在四边形纸片内部给定3个点,得到8个三角形; 在四边形纸片内部给定n 个点,得到(2n+2)个三角形;填表如下:(3)设纸片的边数为m,内部给定1个点,得到m个三角形, 内部给定2个点,得到(m+2)个三角形, 内部给定3个点,得到(m+2×2)个三角形, 内部给定n个点,得到(2n+m-2)个三角形,∴x=2n+n-2.【点睛】此题考查图形的变化规律性;得到三角形的个数与三角形内点的个数的变化规律是解决本题的关键.25.能摆放出5种形状不同的三角形,它们的三边长分别是1,1,1、1,2,2、2,2,2、1,3,3、2,2,3.【分析】根据三角形的三边关系定理逐一摆放出来即可.【详解】由题意,根据选取牙签的根数,分以下五种情况:(1)当选取3根牙签时,三边长只能是1,1,1,满足三角形的三边关系定理,能摆出三角形;(2)当选取4根牙签时,三边长只能是1,1,2,不满足三角形的三边关系定理,不能摆出三角形;(3)当选取5根牙签时,三边长可以是1,1,3或1,2,2,其中,1,1,3不满足三角形的三边关系定理,不能摆出三角形,1,2,2满足三角形的三边关系定理,能摆出三角形;(4)当选取6根牙签时,三边长可以是1,1,4或1,2,3或2,2,2,其中,1,1,4和1,2,3均不满足三角形的三边关系定理,均不能摆出三角形,2,2,2满足三角形的三边关系定理,能摆出三角形;(5)当选取7根牙签时,三边长可以是1,1,5或1,2,4或1,3,3或2,2,3,其中,1,1,5和1,2,4均不满足三角形的三边关系定理,均不能摆出三角形,1,3,3和2,2,3均满足三角形的三边关系定理,均能摆出三角形;综上,能摆放出5种形状不同的三角形,它们的三边长分别是1,1,1、1,2,2、2,2,2、1,3,3、2,2,3.【点睛】本题考查了三角形的三边关系定理的应用,依据题意,正确分情况讨论是解题关键.26.这个多边形的边数是9【分析】多边形的内角和比外角和的3倍多180°,而多边形的外角和是360°,则内角和是1260度.n边形的内角和可以表示成(n−2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数.【详解】设这个多边形的边数为n,根据题意,得(n−2)•180=360×3+180,解得:n=9.则这个多边形的边数是9.【点睛】此题考查了多边形内角与外角,此题要结合多边形的内角和公式寻求等量关系,构建方程即可求解.。

深圳华文学校数学三角形解答题单元综合测试(Word版 含答案)

深圳华文学校数学三角形解答题单元综合测试(Word版 含答案)

深圳华文学校数学三角形解答题单元综合测试(Word版含答案)一、八年级数学三角形解答题压轴题(难)1.已知在四边形ABCD中,∠A=∠C=90°.(1)∠ABC+∠ADC=°;(2)如图①,若DE平分∠ADC,BF平分∠ABC的外角,请写出DE与BF的位置关系,并证明;(3)如图②,若BE,DE分别四等分∠ABC、∠ADC的外角(即∠CDE=14∠CDN,∠CBE=14∠CBM),试求∠E的度数.【答案】(1)180°;(2)DE⊥BF;(3)450【解析】【分析】(1)根据四边形内角和等于360°列式计算即可得解;(2)延长DE交BF于G,根据角平分线的定义可得∠CDE=12∠ADC,∠CBF=12∠CBM,然后求出∠CDE=∠CBF,再利用三角形的内角和定理求出∠BGE=∠C=90°,最后根据垂直的定义证明即可;(3)先求出∠CDE+∠CBE,然后延长DC交BE于H,再根据三角形的一个外角等于与它不相邻的两个内角的和求解即可.【详解】(1)解:∵∠A=∠C=90°,∴∠ABC+∠ADC=360°-90°×2=180°;故答案为180°;(2)解:延长DE交BF于G,∵DE平分∠ADC,BF平分∠CBM,∴∠CDE=12∠ADC,∠CBF=12∠CBM,又∵∠CBM=180°-∠ABC=180°-(180°-∠ADC)=∠ADC,∴∠CDE=∠CBF,又∵∠BED=∠CDE+∠C=∠CBF+∠BGE,∴∠BGE=∠C=90°,∴DG ⊥BF ,即DE ⊥BF ;(3)解:由(1)得:∠CDN+∠CBM=180°,∵BE 、DE 分别四等分∠ABC 、∠ADC 的外角,∴∠CDE+∠CBE=14×180°=45°, 延长DC 交BE 于H , 由三角形的外角性质得,∠BHD=∠CDE+∠E ,∠BCD=∠BHD+∠CBE ,∴∠BCD=∠CBE+∠CDE+∠E ,∴∠E=90°-45°=45°【点睛】本题考查了三角形的内角和定理,四边形的内角和定理,角平分线的定义,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键,要注意整体思想的利用.2.(问题探究)将三角形ABC 纸片沿DE 折叠,使点A 落在点A '处.(1)如图,当点A 落在四边形BCDE 的边CD 上时,直接写出A ∠与1∠之间的数量关系;(2)如图,当点A 落在四边形BCDE 的内部时,求证:122A ∠+∠=∠;(3)如图,当点A 落在四边形BCDE 的外部时,探索1∠,2∠,A ∠之间的数量关系,并加以证明;(拓展延伸)(4)如图,若把四边形ABCD 纸片沿EF 折叠,使点A 、D 落在四边形BCFE 的内部点A '、D 的位置,请你探索此时1∠,2∠,A ∠,D ∠之间的数量关系,写出你发现的结论,并说明理由.【答案】【问题探究】(1)∠1=2∠A ;(2)证明见详解;(3)∠1=2∠A+∠2;【拓展延伸】(4)()212360A D ∠+∠=∠+∠+︒.【解析】【分析】(1)运用折叠原理及三角形的外角性质即可解决问题,(2)运用折叠原理及四边形的内角和定理即可解决问题,(3)运用三角形的外角性质即可解决问题,(4)先根据翻折的性质求出∠A EF 、∠EFD,再根据四边形的内角和定理列式整理即可得解.【详解】解:(1)如图,∠1=2∠A .理由如下:由折叠知识可得:∠EA′D=∠A ;∵∠1=∠A+∠EA′D ,∴∠1=2∠A .(2)∵∠1+∠A′EA+∠2+∠A′DA=360°,由四边形的内角和定理可知:∠A+∠A′+∠A′EA+∠A′DA=360°,∴∠A′+∠A=∠1+∠2,由折叠知识可得∠A=∠A′,∴2∠A=∠1+∠2.(3)如图,∠1=2∠A+∠2理由如下:∵∠1=∠EFA+∠A ,∠EFA=∠A′+∠2,∴∠1=∠A+∠A′+∠2=2∠A+∠2,(4)如图,根据翻折的性质,()3181201∠=-∠,()4181202∠=-∠, ∵34360A D ∠+∠+∠+∠=︒, ∴()()180118023601122A D ∠+∠+-∠+-∠=︒, 整理得,()212360A D ∠+∠=∠+∠+︒.【点睛】本题考查了折叠的性质,三角形外角性质,三角形内角和定理及四边形内角和的应用,主要考查学生运用定理进行推理和计算的能力.3.探究与发现:如图1所示的图形,像我们常见的学习用品--圆规.我们不妨把这样图形叫做“规形图”,(1)观察“规形图”,试探究∠BDC 与∠A 、∠B 、∠C 之间的关系,并说明理由; (2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ 放置在△ABC 上,使三角尺的两条直角边XY 、XZ 恰好经过点B 、C ,∠A=40°,则∠ABX+∠ACX 等于多少度;②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数;③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度数.【答案】(1)详见解析;(2)①50°;②85°;③63°.【解析】【分析】(1)连接AD并延长至点F,根据外角的性质即可得到∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD,即可得出∠BDC=∠A+∠B+∠C;(2)①根据(1)得出∠ABX+∠ACX+∠A=∠BXC,再根据∠A=40°,∠BXC=90°,即可求出∠ABX+∠ACX的度数;②先根据(1)得出∠ADB+∠AEB=90°,再利用DC平分∠ADB,EC平分∠AEB,即可求出∠DCE的度数;③由②得∠BG1C=110(∠ABD+∠ACD)+∠A,设∠A为x°,即可列得110(133-x)+x=70,求出x的值即可.【详解】(1)如图(1),连接AD并延长至点F,根据外角的性质,可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD,又∵∠BDC=∠BDF+∠CDF,∠BAC=∠BAD+∠CAD,∴∠BDC=∠A+∠B+∠C;(2)①由(1),可得∠ABX+∠ACX+∠A=∠BXC,∵∠A=40°,∠BXC=90°,∴∠ABX+∠ACX=90°-40°=50°;②由(1),可得∠DBE=∠DAE+∠ADB+∠AEB,∴∠ADB+∠AEB=∠DBE-∠DAE=130°-40°=90°,∴12(∠ADB+∠AEB)=90°÷2=45°,∵DC平分∠ADB,EC平分∠AEB,∴12ADC ADB∠=∠,12AEC AEB∠=∠,∴∠DCE=∠ADC+∠AEC+∠DAE,=12(∠ADB+∠AEB )+∠DAE, =45°+40°,=85°; ③由②得∠BG 1C=110(∠ABD+∠ACD )+∠A , ∵∠BG 1C=70°,∴设∠A 为x°,∵∠ABD+∠ACD=133°-x°∴110(133-x )+x=70, ∴13.3-110x+x=70, 解得x=63,即∠A 的度数为63°.【点睛】此题考查三角形外角的性质定理,三角形的外角等于与它不相邻的内角的和,,根据此定理得到角度的规律,由此解决问题,此题中得到平分角的变化规律是解题的难点.4.如图①所示,在三角形纸片ABC 中,70C ∠=︒,65B ∠=︒,将纸片的一角折叠,使点A 落在ABC 内的点A '处.(1)若140∠=︒,2∠=________.(2)如图①,若各个角度不确定,试猜想1∠,2∠,A ∠之间的数量关系,直接写出结论.②当点A 落在四边形BCDE 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,1∠,2∠之间又存在什么关系?请说明.(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的123456∠+∠+∠+∠+∠+∠和是________.【答案】(1)50°;(2)①见解析;②见解析;(3)360°.【解析】【分析】(1)根据题意,已知70C ∠=︒,65B ∠=︒,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A ′DE ,∠AED=∠A ′ED ,由两个平角∠AEB 和∠ADC 得:∠1+∠2等于360°与四个折叠角的差,化简得结果;②利用两次外角定理得出结论;(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG)以及(∠C'DE+∠C'ED)和(∠A'HL+∠A'LH),再利用三角形的内角和定理即可求解.【详解】解:(1)∵70C ∠=︒,65B ∠=︒,∴∠A ′=∠A=180°-(65°+70°)=45°,∴∠A ′ED+∠A ′DE =180°-∠A ′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A ′ED+∠A ′DE )=360°-310°=50°;(2)①122A ∠+∠=∠,理由如下由折叠得:∠ADE=∠A ′DE ,∠AED=∠A ′ED ,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A ′DE-∠AED-∠A ′ED=360°-2∠ADE-2∠AED ,∴∠1+∠2=2(180°-∠ADE-∠AED )=2∠A ;②221A ∠=∠+∠,理由如下:∵2∠是ADF 的一个外角∴2A AFD ∠=∠+∠.∵AFD ∠是A EF '△的一个外角∴1AFD A '∠=∠+∠又∵A A '∠=∠∴221A ∠=∠+∠(3)如图由题意知,∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.【点睛】题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.5.如图①,在△ABC 中,CD 、CE 分别是△ABC 的高和角平分线,∠BAC =α,∠B =β(α>β).(1)若α=70°,β=40°,求∠DCE 的度数;(2)试用α、β的代数式表示∠DCE 的度数(直接写出结果);(3)如图②,若CE 是△ABC 外角∠ACF 的平分线,交BA 延长线于点E ,且α﹣β=30°,求∠DCE 的度数.【答案】(1)15°;(2)DCE 2αβ-∠=;(3)75°. 【解析】【分析】(1)三角形的内角和是180°,已知∠BAC 与∠ABC 的度数,则可求出∠BAC 的度数,然后根据角平分线的性质求出∠BCE ,再利用三角形的一个外角等于和它不相邻的两个内角的和求出∠DEC 的度数,进而求出∠DCE 的度数;(2)∠DCE =2αβ- .(3)作∠ACB 的内角平分线CE′,根据角平分线的性质求出∠ECE′=∠ACE+∠ACE′=12∠ACB+12∠ACF=90°,进而求出∠DCE 的度数. 【详解】解:(1)因为∠ACB =180°﹣(∠BAC+∠B )=180°﹣(70°+40°)=70°,又因为CE 是∠ACB 的平分线,所以1352ACE ACB ∠=∠=︒. 因为CD 是高线,所以∠ADC =90°,所以∠ACD =90°﹣∠BAC =20°,所以∠DCE =∠ACE ﹣∠ACD =35°﹣20°=15°.(2)DCE 2αβ-∠=.(3)如图,作∠ACB 的内角平分线CE′,则152DCE αβ-'==︒∠.因为CE 是∠ACB 的外角平分线,所以∠ECE′=∠ACE+∠ACE′=11+22ACB ACF ∠∠=1(+)2ACB ACF ∠∠=90°, 所以∠DCE =90°﹣∠DCE′=90°﹣15°=75°.即∠DCE 的度数为75°.【点睛】本题考查三角形外角的性质及三角形的内角和定理,解答的关键是沟通外角和内角的关系.解决(3),作辅助线是关键.6.如图①,在平面直角坐标系中,点A 的坐标为()0,4,4OC OB =.① ②(1)若ABC ∆的面积为20,求点B ,C 的坐标.(2)如图①,向x 轴正方向移动点B ,使90ABC ACB ∠-∠=︒,作BAC ∠的平分线AD 交x 轴于点D ,求ADO ∠的度数.(3)如图②,在(2)的条件下,线段AD 上有一动点Q ,作AQM DQP ∠=∠,它们的边分别交x 轴、y 轴于点M ,P ,作FMG DMQ ∠=∠,试判断FM 与PQ 的位置关系,并说明理由.【答案】(1)10,03B ⎛⎫⎪⎝⎭,40,03C ⎛⎫ ⎪⎝⎭;(2)45°;(3)FM PQ ⊥ 【解析】【分析】(1)设OB=a ,根据三角形的面积公式列式求出a ,即可得到点B 、C 的坐标;(2)设ACB α∠=,根据题意得到∠ABC=90°+α,根据三角形内角和定理得到∠BAC=90°-2α,再根据角平分线的定义、三角形外角的性质即可得到答案;(3)延长FM 交QP 于H ,设∠DQP=∠AQM=α,∠FMG=∠DMQ=β,根据三角形外角的性质、三角形内角和定理求出∠2+∠DMH=90°即可得到答案.【详解】(1)设OB=a ,则OC=4a ,∴BC=3a ,由题意得,134202a ⨯⨯=, 解得:a=103, ∴OB=103,OC=403, ∴10,03B ⎛⎫ ⎪⎝⎭,40,03C ⎛⎫ ⎪⎝⎭; (2)设ACB α∠=,∵90ABC ACB ∠-∠=︒,∴90ABC α∠=︒+,∴180BAC ABC ACB ∠=︒-∠-∠()18090αα=︒-︒+-902α=︒-,∵AD 平分BAC ∠,∴1452DAC BAC α∠=∠=︒-, ∴4545ADO DAC ACB αα∠=∠+∠=︒-+=︒;(3)FM ⊥PQ ,理由如下:延长FM 交PQ 于点H ,.设∠DQP=∠AQM=α,∠FMG=∠DMQ=β,则∠DMH=∠FMG=β,∠AQM=∠QMD+∠QDM ,即α=β+45°,∴∠1=180°-∠DQP-∠ADO=90°-β,∴∠2=∠1=90°-β,∴∠2+∠DMH=β+90°-β=90°,∴∠MHQ=90°,即FM ⊥PQ.【点睛】本题考查了角平分线的定义,三角形外角的性质,三角形内角和定理,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.7.如图四边形ABCD中,AD∥BC,∠BCD=90°,∠BAD的平分线AG交BC于点G.(1)求证:∠BAG=∠BGA;(2)如图2,∠BCD的平分线CE交AD于点E,与射线GA相交于点F,∠B=50°.①若点E在线段AD上,求∠AFC的度数;②若点E在DA的延长线上,直接写出∠AFC的度数;(3)如图3,点P在线段AG上,∠ABP=2∠PBG,CH∥AG,在直线AG上取一点M,使∠PBM=∠DCH,请直接写出∠ABM:∠PBM的值.【答案】(1)证明见解析;(2)①20°;②160°;(3)13或73【解析】【分析】(1)根据AD//BC可知∠GAD=∠BGA,由AG平分∠BAD可知∠BAG=∠GAD,即可得答案.(2)①根据CF平分∠BCD,∠BCD=90°,可求出∠GCF的度数,由AD//BC可求出∠AEF 和∠DAB的度数,根据三角形外角的性质求出∠AFC的度数即可;②根据三角形外角性质求出即可;(3)根据M点在BP的上面和下面两种情况讨论,分别求出∠PBM和∠ABM 的值即可.【详解】(1)∵AD∥BC,∴∠GAD=∠BGA,∵AG平分∠BAD,∴∠BAG=∠GAD,∴∠BAG=∠BGA;(2)①∵CF平分∠BCD,∠BCD=90°,∴∠GCF=45°,∵AD∥BC,∠ABC=50°,∴∠AEF=∠GCF=45°;∠DAB=180°﹣50°=130°,∵AG平分∠BAD,∴∠BAG=∠GAD=65°,∴∠AFC=65°﹣45°=20°;②如图:∵∠AGB=65°,∠BCF=45°,∴∠AFC=∠CGF+∠BCF=115°+45°=160°;(3)有两种情况:①当M在BC的下方时,如图:∵∠ABC=50°,∠ABP=2∠PBG,∴∠ABP=(1003)°,∠PBG=(503)°,∵AG∥CH,∴∠BCH=∠AGB=65°,∵∠BCD=90°,∴∠DCH=∠PBM=90°﹣65°=25°,∴∠ABM=∠ABP+∠PBM=(1003+25)°=(1753)°,∴∠ABM:∠PBM=(1753)°:25°=73;②当M在BC的上方时,如图:同理得:∠ABM=∠ABP﹣∠PBM=(1003﹣25)°=(253)°,∴∠ABM:∠PBM=(253)°:25°=13;综上,∠ABM:∠PBM的值是13或73.【点睛】本题考查平行线的性质和三角形外角性质,熟练掌握平行线性质是解题关键.8.数学活动课上,老师提出了一个问题:我们知道,三角形的一个外角等于和它不相邻的两个内角的和,那么三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系?(1)独立思考,请你完成老师提出的问题:如图所示,已知∠DBC和∠BCE分别为△ABC的两个外角,试探究∠A和∠DBC,∠BCE之间的数量关系.解:⑵合作交流,“创新小组”受此问题的启发:分别作外角∠CBD和∠BCE的平分线BF和CF,交于点F(如图所示),那么∠A与∠F之间有何数量关系?请写出解答过程.【答案】(1)∠DBC+∠BCE-∠A=180º(2)12∠A+∠F=90º【解析】【分析】(1)根据三角形的一个外角等于和它不相邻的两个内角的和,三角形内角和定理计算即可.(2)根据角平分线可知∠FBC+∠FCB=12(∠DBC+∠BCE,)再根据三角形内角和定理,结合(1)即可解答.【详解】⑴∠DBC+∠BCE-∠A=180º.∠DBC+∠BCE=∠ABC+∠A+∠ACB+∠A=180°+∠A即∠DBC+∠BCE-∠A=180º.(2)12 ∠A+∠F=90° ∵BF 和CF 分别平分∠CBD 和∠BCE , ∴∠CBF=12 ∠CBD ,∠BCF=12∠BCE. ∴∠CBF+∠BCF=12 (∠CBD+∠BCE). ∵∠CBF+∠BCF=180º-∠F ,∠DBC+∠BCE=180º+∠A.∴180º-∠F =12 (∠CBD+∠BCE )=12 (180º+∠A) ∴12∠A+∠F=90º. 【点睛】本题考查了三角形外角性质及三角形内角和定理,熟练掌握三角形外角性质是解题的关键.9.如图 (1)所示,AB ,CD 是两条线段,M 是AB 的中点,连接AD ,MD ,BC ,BD , MC ,AC ,S △DMC ,S △DAC 和S △DBC 分别表示△DMC ,△DAC ,△DBC 的面积,当AB ∥CD 时,有S △DMC =2DAC DBC S S+.(1)如图 (2)所示,当图6-9(1)中AB 与CD 不平行时,S △DMC =2DBC DAC S S +是否仍然成立?请说明理由; (2)如图 (3)所示,当图6-9(1)中AB 与CD 相交于点O 时,S △DMC 与S △DAC ,S △DBC 有什么样的数量关系?试说明你的结论.【答案】(1) S △DMC =2DAC DBC S S +仍成立,理由见解析; (2)S △DMC =2DBC DAC S S -,理由见解析.【解析】【分析】(1)先看题中给出的条件为何成立,由于三角形ADC ,DMC ,DBC 都是同底,而由于AB ∥DC ,因此高相等,就能得出题中给出的结论,那么本题也要用高来求解,过A ,M ,B 分别作BC 的垂线AE ,MN ,BF ,AE ∥MN ∥BF ,由于M 是AB 中点,因此MN 是梯形AEFB 的中位线,因此MN=12(AE+BF ),三个三角形同底因此结论①是成立的.(2)本题可以利用AM=MB ,让这两条边作底边来求解,三角形ADB 中,小三角形的AB 边上的高都相等,那么三角形ADM 和DBM 的面积就相等(等底同高),因此三角形OAD ,OMD 的和就等于三角形BMD 的面积,同理三角形AOC 和OMC 的面积和等于三角形CMB 的面积.根据这些等量关系即可得出题中三个三角形的面积关系.【详解】 (1)当AB 与CD 不平行时,S △DMC =2DAC DBC S S+仍成立.分别过点A ,M ,B 作CD 的垂线AE ,MN ,BF ,垂足分别为E ,N ,F.∵M 为AB 的中点,∴MN =12(AE+BF),∴S △DAC +S △DBC =12DC·AE+12DC·BF =12DC·(AE+BF)= 12DC·2MN=DC·MN=2S △DMC .∴S △DMC =2DAC DBC S S +; (2)S △DMC =2DBC DAC S S-.理由:∵M 是AB 的中点,∴S △ADM =S △BDM ,S △ACM =S △BCM ,而S △DBC =S △BDM +S △BCM +S △DMC ,① S △DAC =S △ADM +S △ACM -S △DMC ,②∴①-②得S △DBC -S △DAC =2S △DMC ,故S △DMC =2DBC DAC S S-.【点睛】本题考查了三角形中位线和梯形,解题的关键是掌握三角形中位线定理和梯形的概念.10.如图,在△ABC 中,AD ⊥BC ,AE 平分∠BAC .(1)若∠B =72°,∠C =30°,①求∠BAE 的度数;②求∠DAE 的度数;(2)探究:如果只知道∠B =∠C +42°,也能求出∠DAE 的度数吗?若能,请你写出求解过程;若不能,请说明理由.【答案】(1)①39°;②21°;(2)21°.【解析】【分析】()1①先根据三角形内角和定理计算出BAC 78∠=,然后根据角平分线定义得到1BAE BAC 392∠∠==;②根据垂直定义得到ADB 90∠=,则利用互余可计算出BAD 90B 18∠∠=-=,然后利用DAE BAE BAD ∠∠∠=-进行计算即可; ()2由B C BAC 180∠∠∠++=,B C 42∠∠=+可消去C ∠得到BAC 2222B ∠∠=-,则根据角平分线定义得到BAE 111B ∠∠=-,接着在ABD 中利用互余得BAD 90B ∠∠=-,然后利用DAE BAE BAD ∠∠∠=-进行计算即可得到DAE 21∠=.【详解】解:()1B C BAC 180∠∠∠++=①,BAC 180723078∠∴=--=, AE 平分BAC ∠,1BAE BAC 392∠∠∴==; AD BC ⊥②,ADB 90∠∴=,BAD 90B 18∠∠∴=-=,DAE BAE BAD 391821∠∠∠∴=-=-=;()2能.B C BAC 180∠∠∠++=,B C 42∠∠=+,C B 42∠∠∴=-,2B BAC 222∠∠∴+=,BAC 2222B ∠∠∴=-, AE 平分BAC ∠,BAE 111B ∠∠∴=-,在ABD 中,BAD 90B ∠∠=-,()()DAE BAE BAD 111B 90B 21∠∠∠∠∠∴=-=---=.【点睛】本题考查三角形内角和定理:三角形内角和是180.掌握角平分线和高的定义,熟练进行角度的运算.。

深圳菁华中英文实验中学八年级数学上册第十一章《三角形》阶段练习(含答案解析)

深圳菁华中英文实验中学八年级数学上册第十一章《三角形》阶段练习(含答案解析)

一、选择题1.如图,在ABC 中,AB 边上的高为( )A .CGB .BFC .BED .AD 2.已知两条线段15cm a =,8cm b =,下列线段能和a ,b 首尾相接组成三角形的是( )A .20cmB .7cmC .5cmD .2cm 3.将一个多边形纸片剪去一个内角后得到一个内角和是外角和4倍的新多边形,则原多边形的边数为( )A .9B .10C .11D .以上均有可能 4.如图,ABC 中,将A ∠沿DE 翻折,若30A ∠=︒,25BDA '∠=︒,则CEA '∠多少度( )A .60°B .75°C .85°D .90° 5.下列长度(单位:cm )的三条线段能组成三角形的是( ) A .13,11,12 B .3,2,1 C .5,12,7 D .5,13,5 6.如图,D 是ABC 的边BC 上任意一点,E 、F 分别是线段AD CE 、的中点,且ABC 的面积为220cm ,则BEF 的面积是( )2cmA .5B .6C .7D .87.下列长度的线段能组成三角形的是( )A .2,3,5B .4,6,11C .5,8,10D .4,8,4 8.如图,在ABC ∆中,AD 是ABC ∆的角平分线,DE AC ⊥,若40,60B C ︒︒∠=∠=,则ADE ∠的度数为( )A .30︒B .40︒C .50︒D .60︒ 9.一副透明的三角板,如图叠放,直角三角板的斜边AB 、CE 相交于点D ,则BDC∠的度数是( )A .65︒B .75︒C .85︒D .105︒ 10.一个多边形的内角和是外角和的4倍,则这个多边形的边数为( )A .10B .8C .6D .4 11.小红有两根长度分别为4cm 和8cm 的木棒,他想摆一个三角形,现有长度分别为3cm ,4cm ,8cm ,15cm 四根木棒,则他应选择的木棒长度为( ).A .3cmB .4cmC .8cmD .15cm 12.设四边形的内角和等于,a 五边形的外角和等于,b 则a 与b 的关系是( ) A .a b =B .120a b =+C .180b a =+︒D .360b a =+︒ 13.以下列各组线段为边,能组成三角形的是( )A .1,2,3B .2,3,4C .2,5,8D .6,3,3 14.如图,盖房子时,在窗框没有安装之前,木工师傅常常先在窗框上斜钉一根木条,使其不变形,这种做法的根据是( )A .两点之间线段最短B .长方形的对称性C .长方形四个角都是直角D .三角形的稳定性15.如图,在ABC 中,48BAC ∠=︒,点 I 是ABC ∠、ACB ∠的平分线的交点.点D 是ABC ∠、 ACB ∠的两条外角平分线的交点,点E 是内角ABC ∠、外角ACG ∠的平分线的交点,则下列结论 不正确...的是( )A .180BDC BIC ∠+∠=︒B .85ICE ∠=︒C .24E ∠=︒D .90DBE ∠=︒二、填空题16.如图,已知ABC 中,90,50ACB B D ︒︒∠=∠=,为AB 上一点,将BCD △沿CD 折叠后,点B 落在点E 处,且//CE AB ,则ACD ∠的度数是___________.17.一个三角形的三条高的长都是整数,若其中两条高的长分别为4和12,则第三条高的长为_____.18.如图,若∠CGE=α,则∠A+∠B+∠C+∠D+∠E+∠F=____.19.如图,,AE AD 分别是△ABC 的高和角平分线,且6B 3︒∠=,6C 7︒∠=则DAE ∠的度数为__.20.如图,将长方形纸片的一角折叠,使顶点A 落在F 处,折痕为BC ,FBD ∠的角平分线为BE ,将FBD ∠沿BF 折叠使BE ,BD 均落在FBC ∠的内部,且BE 交CF 于点M ,BD 交CF 于点N ,若BN 平分CBM ∠,则ABC ∠的度数为_________.21.已知等腰三角形的一边长等于11cm ,一边长等于5cm ,它的周长为______. 22.如图,把ABC 折叠,点B 落在P 点位置,若12120∠+∠=︒,则B ∠=______.23.如图,已知AE 是ABC 的边BC 上的中线,若8AB cm =,ACE △的周长比AEB △的周长多2cm ,则AC =______cm .24.一块含45°角的直角三角板如图放置,其中,直线//a b ,185∠=︒,则2∠=______度.25.如图,∠BAK +∠B +∠C +∠CDE +∠E +∠F +∠MGN +∠H +∠K =________.26.一个三角形的三个内角的度数的比是1∶2∶3,这个三角形是_________________三角形.(填锐角、直角或钝角)三、解答题27.如图,在ABC 中,90ACB ∠=︒.(1)作出AB 边上的高CD .(2)5AC =,12BC =,13AB =,求高CD 的长. 28.(1)一个多边形的内角和等于1800度,求这个多边形的边数. (2)一个多边形的每一个内角都是108°,求这个多边形的边数. 29.如图,PB 和PC 是ABC 的两条外角平分线. 求证:1902BPC BAC ∠=︒-∠.30.已知22a m n =+,2b m =,c mn =,且m >n >0. (1)比较a ,b ,c 的大小;(2)请说明以a ,b ,c 为边长的三角形一定存在.。

深圳宝安区龙华中英文实验学校数学全等三角形同步单元检测(Word版 含答案)

深圳宝安区龙华中英文实验学校数学全等三角形同步单元检测(Word版 含答案)

深圳宝安区龙华中英文实验学校数学全等三角形同步单元检测(Word 版 含答案)一、八年级数学轴对称三角形填空题(难)1.如图,在四边形ABCD 中,BC CD = ,对角线BD 平分ADC ∠,连接AC ,2ACB DBC ∠=∠,若4AB =,10BD =,则ABC S =_________________.【答案】10【解析】【分析】由等腰三角形的性质和角平分线的性质可推出AD ∥BC ,然后根据平行线的性质和已知条件可推出CA=CD ,可得CB=CA=CD ,过点C 作CE ⊥BD 于点E ,CF ⊥AB 于点F ,如图,根据等腰三角形的性质和已知条件可得DE 的长和BCF CDE ∠=∠,然后即可根据AAS 证明△BCF ≌△CDE ,可得CF=DE ,再根据三角形的面积公式计算即得结果.【详解】解:∵BC CD =,∴∠CBD =∠CDB ,∵BD 平分ADC ∠,∴∠ADB =∠CDB ,∴∠CBD =∠ADB ,∴AD ∥BC ,∴∠CAD =∠ACB ,∵2ACB DBC ∠=∠,2ADC BDC ∠=∠,∠CBD =∠CDB ,∴ACB ADC ∠=∠,∴CAD ADC ∠=∠,∴CA=CD ,∴CB=CA=CD ,过点C 作CE ⊥BD 于点E ,CF ⊥AB 于点F ,如图,则152DE BD ==,12BCF ACB ∠=∠, ∵12BDC ADC ∠=∠,ACB ADC ∠=∠,∴BCF CDE ∠=∠, 在△BCF 和△CDE 中,∵BCF CDE ∠=∠,∠BFC =∠CED =90°,CB=CD ,∴△BCF ≌△CDE (AAS ),∴CF=DE =5,∴11451022ABC S AB CF =⋅=⨯⨯=. 故答案为:10.【点睛】本题考查了等腰三角形的判定和性质、平行线的判定和性质、角平分线的定义以及全等三角形的判定和性质等知识,涉及的知识点多、综合性强、具有一定的难度,正确添加辅助线、熟练掌握上述知识是解题的关键.2.△ABC与△DEF是两个全等的等腰直角三角形,∠BAC=∠D=90°,AB=AC=6.现将△DEF与△ABC按如图所示的方式叠放在一起,使△ABC保持不动,△DEF运动,且满足点E在边BC上运动(不与B,C重合),边DE始终经过点A,EF与AC交于点M.在△DEF 运动过程中,若△AEM能构成等腰三角形,则BE的长为______.【答案】363【解析】【分析】分若AE=AM 则∠AME=∠AEM=45°;若AE=EM;若MA=ME 则∠MAE=∠AEM=45°三种情况讨论解答即可;【详解】解:①若AE=AM 则∠AME=∠AEM=45°∵∠C=45°∴∠AME=∠C又∵∠AME>∠C∴这种情况不成立;②若AE=EM∵∠B=∠AEM=45°∴∠BAE+∠AEB=135°,∠MEC+∠AEB=135°∴∠BAE=∠MEC在△ABE和△ECM中,BBAE CENAE EIIC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ECM(AAS),∴CE=AB=6,∵AC=BC=2AB=23,∴BE=23﹣6;③若MA=ME 则∠MAE=∠AEM=45°∵∠BAC=90°,∴∠BAE=45°∴AE平分∠BAC∵AB=AC,∴BE=12BC=3.故答案为23﹣6或3.【点睛】本题考查了等腰三角形的判定,掌握分类讨论的数学思想是解答本题的关键.3.如图,△ABC中,AB=AC,∠A=30°,点D在边AB上,∠ACD=15°,则ADBC=____.2.【分析】根据题意作CE ⊥AB 于E ,作DF ⊥AC 于F ,在CF 上截取一点H ,使得CH =DH ,连接DH ,并设AD =2x ,解直角三角形求出BC (用x 表示)即可解决问题.【详解】解:作CE ⊥AB 于E ,作DF ⊥AC 于F ,在CF 上截取一点H ,使得CH=DH ,连接DH .设AD=2x ,∵AB=AC ,∠A=30°,∴∠ABC=∠ACB=75°,DF 12=AD=x ,AF 3=, ∵∠ACD=15°,HD=HC ,∴∠HDC=∠HCD=15°,∴∠FHD=∠HDC+∠HCD=30°,∴DH=HC=2x ,FH 3=,∴3x ,在Rt △ACE 中,EC 12=AC=x 3+,AE 3=3=, ∴BE=AB ﹣AE 3=﹣x ,在Rt △BCE 中,BC 22BE EC =+=2x , ∴2222AD BC x ==. 2. 【点睛】本题考查的等腰三角形的性质和解直角三角形以及直角三角形30度角的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.4.如图,已知△ABC 中,AB=AC ,∠BAC=90°,直角∠EPF 的顶点P 是BC 中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,给出下列四个结论:①AE=CF ;②△EPF 是等腰直角三角形;④12ABCAEPFS S∆=四边形,当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),上述结论中始终正确的有________(把你认为正确的结论的序号都填上).【答案】①②④【解析】试题分析:∵∠APE、∠CPF都是∠APF的余角,∴∠APE=∠CPF,∵AB=AC,∠BAC=90°,P是BC中点,∴AP=CP,∴∠PAE=∠PCF,在△APE与△CPF中,{?PAE PCFAP CPEPA FPC∠=∠=∠=∠,∴△APE≌△CPF(ASA),同理可证△APF≌△BPE,∴AE=CF,△EPF是等腰直角三角形,S四边形AEPF=12S△ABC,①②④正确;而AP=12BC,当EF不是△ABC的中位线时,则EF不等于BC的一半,EF=AP,∴故③不成立.故始终正确的是①②④.故选D.考点:1.全等三角形的判定与性质;2.等腰直角三角形.5.如图,△ABC中,AB=8,AC=6,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC,分别交AB、AC于点D、E,则△ADE的周长为_____.【答案】14.【解析】 【分析】先根据角平分线的定义及平行线的性质得BD =DF ,CE =EF ,则△ADE 的周长=AB +AC =14.【详解】∵BF 平分∠ABC ,∴∠DBF =∠CBF ,∵DE ∥BC ,∴∠CBF =∠DFB ,∴∠DBF =∠DFB ,∴BD =DF ,同理FE =EC ,∴△AED 的周长=AD +AE +ED =AB +AC =8+6=14.故答案为:14.【点睛】此题考查角平分线的性质,平行线的性质,等腰三角形的等角对等边的性质.6.如图,在四边形ABCD 中,AB AD =,BC DC =,60A ∠=︒,点E 为AD 边上一点,连接BD .CE ,CE 与BD 交于点F ,且CE AB ∥,若8AB =,6CE =,则BC 的长为_______________.【答案】7【解析】【分析】由AB AD =,BC DC =知点A,C 都在BD 的垂直平分线上,因此,可连接AC 交BD 于点O ,易证ABD △是等边三角形,EDF 是等边三角形,根据等边三角形的性质对三角形中的线段进行等量转换即可求出OB,OC 的长度,应用勾股定理可求解.【详解】解:如图,连接AC 交BD 于点O∵AB AD =,BC DC =,60A ∠=︒,∴AC 垂直平分BD ,ABD △是等边三角形∴30BAO DAO ∠=∠=︒,8AB AD BD ===,4BO OD ==∵CE AB ∥∴30BAO ACE ∠=∠=︒,60CED BAD ∠=∠=︒∴30DAO ACE ∠=∠=︒∴6AE CE ==∴2DE AD AE =-=∵60CED ADB ∠=∠=︒∴EDF 是等边三角形∴2DE EF DF ===∴4CF CE EF =-=,2OF OD DF =-=∴2223OC CF OF =-=∴2227BC BO OC =+=【点睛】本题主要考查了等边三角形的判定与性质、勾股定理,综合运用等边三角形的判定与性质进行线段间等量关系的转换是解题的关键.7.如图,在直角坐标系中,点()8,8B -,点()2,0C -,若动点P 从坐标原点出发,沿y 轴正方向匀速运动,运动速度为1/cm s ,设点P 运动时间为t 秒,当BCP ∆是以BC 为腰的等腰三角形时,直接写出t 的所有值__________________.【答案】2秒或46秒或14秒【解析】【分析】分两种情况:PC为腰或BP为腰.分别作出符合条件的图形,计算出OP的长度,即可求出t的值.【详解】解:如图所示,过点B作BD⊥x轴于点D,作BE⊥y轴于点E,分别以点B和点C为圆心,以BC长为半径画弧交y轴正半轴于点F,点H和点G∵点B(-8,8),点C(-2,0),∴DC=6cm,BD=8cm,由勾股定理得:BC=10cm∴在直角三角形COG中,OC=2cm,CG=BC=10cm,∴OP=OG= 22-=,10246(cm)当点P运动到点F或点H时,BE=8cm,BH=BF=10cm,∴EF=EH=6cm∴OP=OF=8-6=2(cm)或OP=OH=8+6=14(cm),故答案为:2秒,46秒或14秒.【点睛】本题综合考查了勾股定理和等腰三角形在平面直角坐标系中的应用,通过作图找出要求的点的位置,利用勾股定理来求解是本题的关键.8.如图,在△ABC中,AB=BC=8,AO=BO,点M是射线CO上的一个动点,∠AOC=60°,则当△ABM为直角三角形时,AM的长为______.【答案】或4【解析】【分析】分三种情况讨论:①当M在AB下方且∠AMB=90°时,②当M在AB上方且∠AMB=90°时,③当∠ABM=90°时,分别根据含30°直角三角形的性质、直角三角形斜边的中线的性质或勾股定理,进行计算求解即可.【详解】如图1,当∠AMB=90°时,∵O是AB的中点,AB=8,∴OM=OB=4,又∵∠AOC=∠BOM=60°,∴△BOM是等边三角形,∴BM=BO=4,∴Rt△ABM中,AM如图2,当∠AMB=90°时,∵O是AB的中点,AB=8,∴OM=OA=4,又∵∠AOC=60°,∴△AOM是等边三角形,∴AM=AO=4;如图3,当∠ABM=90°时,∵∠BOM=∠AOC=60°,∴∠BMO=30°,∴MO=2BO=2×4=8,∴Rt△BOM中,BM=∴Rt△ABM中,AM综上所述,当△ABM为直角三角形时,AM的长为4.故答案为或4.9.如图,在3×3的正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形.图中的△ABC为格点三角形,在图中最多能画出_____个格点三角形与△ABC成轴对称.【答案】6【解析】【分析】根据网格结构分别确定出不同的对称轴,然后作出轴对称三角形即可得解.【详解】如图,最多能画出6个格点三角形与△ABC成轴对称.故答案为:6.【点睛】本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键,本题难点在于确定出不同的对称轴.10.已知,∠MON=30°,点A1、A2、A3在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=a,则△A7B7A8的边长为______.【答案】64a【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,根据30°角所对直角边等于斜边的一半得到A2B2=2B1A2,进而得出A3B3=4B1A2=4a,A4B4=8B1A2=8a,A5B5=16B1A2…从而得到答案.【详解】∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°.∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°.又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°.∵∠MON=∠1=30°,∴OA1=A1B1=a,∴A2B1=a.∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°.∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4a,A4B4=8B1A2=8a,A5B5=16B1A2=16a,以此类推:A7B7=64B1A2=64a.故答案为:64a.【点睛】本题考查了等边三角形的性质、等腰三角形的性质以及含30°角的直角三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题的关键.二、八年级数学轴对称三角形选择题(难)11.点A的坐标是(2,2),若点P在x轴或y轴上且△APO是等腰三角形,这样的点P 共有()个A.6 B.7 C.8 D.9【答案】C【解析】【分析】根据等腰三角形的性质,要使△AOP是等腰三角形,可以分两种情况考虑:当OA是底边时,作OA的垂直平分线,和坐标轴出现2个交点;当OA是腰时,则分别以点O、点A为圆心,OA为半径画弧,和坐标轴出现6个交点,这样的点P共8个.【详解】如图,分两种情况进行讨论:当OA是底边时,作OA的垂直平分线,和坐标轴的交点有2个;当OA是腰时,以点O为圆心,OA为半径画弧,和坐标轴有4个交点;以点A为圆心,OA为半径画弧,和坐标轴出现2个交点;∴满足条件的点P共有8个,故选:C.【点睛】本题考查了等腰三角形的定义,坐标与图形的性质,解题的关键是根据OA为腰或底两种情况分类讨论,运用数形结合的思想进行解决.12.如图,120AOB∠=︒,OP平分AOB∠,且2OP=,若点M N、分别在OA OB、上,且PMN∆为等边三角形,则满足上述条件的PMN∆有()A.1个B.2个C.3个D.无数个【答案】D【解析】【分析】根据题意在OA、OB上截取OE=OF=OP,作∠MPN=60°,只要证明△PEM≌△PON即可反推出△PMN是等边三角形满足条件,以此进行分析即可得出结论.【详解】解:如图在OA、OB上截取OE=OF=OP,作∠MPN=60°.∵OP平分∠AOB,120AOB∠=︒,∴∠EOP=∠POF=60°,∵OE=OF=OP,∴△OPE,△OPF是等边三角形,∴EP=OP,∠EPO=∠OEP=∠PON=∠MPN=60°,∴∠EPM=∠OPN,在△PEM和△PON中,PEM PONPE POEPM OPN∠⎪∠⎧⎩∠⎪∠⎨===∴△PEM≌△PON(ASA).∴PM=PN,∵∠MPN=60°,∴△PNM 是等边三角形,∴只要∠MPN=60°,△PMN 就是等边三角形,故这样的三角形有无数个.故选:D .【点睛】本题考查等边三角形的判定和性质、全等三角形的判定和性质、角平分线的定义等知识,解题的关键是正确添加辅助线并构造全等三角形.13.如图所示,△ABP 与△CDP 是两个全等的等边三角形,且PA ⊥PD ,有下列四个结论:①∠PBC =15°,②AD ∥BC ,③PC ⊥AB ,④四边形ABCD 是轴对称图形,其中正确的个数为( )A .1个B .2个C .3个D .4个【答案】D【解析】【分析】根据周角的定义先求出∠BPC 的度数,再根据对称性得到△BPC 为等腰三角形,∠PBC 即可求出;根据题意:有△APD 是等腰直角三角形;△PBC 是等腰三角形;结合轴对称图形的定义与判定,可得四边形ABCD 是轴对称图形,进而可得②③④正确.【详解】根据题意,BPC 36060290150∠=-⨯-= , BP PC =,()PBC 180150215∠∴=-÷=,①正确;根据题意可得四边形ABCD 是轴对称图形,④正确;∵∠DAB+∠ABC=45°+60°+60°+15°=180°,∴AD//BC ,②正确;∵∠ABC+∠BCP=60°+15°+15°=90°,∴PC ⊥AB ,③正确,所以四个命题都正确,故选D .【点睛】本题考查了等边三角形的性质、等腰直角三角形的性质、等腰三角形的判定与性质、轴对称图形的定义与判定等,熟练掌握各相关性质与定理是解题的关键.14.如图,△ABC 、△CDE 都是等腰三角形,且CA =CB , CD =CE ,∠ACB =∠DCE =α,AD ,BE 相交于点O,点M,N分别是线段AD,BE的中点,以下4个结论:①AD=BE;②∠DOB=180°-α;③△CMN是等边三角形;④连OC,则OC平分∠AOE.正确的是()A.①②③B.①②④C.①③④D.①②③④【答案】B【解析】【分析】①根据全等三角形的判定定理得到△ACD≌△BCE(SAS),由全等三角形的性质得到AD=BE;故①正确;②设CD与BE交于F,根据全等三角形的性质得到∠ADC=∠BEC,得到∠DOE=∠DCE=α,根据平角的定义得到∠BOD=180°-∠DOE=180°-α,故②正确;③根据全等三角形的性质得到∠CAD=∠CBE,AD=BE,AC=BC根据线段的中点的定义得到AM=BN,根据全等三角形的性质得到CM=CN,∠ACM=∠BCN,得到∠MCN=α,推出△MNC不一定是等边三角形,故③不符合题意;④过C作CG⊥BE于G,CH⊥AD于H,根据全等三角形的性质得到CH=CG,根据角平分线的判定定理即可得到OC平分∠AOE,故④正确.【详解】解:①∵CA=CB,CD=CE,∠ACB=∠DCE=α,∴∠ACB+∠BCD=∠DCE+∠BCD,∴∠ACD=∠BCE,在△ACD和△BCE中AC BCACD BCECD CE⎪∠⎪⎩∠⎧⎨===∴△ACD≌△BCE(SAS),∴AD=BE;故①正确;②设CD与BE交于F,∵△ACD≌△BCE,∴∠ADC=∠BEC,∵∠CFE=∠DFO,∴∠DOE=∠DCE=α,∴∠BOD=180°-∠DOE=180°-α,故②正确;③∵△ACD≌△BCE,∴∠CAD=∠CBE,AD=BE,AC=BC又∵点M 、N 分别是线段AD 、BE 的中点,∴AM=12AD ,BN=12BE , ∴AM=BN ,在△ACM 和△BCN 中 AC BC CAM CBN AM BN ⎪∠⎪⎩∠⎧⎨=== ∴△ACM ≌△BCN (SAS ),∴CM=CN ,∠ACM=∠BCN ,又∠ACB=α,∴∠ACM+∠MCB=α,∴∠BCN+∠MCB=α,∴∠MCN=α,∴△MNC 不一定是等边三角形,故③不符合题意;④过C 作CG ⊥BE 于G ,CH ⊥AD 于H ,∴∠CHD=∠ECG=90°,∵∠CEG=∠CDH ,CE=CD ,∴△CGE ≌△CHD (AAS ),∴CH=CG ,∴OC 平分∠AOE ,故④正确,故选:B .【点睛】本题综合考查了全等三角形的性质和判定,三角形的内角和定理,等边三角形的性质和判定等知识点的应用,解此题的关键是根据性质进行推理,此题综合性比较强,有一定的代表性.15.如图,Rt ACB ∆中,90ACB ∠=︒,ABC ∠的平分线BE 和BAC ∠的外角平分线AD 相交于点P ,分别交AC 和BC 的延长线于E ,D .过P 作PF AD ⊥交AC 的延长线于点H ,交BC 的延长线于点F ,连接AF 交DH 于点G .下列结论:①45APB ∠=︒;②PB 垂直平分AF ;③BD AH AB -=;④2DG PA GH =+;其中正确的结论有( )A.4个B.3个C.2个D.1个【答案】A【解析】【分析】①根据三角形的一个外角等于与它不相邻的两个内角的和与角平分线的定义表示出∠CAP,再根据角平分线的定义∠ABP=12∠ABC,然后利用三角形的内角和定理整理即可得解;②先求出∠APB=∠FPB,再利用“角边角”证明△ABP和△FBP全等,根据全等三角形对应边相等得到AB=BF,AP=PF;③根据直角的关系求出∠AHP=∠FDP,然后利用“角角边”证明△AHP与△FDP全等,根据全等三角形对应边相等可得DF=AH;④求出∠ADG=∠DAG=45°,再根据等角对等边可得DG=AG,再根据等腰直角三角形两腰相等可得GH=GF,然后根据2PA即可得到2DG PA GH=+.【详解】解:①∵∠ABC的角平分线BE和∠BAC的外角平分线,∴∠ABP=12∠ABC,∠CAP=12(90°+∠ABC)=45°+12∠ABC,在△ABP中,∠APB=180°−∠BAP−∠ABP,=180°−(45°+12∠ABC+90°−∠ABC)−12∠ABC,=180°−45°−12∠ABC−90°+∠AB C−12∠ABC,=45°,故本小题正确;②∵PF⊥AD,∠APB=45°(已证),∴∠APB=∠FPB=45°,∵∵PB为∠ABC的角平分线,∴∠ABP =∠FBP ,在△ABP 和△FBP 中,APB FPB PB PBABP FBP ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ABP ≌△FBP (ASA ),∴AB =BF ,AP =PF ;∴PB 垂直平分AF ,故②正确;③∵∠ACB =90°,PF ⊥AD ,∴∠FDP +∠HAP =90°,∠AHP +∠HAP =90°,∴∠AHP =∠FDP ,∵PF ⊥AD ,∴∠APH =∠FPD =90°,在△AHP 与△FDP 中,90AHP FDP APH FPD AP PF ∠∠⎧⎪∠∠︒⎨⎪⎩====,∴△AHP ≌△FDP (AAS ),∴DF =AH ,∵BD =DF +BF ,∴BD =AH +AB ,∴BD−AH =AB ,故③小题正确;④∵AP =PF ,PF ⊥AD ,∴∠PAF =45°,∴∠ADG =∠DAG =45°,∴DG =AG ,∵∠PAF =45°,AG ⊥DH ,∴△ADG 与△FGH 都是等腰直角三角形,∴DG =AG ,GH =GF ,∴DG =GH +AF ,∴故DG GH =+.综上所述①②③④正确.故选:A .【点睛】本题考查了直角三角形的性质,全等三角形的判定,以及等腰直角三角形的判定与性质,等角对等边,等边对等角的性质,综合性较强,难度较大,做题时要分清角的关系与边的关系.16.如图,在Rt△ABC中,AC=BC,∠ACB=90°,D为AB的中点,E为线段AD上一点,过E点的线段FG交CD的延长线于G点,交AC于F点,且EG=AE,分别延长CE,BG交于点H,若EH平分∠AEG,HD平分∠CHG则下列说法:①∠GDH=45°;②GD=ED;③EF=2DM;④CG=2DE+AE,正确的是()A.①②③B.①②④C.②③④D.①②③④【答案】B【解析】【分析】首先证明△AEC≌△GEC(SAS),推出CA=CG,∠A=∠CGE=45°,推出DE=DG,故②正确;再证明△EDC≌△GDB,推出∠CED=∠BGD,ED=GD,由三角形外角的性质得出∠HDG=∠HDE,进而得出∠GDH=∠EDH=45°,即可判断①正确;通过证明△EDC和△EMD是等腰直角三角形,得到ED2MD,再通过证明△EFC≌△EDC,得到EF=ED,从而可判断③错误;由CG=CD+DG,CD=AD,ED=GD,变形即可判断④正确.【详解】∵AC=BC,∠ACB=90°,AD=DB,∴CD⊥AB,CD=AD=DB,∠A=∠CBD=45°.∵EH平分∠AEG,∴∠AEH=∠GEH.∵∠AEH+∠AEC=180°,∠GEH+∠CEG=180°,∴∠AEC=∠CEG.∵AE=GE,EC=EC,∴△AEC≌△GEC(SAS),∴CA=CG,∠A=∠CGE=45°.∵∠EDG=90°,∴∠DEG=∠DGE=45°,∴DE=DG,∠AEF=∠DEG=∠A=45°,故②正确;∵DE=DG,∠CDE=∠BDG=90°,DC=DB,∴△EDC≌△GDB(SAS),∴∠CED=∠BGD,ED=GD.∵HD平分∠CHG,∴∠GHD=∠EHD.∵∠CED=∠EHD+∠HDE,∠BGD=∠GHD+∠HDG,∴∠HDG=∠HDE.∵∠EDG=∠ADC=90°,∴∠GDH=∠EDH=45°,故①正确;∵∠EDC=90°,ED=GD,∴△EDC是等腰直角三角形,∴∠DEG=45°.∵∠GDH=45°,∴∠EDH=45°,∴△EMD是等腰直角三角形,∴ED MD.∵∠AEF=∠DEG=∠A=45°,∴∠AFE=∠CFG=90°.∵∠EDC=90°,∴∠EFC=∠EDC=90°.∵EH平分∠AEG,∴∠AEH=∠GEH.∵∠FEC=∠GEH,∠DEC=∠AEH,∴∠FEC=∠DEC.∵EC=EC,∴△EFC≌△EDC,∴EF=ED,∴EF MD.故③错误;∵CG=CD+DG=AD+ED=AE+ED+ED,∴CG=2DE+AE,故④正确.故选B.【点睛】本题考查了等腰直角三角形的性质和判定,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.17.如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为()A.(-2012,2)B.(-2012,-2)C.(-2013,-2)D.(-2013,2)【答案】A【解析】试题分析:首先由正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M的对应点的坐标,即可得规律:第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),继而求得把正方形ABCD连续经过2014次这样的变换得到正方形ABCD的对角线交点M的坐标.试题解析:∵正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).∴对角线交点M的坐标为(2,2),根据题意得:第1次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),第2次变换后的点M的对应点的坐标为:(2-2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),∴连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为(-2012,2).故选A.考点:1.翻折变换(折叠问题);2.正方形的性质;3.坐标与图形变化-平移.18.如图,在△ABC中,BI,CI分别平分∠ABC,∠ACB,过I点作DE∥BC,交AB于D,交AC于E,给出下列结论:①△DBI是等腰三角形;②△ACI是等腰三角形;③AI平分∠BAC;④△ADE周长等于AB+AC.其中正确的是( )A.①②③B.②③④C.①③④D.①②④【答案】C【解析】【分析】根据角平分线的性质、平行线的性质、等腰三角形的判定与性质分别对各选项分析判断后利用排除法求解.【详解】①∵IB平分∠ABC,∴∠DBI=∠CBI.∵DE∥BC,∴∠DIB=∠CBI,∴∠DBI=∠DIB,∴BD=DI,∴△DBI是等腰三角形.故本选项正确;②∵∠BAC不一定等于∠ACB,∴∠IAC不一定等于∠ICA,∴△ACI不一定是等腰三角形.故本选项错误;③∵三角形角平分线相交于一点,BI,CI分别是∠ABC和∠ACB的平分线,∴AI平分∠BAC.故本选项正确;④∵BD=DI,同理可得EI=EC,∴△ADE的周长=AD+DI+EI+AE=AD+BD+EC+AE=AB+AC.故本选项正确;其中正确的是①③④.故选C.【点睛】本题考查了等腰三角形的判定与性质,熟记三角形的角平分线相交于一点是解题的关键.19.如图,O是正三角形ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+33;⑤S△AOC+S△AOB=6+934.其中正确的结论是()A.①②③⑤B.①③④C.②③④⑤D.①②⑤【答案】A【解析】试题解析:由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,又∵OB=O′B,AB=BC,∴△BO′A≌△BOC,又∵∠OBO′=60°,∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确;如图①,连接OO′,∵OB=O′B,且∠OBO′=60°,∴△OBO′是等边三角形,∴OO′=OB=4.故结论②正确;∵△BO′A≌△BOC,∴O′A=5.在△AOO′中,三边长为3,4,5,这是一组勾股数,∴△AOO′是直角三角形,∠AOO′=90°,∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,故结论③正确;S四边形AOBO′=S△AOO′+S△OBO′=12×3×4+34×42=6+43,故结论④错误;如图②所示,将△AOB绕点A逆时针旋转60°,使得AB与AC重合,点O旋转至O″点.易知△AOO″是边长为3的等边三角形,△COO″是边长为3、4、5的直角三角形,则S△AOC+S△AOB=S四边形AOCO″=S△COO″+S△AOO″=12×3×4+3×32=6+93,故结论⑤正确.综上所述,正确的结论为:①②③⑤.故选A.20.如图所示,把腰长为1的等腰直角三角形折叠两次后,得到的一个小三角形的周长是()A.B.1+2C.D-1【答案】B【解析】第一次折叠后,等腰三角形的底边长为1;,腰长为12,所以周长为111 2222 ++=+.故答案为B.。

深圳华文学校数学全等三角形单元综合测试(Word版 含答案)

深圳华文学校数学全等三角形单元综合测试(Word版 含答案)

深圳华文学校数学全等三角形单元综合测试(Word版含答案)一、八年级数学轴对称三角形填空题(难)1.△ABC与△DEF是两个全等的等腰直角三角形,∠BAC=∠D=90°,AB=AC=6.现将△DEF与△ABC按如图所示的方式叠放在一起,使△ABC保持不动,△DEF运动,且满足点E在边BC上运动(不与B,C重合),边DE始终经过点A,EF与AC交于点M.在△DEF 运动过程中,若△AEM能构成等腰三角形,则BE的长为______.【答案】363【解析】【分析】分若AE=AM 则∠AME=∠AEM=45°;若AE=EM;若MA=ME 则∠MAE=∠AEM=45°三种情况讨论解答即可;【详解】解:①若AE=AM 则∠AME=∠AEM=45°∵∠C=45°∴∠AME=∠C又∵∠AME>∠C∴这种情况不成立;②若AE=EM∵∠B=∠AEM=45°∴∠BAE+∠AEB=135°,∠MEC+∠AEB=135°∴∠BAE=∠MEC在△ABE和△ECM中,BBAE CENAE EIIC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ECM(AAS),∴CE=AB6,∵AC=BC2AB=3∴BE =23﹣6;③若MA =ME 则∠MAE =∠AEM =45°∵∠BAC =90°,∴∠BAE =45°∴AE 平分∠BAC∵AB =AC ,∴BE =12BC =3. 故答案为23﹣6或3.【点睛】本题考查了等腰三角形的判定,掌握分类讨论的数学思想是解答本题的关键.2.在ABC ∆中,边AB 、AC 的垂直平分线分别交边BC 于点D 、点E ,20DAE ∠=︒,则BAC ∠=______°.【答案】80或100【解析】【分析】根据题意,点D 和点E 的位置不确定,需分析谁靠近B 点,则有如下图(图见解析)两种情况:(1)图1中,点E 距离点B 近,根据垂直平分线性质可知,,BD AD AE CE ==,从而有1,2B DAE C DAE ∠=∠+∠∠=∠+∠,再根据三角形的内角和定理可得180B C BAC ∠+∠+∠=︒,联立即可求得;(2)图2中,点D 距离点B 近,根据垂直平分线性质可知,,BD AD AE CE ==,从而有3,4B C ∠=∠∠=∠,由三角形的内角和定理得180B C BAC ∠+∠+∠=︒,联立即可求得.【详解】由题意可分如下两种情况:(1)图1中,根据垂直平分线性质可知,,BD AD AE CE ==,1,2B DAE C DAE ∴∠=∠+∠∠=∠+∠(等边对等角),两式相加得12B C DAE DAE ∠+∠=∠+∠+∠+∠,又12DAE BAC ∠+∠+∠=∠20B C BAC DAE BAC ∴∠+∠=∠+∠=∠+︒,由三角形内角和定理得180B C BAC ∠+∠+∠=︒,20180BAC BAC ∴∠+︒+∠=︒,80BAC ∴∠=︒;(2)图2中,根据垂直平分线性质可知,,BD AD AE CE ==,3,4B C ∴∠=∠∠=∠(等边对等角),两式相加得34B C ∠+∠=∠+∠,又34DAE BAC ∠+∠+∠=∠,3420BAC DAE BAC ∴∠+∠=∠-∠=∠-︒,20B C BAC ∴∠+∠=∠-︒由三角形内角和定理得180B C BAC ∠+∠+∠=︒,20180BAC BAC ∴∠-︒+∠=︒,100BAC ∴∠=︒.故答案为80或100.【点睛】本题考查了垂直平分线的性质(垂直平分线上的点到线段两端点的距离相等)、等腰三角形的定义和性质(等边对等角)、以及三角形内角和定理,本题的难点在于容易漏掉第二种情况,出现漏解.3.在平面直角坐标系中,点A在x轴的正半轴上,点B在y轴的正半轴上,∆为等腰三角形,符合条件的C点有36∠=︒,在x轴或y轴上取点C,使得ABCABO__________个.【答案】8【解析】【分析】观察数轴,按照等腰三角形成立的条件分析可得答案.【详解】解:如下图所示,若以点A为圆心,以AB为半径画弧,与x轴和y轴各有两个交点,但其中一个会与点B重合,故此时符合条件的点有3个;若以点B为圆心,以AB为半径画弧,同样与x轴和y轴各有两个交点,但其中一个与点A重合,故此时符合条件的点有3个;线段AB的垂直平分线与x轴和y轴各有一个交点,此时符合条件的点有2个.∴符合条件的点总共有:3+3+2=8个.故答案为:8.【点睛】本题考查了等腰三角形的判定,可以观察图形,得出答案.4.如图,点A,B,C 在同一直线上,△ABD 和△BCE 都是等边三角形,AE,CD 分别与BD,BE 交于点F,G ,连接FG ,有如下结论:①AE=CD ②∠BFG= 60°;③EF=CG ;④AD ⊥CD⑤FG ∥AC 其中,正确的结论有__________________. (填序号)【答案】①②③⑤【解析】【分析】易证△ABE ≌△DBC ,则有∠BAE =∠BDC ,AE =CD ,从而可证到△ABF ≌△DBG ,则有AF =DG ,BF =BG ,由∠FBG =60°可得△BFG 是等边三角形,证得∠BFG =∠DBA =60°,则有FG ∥AC ,由∠CDB ≠30°,可判断AD 与CD 的位置关系.【详解】∵△ABD 和△BCE 都是等边三角形,∴BD =BA =AD ,BE =BC =EC ,∠ABD =∠CBE =60°. ∵点A 、B 、C 在同一直线上,∴∠DBE =180°﹣60°﹣60°=60°,∴∠ABE =∠DBC =120°. 在△ABE 和△DBC 中,∵BD BA ABE DBC BE BC ∠∠=⎧⎪=⎨⎪=⎩,∴△ABE ≌△DBC ,∴∠BAE =∠BDC ,∴AE =CD ,∴①正确; 在△ABF 和△DBG中,60BAF BDG AB DBABF DBG ∠∠∠∠=⎧⎪=⎨⎪==︒⎩,∴△ABF ≌△DBG ,∴AF =DG ,BF =BG .∵∠FBG =180°﹣60°﹣60°=60°,∴△BFG 是等边三角形,∴∠BFG =60°,∴②正确; ∵AE =CD ,AF =DG ,∴EF =CG ;∴③正确;∵∠ADB =60°,而∠CDB =∠EAB ≠30°,∴AD 与CD 不一定垂直,∴④错误.∵△BFG 是等边三角形,∴∠BFG =60°,∴∠GFB =∠DBA =60°,∴FG ∥AB ,∴⑤正确. 故答案为①②③⑤.【点睛】本题考查了等边三角形的判定与性质、全等三角形的判定与性质、三角形外角的性质、平行线的判定和性质,证得△ABE ≌△DBC 是解题的关键.5.如图,在Rt ABC △中,AC BC =,D 是线段AB 上一个动点,把ACD 沿直线CD 折叠,点A 落在同一平面内的A '处,当A D '平行于Rt ABC △的直角边时,ADC ∠的大小为________.【答案】112.5︒或67.5︒【解析】【分析】当A D '平行于Rt ABC △的直角边时,有两种情况,一是当A D BC '时,二是当A D AC '时,两种情况根据折叠的性质及等腰三角形的性质进行角度的计算即可.【详解】 如图1,当点D 在线段AB 上,且A DBC '时,45A DB B '∠=∠=︒, 45180ADC A DC '∴∠+∠-=︒︒,解得112.5A DC ADC '∠=∠=︒.图1如图2,当A D AC '时,45A DB A '∠=∠=︒,45180ADC A DC '∴∠+∠+=︒︒,解得67.5A DC ADC '∠=∠=︒.图2【点睛】本题考查了翻折变换的性质,等腰直角三角形的性质,掌握折叠的性质是解题关键.6.如图,在△ABC 中,AB=AC ,∠BAC=120°,D 为BC 上一点,DA ⊥AC ,AD=24 cm ,则BC 的长________cm .【答案】72【解析】【分析】按照等腰三角形的性质、角的和差以及含30°直角三角形的性质进行解答即可.【详解】解:∵AB=AC ,∠BAC=120°∴∠B=∠C=30°∵DA ⊥AC ,AD=24 cm∴DC=2AD=48cm ,∵∠BAC=120°,DA ⊥AC∴∠BAD=∠BAC-90°=30°∴∠B=∠BAD∴BD=AD=24cm∴BC=BD+DC=72cm故答案为72.【点睛】本题考查了腰三角形的性质、角的和差以及含30°直角三角形的性质,其中灵活运用含30°直角三角形的性质是解答本题的关键.7.如图,在△ABC 中,P ,Q 分别是BC ,AC 上的点,PR ⊥AB ,PS ⊥AC ,垂足分别是R ,S ,若AQ PQ =,PR PS =,那么下面四个结论:①AS AR =;②QP//AR;③△BRP≌△QSP;④BR QS,其中一定正确的是(填写编号)_____________.【答案】①,②【解析】【分析】连接AP,根据角平分线性质即可推出①,根据勾股定理即可推出AR=AS,根据等腰三角形性质推出∠QAP=∠QPA,推出∠QPA=∠BAP,根据平行线判定推出QP∥AB即可;在Rt△BRP和Rt△QSP中,只有PR=PS.无法判断△BRP≌△QSP也无法证明BR QS.【详解】解:连接AP①∵PR⊥AB,PS⊥AC,PR=PS,∴点P在∠BAC的平分线上,∠ARP=∠ASP=90°,∴∠SAP=∠RAP,在Rt△ARP和Rt△ASP中,由勾股定理得:AR2=AP2-PR2,AS2=AP2-PS2,∵AP=AP,PR=PS,∴AR=AS,∴①正确;②∵AQ=QP,∴∠QAP=∠QPA,∵∠QAP=∠BAP,∴∠QPA=∠BAP,∴QP∥AR,∴②正确;③在Rt△BRP和Rt△QSP中,只有PR=PS,不满足三角形全等的条件,故③④错误;故答案为:①②.【点睛】本题主要考查了角平分线的性质与勾股定理的应用,熟练掌握根据垂直与相等得出点在角平分线上是解题的关键.8.如图,过边长为1的等边三角形ABC的边AB上一点P,作PE⊥AC于点E,Q为BC延长线上一点,当AP=CQ时,PQ交AC于D,则DE的长为______.【答案】1 2【解析】过点Q作AD的延长线的垂线于点F.因为△ABC是等边三角形,所以∠A=∠ACB=60°.因为∠ACB=∠QCF,所以∠QCF=60°.因为PE⊥AC,QF⊥AC,所以∠AEP=∠CFQ=90°,又因为AP=CQ,所以△AEP≌△CFQ,所以AE=CF,PE=QC.同理可证,△DEP≌△DFQ,所以DE=DF.所以AC=AE+DE+CD=DE+CD+CF=DE+DF=2DE,所以DE=12AC=12.故答案为1 2 .9.在下列结论中:①有三个角是60︒的三角形是等边三角形;②有一个外角是120︒的等腰三角形是等边三角形;③有一个角是60 ,且是轴对称的三角形是等边三角形;④有一腰上的高也是这腰上的中线的等腰三角形是等边三角形.其中正确的是__________.【答案】①②③④【解析】【分析】依据等边三角形的定义,含有一个600角的等腰三角形是等边三角形判断即可.【详解】有三个角是600的三角形是等边三角形,故①正确;外角是1200时,邻补角为600,即有一个内角是600的等腰三角形是等边三角形,故②正确;轴对称的三角形是等腰三角形,且含有一个600角,因此是等边三角形,故③正确;一腰上的高也是中线,故底边等于腰长,所以此三角形是等边三角形,故④正确.故此题正确的是①②③④.【点睛】此题考查等边三角形的判定方法,熟记方法才能熟练运用.10.如图,在△ABC中,AB=AC,AB边的垂直平分线DE交AC于点D.已知△BDC的周长为14,BC=6,则AB=___.【答案】8【解析】试题分析:根据线段垂直平分线的性质,可知AD=BD,然后根据△BDC的周长为BC+CD+BD=14,可得AC+BC=14,再由BC=6可得AC=8,即AB=8.故答案为8.点睛:此题主要考查了线段的垂直平分线的性质,解题时,先利用线段的垂直平分线求出BD=AD,然后根据三角形的周长互相代换,即可其解.二、八年级数学轴对称三角形选择题(难)11.等边△ABC,在平面内找一点P,使△PBC、△PAB、△PAC均为等腰三角形,具备这样条件的P点有多少个?()A.1个B.4个C.7个D.10个【答案】D【解析】试题分析:根据点P在等边△ABC内,而且△PBC、△PAB、△PAC均为等腰三角形,可知P 点为等边△ABC 的垂心;由此可得分别以三角形各顶点为圆心,边长为半径,交垂直平分线的交点就是满足要求的.解:由点P 在等边△ABC 内,而且△PBC 、△PAB 、△PAC 均为等腰三角形,可知P 点为等边△ABC 的垂心;因为△ABC 是等边三角形,所以分别以三角形各顶点为圆心,边长为半径画弧,交垂直平分线的交点就是满足要求的,每条垂直平分线上得3个交点,再加三角形的垂心,一共10个.故选D .点评:此题主要考查等腰三角形的性质和等边三角形的性质,有一定的拔高难度,属于中档题.12.如图,ABC ∆中,60BAC ∠=︒,BAC ∠的平分线AD 与边BC 的垂直平分线MD 相交于点D ,DE AB ⊥交AB 的延长线于点E ,DF AC ⊥于点F ,现有下列结论:①DE DF =;②DE DF AD +=;③DM 平分EDF ∠;④2AB AC AE +=,其中正确的是( )A .①②B .①②③C .①②④D .①②③④【答案】C【解析】【分析】 ①由角平分线的性质可知①正确;②由题意可知∠EAD=∠FAD=30°,故此可知ED=12AD ,DF=12AD ,从而可证明②正确;③若DM 平分∠EDF ,则∠EDM=90°,从而得到∠ABC 为直角三角形,条件不足,不能确定,故③错误;④连接BD 、DC ,然后证明△EBD ≌△DFC ,从而得到BE=FC ,从而可证明④.【详解】解:如图所示:连接BD 、DC .①∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴ED=DF .∴①正确.②∵∠EAC=60°,AD 平分∠BAC ,∴∠EAD=∠FAD=30°.∵DE ⊥AB ,∴∠AED=90°.∵∠AED=90°,∠EAD=30°, ∴ED=12AD . 同理:DF=12AD . ∴DE+DF=AD .∴②正确. ③由题意可知:∠EDA=∠ADF=60°.假设MD 平分∠EDF ,则∠ADM=30°.则∠EDM=90°,又∵∠E=∠BMD=90°,∴∠EBM=90°.∴∠ABC=90°.∵∠ABC 是否等于90°不知道,∴不能判定MD 平分∠EDF ,故③错误.④∵DM 是BC 的垂直平分线,∴DB=DC .在Rt △BED 和Rt △CFD 中DE DF BD DC ⎧⎨⎩==, ∴Rt △BED ≌Rt △CFD .∴BE=FC .∴AB+AC=AE-BE+AF+FC又∵AE=AF ,BE=FC ,∴AB+AC=2AE .故④正确.综上所述,①②④正确, 故选:C .【点睛】本题主要考查的是全等三角形的性质和判定、角平分线的性质、线段垂直平分线的性质,掌握本题的辅助线的作法是解题的关键.13.如图所示,等边三角形的边长依次为2,4,6,8,……,其中1(0,1)A ,()21,13A --,()31,13A -,4(0,2)A ,()52,223A --,……,按此规律排下去,则2019A 的坐标为( )A .(673,6736733-B .(673,6736733--C .(0,1009)D .(674,6746743- 【答案】A【解析】【分析】 根据等边三角形的边长依次为2,4,6,8,……,及点的坐标特征,每三个点一个循环,2019÷3=673,A 2019的坐标在第四象限即可得到结论.【详解】∵2019÷3=673,∴顶点A 2019是第673个等边三角形的第三个顶点,且在第四象限.第673个等边三角形边长为2×673=1346,∴点A 2019的横坐标为 12⨯1346=673.点A 2019的纵坐标为673-134632⨯=673﹣3点A 2019的坐标为:(673,6736733-.故选:A .【点睛】本题考查了点的坐标、等边三角形的性质,是点的变化规律,主要利用了等边三角形的性质,确定出点A 2019所在三角形是解答本题的关键.14.如图,在锐角△ABC中,AC=10,S△ABC=25,∠BAC的平分线交BC于点D,点M,N分别是AD和AB上的动点,则BM+MN的最小值是()A.4 B.245C.5 D.6【答案】C【解析】试题解析:如图,∵AD是∠BAC的平分线,∴点B关于AD的对称点B′在AC上,过点B′作B′N⊥AB于N交AD于M,由轴对称确定最短路线问题,点M即为使BM+MN最小的点,B′N=BM+MN,过点B作BE⊥AC于E,∵AC=10,S△ABC=25,∴12×10•BE=25,解得BE=5,∵AD是∠BAC的平分线,B′与B关于AD对称,∴AB=AB′,∴△ABB′是等腰三角形,∴B′N=BE=5,即BM+MN的最小值是5.故选C.15.如图,一张长方形纸沿AB对折,以AB中点O为顶点将平角五等分,并沿五等分的折线折叠,再沿CD剪开,使展开后为正五角星(正五边形对角线所构成的图形).则∠OCD 等于()A.108°B.114°C.126°D.129°【答案】C【解析】【分析】按照如图所示的方法折叠,剪开,把相关字母标上,易得∠ODC和∠DOC的度数,利用三角形的内角和定理可得∠OCD的度数.【详解】解:展开如图,五角星的每个角的度数是,180=36°.5∵∠COD=360°÷10=36°,∠ODC=36°÷2=18°,∴∠OCD=180°-36°-18°=126°,故选C.【点睛】本题主要考查轴对称性质,解决本题的关键是能够理解所求的角是五角星的哪个角,解题时可以结合正五边形的性质解决.16.如图,已知△ABC与△CDE均是等边三角形,点B、C、E在同一条直线上,AE与BD 交于点O,AE与CD交于点G,AC与BD交于点F,连接OC、FG,则下列结论:①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC.其中正确结论的个数为( )A.1 B.2 C.3 D.4【答案】D【解析】【分析】根据题意,结合图形,对选项一一求证,即可得出正确选项.【详解】(1)△ABC和△DCE均是等边三角形,点B,C,E在同一条直线上,∴AC=BC,EC=DC,∠ACB=∠DCE=60°,∴∠ACE=∠BCD=120°.在△BCD和△ACE中,∵AC BCBCD ACECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△BCD≌△ACE,∴AE=BD,故结论①正确;(2)∵△BCD≌△ECA,∴∠GAC=∠FBC.又∵∠ACG=∠BCF=60°,AC=BC,∴△ACG≌△BCF,∴AG=BF,故结论②正确;(3)∵△ACG≌△BCF,∴CG=CF.∵∠ACB=∠DCE=60°,∴∠ACD=60°,∴△FCG为等边三角形,∴∠FGC=60°,∴∠FGC=∠DCE,∴FG∥BE,故结论③正确;(4)过C作CN⊥AE于N,CZ⊥BD于Z,则∠CNE=∠CZD=90°.∵△ACE≌△BCD,∴∠CDZ=∠CEN.在△CDZ和△CEN中,CZD CNECDZ CENCD CE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CDZ≌△CEN,∴CZ=CN.∵CN⊥AE,CZ⊥BD,∴∠BOC=∠EOC,故结论④正确.综上所述:四个结论均正确.故选D.【点睛】本题综合考查了等边三角形的判定与性质,全等三角形的判定与性质,角平分线的判定定理等重要几何知识点,有一定难度,需要学生将相关知识点融会贯通,综合运用.17.如图,已知AD为△ABC的高线,AD=BC,以AB为底边作等腰Rt△ABE,连接ED,EC,延长CE交AD于F点,下列结论:①△ADE≌△BCE;②CE⊥DE;③BD=AF;④S△BDE=S△ACE,其中正确的有()A.①③B.①②④C.①②③④D.①③④【答案】C【解析】【分析】①易证∠CBE=∠DAE,即可求证:△ADE≌△BCE;②根据①结论可得∠AEC=∠DEB,即可求得∠AED=∠BEG,即可解题;③证明△AEF≌△BED即可;④易证△FDC是等腰直角三角形,则CE=EF,S△AEF=S△ACE,由△AEF≌△BED,可知S△BDE=S△ACE,所以S△BDE=S△ACE.【详解】①∵AD为△ABC的高线,∴∠CBE+∠ABE+∠BAD=90°.∵Rt△ABE是等腰直角三角形,∴∠ABE=∠BAE=∠BAD+∠DAE=45°,AE=BE,∴∠CBE+∠BAD=45°,∴∠DAE=∠CBE.在△DAE和△CBE中,∵AE BEDAE CBEAD BC=⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△BCE(SAS);故①正确;②∵△ADE≌△BCE,∴∠EDA=∠ECB.∵∠ADE+∠EDC=90°,∴∠EDC+∠ECB=90°,∴∠DEC=90°,∴CE⊥DE;故②正确;③∵∠BDE=∠ADB+∠ADE,∠AFE=∠ADC+∠ECD,∴∠BDE=∠AFE.∵∠BED+∠BEF=∠AEF+∠BEF=90°,∴∠BED=∠AEF.在△AEF和△BED中,∵BDE AFEBED AEFAE BE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△BED(AAS),∴BD=AF;故③正确;④∵AD=BC,BD=AF,∴CD=DF.∵AD⊥BC,∴△FDC是等腰直角三角形.∵DE⊥CE,∴EF=CE,∴S△AEF=S△ACE.∵△AEF≌△BED,∴S△AEF=S△BED,∴S△BDE=S△ACE.故④正确.故选C.【点睛】本题考查了全等三角形的判定与性质,本题中求证△BFE≌△CDE是解题的关键.18.如图,ABC△中,60BAC∠=︒,ABC∠、ACB∠的平分线交于E,D是AE延长线上一点,且120BDC∠=︒.下列结论:①120BEC∠=︒;②DB DE=;③2BDE BCE∠=∠.其中所有正确结论的序号有().A .①②B .①③C .②③D .①②③【答案】D【解析】 分析:根据三角形内角和等于180°求出∠ABC+∠ACB ,再根据角平分线的定义求出∠EBC+∠ECB ,然后求出∠BEC=120°,判断①正确;过点D 作DF ⊥AB 于F ,DG ⊥AC 的延长线于G ,根据角平分线上的点到角的两边的距离相等可得DF=DG ,再求出∠BDF=∠CDG ,然后利用“角边角”证明△BDF 和△CDG 全等,根据全等三角形对应边相等可得BD=CD ,再根据等边对等角求出∠DBC=30°,然后根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义求出∠DBE=∠DEB ,根据等角对等边可得BD=DE ,判断②正确,再求出B ,C ,E 三点在以D 为圆心,以BD 为半径的圆上,根据同弧所对的圆周角等于圆心角的一半可得∠BDE=2∠BCE ,判断③正确.详解:∵60BAC ∠=︒,∴18060120ABC ACB ∠+∠=︒-︒=︒,∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,∴12EBC ABC ∠=∠,12ECB ACB ∠=∠, ∴11()1206022EBC ECB ABC ACB ∠+∠=∠+∠=⨯︒=︒, ∴180()18060120BEC EBC ECB ∠=︒-∠+∠=︒-︒=︒, 故①正确.如图,过点D 作DF AB ⊥于F ,DG AC ⊥的延长线于G ,∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,∴AD 为BAC ∠的平分线,∴DF DG =,∴36090260120FDG ∠=︒-︒⨯-︒=︒,又∵120BDC ∠=︒,∴120BDF CDF ∠+∠=︒,120CDG CDF ∠+∠=︒.∴BDF CDG ∠=∠,∵在BDF 和CDG △中,90BFD CGD DF DGBDF CDG ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩, ∴BDF ≌()CDG ASA ,∴DB CD =,∴1(180120)302DBC ∠=︒-︒=︒, ∴30DBC DBC CBE CBE ∠=∠+∠=︒+∠,∵BE 平分ABC ∠,AE 平分BAC ∠,∴ABE CBE ∠=∠,1302BAE BAC ∠=∠=︒, 根据三角形的外角性质, 30DEB ABE BAE ABE ∠=∠+∠=∠+︒,∴DEB DBE ∠=∠,∴DB DE =,故②正确.∵DB DE DC ==,∴B 、C 、E 三点在以D 为圆心,以BD 为半径的圆上,∴2BDE BCE ∠=∠,故③正确,综上所述,正确结论有①②③,故选:D .点睛:本题考查了角平分线的性质,全等三角形的判定与性质,等角对等边的性质,圆内接四边形的判定,同弧所对的圆周角等于圆心角的一半性质,综合性较强,难度较大,特别是③的证明.19.如图,将△ABC 沿DE 、EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠CDO+∠CFO=108°,则∠C 的度数为( )A .40°B .41°C .32°D .36°【答案】D【解析】分析:如图,连接AO、BO.由题意EA=EB=EO,推出∠AOB=90°,∠OAB+∠OBA=90°,由DO=DA,FO=FB,推出∠DAO=∠DOA,∠FOB=∠FBO,推出∠CDO=2∠DAO,∠CFO=2∠FBO,由∠CDO+∠CFO=108°,推出2∠DAO+2∠FBO=98°,推出∠DAO+∠FBO=49°,由此即可解决问题.详解:如图,连接AO、BO.由题意得:EA=EB=EO,∴∠AOB=90°,∠OAB+∠OBA=90°.∵DO=DA,FO=FB,∴∠DAO=∠DOA,∠FOB=∠FBO,∴∠CDO=2∠DAO,∠CFO=2∠FBO.∵∠CDO+∠CFO=108°,∴2∠DAO+2∠FBO=108°,∴∠DAO+∠FBO=54°,∴∠CAB+∠CBA=∠DAO+∠OAB+∠OBA+∠FBO=144°,∴∠C=180°﹣(∠CAB+∠CBA)=180°﹣144°=36°.故选D.点睛:本题考查了三角形内角和定理、直角三角形的判定和性质、等腰三角形的性质等知识,解题的关键是灵活运用这些知识解决问题,学会把条件转化的思想,属于中考常考题型.20.如图,在平面直角坐标系中,O为坐标原点,四边形OABC是长方形,点A、C的坐标分别为A(10,0 ),C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为()A.(3,4),(2,4)B.(3,4),(2,4),(8,4)C.(2,4),(8,4)D.(3,4),(2,4),(8,4),(2.5,4)【答案】B【解析】试题解析:有两种情况:①以O为圆心,以5为半径画弧交BC于P点,此时OP=OD=5,在Rt△OPC中,OC=4,OP=5,由勾股定理得PC=3,则P的坐标是(3,4);②以D为圆心,以5为半径画弧交BC于P′和P″点,此时DP′=DP″=OD=5,过P′作P′N⊥OA于N,在Rt△OP′N中,设CP′=x,则DN=5-x,P′N=4,OP=5,由勾股定理得:42+(5-x)2=52,x=2,则P′的坐标是(2,4);过P″作P″M⊥OA于M,设BP″=a,则DM=5-a,P″M=4,DP″=5,在Rt△DP″M中,由勾股定理得:(5-a)2+42=52,解得:a=2,∴BP″=2,CP″=10-2=8,即P″的坐标是(8,4);假设0P=PD,则由P点向0D边作垂线,交点为Q则有PQ2十QD2=PD2,∵0P=PD=5=0D,∴此时的△0PD为正三角形,于是PQ=4,QD=120D=2.5,PD=5,代入①式,等式不成立.所以排除此种可能.故选B.。

深圳宝安区龙华中英文实验学校数学三角形填空选择同步单元检测(Word版 含答案)

深圳宝安区龙华中英文实验学校数学三角形填空选择同步单元检测(Word版 含答案)

深圳宝安区龙华中英文实验学校数学三角形填空选择同步单元检测(Word 版 含答案)一、八年级数学三角形填空题(难)1.已知ABC 中,90A ∠=,角平分线BE 、CF 交于点O ,则BOC ∠= ______ .【答案】135【解析】解:∵∠A =90°,∴∠ABC +∠ACB =90°,∵角平分线BE 、CF 交于点O ,∴∠OBC +∠OCB =45°,∴∠BOC =180°﹣45°=135°.故答案为:135°.点睛:本题考查了角平分线的定义、三角形的内角和定理:三角形的内角和等于180°.2.如图,李明从A 点出发沿直线前进5米到达B 点后向左旋转的角度为α,再沿直线前进5米,到达点C 后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为_____.【答案】40︒.【解析】【分析】根据共走了45米,每次前进5米且左转的角度相同,则可计算出该正多边形的边数,再根据外角和计算左转的角度.【详解】连续左转后形成的正多边形边数为:4559÷=,则左转的角度是360940︒÷=︒.故答案是:40︒.【点睛】本题考查了多边形的外角计算,正确理解多边形的外角和是360°是关键.3.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=_____.【答案】7【解析】【分析】根据非负数的性质列式求出a 、b 的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c 的取值范围,再根据c 是奇数求出c 的值.【详解】∵a ,b 满足|a ﹣7|+(b ﹣1)2=0,∴a ﹣7=0,b ﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴68c <<,又∵c 为奇数,∴c=7,故答案为7.【点睛】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系.4.∠A=65º,∠B=75º,将纸片一角折叠,使点C•落在△ABC 外,若∠2=20º,则∠1的度数为 _______.【答案】100°【解析】【分析】先根据三角形的内角和定理可出∠C=180°-∠A-∠B=180°-65°-75°=40°;再根据折叠的性质得到∠C′=∠C=40°,再利用三角形的内角和定理以及外角性质得∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,即可得到∠3+∠4=80°,然后利用平角的定义即可求出∠1.【详解】如图,∵∠A=65°,∠B=75°,∴∠C=180°-∠A-∠B=180°-65°-75°=40°;又∵将三角形纸片的一角折叠,使点C 落在△ABC 外,∴∠C′=∠C=40°,而∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,∠2=20°,∴∠3+20°+∠4+40°+40°=180°,∴∠3+∠4=80°,∴∠1=180°-80°=100°.故答案是:100°.【点睛】考查了折叠前后两图形全等,即对应角相等,对应线段相等.也考查了三角形的内角和定理以及外角性质.5.如图,A 、B 、C 三点在同一条直线上,∠A =50°,BD 垂直平分AE ,垂足为D ,则∠EBC 的度数为_____.【答案】100°【解析】【分析】根据线段垂直平分线的性质,得BE BA =,根据等腰三角形的性质,得50E A ∠=∠=︒,再根据三角形外角的性质即可求解.【详解】∵BD 垂直平分AE ,∴BE BA =,∴50E A ∠=∠=︒,∴100EBC E A ∠=∠+∠=︒,故答案为100°.【点睛】考查线段垂直平分线的性质以及三角形外角的性质,掌握线段垂直平分线的性质是解题的关键.6.如图,在△ABC 中,∠ABC 、∠ACB 的平分线BE 、CD 相交于点F ,∠A=60°,则∠BFC=______.【答案】120【解析】【分析】根据角平分线的定义可得出∠CBF=12∠ABC、∠BCF=12∠ACB,再根据内角和定理结合∠A=60°即可求出∠BFC的度数.【详解】∵∠ABC、∠ACB的平分线BE、CD相交于点F,∴∠CBF=12∠ABC,∠BCF=12∠ACB.∵∠A=60°,∴∠ABC+∠ACB=180°﹣∠A=120°,∴∠BFC=180°﹣(∠CBF+BCF)=180°﹣12(∠ABC+∠ACB)=120°.故答案为120°.【点睛】本题考查了三角形内角和定理,根据角平分线的定义结合三角形内角和定理求出角的度数是解题的关键.7.如图,小亮从A点出发前进5m,向右转15°,再前进5m,又向右转15°…,这样一直走下去,他第一次回到出发点A时,一共走了______m.【答案】120.【解析】【分析】由题意可知小亮所走的路线为正多边形,根据多边形的外角和定理即可求出答案.【详解】解:∵小亮从A点出发最后回到出发点A时正好走了一个正多边形,∴该正多边形的边数为n=360°÷15°=24,则一共走了24×5=120米,故答案为:120.【点睛】本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°,用外角和求正多边形的边数可直接用360°除以一个外角度数.8.如图所示,将△ABC沿着DE翻折,若∠1+∠2=80°,则∠B=_____度.【答案】40.【解析】【分析】利用三角形的内角和和四边形的内角和即可求得.【详解】∵△ABC沿着DE翻折,∴∠1+2∠BED=180°,∠2+2∠BDE=180°,∴∠1+∠2+2(∠BED+∠BDE)=360°,而∠1+∠2=80°,∠B+∠BED+∠BDE=180°,∴80°+2(180°﹣∠B)=360°,∴∠B=40°.故答案为:40°.【点睛】本题考查图形的折叠变化及三角形的内角和定理.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.9.如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是_____.【答案】40°【解析】【分析】根据外角的概念求出∠ADC的度数,再根据垂直的定义、四边形的内角和等于360°进行求解即可得.【详解】∵∠ADE=60°,∴∠ADC=120°,∵AD⊥AB,∴∠DAB=90°,∴∠B=360°﹣∠C﹣∠ADC﹣∠A=40°,故答案为40°.【点睛】本题考查了多边形的内角和外角,掌握四边形的内角和等于360°、外角的概念是解题的关键.10.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.【答案】40°【解析】【分析】直接利用三角形内角和定理得出∠6+∠7的度数,进而得出答案.【详解】如图所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,∵∠1+∠2+∠3+∠4=220°,∴∠1+∠2+∠6+∠3+∠4+∠7=360°,∴∠6+∠7=140°,∴∠5=180°-(∠6+∠7)=40°.故答案为40°.【点睛】主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键.二、八年级数学三角形选择题(难)11.图1是二环三角形,S=∠A1+∠A2+…+∠A6=360,图2是二环四边形,S=∠A1+∠A2+…+∠A8=720,图3是二环五边形,S=∠A1+∠A2+…+∠A10=1080…聪明的同学,请你直接写出二环十边形,S=_____________度()A.1440 B.1800 C.2880 D.3600【答案】C【解析】【分析】本题只看图觉得很复杂,但从数据入手,就简单了,从图2开始,每个图都比前一个图多360度.抓住这点就很容易解决问题了.【详解】解:依题意可知,二环三角形,S=360度;二环四边形,S=720=360×2=360×(4﹣2)度;二环五边形,S=1080=360×3=360×(5﹣2)度;…∴二环十边形,S=360×(10﹣2)=2880度.故选:C.【点睛】本题考查了多边形的内角和,本题可直接根据S的度数来找出规律,然后根据规律表示出二环十边形的度数.12.在多边形内角和公式的探究过程中,主要运用的数学思想是()A.化归思想B.分类讨论C.方程思想D.数形结合思想【答案】A【解析】【分析】根据多边形内角和定理:(n-2)·180(n≥3)且n为整数)的推导过程即可解答.【详解】解:多边形内角和定理:(n-2)·180(n≥3)且n为整数),该公式推导的基本方法是从n 边形的一个顶点出发引出(n-3)条对角线,将n边形分割为(n-2)个三角形,这(n-2)个三角形的所有内角之和正好是n边形的内角和,体现了化归思想.故答案为A.【点睛】本题主要考查了在数学的学习过程应用的数学思想,弄清推导过程是解答此题的关键.13.如图,D是△ABC的边BC上任意一点,E、F分别是线段AD、CE的中点,且△ABC的面积为40cm2,则△B EF的面积是()cm2.A.5B.10C.15D.20【答案】B【解析】【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可.【详解】∵点E是AD的中点,∴S△ABE=12S△ABD,S△ACE=12S△ADC,∴S△ABE+S△ACE=12S△ABC=12×40=20cm2,∴S△BCE=12S△ABC=12×40=20cm2,∵点F是CE的中点,∴S△BEF=12S△BCE=12×20=10cm2.故选B.【点睛】本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.14.如图,是由相同的花盆按一定的规律组成的形如正多边形的图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…则第8个图形中花盆的个数为()A.56 B.64 C.72 D.90【答案】D【解析】【分析】根据题意找出规律得到第n个图形中花盆的个数为:(n+1)(n+2),然后将n=7代入求解即可.【详解】第1个图形的花盆个数为:(1+1)(1+2);第2个图形的花盆个数为:(2+1)(2+2)=12;第3个图形的花盆个数为:(3+1)(3+2)=20;,第n个图形的花盆个数为:(n+1)(n+2);则第7个图形中花盆的个数为:(7+1)(7+2)=72.故选:C.【点睛】本题考查图形规律题,解此题的关键在于根据题中图形找到规律.15.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°【答案】B【解析】分析:先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.详解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故选B.点睛:此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.16.一个多边形的每个内角都相等,并且它的一个外角与一个内角的比为1:3,则这个多边形为()A.三角形B.四边形C.六边形D.八边形【答案】D【解析】【分析】一个外角与一个内角的比为1 : 3,则内角和是外角和的3倍,根据多边形的外角和是360°,即可求得多边形的内角的度数,依据多边形的内角和公式即可求解.【详解】解:多边形的内角和是:360°×3=1080°.设多边形的边数是n,则(n-2)•180=1080,解得:n=8.即这个多边形是正八边形.故选D.【点睛】本题考查了多边形的内角和定理以及多边形的外角和定理,注意多边形的外角和不随边数的变化而变化.17.已知三角形的两边长分别为4和9,则此三角形的第三边长可能为()A.9 B.4 C.5 D.13【答案】A【解析】【分析】首先根据三角形的三边关系定理,求得第三边的取值范围,再进一步找到符合条件的数值.【详解】设这个三角形的第三边为x.根据三角形的三边关系定理,得:9-4<x<9+4,解得5<x<13.故选A.【点睛】本题考查了三角形的三边关系定理.一定要注意构成三角形的条件:两边之和>第三边,两边之差<第三边.18.若正多边形的内角和是540︒,则该正多边形的一个外角为()A.45︒B.60︒C.72︒D.90︒【答案】C【解析】【分析】n-•︒求出多边形的边数,再根据多边形的外角和是固定根据多边形的内角和公式()2180的360︒,依此可以求出多边形的一个外角.【详解】正多边形的内角和是540︒,∴多边形的边数为54018025︒÷︒+=,多边形的外角和都是360︒,∴多边形的每个外角360572==.÷︒故选C.【点睛】本题主要考查了多边形的内角和与外角和之间的关系,关键是记住内角和的公式与外角和的特征,难度适中.19.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数为()A.7 B.8 C.9 D.10【答案】A【解析】设这个多边形的边数为x,根据题意可得:x-=⨯+,180(2)2360180x=.解得:7故选A.20.一个多边形的内角和是其外角和的3倍,则这个多边形的边数是()A.7 B.8 C.6 D.5【答案】B【解析】【分析】根据多边形的内角和公式及外角的特征计算.【详解】解:多边形的外角和是360°,根据题意得:180°•(n-2)=3×360°解得n=8.故选:B.【点睛】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.。

深圳中英公学八年级数学上册第一单元《三角形》检测(有答案解析)

深圳中英公学八年级数学上册第一单元《三角形》检测(有答案解析)

一、选择题1.下列长度的三条线段可以组成三角形的是( )A .1,2,4B .5,6,11C .3,3,3D .4,8,12 2.一个多边形的外角和是360°,这个多边形是( ) A .四边形B .五边形C .六边形D .不确定 3.下列长度的三条线段能构成三角形的是( ) A .1,2,3B .5,12,13C .4,5,10D .3,3,6 4.如图,在ABC 中,55A ∠=︒,65C =︒∠,BD 平分ABC ∠,//DE BC ,则BDE∠的度数是( )A .50°B .25°C .30°D .35°5.如图,//AB CD ,40C ∠=︒,60A ∠=︒,则F ∠的度数为( )A .10°B .20°C .30°D .40°6.下列命题是真命题的个数为( )①两条直线被第三条直线所截,内错角相等.②三角形的内角和是180°.③在同一平面内平行于同一条直线的两条直线平行.④相等的角是对顶角.⑤两点之间,线段最短.A .2B .3C .4D .5 7.在ABC 中,若B 与C ∠互余,则ABC 是( )三角形 A .锐角三角形 B .直角三角形 C .钝角三角形 D .等边三角形 8.如图,,AD CE 分别是ABC 的中线与角平分线,若,40B ACB BAC ∠=∠∠=︒,则ACE ∠的度数是( )A .20︒B .35︒C .40︒D .70︒ 9.一副透明的三角板,如图叠放,直角三角板的斜边AB 、CE 相交于点D ,则BDC∠的度数是( )A .65︒B .75︒C .85︒D .105︒ 10.如果一个三角形的两边长分别为4和7,则第三边的长可能是( )A .3B .4C .11D .12 11.如图,直线//BC AE ,CD AB ⊥于点D ,若150∠=︒,则BCD ∠的度数是( )A .60°B .50°C .40°D .30°12.如图,小明从点A 出发沿直线前进9米到达点,B 向左转45后又沿直线前进9米到达点C ,再向左转45后沿直线前进9米到达点D ……照这样走下去,小明第一次回到出发点A 时所走的路程为( )A .72米B .80米C .100米D .64米二、填空题13.如图,BF 平分∠ABD ,CE 平分∠ACD ,BF 与CE 交于G ,若130,90BDC BGC ∠=︒∠=︒,则∠A 的度数为_________.14.对于一个四边形的四个内角,下面四个结论中,①可以四个角都是锐角;②至少有两个角是锐角;③至少有一个角是钝角;④最多有三个角是钝角;所有正确结论的序号是______.15.如图,在△ABC 中,点O 是△ABC 内一点,且点O 到△ABC 三边的距离相等,若∠A =70°,则∠BOC =________.16.如图,若∠CGE=α,则∠A+∠B+∠C+∠D+∠E+∠F=____.17.如图,,AE AD 分别是△ABC 的高和角平分线,且6B 3︒∠=,6C 7︒∠=则DAE ∠的度数为__.18.如图,六边形ABCDEF 中,AB ∥DC ,∠1、∠2、∠3、∠4分别是∠BAF 、∠AFE 、∠FED 、∠EDC 的外角,则∠1+∠2+∠3+∠4=_____.19.一副直角,三角板有一个角的顶点如图所示重合,则下列说法中正确的有_________.①如图 1,若 AB⊥AE,则∠BFC=75°;②图 2 中 BD过点C,则有∠DAE+∠DCE=45°;③图 3中∠DAE+∠DFC等于 135°;④保持重合的顶点不变,改变三角板BAD的摆放位置,使得D在边AC上,则∠BAE=105°.20.如图,已知ABC的角平分线BD,CE相交于点O,∠A=60°,则∠BOC=__________.三、解答题21.△ABC中,三个内角的平分线交于点O,过点O作OD⊥OB,交边BC于点D.(1)如图1,猜想∠AOC与∠ODC的关系,并说明你的理由;(2)如图2,作∠ABC外角∠ABE的平分线交CO的延长线于点F.①求证:BF∥OD;②若∠F=35°,求∠BAC的度数.22.如图,在五边形ABCDE中,∠A+∠B+∠E=310°,CF平分∠DCB,FC的延长线与五边形ABCDE 外角平分线相交于点P ,求∠P 的度数23.如图,已知长方形ABCD 中,10cm AD =,6cm DC =,点F 是DC 的中点,点E 从A 点出发在AD 上以每秒1cm 的速度向D 点运动,运动时间设为t 秒.(假定0t 10<<)(1)当5t =秒时,求阴影部分(即三角形BEF )的面积;(2)用含t 的式子表示阴影部分的面积;并求出当三角形EDF 的面积等于3时,阴影部分的面积是多少?(3)过点E 作//EG AB 交BF 于点G ,过点F 作//FH BC 交BE 于点H ,请直接写出在E 点运动过程中,EG 和FH 的数量关系.24.如图,∠CBF ,∠ACG 是△ABC 的外角,∠ACG 的平分线所在的直线分别与∠ABC ,∠CBF 的平分线BD ,BE 交于点D ,E .(1)若∠A=70°,求∠D 的度数;(2)若∠A=a ,求∠E ;(3)连接AD ,若∠ACB=β,则∠ADB= .25.如图,A 、O 、B 三点在同一直线上,OE ,OF 分别是∠BOC 与∠AOC 的平分线.求:(1)当∠BOC=30°时,∠EOF 的度数;(2)当∠BOC=60°时,∠EOF 等于多少度?(3)当∠BOC=n°时,∠EOF 等于多少度?(4)观察图形特点,你能发现什么规律?26.阅读材料在平面中,我们把大于180︒且小于360︒的角称为优角.如果两个角相加等于360︒,那么称这两个角互为组角,简称互组.(1)若1∠,2∠互为组角,且1135∠=︒,则2∠=______.习惯上,我们把有一个内角大于180︒的四边形俗称为镖形.(2)如图,在镖形ABCD 中,优角BCD ∠与钝角BCD ∠互为组角,试探索内角A ∠,B ,D ∠与钝角BCD ∠之间的数量关系,并至少用两种以上的方法说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:A 、1+2<4,不能构成三角形;B 、5+6=11,不能构成三角形;C 、3+3>3,能构成三角形;D 、8+4=12,不能构成三角形.故选:C.【点睛】本题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于最大的数.2.D解析:D【分析】根据多边形的外角和等于360°判定即可.【详解】∵多边形的外角和等于360°,∴这个多边形的边数不能确定.故选:D.【点睛】本题考查了多边形的外角和定理,注意利用多边形的外角和与边数无关,任何多边形的外角和都是360°是解题的关键.3.B解析:B【分析】根据三角形的三边关系进行分析判断即可.【详解】解:根据三角形任意两边的和大于第三边,得A中,1+2=3,不能组成三角形;B中,5+12=17>13,能组成三角形;C中,4+5=9<10,不能够组成三角形;D中,3+3=6,不能组成三角形.故选:B.【点睛】本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.4.C解析:C【分析】根据三角形内角和求出∠ABC的度数,再根据角平分线和平行线的性质求角.【详解】解:在ABC中,∠ABC=180°-∠A-∠B=180°-55°-65°=60°,,∵BD平分ABC∠ABC=30°,∴∠ABD=∠CBD=12∵//DE BC ,∴BDE ∠=∠CBD=30°,故选C .【点睛】本题考查了三角形内角和、角平分线的意义和平行线的性质,准确识图并能熟练应用三角形内角和、角平分线和平行线的性质是解题关键.5.B解析:B【分析】利用平行线和三角形外角的性质即可求解.【详解】∵//AB CD ,∴60DEF A ∠=∠=︒.∵DEF C F ∠=∠+∠,∴604020F DEF C ∠=∠-∠=︒-︒=︒.故选:B .【点睛】本题考查平行线和三角形外角的性质,熟练利用其性质找到角的等量关系是解答本题的关键.6.B解析:B【分析】首先判断所给命题的真假,再选出正确的选项.【详解】解:∵两条直线被第三条直线所截,两直线平行,内错角相等,∴①错误;∵三角形的内角和是180°,∴②正确;∵在同一平面内平行于同一条直线的两条直线平行,∴③正确;∵相等的角可以是对顶角,也可以是内错角、同位角等等,∴④错误;∵连接两点的所有连线中,线段最短,∴⑤正确;∴真命题为②③⑤,故选B .【点睛】本题考查命题的真假判断,根据所学知识判断一个命题条件成立的情况下,结论是否一定成立来判断命题是真命题还是假命题是解题关键.7.B解析:B【分析】由B 与C ∠互余,结合180A B C ∠+∠+∠=︒,求解A ∠,从而可得答案.【详解】 解:B 与C ∠互余,90B C ∴∠+∠=︒,180A B C ∠+∠+∠=︒,90A ∴∠=︒,ABC ∴是直角三角形,故A 、C 、D 不符合题意,B 符合题意,故选:B .【点睛】本题考查的是两个角互余的概念,三角形的内角和定理的应用,二元一次方程组的解法,掌握以上知识是解题的关键.8.B解析:B【分析】由,40B ACB BAC ∠=∠∠=︒,再利用三角形的内角和定理求解ACB ∠,结合三角形的角平分线的定义,从而可得答案.【详解】解: ,B ACB ∠=∠40BAC ∠=︒,18040702B ACB ︒-︒∴∠=∠==︒, CE 是ABC 角平分线,1352ACE ACB ∴∠=∠=︒, 故选:.B【点睛】本题考查的是三角形的角平分线的定义,三角形的内角和定理,掌握以上知识是解题的关键.9.B解析:B【分析】根据三角板的性质以及三角形内角和定理计算即可.【详解】解:∵∠CEA =60︒,∠BAE =45︒,∴∠ADE = 180︒−∠CEA −∠BAE =75︒,∴∠BDC =∠ADE =75︒,故选:B【点睛】本题考查三角板的性质,三角形内角和定理等知识,对顶角相等,解题的关键是熟练掌握基本知识,属于中考基础题.10.B解析:B【分析】根据三角形的三边关系定理可得7-4<x <7+4,计算出不等式的解集,再确定x 的值即可.【详解】设第三边长为x ,则7-4<x <7+4,3<x <11,∴A 、C 、D 选项不符合题意.故选:B .【点睛】考查了三角形的三边关系,解题关键是掌握第三边的范围:大于已知的两边的差,而小于两边的和.11.C解析:C【分析】先依据平行线的性质可求得∠ABC 的度数,然后在直角三角形CBD 中可求得∠BCD 的度数.【详解】解:∵//BC AE ,150∠=︒,∴∠1=∠ABC=50°.∵CD AB ⊥于点D ,∴∠CDB=90°.∴∠BCD+∠DBC=90°,即∠BCD+50°=90°.∴∠BCD=40°.故选:C .【点睛】本题主要考查平行线的性质、垂线的定义、直角三角形两锐角互余的性质,掌握相关知识是解题的关键.12.A解析:A【分析】根据题意,小明走过的路程是正多边形,先用360°除以45°求出边数,然后再乘以9米即可.【详解】解:∵小明每次都是沿直线前进9米后向左转45度,∴他走过的图形是正多边形,∴边数n=360°÷45°=8,∴他第一次回到出发点A 时,一共走了8×9=72(m ).【点睛】本题考查了正多边形的边数的求法,多边形的外角和为360°;根据题意判断出小明走过的图形是正多边形是解题的关键.二、填空题13.50°【分析】连接BC根据三角形内角和定理可求得∠DBC+∠DCB的度数再利用三角形内角和定理及角平分线的定义可求得∠ABC+∠ACB的度数即可求得∠A的度数【详解】解:连接BC∵∠BDC=130°解析:50°【分析】连接BC,根据三角形内角和定理可求得∠DBC+∠DCB的度数,再利用三角形内角和定理及角平分线的定义可求得∠ABC+∠ACB的度数,即可求得∠A的度数.【详解】解:连接BC,∵∠BDC=130°,∴∠DBC+∠DCB=180°−∠BDC=50°,∵∠BGC=90°,∴∠GBC+∠GCB=180°−∠BGC=90°,∴∠GBD+∠GCD=(∠GBC+∠GCB)−(∠DBC+∠DCB)=40°,∵BF平分∠ABD,CE平分∠ACD,∴∠ABD+∠ACD=2∠GBD+2∠GCD=80°,∴∠ABC+∠ACB=(∠ABD+∠ACD)+(∠DBC+∠DCB)=130°,∴∠A=180°−(∠ABC+∠ACB)=180°−130°=50°.故答案为:50°.【点睛】本题主要考查了与角平分线有关的三角形内角和问题,根据题意作出辅助线,构造出三角形是解答此题的关键.14.④【分析】四边形的内角和是根据四边形内角的性质选出正确选项【详解】解:①错误如果四个角都是锐角那么内角和就会小于;②错误可以是四个直角;③错误可以是四个直角;④正确故选:④【点睛】本题考查四边形内角【分析】四边形的内角和是360︒,根据四边形内角的性质选出正确选项.【详解】解:①错误,如果四个角都是锐角,那么内角和就会小于360︒;②错误,可以是四个直角;③错误,可以是四个直角;④正确.故选:④.【点睛】本题考查四边形内角的性质,解题的关键是掌握四边形内角的性质.15.125°【分析】求出O为△ABC的三条角平分线的交点求出∠OBC=∠ABC∠OCB=∠ACB根据三角形内角和定理求出∠ABC+∠ACB求出∠OBC+∠OCB再根据三角形内角和定理求出∠BOC的度数即解析:125°【分析】求出O为△ABC的三条角平分线的交点,求出∠OBC=12∠ABC,∠OCB=12∠ACB,根据三角形内角和定理求出∠ABC+∠ACB,求出∠OBC+∠OCB,再根据三角形内角和定理求出∠BOC的度数即可;【详解】∵在△ ABC中,点O是△ABC内的一点,且点O到△ ABC三边距离相等,∴ O为△ABC的三条角平分线的交点,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∵∠A=70°,∴∠ABC+∠ACB=180°-∠A=110°,∴∠OBC+∠OCB=55°,∴∠BOC=180°-∠OBC-∠OCB=125°,故答案为:125°.【点睛】本题考查了角平分线的有关计算,三角形内角和定理的应用,能正确掌握与角平分线有关的三角形内角和问题是解题的关键;16.2【分析】根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠A+∠B∠D+∠E再根据邻补角表示出∠CGF然后利用三角形的内角和定理列式整理即可得解【详解】解:如图根据三角形的外角性质∠1=∠A解析:2α【分析】根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠A+∠B,∠D+∠E,再根据邻补角表示出∠CGF ,然后利用三角形的内角和定理列式整理即可得解.【详解】解:如图,根据三角形的外角性质,∠1=∠A+∠B ,∠2=∠D+∠E ,∵∠3=180°-∠CGE=180°-α,∴∠1+∠F+180°-α=180°,∴∠A+∠B+∠F=α,同理:∠2+∠C+180°-α=180°,∴∠D+∠E+∠C=α,∴∠A+∠B+∠C+∠D+∠E+∠F=2α.故答案为:2α【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,准确识图是解题的关键.17.20°【分析】根据高线的定义以及角平分线的定义分别得出∠CAD=34°进而得出∠CAE 的度数进而得出答案【详解】解:∵且∴∵平分∴∵是的高∴∴∴∴故答案为:20°【点睛】此题考查三角形的角平分线中线解析:20°【分析】根据高线的定义以及角平分线的定义分别得出68BAC ︒∠=,∠CAD =34°,进而得出∠CAE 的度数,进而得出答案.【详解】解:∵180B BAC C ︒∠+∠+∠=,且6B 3︒∠=,6C 7︒∠=,∴180180367668BAC B C ︒︒︒︒︒∠=-∠-∠=--=,∵AD 平分BAC ∠, ∴11683422CAD BAC ︒︒∠=∠=⨯=, ∵AE 是ABC ∆的高, ∴90AEC ︒∠=,∴90C CAE ︒∠+∠=,∴90907614CAE C ︒︒︒︒∠=-∠=-=,∴341420DAE CAD CAE ︒︒︒∠=∠-∠=-=,故答案为:20°.【点睛】此题考查三角形的角平分线、中线和高,三角形内角和定理,解题关键在于掌握各性质定义.18.180°【分析】根据多边形的外角和减去∠B 和∠C 的外角的和即可确定四个外角的和【详解】解:∵AB ∥DC ∴∠B+∠C =180°∴∠B 的外角与∠C 的外角的和为180°∵六边形ABCDEF 的外角和为360解析:180°【分析】根据多边形的外角和减去∠B 和∠C 的外角的和即可确定四个外角的和.【详解】解:∵AB ∥DC ,∴∠B +∠C =180°,∴∠B 的外角与∠C 的外角的和为180°,∵六边形ABCDEF 的外角和为360°,∴∠1+∠2+∠3+∠4=180°,故答案为:180°.【点睛】本题考查了多边形的外角和定理,解题的关键是发现∠B 和∠C 的外角的和为180° 19.①②③④【分析】由可得:再结合:从而可求解于是可得可判断①;由可得:再利用:求解可判断②;由再利用角的和差可得:可判断③;由图4可得:可判断④【详解】解:如图1故①正确;如图2故②正确;如图3故③正解析:①②③④.【分析】由,AB AE ⊥可得:90BAC CAD DAE ∠+∠+∠=︒,再结合:2105BAC CAD DAE ∠+∠+∠=︒,从而可求解CAD ∠,于是可得BFC ∠,可判断①;由90ADB ,∠=︒可得:90DAC ACD ∠+∠=︒,再利用:180CAE E ACE ∠+∠+∠=︒, 45E ∠=°,求解DAE DCE ∠+∠,可判断②;由,DFC D DAF ∠=∠+∠再利用角的和差可得:135DFC DAE D CAE ∠+∠=∠+∠=︒,可判断③;由图4可得:105BAE BAC CAE ∠=∠+∠=︒,可判断④. 【详解】解:如图1,,AB AE ⊥90BAC CAD DAE ∴∠+∠+∠=︒,60BAD BAC CAD ∠=∠+∠=︒,45CAE CAD DAE ∠=∠+∠=︒,2105BAC CAD DAE ∴∠+∠+∠=︒,15CAD ∴∠=︒,90ADB ∠=︒,901575BFC AFD ∴∠=∠=︒-︒=︒,故①正确; 如图2,90ADB ∠=︒,90DAC ACD ∴∠+∠=︒,180CAE E ACE ∠+∠+∠=︒, 45E ∠=°,90ACE ∠=︒, 180CAD DAE ACD DCE E ∴∠+∠+∠+∠+∠=︒,()()180180904545DAE DCE CAD ACD E ∴∠+∠=︒-∠+∠+∠=︒-︒+︒=︒, 故②正确;如图3,,DFC D DAF ∠=∠+∠9045135DFC DAE D DAF DAE D CAE ∴∠+∠=∠+∠+∠=∠+∠=︒+︒=︒,故③正确;如图4,6045BAD CAE ∠=︒∠=︒,,6045105BAE ∴∠=︒+︒=︒,故④正确.故答案为:①②③④.【点睛】本题考查的是三角形的内角和定理,三角形的外角的性质,角的和差,掌握以上知识是解题的关键.20.【分析】根据三角形的内角和定理角平分线的定义即可得【详解】BDCE 是的角平分线故答案为:【点睛】本题考查了三角形的内角和定理角平分线的定义熟练掌握角平分线的定义是解题关键解析:120︒【分析】根据三角形的内角和定理、角平分线的定义即可得.【详解】60A ∠=︒,180120ABC ACB A ∴∠+∠=︒-∠=︒,BD 、CE 是ABC 的角平分线,11,22OBC ABC OCB ACB ∴∠=∠∠=∠, ()1602OBC OCB ABC ACB +=∠+∠∴=∠∠︒, ()180********OBC OCB BOC ∠=︒-︒∴∠+∠=︒=-︒,故答案为:120︒.【点睛】本题考查了三角形的内角和定理、角平分线的定义,熟练掌握角平分线的定义是解题关键.三、解答题21.(1)∠AOC =∠ODC ,理由见解析;(2)①见解析;②70°【分析】(1)根据角平分线的定义得到∠OAC +∠OCA =12(180°−∠ABC ),∠OBC =12∠ABC ,由三角形的内角和得到∠AOC =90°+∠OBC ,∠ODC =90°+∠OBD ,于是得到结论; (2)①由角平分线的性质得到∠EBF =90°−∠DBO ,由三角形的内角和得到∠ODB =90°−∠OBD ,于是得到结论;②由角平分线的性质得到∠FBE =12(∠BAC +∠ACB ),∠FCB =12ACB ,根据三角形的外角的性质即可得到结论. 【详解】(1)∠AOC =∠ODC ,理由:∵三个内角的平分线交于点O ,∴∠OAC+∠OCA =12(∠BAC+∠BCA )=12(180°﹣∠ABC ), ∵∠OBC =12∠ABC , ∴∠AOC =180°﹣(∠OAC+∠OCA )=90°+12∠ABC =90°+∠OBC , ∵OD ⊥OB ,∴∠BOD =90°,∴∠ODC =90°+∠OBD ,∴∠AOC =∠ODC ;(2)①∵BF 平分∠ABE ,∴∠EBF =12∠ABE =12(180°﹣∠ABC )=90°﹣∠DBO , ∵∠ODB =90°﹣∠OBD ,∴∠FBE =∠ODB ,∴BF ∥OD ;②∵BF平分∠ABE,∴∠FBE=12∠ABE=12(∠BAC+∠ACB),∵三个内角的平分线交于点O,∴∠FCB=12∠ACB,∵∠F=∠FBE﹣∠BCF=12(∠BAC+∠ACB)﹣12∠ACB=12∠BAC,∵∠F=35°,∴∠BAC=2∠F=70°.【点睛】本题考查了平行线的性质和判定,角平分线的定义,三角形的内角和,三角形的外角的性质,熟练掌握三角形的外角的性质是解题的关键.22.∠P=25°.【分析】延长ED,BC相交于点G.由四边形内角和可求∠G=50°,由三角形外角性质可求∠P度数.【详解】解:延长ED,BC相交于点G.在四边形ABGE中,∵∠G=360°-(∠A+∠B+∠E)=50°,∴∠P=∠FCD-∠CDP=12(∠DCB-∠CDG)=12∠G=12×50°=25°.【点睛】本题考查了三角形内角和定理,三角形角平分线性质,外角的性质,熟练运用外角的性质是本题的关键.23.(1)4522cm;(2)23302tcm⎛⎫-⎪⎝⎭;218cm;(3)53EG FH=【分析】(1)由长方形的性质得出10cm BC AD ==,6cm AB DC ==,由5t =得AE=5,DE=10-5=5,根据ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形即可求解;(2)由题意得AE=t ,DE=10-t ,根据ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形表示出阴影部分的面积;由12EDF S DE DF =⋅△求出t 的值,代入计算即可; (3)由长方形ABCD 得AD CD ⊥,根据平行线的性质得EG HF ⊥,根据平行线间的距离相等可得DE ,AE ,DF ,CF 分别等于,,,EGF EGB EHF BHF △△△△的高,由BEF S的面积即可得出结论.【详解】解:(1)∵长方形ABCD 中,10cm AD =,6cm DC =,∴10cm BC AD ==,6cm AB DC ==,∵点F 是DC 的中点,∴3cm DF CF ==,当5t =秒时,AE=5cm ,DE=10-5=5 cm ,∵ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形 =()()()1111066510353222⨯-⨯-⨯-⨯ =156015152--- =4522cm ; (2)由题意得AE=t ,DE=10-t , ∵ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形 =()()1111066103310222t t ⨯-⨯-⨯-⨯⨯- =360315152t t ---+ =3302t -, ∴用含t 的式子表示阴影部分的面积为:23302t cm ⎛⎫-⎪⎝⎭; 当三角形EDF 的面积等于3时,12EDF S DE DF =⋅△=()13102t ⨯⨯-=3, 解得:8t =, 8t =时,38=30=182S ⨯-阴影2cm ; (3)∵长方形ABCD∴AD CD ⊥,//,//AB CD AD BC ,∵//EG AB ,//FH BC ,∴EG HF ⊥,,AD EG CD HF ⊥⊥,∴DE ,AE 分别等于,EGF EGB △△的EG 边上的高,DF ,CF 分别等于,EHF BHF △△的FH 边上的高, ∴11112222BEF S EG DE EG AE HF DF HF CF =⋅+⋅=⋅+⋅△, ∴()()1122EG DE AE HF DF CF +=+,即EG AD HF CD ⋅=⋅, ∵10cm AD =,6cm DC =,∴106EG HF =,即53EG FH =.【点睛】本题是一个动点问题,考查了平行线间的距离,三角形面积的计算,解题的关键是熟练掌握平行线的性质和三角形面积的计算方法.24.(1)35°;(2)90°-12α;(3)12β 【分析】(1)由角平分线的定义得到∠DCG=12∠ACG ,∠DBC=12∠ABC ,然后根据三角形外角的性质即可得到结论;(2))根据角平分线的定义得到∠DBC=12∠ABC ,∠CBE=12∠CBF ,于是得到∠DBE=90°,由(1)知∠D=12∠A ,根据三角形的内角和得到∠E=90°-12α; (3)根据角平分线的定义可得,∠ABD=12∠ABC ,∠DAM=12∠MAC ,再利用三角形外角的性质可求解.【详解】解:(1)∵CD 平分∠ACG ,BD 平分∠ABC ,∴∠DCG=12∠ACG ,∠DBC=12∠ABC , ∵∠ACG=∠A+∠ABC ,∴2∠DCG=∠ACG=∠A+∠ABC=∠A+2∠DBC ,∵∠DCG=∠D+∠DBC ,∴2∠DCG=2∠D+2∠DBC ,∴∠A+2∠DBC=2∠D+2∠DBC ,∴∠D=12∠A=35°; (2)∵BD 平分∠ABC ,BE 平分∠CBF ,∴∠DBC=12∠ABC ,∠CBE=12∠CBF ,∴∠DBC+∠CBE=12(∠ABC+∠CBF)=90°,∴∠DBE=90°,∵∠D=12∠A,∠A=α,∴∠D=12α,∵∠DBE=90°,∴∠E=90°-12α;(3)如图,∵BD平分∠ABC,CD平分∠ACG,∴AD平分∠MAC,∠ABD=12∠ABC,∴∠DAM=12∠MAC,∵∠DAM=∠ABD+∠ADB,∠MAC=∠ABC+∠ACB,∠ACB=β,∴∠ADB=12∠ACB=12β.故答案为:12β.【点睛】本题主要考查三角形的角平分线,三角形外角的性质,灵活运用三角形外角的性质是解题的关键.25.(1)∠EOF=90°;(2)∠EOF=90°;(3)∠EOF=90°;(4)∠EOF的度数与∠BOC的大小无关,互为邻补角的两个角的角平分线所组成的角是一个直角.【分析】根据∠BOC求得∠AOC,再由∠BOC和∠AOC的角平分线,即可求得;【详解】解:(1)∵∠BOC=30°,∴∠AOC=180°-30°=150°,∵OE平分∠BOC,OF平分∠AOC,∴∠EOC=12∠BOC=15°,∠COF=12∠COA=75°,∴∠EOF=75°+15°=90°;(2)∵∠BOC=60°,∴∠AOC=180°-60°=120°,∵OE平分∠BOC,OF平分∠AOC,∴∠EOC=12∠BOC=30°,∠COF=12∠COA=60°,∴∠EOF=60°+30°=90°;(3)∵∠BOC=n,∴∠AOC=180°-n,OE平分∠BOC,OF平分∠AOC,∴∠EOC=12∠BOC=90°-12n,∠COF=12∠COA=12n,∴∠EOF=90°-12n+12n=90°;(4)∠EOF的度数与∠BOC的大小无关,互为邻补角的两个角的角平分线所组成的角是一个直角.【点睛】本题考查角平分线和规律的总结与归纳,掌握角平分线的性质是解题的关键.26.(1)225°;(2)钝角∠BCD=∠A+∠B+∠D,理由见解析.【分析】(1)根据互为组角的定义可知∠2=360°-∠1,代入数据计算即可;(2)理由①:根据四边形内角和定理可得∠A+∠B+优角∠BCD+∠D=360°,根据周角的定义可得优角∠BCD+钝角∠BCD=360°´,再利用等式的性质得出钝角∠BCD=∠A+∠B+∠D;理由②:连接AC并延长,根据三角形外角的性质即可得出结论.【详解】解:(1)∵∠1、∠2互为组角,且∠1=135°,∴∠2=360°-∠1=225°,故答案为:225°;(2)钝角∠BCD=∠A+∠B+∠D.理由如下:理由①:∵在四边形ABCD中,∠A+∠B+优角∠BCD+∠D=360°,又∵优角∠BCD+钝角∠BCD=360°´,∴钝角∠BCD=∠A+∠B+∠D;理由②:如下图,连接AC并延长,∵∠BAC+∠B=∠BCE,∠DAC+∠D=∠DCE(三角形外角的性质),∴钝角∠BCD=∠BCE+∠DCE=∠BAC+∠B+∠DAC+∠D=∠A+∠B+∠D.【点睛】本题考查三角形的外角,四边形内角和.能正确作出辅助线,将四边形分成两个三角形是理由②的关键.。

深圳清华实验学校必修五第二章《解三角形》检测卷(含答案解析)

深圳清华实验学校必修五第二章《解三角形》检测卷(含答案解析)

一、选择题1.在△ABC 中,若b =2,A =120°,三角形的面积S =AB .C .2D .42.若ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且b =2,c △ABC 的面积Scos A ,则a =( )A .1B .C .D .3.设,,a b c 分别是ABC 中,,A B C ∠∠∠所对边的边长,则直线sin 0x A a y c ⋅+⋅+=与sin sin 0b x y B C ⋅-⋅+=位置关系是( ) A .平行B .重合C .垂直D .相交但不垂直4.已知,,a b c 分别是ABC ∆的三个内角,,A B C 所对的边,若1,a b ==B 是,A C 的等差中项,则角C =( ) A .30B .45︒C .60︒D .90︒5.在ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,若b =60B =︒,若ABC 仅有一个解,则a 的取值范围是( )A .({}2⋃B .30,2C .{}30,22⎛⎤⋃ ⎥⎝⎦D .26.已知a ,b ,c 分别为ABC 的三个内角A ,B ,C 所对的边,3a =,2b =,且22cos ac B a b ⋅=-,则B =( ) A .3π B .6π C .23π D .56π 7.设a ,b ,c 分别为ABC 内角A ,B ,C 的对边.已知4cos 5C =,sin 5sin b C c A =,则ca=( )A .5BC .D8.在ABC ∆中,角A B C ,,的对边分别是a b c ,,,若sin cos 0b A B =,且三边a b c ,,成等比数列,则2a cb+的值为( )A B .2C .1D .29.ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .已知a =cos sin b A B =,则A =( )A .12πB .6π C .4π D .3π 10.已知ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,2b =,45B =︒,若三角形有两解,则a 的取值范围是( )A .2a >B .02a <<C .2a <<D .2a <<11.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知45A =︒,2a =,b =B 为( ) A .60︒B .60︒或120︒C .30D .30或150︒12.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos a C ,cos b B ,cos c A 成等差数列,且8a c +=,则AC 边上中线长的最小值是( )A .2B .4C .D .二、填空题13.在ABC 中,内角A B C ,,的对边分别为a b c ,,,a =24sin cos sin 2Aa Bb A =,则ABC 外接圆的面积为_________. 14.在ABC 中,角,,A B C 分别对应边,,a bc ,ABC 的面积为S ,若,,B A C 成等差cos cos a B b A =+,3c =,则a =__________. 15.在ABC 中,角,,A B C 分别对应边,,a b c ,ABC 的面积为S ,若cos cos a B b A =+,cos sin 7tan cos sin 12A A A A π+=-,3c =,则a =__________. 16.在ABC 中,3A π∠=,D 是BC 的中点.若34AD BC ≤,则sin sin B C 的最大值为____________.17.设角,,A B C 是ABC ∆的三个内角,已知向量()sin sin ,sin sin m A C B A =+-,()sin sin ,sin n A C B =-,且m n ⊥.则角C 的大小为_____________.18.如图,为了测量山坡上灯塔CD 的高度,某人从高为40h =的楼AB 的底部A 处和楼顶B 处分别测得仰角为60β=︒,30α=︒,若山坡高为32a =,则灯塔高度是________.19.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a +c =2b ,3sin B =5sin A ,则C =_____.20.如图,在ABC 中,点D 是边BC 上的一点,1DC =,2AC =,3BD =,120BAD ∠=︒,则AB 的长为________.三、解答题21.已知函数()2π332sin cos 6f x x x x ⎛⎫=++ ⎪⎝⎭. (1)求函数()f x 的单调递增区间;(2)设锐角ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,已知()14f A =,1a =,求ABC 的面积的取值范围.22.已知ABC ∆的内角,,A B C 的对边分别为,,a b c ,且4B π=.(1)请从下面两个条件中选择一个作为已知条件,求sin A 的值; ①5b =2c =②3a =,2c =注:如果选择多个条件分别解答,则按第一个解答计分. (2)若5b =3a c +=,求ABC 的面积.23.在①2222b ac a c +=+,②cos sin a B b A =,③sin cos 2B B +,这三个条件中任选一个,补充在下面的问题中,并解决该问题.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,___________,3A π=,2b =ABC 的面积.24.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos cos 12+=A C a c ,且2b =.(1)证明:4+≥a c ;(2)若ABC 的周长为232+,求其面积S .25.如图,观测站C 在目标A 的南偏西20方向,经过A 处有一条南偏东40走向的公路,在C 处观测到与C 相距31km 的B 处有一人正沿此公路向A 处行走,走20km 到达D 处,此时测得,C D 相距21km ,求,D A 之间的距离.26.在△ABC 中,BC =a ,AC =b ,a 、b 是方程22320x x -+=的两个根,且120A B +=︒,求ABC 的面积及AB 的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】132sin1202S c ==⨯︒ ,解得c =2. ∴a 2=22+22−2×2×2×cos 120°=12, 解得23a =,∴2324sin 3a R A === , 解得R =2.本题选择C 选项. 2.A解析:A 【分析】由三角形的面积公式和已知条件得出sin A =12cos A ,再由同角三角函数间的关系求得cosA ,运用余弦定理可求得边a . 【详解】因为b =2,c S cos A =12bc sin A A ,所以sin A =12cos A .所以sin 2A +cos 2A =14cos 2A +cos 2A =54cos 2A =1.又0A π<<,所以sin >0,A 所以cos >0A ,故解得cos A .所以a 2=b 2+c 2-2bc cos A =4+5-=9-8=1,所以a =1. 故选:A. 【点睛】本题综合考查运用三角形面积公式和余弦定理求解三角形,属于中档题.3.C解析:C 【解析】,,a b c 分别是ABC 中,,A B C ∠∠∠所对边的边长,则直线sin 0x A a y c ⋅+⋅+=斜率为:sin Aa-, sin sin 0b x y B C ⋅-⋅+=的斜率为:sin bB, ∵sin sin A ba B-=﹣1,∴两条直线垂直.故选C .4.A解析:A 【详解】由题设可得060B =11sin sin 2A A =⇒=,则030A =或0150A =,但a b A B <⇔<,应选答案A .5.A解析:A 【分析】根据b =60B =︒,由正弦定理得到sin 2sin sin b Aa A B==,然后作出函数2sin =y A 的图象,将问题转化为y a =与2sin =y A 的图象只有一个交点求解.【详解】因为3b =,60B =︒, 由正弦定理得sin sin a b A B=, 所以sin 2sin sin b Aa A B==, 因为()0,120∈︒A ,2sin =y A 的图象如图所示:因为ABC 仅有一个解,所以y a =与2sin =y A 的图象只有一个交点, 所以03a <≤2a =, 故选:A 【点睛】本题主要考查正弦定理的应用以及三角函数的图象的应用,还考查了数形结合的思想方法,属于中档题.6.B解析:B 【分析】由余弦定理化简得22272b ac -+=,得到7cos 4A =,进而求得3sin 4A =,再由正弦定理,解得1sin 2B =,即可求解.【详解】在ABC 中,因为227cos ac B a b ⋅-=-, 由余弦定理可得2222272a c b ac a b ac +-⋅=-,即2222272a c b a b +-=-,整理得222b ac -+=,所以222cos 2c b a A bc -+==,因为(0,)A π∈,所以3sin 4A ==, 又由正弦定理,可得sin sin a b A B=,解得sin 1sin 2b A B a ==, 因为(0,)B π∈,所以6B π=或56B π=, 又因为a b >,所以A B >,所以6B π=.故选:B. 【点睛】本题主要考查了正弦定理、余弦定理的应用,其中利用正弦、余弦定理可以很好地解决三角形的边角关系,熟练掌握定理、合理运用是解本题的关键.通常当涉及两边及其中一边的对角或两角及其中一角对边时,运用正弦定理求解;当涉及三边或两边及其夹角时,运用余弦定理求解.7.C解析:C 【分析】先根据正弦定理对sin 5sin b C c A =边角互化得5b a =,再结合余弦定理整理得ca= 【详解】解:因为sin 5sin b C c A =,所以5bc ac =,即5b a =. 所以由余弦定理得:222242525185c a a a a a =+-⋅⋅=,整理化简得:ca= 故选:C. 【点睛】本题考查边角互化,余弦定理解散三角形,考查运算能力,是基础题.8.C解析:C 【分析】先利用正弦定理边角互化思想得出3B π=,再利余弦定理1cos 2B =以及条件2b ac =得出a c =可得出ABC ∆是等边三角形,于此可得出2a cb+的值. 【详解】sin cos 0b A B =,由正弦定理边角互化的思想得sin sin cos 0A B A B =,sin 0A >,sin 0B B ∴=,tan B ∴=,则3B π=.a 、b 、c 成等比数列,则2b ac =,由余弦定理得222221cos 222a cb ac ac B ac ac +-+-===,化简得2220a ac c -+=,a c ∴=,则ABC ∆是等边三角形,12a cb+∴=,故选C . 【点睛】本题考查正弦定理边角互化思想的应用,考查余弦定理的应用,解题时应根据等式结构以及已知元素类型合理选择正弦定理与余弦定理求解,考查计算能力,属于中等题.9.D解析:D 【分析】由cos sin b A B =有1sin cos b B A =,再由正弦定理有sin sin a b A B =,即1sin cos A A=,可解出答案. 【详解】由cos sin b A B =有1sin cos b B A=, 由正弦定理有sin sin a b A B=,又a =1cos A=.所以tan A =因为A 为ABC 的内角,则3A π=. 故选:D 【点睛】本题考查正弦定理的应用,属于中档题.10.C解析:C 【分析】直接利用正弦定理计算得到答案. 【详解】根据正弦定理:sin sin a b A B ==,故sin A =sin 1A <=<,解得2a << 故选:C. 【点睛】本题考查了利用正弦定理解三角形,意在考查学生的计算能力和转化能力.11.C解析:C 【分析】根据正弦定理得到1sin 2B =,再根据a b >知A B >,得到答案. 【详解】 根据正弦定理:sin sin a bA B =,即1sin 2B =,根据a b >知A B >,故30B =︒. 故选:C . 【点睛】本题考查了根据正弦定理求角度,多解是容易发生的错误.12.C解析:C 【分析】根据等差中项的性质,结合正弦定理化简可得3B π=,设AC 中点为D ,再利用平面向量的线性运算可得1||||2BD BA BC =+,再平方利用基本不等式求解即可. 【详解】cos a C ,cos b B ,cos c A 成等差数列,2cos cos cos b B a C c A ∴=+,根据正弦定理有2sin cos sin cos sin cos sin()B B A C C A A C =+=+,2sin cos sin B B B ∴=,又sin 0B ≠,1cos 2B ∴=,可得3B π=,设AC 中点为D ,则AC 边上中线长为1||||2BD BA BC =+, 平方可得()()2222221112()444BD BA BC BA BC c a ac a c ac ⎡⎤=++⋅=++=+-⎣⎦ 2221()3()()124416a c a c a c ⎡⎤+≥+-=+=⎢⎥⎣⎦, 当且仅当4a c ==时取等号,故2BD 的最小值为12,即AC边上中线长的最小值为 故选:C. 【点睛】本题主要考查了正弦定理边角互化的运用,同时也考查了利用基本不等式求最值的问题,同时在处理三角形中线的时候可以用平面向量表示从而简化计算,属于中档题.二、填空题13.【分析】由正弦定理及降幂角公式可求得角的余弦值进而求得角的正弦值以及外接圆半径故可得解【详解】由正弦定理得:则设外接圆的半径为则外接圆的面积为故答案为:【点睛】解三角形的基本策略:一是利用正弦定理实 解析:7π【分析】由正弦定理及降幂角公式可求得角A 的余弦值,进而求得角A 的正弦值以及外接圆半径,故可得解. 【详解】 由正弦定理得:sin sin a bA B=则 sin sin a B b A =24sin cos sin 2Aa Bb A = ∴21cos 24A = ∴21cos 2cos 122A A =-=-∴sin 2A === 设ABC ∆外接圆的半径为R ,则2sin a R A ===∴R =ABC ∆外接圆的面积为27S R ππ==.故答案为:7π. 【点睛】解三角形的基本策略:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边”;求三角形面积的最大值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值,二是利用正弦定理,转化为关于某个角的函数,利用函数思想求最值.14.【分析】由三角形内角和为及内角的等差关系可得再由面积公式和正弦定理可得再由余弦定理可得解【详解】由成等差数列可知即解得由可知根据正弦定理知即因此由余弦定理得故故答案为:【点睛】本题主要考查了解三角形【分析】由三角形内角和为π及内角的等差关系可得3A π=,再由面积公式和正弦定理可得4b =,再由余弦定理可得解.【详解】由,,B A C 成等差数列可知2A B C =+,即3A π=,解得3A π=.由cos cos 3S a B b A =+可知1sin cos cos 32ab C a B b A =+,根据正弦定理知1sin sin sin cos 32A b C AB ⋅⋅=sin cos sin B AC +=,即sin b A =4b =,由余弦定理得22212cos 169243=132a b c bc A =+-=+-⨯⨯⨯,故a =.【点睛】本题主要考查了解三角形的相关知识,涉及等差中项的应用,属于基础题.15.【分析】先根据三角形面积公式以及正弦定理化简条件得再利用弦化切以及两角和正切公式化简条件得即得最后根据余弦定理解得【详解】由可知根据正弦定理知又得因为所以故因此又故故答案为:【点睛】本题考查三角形面【分析】先根据三角形面积公式以及正弦定理化简条件cos cos 3S a B b A =+得sin b A =再利用弦化切以及两角和正切公式化简条件cos sin 7tan cos sin 12A A A A π+=-得3A π=,即得4b =,最后根据余弦定理解得a =. 【详解】由cos cos 3S a B b A =+可知1sin cos cos 32ab C a B b A =+,1sin sin sin cos sin cos sin 2A b C AB B AC ⋅=+=,又0,sin 0C C π<<>,得sin b A =cos sin 1tan cos sin 1tan A A A A A A ++=--7tan tan 412A ππ⎛⎫=+= ⎪⎝⎭,因为()0,A π∈,所以7412A ππ+=,故3A π=,因此4b =,又2222cos 13a b c bc A =+-=,故a .【点睛】本题考查三角形面积公式、正弦定理、余弦定理,考查综合分析求解能力,属中档题.16.【分析】设三角形三条边长分别为先分析得到再利用余弦定理得到最后利用正弦定理即得解【详解】设三角形三条边长分别为那么因为所以故由题意得故答案为:【点睛】本题主要考查正弦定理和余弦定理解三角形意在考查学 解析:1532【分析】设AD x =,三角形三条边长分别为,,a b c ,先分析得到222138b c a +≤,再利用余弦定理得到258bc a ≤,最后利用正弦定理即得解. 【详解】设AD x =,三角形三条边长分别为,,a b c , 那么2243,169x a x a ≤∴≤, 因为cos cos 0ADB ADC ∠+∠= 所以2222422+=+x a b c ,故2222222213168849,8x b c a a b c a =+-≤∴+≤由题意得222222221135cos ,,2288b c a A b c bc a a bc a bc +-==∴+=+≤∴≤255315sin sin sin =88432B C A ∴≤=⨯.故答案为:1532【点睛】本题主要考查正弦定理和余弦定理解三角形,意在考查学生对这些知识的理解掌握水平.17.【分析】先利用得到三角正弦之间的关系再根据正余弦定理求出即得角【详解】因为且所以即根据正弦定理得故根据余弦定理知又因为得故答案为:【点睛】本题考查了向量垂直的坐标运算和正余弦定理的应用是常考的综合题 解析:3π【分析】先利用0m n ⋅=得到三角正弦之间的关系,再根据正、余弦定理求出cos C ,即得角C . 【详解】因为()sin sin ,sin sin m A C B A =+-,()sin sin ,sin n A C B =-,且m n ⊥ 所以()()()sin sin sin sin sin sin sin 0m n A C A C B A B ⋅=+-+-= 即222sin sin sin sin sin A B C A B +-= 根据正弦定理得222a b c ab +-=故根据余弦定理知222cos 122a b c C ab +-==,又因为()0,C π∈得3C π=故答案为:3π. 【点睛】本题考查了向量垂直的坐标运算和正余弦定理的应用,是常考的综合题,属于中档题.18.28【分析】作于延长线交地面于则由求得从而可得然后即得【详解】如图于延长线交地面于则而所以即所以故答案为:28【点睛】本题考查解三角形的应用掌握仰角概念是解题基础测量高度问题常常涉及到直角三角形因此解析:28 【分析】作BN DC ⊥于N ,DC 延长线交地面于M ,则AM BN =,AM DM ⊥,tan DM AM β=,tan DN BN α=,由40DM DN -=求得BN ,从而可得DM ,然后即得DC . 【详解】如图,BN DC ⊥于N ,DC 延长线交地面于M ,则tan DN BN α=,tan DM AM β=,而BN AM =,所以tan tan BN BN h βα-=,即(tan 60tan 30)40BN ︒-︒=,40tan 60tan 30BN ==︒-︒所以tan60tan60323228DC AM CM BN =︒-=︒-==. 故答案为:28.【点睛】本题考查解三角形的应用,掌握仰角概念是解题基础.测量高度问题常常涉及到直角三角形,因此掌握直角三角形中的三角函数定义是解题关键,有时还需要用三角函数恒等变换公式.19.【分析】由正余弦定理可得的余弦值进而求出的值【详解】因为则由正弦定理可得所以又所以由余弦定理可得又因为所以故答案为:【点睛】本题主要考查了正余弦定理的应用考查了运算能力属于中档题 解析:23π 【分析】由正余弦定理可得C 的余弦值,进而求出C 的值. 【详解】因为3sin 5sin B A =,则由正弦定理可得35b a =,所以35a b =, 又2a c b +=,所以725c b a b =-=,由余弦定理可得22222294912525cos 32225b b b a bc C ab b b+-+-===-⋅⋅, 又因为(0,)C π∈, 所以23C π=, 故答案为:23π.【点睛】本题主要考查了正余弦定理的应用,考查了运算能力,属于中档题.20.【分析】在两个三角形中利用余弦定理建立等量关系式整理得出结合题中所给的条件利用余弦定理建立等量关系式求得结果【详解】因为所以可得在△中所以整理得出所以所以故答案为:【点睛】该题考查的是有关解三角形的【分析】在两个三角形中,利用余弦定理,建立等量关系式,整理得出2AB AD =,结合题中所给的条件,利用余弦定理建立等量关系式,求得结果. 【详解】因为cos cos ADB ADC ∠=-∠,所以2229142321AD AB AD AD AD+-+-=-⨯⨯⨯⨯,可得2AB AD =, 在△ABD 中,2222cos BD AD AB AD AB BAD =+-⨯⨯∠,所以22192()422AB AB AB AB =+-⨯⨯⨯-,整理得出2794AB =,所以2367AB =,所以7AB =,. 【点睛】该题考查的是有关解三角形的问题,涉及到的知识点有余弦定理解三角形,属于简单题目.三、解答题21.(1)ππππ,62122k k ⎡⎤-++⎢⎥⎣⎦,k Z ∈;(2)12⎛ ⎝⎦. 【分析】(1)把函数利用二倍角公式、两角和的正弦公式化为一个角的一个三角函数形式,然后结合sin y x =的单调性求()f x 的增区间;(2)由(A)f 求得A 角,利用正弦定理把,b c 用sin ,sin B C 表示,从而求得ABCS ,并转化为B 的函数,注意转化为一个角的一个三角函数形式,由锐角三角形及A 角大小求得B角范围,从而得面积的范围. 【详解】 (1)由题意知()2πcos 21π32sin cos sin 26222x f x x x x x ⎛⎫++ ⎪⎛⎫⎝⎭=++-=⋅+- ⎪⎝⎭111πcos 22sin 2sin 22sin 22224423x x x x x x ⎫⎛⎫=-+=+=+⎪ ⎪⎪⎝⎭⎝⎭.令ππ2π,π32x k k ⎡⎤+∈+⎢⎥⎣⎦,k Z ∈,则ππππ,62122k k x ⎡⎤∈-++⎢⎥⎣⎦,k Z ∈, 所以()f x 的单调递增区间为ππππ,62122k k ⎡⎤-++⎢⎥⎣⎦,k Z ∈. (2)因为()14f A =,所以1π1sin 2234A ⎛⎫+= ⎪⎝⎭,所以π1sin 232A ⎛⎫+= ⎪⎝⎭, 所以ππ22π36A k +=+或5π2π6k +,k Z ∈,即ππ12A k =-+或ππ4k +,k Z ∈.又ABC 为锐角三角形,故π4A =,因为1a =,所以由正弦定理可知,bB =,c C =.所以11πsin sin sin 222224ABC S bc A B C B C B B ⎛⎫==⨯==+ ⎪⎝⎭△()()21111cos 21sin sin cos sin sin cos sin 222222B B B B B B B B -⎛⎫=+=+=+ ⎪⎝⎭()11π1sin 2cos 224444B B B ⎛⎫=-+=-+ ⎪⎝⎭.因为ABC 是锐角三角形,所以π0,2B ⎛⎫∈ ⎪⎝⎭,3π0,42C B π⎛⎫=-∈ ⎪⎝⎭,所以ππ,42B ⎛⎫∈ ⎪⎝⎭,所以ππ3π2,444B ⎛⎫-∈ ⎪⎝⎭,πsin 242B ⎛⎤⎛⎫-∈ ⎥ ⎪ ⎝⎭⎝⎦,所以π1112,44424ABCS B ⎛+⎛⎫=-+∈ ⎪ ⎝⎭⎝⎦△. 【点睛】关键点点睛:本题考查三角函数的恒等变换,考查三角函数的性质,正弦定理等.解题方法一般是由二倍角公式降幂,由辅助角公式化函数为()sin()f x A x ωϕ=+形式,然后结合正弦函数性质求解单调性、对称性、周期性、最值等等.22.(121 【分析】(1)选择条件①,由余弦定理求出3a =,再由正弦定理即可求出;选择条件②,由余弦定理求出b =(2)由余弦定理结合已知条件可求出4ac =-,再由面积公式即可求出. 【详解】 (1)选择条件①由余弦定理2222cos b a c ac B =+-得2230a a --=,解得3a =. 由正弦定理sin sin b a B A =得sin sin a B A b == 选择条件②由余弦定理2222cos 5b a c ac B =+-=得b = 由正弦定理sin sin b a B A =得sin sin a B A b == (2)由余弦定理2222cos b a c ac B =+-得225a c =+,所以25()(29(2a c ac ac =+-=-,得4ac =-所以1sin 12ABCSac B ==. 23.条件选择见解析;ABC【分析】选择①,用余弦定理求得B 角,选择②,用正弦定理化边为角后求得B 角,选择③用两角和的正弦公式变形后求得B 角,然后利用正弦定理求得a ,再由诱导公式与两角和的正弦公式求得sin C ,最后由面积公式计算出面积. 【详解】解:(1)若选择①,222b a c =+由余弦定理,222cos 222a c b B ac ac +-===, 因为()0,B π∈,所以4B π=;由正弦定理sin sin a bA B=,得sin sin sin b A a B π===因为3A π=,4B π=,所以53412C ππππ=--=,所以5sin sinsin sin cos cos sin 124646464C πππππππ⎛⎫==+=+=⎪⎝⎭所以113sin 2244ABC S ab C +===△.(2)若选择②cos sin a B b A =,则sin cos sin sin A B B A =, 因为sin 0A ≠,所以sin cos B B =, 因为()0,B π∈,所以4B π=;由正弦定理sin sin a bA B=,得sin sin sin b A a B π===因为3A π=,4B π=,所以53412C ππππ=--=,所以5sin sinsin sin cos cos sin 12464646C πππππππ⎛⎫==+=+=⎪⎝⎭,所以11sin 22ABC S ab C ===△. (3)若选择③sin cos B B +=,4B π⎛⎫+= ⎪⎝⎭sin 14B π⎛⎫+= ⎪⎝⎭, 因为()0,B π∈,所以5,444B πππ⎛⎫+∈ ⎪⎝⎭, 所以42B ππ+=,所以4B π=;由正弦定理sin sin a bA B=,得sin sin sin 2b A a B π===因为3A π=,4B π=,所以53412C ππππ=--=,所以5sin sinsin sin cos cos sin 12464646C πππππππ⎛⎫==+=+=⎪⎝⎭,所以11sin 22ABC S ab C ===△. 【点睛】关键点点睛:本题考查正弦定理、余弦定理、三角形的面积公式,解题中要注意条件与结论之间的联系,确定选用的公式与顺序.用正弦定理进行边角转换是一种重要技巧,它的目的是边角分离,公式应用明确.本题是求三角形面积,一般要知道两边和夹角的正弦,在已知一角和一边情况下还需要求得一条边长及两边夹角,这样我们可以采取先求B 角,再求a 边和sin C ,从而得面积.24.(1)证明见解析;(2 【分析】(1)解法一:用正弦定理化边为角,得到2sin sin sin B A C =,再变成2b ac =,运用基本不等式可证明解法二:用余弦定理化角为边,得到关系式2b ac =,再用基本不等式求解即可. (2)用余弦定理求出3cos 4B =,再用三角形面积公式求解即可. 【详解】(1)解法一:由已知及正弦定理,得cos cos 1sin sin sin A C A C B+= 因为cos cos cos sin cos sin sin()sin sin sin sin sin sin sin sin sin +++===A C A C C A A C BA C A C A c A c 所以sin 1sin sin sin =B A c B,2sin sin sin B A C =由正弦定理得2b ac =,即4ac =.4a c +≥=.解法二:由已知及余弦定理,得222221222+-+-+=b c a a b c abc abc ,得24==ac b ,所以4a c +≥=.(2)因为ABC 的周长为2+a c += 因为22222cos ()22cos b a c ac B a c ac ac B =+-⋅=+--⋅又因为4ac =,所以3cos 4B =得sin B =.所以1sin 2sin 2===ABCSac B B . 【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围. 25.15公理. 【分析】先求出cos BDC ∠,进而设ADC α∠=,则sin ,cos αα可求,在ACD △中,由正弦定理求得AD ,即可得到答案. 【详解】由题意知21,31,20CD BC BD ===,在BCD △中,由余弦定理可得2222120311cos 221207BDC +-∠==-⨯⨯,设ADC α∠=,则1sin 7αα==,可得11sin()sincos cossin 333272714πππααα+=+=+⨯=在ACD △中,由正弦定理得21sin()sin33ADππα=+,所以sin()153AD πα=+=,即所求的距离为15公理. 【点睛】平面图形中计算问题的解题关键及思路求解平面图形中的计算问题,关键是梳理条件和所求问题的类型,然后将数据化归到三角形中,利用正弦定理或者余弦定理建立已知和所求的关系.具体解题思路:(1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦定理或余弦定理求解;(2)寻找各个三角形之间的联系,交叉使用共同条件,求出结果.26.2S AB ==【分析】利用韦达定理求出,a b ab +,再利用余弦定理,得到关于c 的方程,解之可得AB 的长;再结合面积公式可得. 【详解】,a b是方程220x -+=的两个根, 2a b ab ∴+==,又因为120A B +=︒则60C =︒,所以由余弦定理得:()(22222222221cos 22222c a b ab c a b cC ab ab -⨯-+--+-====⨯,解得c =所以AB =ABC的面积11sin 222S ab C ==⨯=。

深圳宝安区龙华中英文实验学校八年级数学上册第二单元《全等三角形》测试题(答案解析)

深圳宝安区龙华中英文实验学校八年级数学上册第二单元《全等三角形》测试题(答案解析)

一、选择题1.如图,在△ABC 中,AB=AC ,AB >BC ,点D 在BC 边上,BD=12DC ,∠BED=∠CFD=∠BAC ,若S △ABC =30,则阴影部分的面积为( )A .5B .10C .15D .20 2.下列命题的逆命题是真命题的是( ). A .3的平方根是3B .5是无理数C .1的立方根是1D .全等三角形的周长相等3.如图,OP 平分AOB ∠,PC OA ⊥于点C ,PD OB ⊥于点D ,延长CP ,DP 交OB , OA 于点E ,F ,下列结论错误的是( )A .PC PD =B .OC OD = C .CPO DPO ∠=∠ D .PC PE =4.如图,在ABC 中,B C ∠=∠,BD CE =,BF CD =,则EDF ∠等于( )A .90A ︒-∠B .1802A ︒-∠C .1902A ︒-∠D .11802A ︒-∠ 5.如图,AB =AC ,AD =AE ,∠A =105°,∠D =25°,则∠ABE 等于( )A .65°B .60°C .55°D .50° 6.如图,ABC 的面积为26cm ,AP 垂直B 的平分线BP 于P ,则PBC 的面积为( )A .21cmB .22cmC .23cmD .24cm7.如图,AB AC =,AD AE =,55A ︒∠=,35C ︒∠=,则DOE ∠的度数是( )A .105︒B .115︒C .125︒D .130︒8.点Р在AOB ∠的角平分线上,点Р到OA 边的距离等于5,点Q 是OB 边上的任意一点,则下列选项正确的是( )A .5PQ >B .5PO ≥C . 5PQ <D .5PO ≤ 9.如图,在Rt ABC △中,90C ∠=︒,CAB ∠的平分线交BC 于点D ,且DE 所在直线是AB 的垂直平分线,垂足为E .若3DE =,则BC 的长为( ).A .6B .7C .8D .910.如图,在ABC 和△FED 中,AD FC =,AB FE =,下列条件中不能证明F ABC ED ≌△△的是( )A .BC ED =B .A F ∠=∠C .B E ∠=∠D .//AB EF11.如图,在ABC 中,B C ∠=∠,E 、D 、 F 分别是AB 、BC 、AC 上的点,且BE CD =,BD CF =,若 104A ∠=︒,则EDF ∠的度数为( )A .24°B .32°C .38°D .52° 12.如图,C 是∠AOB 的平分线上一点,添加下列条件不能判定△AOC ≌△BOC 的是( )A .OA =OB B .AC =BC C .∠A =∠BD .∠1=∠2二、填空题13.如图,四边形ABCD 中,AC BC =,90ACB ADC ∠=∠=︒,10CD =,则BCD ∆的面积为______.14.如图,在Rt ABC △中,90C ∠=︒,AD 平分BAC ∠交BC 于点D .若3BC =,且:5:4BD DC =,5AB =,则ABD △的面积是______.15.如图所示,在ABC 中,D 是BC 的中点,点A 、F 、D 、E 在同一直线上.请添加一个条件,使BDE CDF ≌(不再添其他线段,不再标注或使用其他字母),并给出证明.你添加的条件是______16.如图,在Rt ABC △中,90C ∠=︒,10AC =,5BC =,线段PQ AB =,P ,Q 两点分别在线段AC 和过点A 且垂直于AC 的射线AD 上运动,当AQ =______时,ABC 和PQA △全等.17.在ABC 中,48ABC ︒∠=,点D 在BC 边上,且满足18,BAD DC AB ︒∠==,则CAD ∠=________度. 18.如图,ABC 中,∠C =90°,AD 平分∠BAC , AB =5,CD =2,则ABD △的面积是______19.如图,在四边形ABCD 中,90A ∠=︒,3AD =,连接BD ,BD CD ⊥,ADB C ∠=∠.若P 是BC 边上一动点,则DP 长的最小值为_______.20.如图,9cm AB =,3cm AC =,点P 在线段AB 上以1cm/s 的速度由点B 向点A 运动,同时点Q 在射线BD 上以x cm/s 的速度由点B 沿射线BD 的方向运动,它们运动的时间为t (s )(1)如图①,若AC AB ⊥,BD AB ⊥,当ACP BPQ △≌△,x =________;CPQ ∠=________.(2)如图②,CAB DBA ∠=∠,当ACP △与BPQ 全等,x =________;三、解答题21.如图,在△ABC 中,AC =BC ,∠ACB =90°,点D 在边BC 上(不与点B ,C 重合),过点C 作CE ⊥AD ,垂足为点E ,交AB 于点F ,连接DF .(1)请直接写出∠CAD 与∠BCF 的数量关系;(2)若点D 是BC 中点,在图2中画出图形,猜想线段AD ,CF ,FD 之间的数量关系,并证明你的猜想.22.如图,已知∠AOC 是直角,∠BOC =46°,OE 平分∠BOC ,OD 平分∠AOB . (1)试求∠DOE 的度数;(2)当∠BOC =α(0°≤α≤90°),请问∠DOE 的大小是否变化?并说明理由.23.如图,点D,E分别在AB和AC上,DE//BC,点F是AD上一点,FE的延长线交BC延长线BH于点G.(1)若∠DBE=40°,∠EBC=35°,求∠BDE的度数;(2)求证:∠EGH>∠ADE;(3)若点E是AC和FG的中点,△AFE与△CEG全等吗?请说明理由.24.已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直CE于点F,交CD于点G(如图1),求证:AE=CG;(2)直线AH垂直于CE,垂足为H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并说明理由.25.如图,在△ABC中,AD是∠BAC的角平分线,DE⊥AB,DF⊥AC,D是BC的中点,证明:∠B=∠C.26.已知:直线EF分别与直线AB,CD相交于点G,H,并且180AGE DHE∠+∠=︒(1)如图1,求证://AB CD;(2)如图2,点M在直线AB,CD之间,连接GM,HM,求证:M AGM CHM∠=∠+∠;(3)如图3,在(2)的条件下,射线GH是BGM∠的平分线,在MH的延长线上取点N,连接GN,若N AGM∠=∠,12M N FGN∠=∠+∠,求MHG∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据△ABE≌△CAF得出△ACF与△ABE的面积相等,可得S△ABE+S△CDF=S△ACD,即可得出答案.【详解】∵∠BED=∠CFD=∠BAC,∠BED=∠BAE+∠ABE,∠BAC=∠BAE+∠CAF,∠CFD=∠FCA+∠CAF,∴∠ABE=∠CAF,∠BAE=∠FCA,在△ABE 和△CAF 中,ABE CAF AB AC BAE FCA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE ≌△CAF (ASA ),∴S △ABE =S △ACF ,∴阴影部分的面积为S △ABE +S △CDF =S △ACD ,∵S △ABC =30,BD=12DC , ∴S △ACD =20,故选:D .【点睛】本题考查了全等三角形的性质和判定,三角形的面积,三角形的外角性质等知识点,解题的关键是正确寻找全等三角形解决问题. 2.C解析:C【分析】根据把一个命题的条件和结论互换就得到它的逆命题,先得出逆命题,再进行判断即可.【详解】A3的逆命题是:3的平方根,是假命题;BC 、1的立方根是1的逆命题是:1是1的立方根,是真命题;D 、全等三角形的周长相等的逆命题是:周长相等的三角形全等,是假命题; 故选:C .【点睛】此题考查了命题的真假判断及互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉各知识点的性质定理.3.D解析:D【分析】根据角平分线的性质定理判断A 选项;证明△OPC ≌△OPD 判断B 选项;根据△OPC ≌△OPD 即可判断C 选项;证明△DPE ≌△CPF 判断D 选项.【详解】∵OP 平分AOB ∠,PC OA ⊥于点C ,PD OB ⊥于点D ,∴PC=PD ,故A 选项正确;∵∠ODP=∠OCP=90︒,又∵OP=OP ,PC=PD ,∴Rt△OPC≌Rt△OPD,∴OC=OD,故B选项正确;∵△OPC≌△OPD,∴CPO DPO∠=∠,故C选项正确;∵∠PDE=∠PCF=90︒,PD=PC,∠DPE=∠CPF,∴△DPE≌△CPF,∴PE=PF,∵PF>PC,∴PE>PC,故D选项错误;故选:D.【点睛】此题考查三角形角平分线的性质定理,全等三角形的判定及性质,熟记角平分线的性质定理是解题的关键.4.C解析:C【分析】根据∠B=∠C,BD=CE,BF=CD,可证出△BFD≌△CDE,继而得出∠BFD=∠EDC,再根据三角形内角和定理及平角等于180︒,即可得出∠B=∠EDF,进而得到答案.【详解】解:∵∠B=∠C,BD=CE,BF=CD,∴△BFD≌△CDE,∴∠BFD=∠EDC,∴∠B+∠BFD+∠BDF=∠BDF+∠EDF+∠EDC,∴∠B=∠EDF,又∵∠B=∠C=18019022AA ︒-∠=︒-∠,∴∠EDF=1902A︒-∠,故选:C.【点睛】本题考查全等三角形的判定与性质、等腰三角形的性质以及三角形内角和定理,根据全等三角形的性质找出∠BFD=∠EDC是解题的关键.5.D解析:D【分析】依据SAS即可得判定△ABE≌△ACD,再根据全等三角形的性质,得出∠D=∠E=25°,由三角形内角和定理可求出答案.【详解】解:在△ABE和△ACD中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (SAS ),∴∠D =∠E ,∵∠D =25°,∴∠E =25°,∴∠ABE =180°﹣∠A ﹣∠E =180°﹣105°﹣25°=50°.故选:D .【点睛】本题考查了全等三角形的判定与性质,三角形内角和定理,熟练掌握全等三角形的判定与性质是解题的关键.6.C解析:C【分析】延长AP 交BC 于E ,根据AP 垂直∠B 的平分线BP 于P ,即可求出△ABP ≌△BEP ,又知△APC 和△CPE 等底同高,可以证明两三角形面积相等,即可证明三角形PBC 的面积.【详解】解:延长AP 交BC 于E ,∵AP 垂直∠B 的平分线BP 于P ,∴∠ABP =∠EBP ,∠APB =∠BPE =90∘,在△APB 和△EPB 中∠=∠⎧⎪=⎨⎪∠=∠⎩APB EPB BP BPABP EBP ∴△APB ≌△EPB (ASA ),∴APB EPB S S =△△,AP =PE ,∴△APC 和△CPE 等底同高,∴APC PCE S S =,∴PBC PCE PCE S S S =+△△△=12ABC S=1632⨯= 故选C .【点睛】本题考查了三角形的面积和全等三角形的性质和判定的应用,关键是求出PBC PCE PCE S S S =+△△△=12ABC S .7.C解析:C【分析】先判定△ABE ≌△ACD ,再根据全等三角形的性质,得出∠B=∠C=35︒,由三角形外角的性质即可得到答案.【详解】在△ABE 和△ACD 中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (SAS ),∴∠B=∠C ,∵∠C=35︒,∴∠B=35︒,∴∠OEC=∠B+∠A=355590︒+︒=︒,∴∠DOE=∠C+∠OEC=3590125︒+︒=︒,故选:C .【点睛】本题考察全等三角形的判定与性质、三角形外角的性质,熟练掌握全等三角形的判定与性质是解题关键.8.B解析:B【分析】根据角平分线上的点到角的两边距离相等可得点P 到OB 的距离为5,再根据垂线段最短解答.【详解】∵点P 在∠AOB 的平分线上,点P 到OA 边的距离等于5,∴点P 到OB 的距离为5,∵点Q 是OB 边上的任意一点,∴PQ≥5.故选:B .【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.9.D【分析】由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,【详解】解:∵DE 垂直平分AB ,∴DA=DB ,∴∠B=∠DAB ,∵AD 平分∠CAB ,∴∠CAD=∠DAB ,∵∠C=90°,∴3∠EAD=90°,∴∠EAD=30°,∵∠AED=90°,∴DA=BD=2DE ,∵AD 平分∠CAB ,DE ⊥AB ,CD ⊥AC ,∴CD=DE=3,∴DA=BD=6,∴BC=BD+CD=6+3=9,故选:D .【点睛】本题考查了线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.10.C解析:C【分析】由AD FC =推出AC=FD ,根据已知AB FE =添加夹角相等或第三边相等即可判定.【详解】∵AD FC =,∴AC=FD ,∵AB FE =,∴当A F ∠=∠(//AB EF 也可得到)或BC ED =时,即可判定F ABC ED ≌△△, 故B E ∠=∠不能判定F ABC ED ≌△△,故选:C .【点睛】此题考查添加一个条件证明两个三角形全等,熟记全等三角形的判定定理并熟练应用是解题的关键.11.C解析:C【分析】根据题意可证明BDE CFD ≌,以及求解∠B 的度数,再由三角形的外角性质和全等三角形的性质推出∠EDF=∠B ,从而得出结果.在BDE 与CFD 中,BE CD B C BD CF =⎧⎪∠=∠⎨⎪=⎩∴()BDE CFD SAS ≌∴∠BED=∠CDF ,又∵∠B+∠BED=∠EDC=∠EDF+∠CDF ,∴∠B=∠EDF ,∵在BAC 中,∠A=104°,∠B=∠C ,∴∠B=(180°-104°)÷2=38°,∴∠EDF=38°,故选:C .【点睛】本题考查全等三角形的判定与性质,三角形的内角和定理与外角性质,熟练证明全等并利用其性质进行推理演算是解题关键.12.B解析:B【分析】根据题意可以得到∠AOC=∠BOC ,OC=OC ,然后即可判断各个选项中条件是否能判定△AOC ≌△BOC ,从而可以解答本题.【详解】解:由已知可得,∠AOC=∠BOC ,OC=OC ,∴若添加条件OA=OB ,则△AOC ≌△BOC (SAS ),故选项A 不符合题意;若添加条件AC=BC ,则无法判断△AOC ≌△BOC ,故选项B 符合题意;若添加条件∠A=∠B ,则△AOC ≌△BOC (AAS ),故选项C 不符合题意;若添加条件∠1=∠2,则∠ACO=∠BCO ,则△AOC ≌△BOC (ASA ),故选项D 不符合题意;故选:B .【点睛】本题考查全等三角形的判定,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题13.50【分析】过点B 作BE ⊥DC 交DC 的延长线于点E 先证明∠CBE=∠ACD 从而证明∆ACD ≅∆CBE 进而即可求解【详解】过点B 作BE ⊥DC 交DC 的延长线于点E ∵BE ⊥CE ∴∠BEC=∠CDA=90°解析:50【分析】过点B 作BE ⊥DC 交DC 的延长线于点E ,先证明∠CBE=∠ACD ,从而证明∆ ACD ≅∆ CBE ,进而即可求解.【详解】过点B 作BE ⊥DC 交DC 的延长线于点E ,∵BE ⊥CE ,∴∠BEC=∠CDA=90°,∴∠CBE+∠BCE=90°,又∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠CBE=∠ACD ,在∆ ACD 与∆ CBE 中,∵CBE ACD CEB ADC BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴∆ ACD ≅∆ CBE (AAS ),∴BE=CD=10,∴BCD ∆的面积=12CD∙BE=12×10×10=50, 故答案是50.【点睛】本题主要考查全等三角形的判定和性质,等腰直角三角形的性质,添加辅助线,构造“一线三垂直”模型,是解题的关键. 14.【分析】过点D 作DE ⊥AB 利用角平分线的性质可得CD =DE 再利用线段的比求得线段DC 的长度进而即可求解【详解】过点D 作DE ⊥AB ∵AD 平分∠BACDE ⊥ABDC ⊥AC ∴CD =DE 又∵且BD :DC =5 解析:103【分析】过点D 作DE ⊥AB ,利用角平分线的性质可得CD =DE ,再利用线段的比求得线段DC 的长度,进而即可求解.【详解】过点D 作DE ⊥AB ,∵AD 平分∠BAC ,DE ⊥AB ,DC ⊥AC∴CD =DE又∵3BC =,且BD :DC =5:4,∴DE =DC =3÷(5+4)×4=43. ∵5AB =,∴ABD △的面积=43×5÷2=103 故答案是:103【点睛】本题考查了角平分线的性质,添加辅助线,是解题的关键. 15.ED=FD (答案不唯一∠E=∠CFD 或∠DBE=∠DCF )【分析】根据三角形全等的判定方法SAS 或AAS 或ASA 定理添加条件然后证明即可【详解】解:∵D 是的中点∴BD=DC①若添加ED=FD 在△BD解析:ED=FD (答案不唯一,∠E=∠CFD 或∠DBE=∠DCF )【分析】根据三角形全等的判定方法SAS 或AAS 或ASA 定理添加条件,然后证明即可.【详解】解:∵D 是BC 的中点,∴BD=DC①若添加ED=FD在△BDE 和△CDF 中,BD CD BDE CDF ED FD =⎧⎪∠=∠⎨⎪=⎩,∴△BDE ≌△CDF (SAS );②若添加∠E=∠CFD在△BDE和△CDF中,BDE CDFE CFDBD CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDE≌△CDF(AAS);③若添加∠DBE=∠DCF在△BDE和△CDF中,BDE CDF BD CDDBE DCF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE≌△CDF(ASA);故答案为:ED=FD(答案不唯一,∠E=∠CFD或∠DBE=∠DCF).【点睛】本题考查了全等三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.16.5或10【分析】分两种情况:当AQ=5时当AQ=10时利用全等三角形的判定及性质定理得到结论【详解】分两种情况:当AQ=5时∵∴AQ=BC∵AD⊥AC∴∠QAP=∠ACB=∵AB=PQ∴≌△PQA(解析:5或10【分析】分两种情况:当AQ=5时,当AQ=10时,利用全等三角形的判定及性质定理得到结论.【详解】分两种情况:当AQ=5时,∵5BC=,∴AQ=BC,∵AD⊥AC,∴∠QAP=∠ACB=90︒,∵AB=PQ,∴ABC≌△PQA(HL);当AQ=10时,∵10AC=,∴AQ=AC,∵AD⊥AC,∴∠QAP=∠ACB=90︒,∵AB=PQ,∴△ABC≌△QPA,故答案为:5或10.【点睛】此题考查全等三角形的判定及性质定理,运用分类思想,动点问题,熟记三角形的判定定理及性质定理是解题的关键.17.66【分析】在线段CD上取点E使CE=BD再证明△ADB≅△AEC即可求出【详解】在线段DC取点ECE=BD连接AE∵CE=BD∴BE=CD∵AB=CD∴AB=BE∠BAE=∠BEA=(180°-4解析:66【分析】在线段CD上取点E使CE=BD,再证明△ADB≅△AEC即可求出.【详解】在线段DC取点E,CE=BD,连接AE,∵CE=BD,∴BE=CD,∵AB=CD,∴AB=BE,∠BAE=∠BEA=(180°-48°)÷2=66°,∴∠DAE=48°,∠AED=66°,∴△ADB≅△AEC,∴∠BAD=∠CAE=18°,∴∠CAD=∠DAE+∠CAE=66°.故答案为:66.【点睛】本题考察了全等三角形的证明和三角形内角和定理,解题的关键是做出辅助线找到全等三角形.18.5【分析】根据角平分线的性质求出DE根据三角形的面积公式计算即可;【详解】如图:作DE⊥AB于点E∵AD平分∠BAC∠C=90°DE⊥AB∴DE=DC=2∵AB=5∴△ABD的面积=×AB×DE=5解析:5【分析】根据角平分线的性质求出DE,根据三角形的面积公式计算即可;【详解】如图:作DE⊥AB于点E,∵AD平分∠BAC,∠C=90°,DE⊥AB,∴DE=DC=2,∵AB=5∴△ABD的面积=1×AB×DE=5,2故答案为:5.【点睛】本题考查了角平分线的性质,掌握角平分线上的点到角的两边的距离相等是解题的关键; 19.3【分析】过点D 作于点H 先证明BD 是的角平分线然后根据角平分线的性质得到当点P 运动到点H 的位置时DP 的长最小即DH 的长【详解】解:如图过点D 作于点H ∵∴∵∴∴BD 是的角平分线∵∴∵点D 是直线BC 外一 解析:3【分析】过点D 作DH BC ⊥于点H ,先证明BD 是ABC ∠的角平分线,然后根据角平分线的性质得到3AD DH ==,当点P 运动到点H 的位置时,DP 的长最小,即DH 的长.【详解】解:如图,过点D 作DH BC ⊥于点H ,∵BD CD ⊥,∴90BDC ∠=︒,∵180C BDC DBC ∠+∠+∠=︒,180ADB A ABD ∠+∠+∠=︒,ADB C ∠=∠,90A ∠=︒,∴ABD CBD ∠=∠,∴BD 是ABC ∠的角平分线,∵AD AB ⊥,DH BC ⊥,∴3AD DH ==,∵点D 是直线BC 外一点,∴当点P 在BC 上运动时,点P 运动到与点H 重合时DP 最短,其长度为DH 长,即DP 长的最小值是3.故答案是:3.【点睛】本题考查角平分线的性质,解题的关键是熟练运用角平分线的性质定理.20.90°2或【分析】(1)根据全等找出对应边利用BP 边求得时间再在BQ 边上求速度再运用全等三角形的性质即可证明角度;(2)结合条件对与全等时的情况进行分析分类讨论即可【详解】(1)当时又;(2)①当时解析:90° 2或23【分析】(1)根据全等找出对应边,利用BP 边求得时间,再在BQ 边上求速度,再运用全等三角形的性质,即可证明角度;(2)结合条件,对ACP △与BPQ 全等时的情况进行分析,分类讨论即可.【详解】(1)当ACP BPQ △≌△时,3AC PB ==,936AP BQ cm ==-=, 331cm t s cm /s ∴==,623cm x cm /s s==, 又CPA PQB ∠=∠,90PQB QPB ∠+∠=︒,90CPA QPB ∴∠+∠=︒,18090CPQ ∴∠=︒-︒=90︒;(2)①当ACP BPQ △≌△时,3AC BP ==,936AP BQ ==-=, 此时,331cm t s cm /s ==,623cm x cm /s s==; ②当ACP BQP △≌△时, 3AC BQ ==,92AP BP ==, 此时,99212cm t s cm /s ==,32932cm x cm /s s ==; 综上:当ACP △与BPQ 全等,2x cm /s =或23cm /s . 【点睛】本题考查了全等三角形的性质及判定,熟练掌握全等三角形的性质是解题关键.三、解答题21.(1)∠BCF=∠CAD;(2)AD=CF+DF,证明见解析【分析】(1)由余角的性质可求解;(2)过点B作BG∥AC交CF的延长线于G,由“ASA”可证△ACD≌△CBG,可得CD=BG,AD=CG,由“SAS”可证△BDF≌△BGF,可得DF=GF,可得结论.【详解】解:(1)∠BCF=∠CAD,理由如下:∵CE⊥AD,∴∠CED=∠ACD=90°,∴∠CAD+∠ADC=90°=∠ADC+∠BCF,∴∠CAD=∠BCF;(2)如图所示:猜想:AD=CF+DF,理由如下:过点B作BG∥AC交CF的延长线于G,则∠ACB+∠CBG=180°,∴∠CBG=∠ACD=90°,在△ACD和△CBG中,∵CAD BCF AC BCACD CBG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ACD≌△CBG(ASA),∴CD=BG,AD=CG,∵D是BC的中点,∴CD=BG=BD,∵AC=BC,∠ACB=90°,∴∠CBA=∠CAB,∴∠CBA=45°,∴∠FBG=∠CBG﹣∠CBA=90°﹣45°=45°,∴∠FBG=∠FBD,在△BDF和△BGF中,BF BF FBD FBG BD BG =⎧⎪∠=∠⎨⎪=⎩∴△BDF ≌△BGF (SAS ),∴DF =GF ,∵AD =CG =CF +FG ,∴AD =CF +DF .【点睛】本题主要考查余角的性质,全等三角形的判定和性质,添加合适的辅助线,构造全等三角形,是解题的关键.22.(1)45︒;(2)不会变化,理由见解析.【分析】(1)根据题意可知DOE BOD BOE ∠=∠-∠,12BOD AOB ∠=∠,12BOE BOC ∠=∠.即可推出12DOE AOC ∠=∠,即可求出DOE ∠. (2))根据(1)可知DOE ∠的大小与∠BOC 的大小无关,所以DOE ∠的大小不会变化.【详解】(1)由图可知DOE BOD BOE ∠=∠-∠,∵OE 平分∠BOC ,OD 平分∠AOB . ∴12BOD AOB ∠=∠,12BOE BOC ∠=∠. ∴1111()2222DOE AOB BOC AOB BOC AOC ∠=∠-∠=∠-∠=∠, ∵∠AOC 是直角,∴90AOC ∠=︒, ∴1452DOE AOC ∠=∠=︒. (2)根据(1)可知DOE ∠的大小与∠BOC 的大小无关, ∴DOE ∠的大小不会变化且大小为12AOC ∠. 【点睛】本题考查角的计算,角平分线的性质.利用角平分线的性质找出图形中角的关系是解答本题的关键.23.(1)∠BDE =105°;(2)见解析;(3)全等,理由见解析.【分析】(1)根据平行线的性质得出∠DEB=∠EBC=35°,再根据三角形的内角和定理即可得到结论;(2)根据三角形的外角性质得出∠EGH >∠ABC ,又根据平行线的性质得出∠ABC=∠ADE ,即可得出答案;(3)根据全等三角形判定的“SAS”定理即可得到结论.【详解】(1)解:∵DE//BC ,∠EBC =35°,∴∠DEB =∠EBC =35°,又∵∠BDE+∠DEB+∠DBE =180°,∠DBE =40°,∴∠BDE =105°;(2)证明:∵∠EGH 是△FBG 的外角,∴∠EGH >∠ABC ,又∵DE//BC ,∴∠ABC =∠ADE ,∴∠EGH >∠ADE ;(3)全等.证明:E 是AC 和FG 的中点,∴AE =CE ,FE =GE ,在△AFE 和△CEG 中,AE CE AEF CEG FE GE =⎧⎪∠=∠⎨⎪=⎩,∴△AFE ≌△CGE (SAS ).【点睛】本题考查了三角形的外角性质,平行线的性质的应用,全等三角形的判定,三角形内角和定理,能运用三角形外角性质进行推理是解此题的关键.24.(1)证明见详解;(2)BE=CM ,证明见详解;【分析】(1)首先根据点D 是AB 的中点,∠ACB=90° ,可得出∠ACD=∠BCD=45°,判断出△AEC ≌△CGB ,即可得出AE=CG ;(2)根据垂直的定义得出∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,再根据AC=BC ,∠ACM=∠CBE=45°,得出△BCE ≌△CAM ,进而证明出BE=CM ;【详解】(1)∵点D 是AB 的中点,AC=BC ,∠ACB=90°,∴ CD ⊥AB ,∠ACD=∠BCD=45°,∴ ∠CAD=∠CBD=45°,∴∠CAE=∠BCG ,又∵BF ⊥CE ,∴∠CBG+∠BCF=90°,又∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG ,在△AEC 和△CGB 中,⎧⎪⎨⎪⎩∠CAE=∠BCG AC=BC∠ACE=∠CBG ∴△AEC ≌△CGB(ASA),∴AE=CG ;(2)BE=CM ,∵CH ⊥HM ,CD ⊥ED ,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,∴∠CMA=∠BEC ,又∵∠ACM=∠CBE=45°,在△BCE 和△CAM 中,⎧⎪⎨⎪⎩∠BEC=∠CMA ∠CBE=∠ACM BC=AC , ∴△BCE ≌△CAM(AAS),∴ BE=CM .【点睛】本题主要考查了全等三角形的性质与判定,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS )和全等三角形的性质是解题的关键;25.见解析【分析】通过角平分线上点的性质、D 为BC 中点、DE ⊥AB 、DF ⊥AC 证明出BDE CDF ≌,从而证明∠B =∠C .【详解】∵AD 是AD 是∠BAC 的角平分线,DE ⊥AB ,DF ⊥AC ,∴DE =DF ,∵D 是BC 的中点,∴BD =CD∵△BDE 与△CDF 是直角三角形∴BDE CDF ≌∴∠B =∠C .【点睛】 本题考查了全等三角形的判定和性质以及角平分线上点的性质,正确证明全等三角形并得出各角之间的关系是本题的关键.26.(1)见解析;(2)见解析;(3)60°【分析】(1)推出同旁内角互补即可(2)如图,过点M 作//MR AB ,利用平行线性质推出////AB CD MR .得GMR AGM ∠=∠,HMR CHM ∠=∠.利用角的和M GMR HMR ∠=∠+∠代换即可.(3)如图,令2AGM α∠=,CHM β∠=,由N AGM ∠=∠推得2N α∠=,2M αβ∠=+,由射线GH 是BGM ∠的平分线,推得1902FGM BGM α∠=∠=︒-, 则90AGH AGM FGM α∠=∠+∠=︒+,由12M N FGN ∠=∠+∠,求出2FGN β∠=,过点N 作//HT GN ,由平行线的性质22GHM MHT GHT αβ∠=∠+∠=+,求出∠CHG 23αβ=+,利用//AB CD 的性质180AGH CHG ∠+∠=︒,即9023180ααβ︒+++=︒,求出30αβ+=︒,再求()260MHG αβ∠=+=︒即可.【详解】(1)证明:如图,∵180AGE DHE ∠+∠=︒,AGE BGF ∠=∠.∴180BGF DHE ∠+∠=︒,∴//AB CD .(2)证明:如图,过点M 作//MR AB ,又∵//AB CD ,∴////AB CD MR .∴GMR AGM ∠=∠,HMR CHM ∠=∠.∴M GMR HMR AGM CHM ∠=∠+∠=∠+∠;(3)解:如图,令2AGM α∠=,CHM β∠=,∵N AGM ∠=∠则2N α∠=,2M αβ∠=+,∵射线GH 是BGM ∠的平分线, ∴()111809022FGM BGM AGM α∠=∠=︒-∠=︒-, ∴29090AGH AGM FGM ααα∠=∠+∠=+︒-=︒+,∵12M N FGN ∠=∠+∠, ∴1222FGN αβα+=+∠, ∴2FGN β∠=,过点N 作//HT GN ,则2MHT N α∠=∠=,2GHT FGN β∠=∠=,∴22GHM MHT GHT αβ∠=∠+∠=+,∴CHG CHM MHT GHT ∠=∠+∠+∠2223βαβαβ=++=+,∵//AB CD ,∴180AGH CHG ∠+∠=︒,∴9023180ααβ︒+++=︒,∴30αβ+=︒,∴()260MHG αβ∠=+=︒.【点睛】本题主要考查平行线的性质, 角平分线的定义,解决问题的关键是作平行线构造内错角,和同位角,利用两直线平行,内错角相等,同位角相等来计算是解题关键.。

深圳华文学校八年级数学上册第一单元《三角形》检测卷(答案解析)

深圳华文学校八年级数学上册第一单元《三角形》检测卷(答案解析)

一、选择题1.如图,下列结论中正确的是( )A .12A ∠>∠>∠B .12A ∠>∠>∠C .21A ∠>∠>∠D .21A ∠>∠>∠ 2.已知实数x 、y 满足|x -4|+8y -=0,则以x 、y 的值为两边长的等腰三角形周长是( )A .20或16B .20C .16D .183.将一副直角三角板如图放置,使两直角重合DFB ∠的度数为( )A .145︒B .155︒C .165︒D .175︒ 4.将一副三角板和一张对边平行的纸条按图中方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则1∠的度数是( )A .10°B .15°C .20°D .25° 5.若一个三角形的三边长分别为3,7,x ,则x 的值可能是( )A .6B .3C .2D .11 6.如图,在ABC 中,B C ∠=∠,D 为BC 边上的一点,点E 在AC 边上,ADE AED ∠=∠,若10CDE ∠=︒,则BAD ∠的度数为( )A .20°B .15°C .10°D .30°7.下列命题是真命题的个数为( )①两条直线被第三条直线所截,内错角相等.②三角形的内角和是180°.③在同一平面内平行于同一条直线的两条直线平行.④相等的角是对顶角.⑤两点之间,线段最短.A .2B .3C .4D .58.若一个多边形的每个内角都等于160°,则这个多边形的边数是( )A .18B .19C .20D .219.如图,在ABC 中,AD 是角平分线,AE 是高,已知2BAC B ∠=∠,2B DAE ∠=∠,那么C ∠的度数为( )A .72°B .75°C .70°D .60°10.将一个直角三角板和一把直尺如图放置,如果∠α=47°,则∠β的度数是()A .43°B .47°C .30°D .60°11.如图,直线//,65,30AB CD A E ∠=︒∠=︒,则C ∠等于( )A .30°B .35°C .40°D .45°12.以下列各组线段为边,能组成三角形的是( )A .1,2,3B .2,3,4C .2,5,8D .6,3,3二、填空题13.如图,若∠CGE=α,则∠A+∠B+∠C+∠D+∠E+∠F=____.14.如图,在ABC 中,点D 、E 、F 分别是边BC 、AD 、CE 上的中点,则6ABC S =,则BEF S =△______.15.如图,则∠A+∠B+∠C+∠D+∠E+∠F+∠G =_____.16.如图,△ABC 的面积为1,分别倍长(延长一倍)AB ,BC ,CA 得到△A 1B 1C 1,再分别倍长A 1B 1,B 1C 1,C 1A 1得到△A 2B 2C 2.…按此规律,倍长2020次后得到的△A 2020B 2020C 2020的面积为_____.17.如图,ABC 中,40A ∠=︒,72B ∠=︒,CE 平分ACB ∠,CD AB ⊥于D ,DF CE ⊥交CE 于F ,则CDF ∠=______.18.如图,AD 、AE 分别是ABC 的高和角平分线,且76B ∠=︒,36C ∠=︒,则DAE ∠的度数为_________.19.如图,∠BAK +∠B +∠C +∠CDE +∠E +∠F +∠MGN +∠H +∠K =________.20.如图,已知ABC 的角平分线BD ,CE 相交于点O ,∠A=60°,则∠BOC=__________.三、解答题21.已知:在RT △ABC 中,∠ACB ═90°,CD ⊥AB ,AE 是∠CAB 的角平分线,AE 与CD 交于点F .(1)如图1,求证:∠CEF =∠CFE .(2)如图2,过点E 作EG ⊥AB 于点G ,请直接写出图中与∠CAE 互余的所有角.22.如图,在ABC 中,AD 为高,AE 为BAC ∠的平分线,若28B ∠=︒,52ACD ∠=°,求EAD ∠的度数.23.如图1,已知ACD ∠是ABC 的一个外角,我们容易证明ACD A B ∠=∠+∠,即三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?尝试探究:(1)如图2,DBC ∠与ECB ∠分别为ABC 的两个外角,则DBC ECB ∠+∠_______180A ∠+︒(横线上填“>”、“<”或“=”).初步应用:(2)如图3,在ABC 纸片中剪去CED ,得到四边形ABDE ,1135∠=︒,则2C ∠-∠=_______.(3)解决问题:如图4,在ABC 中,BP 、CP 分别平分外角DBC ∠、ECB ∠,P ∠与A ∠有何数量关系?请尝试证明.(4)如图5,在四边形ABCD 中,BP 、CP 分别平分外角EBC ∠、FCB ∠,请利用上面的结论直接写出P ∠与A ∠、D ∠的数量关系.24.从7根长度都是1的牙签中选取部分或者全部来摆放三角形(牙签不可以折断),你能摆放出多少种形状不同的三角形(两个全等三角形视为一种三角形)?并请你一一写出每种三角形的三边长.25.如图,在ABC 中,点E 在AC 边上,连结BE ,过点E 作//DF BC ,交AB 与点D .若BE 平分ABC ∠,EC 平分BEF ∠.设AED β∠=.(1)当80β=︒时,求DEB ∠的度数.(2)试用含α的代数式表示β.(3)若=k βα(k 为常数),求α的度数(用含k 的代数式表示).26.如图,AD、AE分别是ABC的高和角平分线.(1)已知∠B=40°,∠C=60°,求∠DAE的度数;(2)设∠B=α,∠C=β(α<β),请用含α,β的代数式表示∠DAE,并证明.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】三角形的一个外角等于与它不相邻的两个内角的和,三角形的一个外角大于任何一个与它不相邻的内角.【详解】解:∵∠2是△BCD的外角,∴∠2>∠1,∵∠1是△ABC的外角,∴∠1>∠A,∠>∠>∠.∴21A故选D.【点睛】本题考查了三角形外角的性质,熟练掌握三角形外角的性质是解答本题的关键.2.B解析:B【分析】根据绝对值与二次根式的非负性即可求出x 与y 的值.由于没有说明x 与y 是腰长还是底边长,故需要分类讨论.【详解】由题意可知:x-4=0,y-8=0,∴x=4,y=8,当腰长为4,底边长为8时,∵4+4=8,∴不能围成三角形,当腰长为8,底边长为4时,∵4+8>8,∴能围成三角形,∴周长为:8+8+4=20,故选:B .【点睛】本题考查了算术平方根,以及三角形三边关系,解题的关键是正确理解非负性的意义,以及三角形三边关系,本题属于基础题型.3.C解析:C【分析】根据三角形的内角和定理可求45E ∠=︒,利用补角的定义可求120FBE ∠=︒,再根据三角形的一个外角等于与它不相邻的两个内角的和即可求出DFB ∠的度数【详解】解:在DEC ∆中∵90C ∠=︒,45CDE ∠=︒∴45E ∠=︒又∵60ABC ∠=︒∴120FBE ∠=︒由三角形的外角性质得DFB E FBE ∠=∠+∠45120=︒+︒165=︒故选:C【点睛】本题考查了三角形的内角和定理,互为补角的定义及三角形的外角性质,解题的关键是掌握三角形的外角性质4.B解析:B【分析】延长两三角板重合的边与直尺相交,根据两直线平行,内错角相等求出∠2,再利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:如图,由平行线的性质可得∠2=30°,∠1=∠3-∠2=45°-30°=15°.故选:B.【点睛】本题考查了平行线的性质及三角形外角的性质,三角板的知识,熟记平行线的性质,三角板的度数是解题的关键.5.A解析:A【分析】根据三角形的三边关系列出不等式,即可求出x的取值范围,得到答案.【详解】解:∵三角形的三边长分别为3,7,x,∴7-3<x<7+3,即4<x<10,四个选项中,A中,4<6<10,符合题意.故选:A.【点睛】本题主要考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.6.A解析:A【分析】先根据三角形外角的性质得出∠ADC=∠B+∠BAD,∠AED=∠C+∠EDC,再根据∠B=∠C,∠ADE=∠AED即可得出结论.【详解】解:∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD,∴∠ADE=∠ADC-∠CDE=∠B+∠BAD-∠CDE∵∠AED是△CDE的外角,∴∠AED=∠C+∠EDC,∵∠ADE=∠AED,∴∠B+∠BAD-∠CDE=∠C+∠EDC,∵∠B=∠C,∴∠BAD=2∠EDC ,∵10CDE ∠=︒∴∠BAD=20°;故选:A【点睛】本题考查的是三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.7.B解析:B【分析】首先判断所给命题的真假,再选出正确的选项.【详解】解:∵两条直线被第三条直线所截,两直线平行,内错角相等,∴①错误;∵三角形的内角和是180°,∴②正确;∵在同一平面内平行于同一条直线的两条直线平行,∴③正确;∵相等的角可以是对顶角,也可以是内错角、同位角等等,∴④错误;∵连接两点的所有连线中,线段最短,∴⑤正确;∴真命题为②③⑤,故选B .【点睛】本题考查命题的真假判断,根据所学知识判断一个命题条件成立的情况下,结论是否一定成立来判断命题是真命题还是假命题是解题关键.8.A解析:A【分析】设多边形的边数为n ,然后根据多边形的内角和公式(n−2)•180°列方程求解即可.【详解】设多边形的边数为n ,由题意得,(n−2)•180=160•n ,解得:n =18,故选:A .【点睛】本题考查了多边形内角和公式,熟记多边形的内角和公式是解题的关键.9.A解析:A【分析】利用角平分线的定义和三角形内角和定理,余角即可计算.【详解】由图可知DAE DAC EAC ∠=∠-∠,∵AD 是角平分线. ∴12DAC BAC ∠=∠, ∴12DAE BAC EAC ∠=∠-∠, ∵90EAC C ∠=︒-∠,∴1(90)2DAE BAC C ∠=∠-︒-∠ ∵2BAC B ∠=∠,2B DAE ∠=∠, ∴14(90)2DAE DAE C ∠=⨯∠-︒-∠, ∴90DAE C ∠=︒-∠∵180C B BAC ∠=︒-∠-∠, ∴18024C DAE DAE ∠=︒-∠-∠,∴1802(90)4(90)C C C ∠=︒-︒-∠-︒-∠,∴72C ∠=︒.故选:A .【点睛】本题主要考查了角平分线的定义和三角形的内角和定理以及余角.根据题意找到角之间的数量关系是解答本题的关键.10.A解析:A【分析】延长BC 交刻度尺的一边于D 点,利用平行线的性质,对顶角的性质,将已知角与所求角转化到Rt △CDE 中,利用内角和定理求解.【详解】如图,延长BC 交刻度尺的一边于D 点,∵AB ∥DE ,∴∠β=∠EDC ,又∵∠CED =∠α=47°,∠ECD =90°,∴∠β=∠EDC =90°﹣∠CED =90°﹣47°=43°.故选:A .【点睛】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键. 11.B解析:B【分析】根据平行线和三角形外角的性质即可求出C ∠的大小.【详解】如图,设AE 和CD 交于点F ,∵//AB CD ,∴65A DFE ∠=∠=︒(两直线平行同位角相等),∵DFE ∠是CEF △的外角,∴653035C DFE E ∠=∠-∠=︒-︒=︒.故选:B .【点睛】本题考查平行线和三角形外角的性质.熟练利用两个性质证明和求解是解答本题的关键. 12.B解析:B【分析】根据三角形的三边关系定理:两边之和大于第三边,即两条较短的边的长大于最长的边即可.【详解】A 、1+2=3,不能构成三角形, A 错误;B 、2+3=5>4可以构成三角形,B 正确;C 、2+5=7<8,不能构成三角形, C 错误;D 、3+3=6,不能构成三角形,D 错误.故答案选:B .【点睛】本题主要考查三角形的三边关系,比较简单,熟记三边关系定理是解决本题的关键.二、填空题13.2【分析】根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠A+∠B ∠D+∠E 再根据邻补角表示出∠CGF 然后利用三角形的内角和定理列式整理即可得解【详解】解:如图根据三角形的外角性质∠1=∠A解析:2【分析】根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠A+∠B,∠D+∠E,再根据邻补角表示出∠CGF,然后利用三角形的内角和定理列式整理即可得解.【详解】解:如图,根据三角形的外角性质,∠1=∠A+∠B,∠2=∠D+∠E,∵∠3=180°-∠CGE=180°-α,∴∠1+∠F+180°-α=180°,∴∠A+∠B+∠F=α,同理:∠2+∠C+180°-α=180°,∴∠D+∠E+∠C=α,∴∠A+∠B+∠C+∠D+∠E+∠F=2α.故答案为:2α【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,准确识图是解题的关键.14.【分析】利用三角形的中线把三角形分成面积相等的两部分解决问题即可【详解】解:∵BD=DC∴S△ABD=S△ADC=×6=3(cm2)∵AE=DE∴S△AEB=S△AEC=×3=(cm2)∴S△BEC解析:3 2【分析】利用三角形的中线把三角形分成面积相等的两部分解决问题即可.【详解】解:∵BD=DC,∴S△ABD=S△ADC=12×6=3(cm2),∵AE=DE,∴S△AEB=S△AEC=12×3=32(cm2),∴S△BEC=6-3=3(cm2),∵EF=FC ,∴S △BEF =12×3=32(cm 2), 故答案为32. 【点睛】本题考查三角形的面积,三角形的中线等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.540°【分析】连接GD 根据多边形的内角和定理可求解∠A+∠B+∠C+∠CDG+∠DGA =540°再利用三角形的内角和定理结合对顶角的性质可求得∠FGD+∠EDG =∠E+∠F 进而可求解【详解】解:连解析:540°【分析】连接GD ,根据多边形的内角和定理可求解∠A+∠B+∠C+∠CDG+∠DGA =540°,再利用三角形的内角和定理结合对顶角的性质可求得∠FGD+∠EDG =∠E+∠F ,进而可求解.【详解】解:连接GD ,∠A+∠B+∠C+∠CDG+∠DGA =(5﹣2)×180°=540°,∵∠1+∠FGD+∠EDG =180°,∠2+∠E+∠F =180°,∠1=∠2,∴∠FGD+∠EDG =∠E+∠F ,∴∠A+∠B+∠C+∠CDE+∠E+∠F+∠FGA =540°,故答案为540°.【点睛】本题主要考查多边形的内角和定理,三角形的内角和定理,掌握相关定理是解题的关键. 16.72020【分析】连接AB1BC1CA1根据等底等高的三角形面积相等可得=7S △ABC 由此即可解题【详解】连接AB1BC1CA1根据等底等高的三角形面积相等△A1BC △A1B1C △AB1C △AB1C解析:72020【分析】连接AB 1、BC 1、CA 1,根据等底等高的三角形面积相等,可得111A B C S △=7S △ABC ,由此即可解题.【详解】连接AB 1、BC 1、CA 1,根据等底等高的三角形面积相等,△A 1BC 、△A 1B 1C 、△AB 1C 、△AB 1C 1、△ABC 1、△A 1BC 1、△ABC 的面积都相等, 所以,111A B C S △=7S △ABC ,同理222A B C S △=7111A B C S △=72S △ABC ,依此类推,△A 2020B 2020C 2020的面积为=72020S △ABC ,∵△ABC 的面积为1,∴202020202020A S B C =72020.故答案为:72020.【点睛】本题考查了三角形的面积,根据等底等高的三角形的面积相等求出一次倍长后所得的三角形的面积等于原三角形的面积的7倍是解题的关键.17.74°【分析】先根据三角形的内角和定理求得∠ACB 的度数再根据CE 平分∠ACB 求得∠ACE 的度数则根据三角形的外角的性质就可求得∠CED =∠A+∠ACE 再结合CD ⊥ABDF ⊥CE 就可求解【详解】解:解析:74°【分析】先根据三角形的内角和定理求得∠ACB 的度数,再根据CE 平分∠ACB 求得∠ACE 的度数,则根据三角形的外角的性质就可求得∠CED =∠A +∠ACE ,再结合CD ⊥AB ,DF ⊥CE 就可求解.【详解】解:∵∠A =40°,∠B =72°,∴∠ACB =180°﹣40°﹣72°=68°,∵CE 平分∠ACB ,∴∠ACE =∠BCE =34°,∴∠CED =∠A +∠ACE =74°,∵CD ⊥AB ,DF ⊥CE ,∴∠CDF +∠ECD =∠ECD +∠CED =90°,∴∠CDF =∠CED =74°,故答案为:74°.【点睛】此题主要考查了三角形的内角和定理、三角形的外角的性质、以及角平分线定义和垂直定义.18.20°【分析】根据高线的定义以及角平分线的定义分别得出∠BAD=14°∠CAD=54°进而得出∠DAE 的度数进而得出答案【详解】∵ADAE 分别是△ABC 的高和角平分线且∠B=76°∠C=36°∴∠B解析:20°【分析】根据高线的定义以及角平分线的定义分别得出∠BAD=14°,∠CAD=54°,进而得出∠DAE 的度数,进而得出答案.【详解】∵AD ,AE 分别是△ABC 的高和角平分线,且∠B=76°,∠C=36°,∴∠BAC=180763668︒-︒-︒=︒,∠BAD=9076︒-︒=14°,∠CAD=9036︒-︒=54°,∴∠BAE=12∠BAC=12×68°=34°, ∴∠DAE=34°-14°=20°.故答案为:20°.【点睛】 本题主要考查了高线以及角平分线的性质,得出∠BAD 和∠CAD 的度数是解题关键. 19.540°【分析】连接AGGD 先根据∠H+∠K=∠HGA+∠KAG ∠E+∠F=∠EDG+∠FGD 最后根据多边形的面积公式解答即可【详解】解:连接AGGD ∵∠H+∠K+∠HMK=180°∠HGA+∠KA解析:540°【分析】连接AG 、GD ,先根据∠H+∠K=∠HGA+∠KAG, ∠E+∠F=∠EDG+∠FGD,最后根据多边形的面积公式解答即可.【详解】解:连接AG 、GD ,∵∠H+∠K+∠HMK=180°,∠HGA+∠KAG +∠AMG=180°,∠HMK=∠AMG∴∠H+∠K=∠HGA+∠KAG ;同理:∠E+∠F=∠EDG+∠FGD∴∠BAK +∠B +∠C +∠CDE +∠E +∠F +∠MGN +∠H +∠K=∠BAK +∠B +∠C +∠CDE +∠EDG+∠FGD +∠MGN +∠HGA+∠KAG=五边形的内角和=(5-2)×180°=540°故答案为540°.【点睛】本题考查了三角形内角和定理和多边形内角和定理,根据题意正确作出辅助线成为解答本题的关键.20.【分析】根据三角形的内角和定理角平分线的定义即可得【详解】BDCE 是的角平分线故答案为:【点睛】本题考查了三角形的内角和定理角平分线的定义熟练掌握角平分线的定义是解题关键解析:120︒【分析】根据三角形的内角和定理、角平分线的定义即可得.【详解】60A ∠=︒,180120ABC ACB A ∴∠+∠=︒-∠=︒,BD 、CE 是ABC 的角平分线,11,22OBC ABC OCB ACB ∴∠=∠∠=∠, ()1602OBC OCB ABC ACB +=∠+∠∴=∠∠︒, ()180********OBC OCB BOC ∠=︒-︒∴∠+∠=︒=-︒,故答案为:120︒.【点睛】本题考查了三角形的内角和定理、角平分线的定义,熟练掌握角平分线的定义是解题关键.三、解答题21.(1)见解析;(2)图中与∠CAE 互余的角有∠CEA ,∠GEA ,∠CFE ,∠DFA .【分析】(1)根据角平分线的定义可得∠DAF =∠CAE ,再根据等角的余角相等、对顶角相等,可得∠CEF =∠CFE ;(2)根据互余的两个角的和为90°求解即可.【详解】(1)证明:∵∠ACB ═90°,CD ⊥AB ,∴∠DAF +∠AFD =90°,∠CAE +∠CEF =90°,又∵AE 是∠CAB 的角平分线,∴∠DAF =∠CAE ,∴∠AFD =∠CEF ,又∵∠AFD =∠CFE ,∴∠CEF =∠CFE ;(2)∵EG ⊥AB 于点G ,∴∠DAF +∠GEA =90°,由(1)可知∠DAF =∠CAE ,∠CAE +∠CEF =90°,∠CEF =∠CFE =∠DFA ,∴图中与∠CAE 互余的角有∠CEA ,∠GEA ,∠CFE ,∠DFA .【点评】本题考查了角平分线的定义和余角的定义,解决本题的关键是熟记余角的定义. 22.50°【分析】由AD 为高,28B ∠=︒,求出52ACD ∠=°,利用外角性质求出24BAC ACD B ∠∠∠=-=︒,根据AE 是角平分线,求出1122BAE BAC ∠∠==︒,即可求出EAD ∠的度数.【详解】解:∵AD 为高,28B ∠=︒,∴62BAD ∠=︒.∵52ACD ∠=°,∴24BAC ACD B ∠∠∠=-=︒.∵AE 是角平分线, ∴1122BAE BAC ∠∠==︒, ∴50EAD BAD BAE ∠=∠-∠=︒.【点睛】此题考查三角形的角平分线的性质,直角三角形两锐角互余的性质,三角形的外角等于与它不相邻的两个内角的和.23.(1)= (2) 45° (3)1902P A ∠=︒-∠;证明见解析 (4)1118022P A D ∠=︒-∠-∠ 【分析】(1)根据三角形外角的性质得:∠DBC =∠A +∠ACB ,∠ECB =∠A +∠ABC ,两式相加可得结论;(2)利用(1)的结论:∵∠2+∠1−∠C =180°,将∠1=135°代入可得结论;(3)根据角平分线的定义得:∠CBP=12∠DBC,∠BCP=12∠ECB,根据三角形内角和可得:∠P的式子,代入(1)中得的结论:∠DBC+∠ECB=180°+∠A,可得:∠P=90°−12∠A;(4)根据平角的定义得:∠EBC=180°−∠1,∠FCB=180°−∠2,由角平分线得:∠3=1 2∠EBC=90°−12∠1,∠4=12∠FCB=90°−12∠2,相加可得:∠3+∠4=180°−12(∠1+∠2),再由四边形的内角和与三角形的内角和可得结论.【详解】(1)∠DBC+∠ECB−∠A=180°,理由是:∵∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,∴∠DBC+∠ECB=2∠A+∠ACB+∠ABC=180°+∠A,∴∠DBC+∠ECB=∠A+180°,故答案为:=;(2)∠2−∠C=45°.理由是:∵∠2+∠1−∠C=180°,∠1=135°,∴∠2−∠C+135°=180°,∴∠2−∠C=45°.故答案为:45°;(3)∠P=90°−12∠A,理由是:∵BP平分∠DBC,CP平分∠ECB,∴∠CBP=12∠DBC,∠BCP=12∠ECB,∵△BPC中,∠P=180°−∠CBP−∠BCP=180°−12(∠DBC+∠ECB),∵∠DBC+∠ECB=180°+∠A,∴∠P=180°−12(180°+∠A)=90°−12∠A;(4)∠P=180°−12(∠A+∠D).理由是:如图:∵∠EBC=180°−∠1,∠FCB=180°−∠2,∵BP平分∠EBC,CP平分∠FCB,∴∠3=∠EBC=90°−12∠1,∠4=12∠FCB=90°−12∠2,∴∠3+∠4=180°−12(∠1+∠2),∵四边形ABCD中,∠1+∠2=360°−(∠A+∠D),又∵△PBC中,∠P=180°−(∠3+∠4)=12(∠1+∠2),∴∠P=12×[360°−(∠A+∠D)]=180°−12(∠A+∠D).【点睛】本题是四边形和三角形的综合问题,考查了三角形和四边形的内角和定理、三角形外角的性质、角平分线的定义等知识,难度适中,熟练掌握三角形外角的性质是关键.24.能摆放出5种形状不同的三角形,它们的三边长分别是1,1,1、1,2,2、2,2,2、1,3,3、2,2,3.【分析】根据三角形的三边关系定理逐一摆放出来即可.【详解】由题意,根据选取牙签的根数,分以下五种情况:(1)当选取3根牙签时,三边长只能是1,1,1,满足三角形的三边关系定理,能摆出三角形;(2)当选取4根牙签时,三边长只能是1,1,2,不满足三角形的三边关系定理,不能摆出三角形;(3)当选取5根牙签时,三边长可以是1,1,3或1,2,2,其中,1,1,3不满足三角形的三边关系定理,不能摆出三角形,1,2,2满足三角形的三边关系定理,能摆出三角形;(4)当选取6根牙签时,三边长可以是1,1,4或1,2,3或2,2,2,其中,1,1,4和1,2,3均不满足三角形的三边关系定理,均不能摆出三角形,2,2,2满足三角形的三边关系定理,能摆出三角形;(5)当选取7根牙签时,三边长可以是1,1,5或1,2,4或1,3,3或2,2,3,其中,1,1,5和1,2,4均不满足三角形的三边关系定理,均不能摆出三角形,1,3,3和2,2,3均满足三角形的三边关系定理,均能摆出三角形;综上,能摆放出5种形状不同的三角形,它们的三边长分别是1,1,1、1,2,2、2,2,2、1,3,3、2,2,3.【点睛】本题考查了三角形的三边关系定理的应用,依据题意,正确分情况讨论是解题关键.25.(1)20︒;(2)1=904βα︒-;(3)360=41kα︒+.【分析】(1)根据对顶角的性质得到∠CEF =∠AED =80°,根据角平分线的定义即可得到结论; (2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据题意列方程即可得到结论.【详解】解:(1)∵β=80°,∴∠CEF =∠AED =80°,∵EC 平分∠BEF ,∴∠BEC =∠CEF =80°,∴∠DEB =180°﹣80°﹣80°=20°;(2)∵DF ∥BC ,∴∠ADE =∠ABC =α,∵BE 平分∠ABC ,∴∠DEB =∠EBC =12α,∵EC 平分∠BEF ,∴β=∠CEF =12(180°﹣12α) =90°﹣14α; (3)∵β=k α, ∴90°﹣14α=k α, 解得:α=36041k ︒+. 【点睛】本题考查了三角形的内角和定理,平行线的性质,熟练掌握三角形的内角和定理是解题的关键.26.(1)10°;(2)12DAE,证明见解析. 【分析】(1)根据三角形的内角和等于180︒列式求出BAC ∠,再根据角平分线的定义求出BAE ∠,根据直角三角形两锐角互余求出BAD ∠,然后根据DAE BAD BAE ∠=∠-∠代入数据计算即可得解;(2)根据三角形的内角和等于180︒列式表示出BAC ∠,再根据角平分线的定义求出BAE ∠,根据直角三角形两锐角互余求出BAD ∠,然后根据DAE BAD BAE ∠=∠-∠整理即可得解.【详解】解:(1)40B ∠=︒,60C ∠=°,180180406080BAC B C ∴∠=︒-∠-∠=︒-︒-︒=︒,AE ∵是角平分线, 11804022BAE BAC ,AD 是高,90904050BADB , 504010DAE BAD BAE ; (2)1()2.B α∠=,()C βαβ∠=<,180()BAC ,AE ∵是角平分线, 1190()22BAE BAC ,AD 是高,9090BADB , 1190[90()]()22DAE BAD BAE .【点睛】本题考查了三角形的内角和定理,角平分线的定义,直角三角形两锐角互余的性质,熟练掌握定理与概念并准确识图理清图中各角度之间的关系是解题的关键.。

深圳华文学校数学三角形填空选择单元综合测试(Word版 含答案)

深圳华文学校数学三角形填空选择单元综合测试(Word版 含答案)

深圳华文学校数学三角形填空选择单元综合测试(Word版含答案)一、八年级数学三角形填空题(难)1.如图,△ABC中,点D、E、F分别在三边上,E是AC的中点,AD、BE、CF交于一点G,BD=2DC,S△GEC=3,S△GDC=4,则△ABC的面积是_____.【答案】30【解析】【分析】由于BD=2DC,那么结合三角形面积公式可得S△ABD=2S△ACD,而S△ABC=S△ABD+S△ACD,可得出S△ABC=3S△ACD,而E是AC中点,故有S△AGE=S△CGE,于是可求S△ACD,从而易求S△ABC.【详解】解:∵BD=2DC,∴S△ABD=2S△ACD,∴S△ABC=3S△ACD.∵E是AC的中点,∴S△AGE=S△CGE.又∵S△GEC=3,S△GDC=4,∴S△ACD=S△AGE+S△CGE+S△CGD=3+3+4=10,∴S△ABC=3S△ACD=3×10=30.故答案为30.【点睛】本题考查了三角形的面积公式、三角形之间的面积加减计算.注意同底等高的三角形面积相等,面积相等、同高的三角形底相等.2.如图,在平面直角坐标系xOy中,点A、B分别在x轴的正半轴、y轴的正半轴上移动,点M在第二象限,且MA平分∠BAO,做射线MB,若∠1=∠2,则∠M的度数是_______。

【答案】45︒【解析】【分析】根据三角形内角与外角的关系可得2M MAB ∠∠∠=+由角平分线的性质可得MAB MAO ∠∠=根据三角形内角和定理可得OBA OAB BOA 180∠∠∠++=︒易得∠M 的度数。

【详解】在ABM 中,2∠是ABM 的外角∴2M MAB ∠∠∠=+由三角形内角和定理可得OBA OAB BOA 180∠∠∠++=︒∵BOA 90∠=︒∴OBA OAB 90∠∠+=︒∵MA 平分BAO ∠∴BAO 2MAB ∠∠=由三角形内角与外角的关系可得12BAO BOA 90BAO ∠∠∠∠∠+=+=︒+ ∵12∠∠=∴2290BAO ∠∠=︒+又∵2M MAB ∠∠∠=+∴222M 2MAB 2M BAO ∠∠∠∠∠=+=+∴90BAO 2M BAO ∠∠∠︒+=+2M 90∠=︒M 45∠=︒【点睛】本题考查三角形外角的性质,即三角形的外角等于与之不相邻的两个内角的和。

深圳深圳菁华中英文实验中学数学轴对称填空选择单元测试题(Word版 含解析)

深圳深圳菁华中英文实验中学数学轴对称填空选择单元测试题(Word版 含解析)

深圳深圳菁华中英文实验中学数学轴对称填空选择单元测试题(Word版含解析)一、八年级数学全等三角形填空题(难)1.如图,AD⊥BC 于 D,且 DC=AB+BD,若∠BAC=108°,则∠C 的度数是______度.【答案】24【解析】【分析】在DC上取DE=DB.连接AE,在Rt△ABD和Rt△AED中,BD=ED,AD=AD.证明△ABD≌△AED即可求解.【详解】如图,在DC上取DE=DB,连接AE.在Rt△ABD和Rt△AED中,BD EDADB ADEAD AD=⎧⎪∠=∠⎨⎪=⎩∴△ABD≌△AED(SAS).∴AB=AE,∠B=∠AED.又∵CD=AB+BD,CD=DE+EC∴EC=AB∴EC=AE,∴∠C=∠CAE∴∠B=∠AED=2∠C又∵∠B+∠C=180°-∠BAC=72°∴∠C=24°,故答案为:24.【点睛】本题考查了全等三角形的判定与性质及三角形内角和定理,属于基础图,关键是巧妙作出辅助线.2.如图,△ABC的三边AB、BC、CA的长分别为30、40、15,点P是三条角平分线的交点,将△ABC 分成三个三角形,则APB S ∆︰BPC S ∆︰CPA S ∆等于____.【答案】6:8:3【解析】【分析】由角平分线性质可知,点P 到三角形三边的距离相等,即三个三角形的AB 、BC 、CA 边上的高相等,利用面积公式即可求解.【详解】解:过点P 作PD ⊥BC 于D ,PE ⊥CA 于E ,PF ⊥AB 于F∵P 是三条角平分线的交点∴PD=PE=PF∵AB=30,BC=40,CA=15∴APB S ∆︰BPC S ∆︰CPA S ∆=30∶40∶15=6∶8∶3故答案为6∶8∶3.【点睛】本题主要考查了角平分线的性质和三角形面积的求法. 角平分线上的点到两边的距离相等. 难度不大,作辅助线是关键.3.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.【答案】(-4,2)或(-4,3)【解析】【分析】【详解】把点C向下平移1个单位得到点D(4,2),这时△ABD与△ABC全等,分别作点C,D关于y轴的对称点(-4,3)和(-4,2),所得到的△ABD与△ABC全等.故答案为(-4,2)或(-4,3).4.如图,已知点I是△ABC的角平分线的交点.若AB+BI=AC,设∠BAC=α,则∠AIB=______(用含α的式子表示)【答案】1206α︒-【解析】【分析】在AC上截取AD=AB,易证△ABI≌△ADI,所以BI=DI,由AB+BI=AC,可得DI=DC,设∠DCI=β,则∠ADI=∠ABI=2β,然后用三角形内角和可推出β与α的关系,进而求得∠AIB.【详解】解:如图所示,在AC上截取AD=AB,连接DI,点I是△ABC的角平分线的交点所以有∠BAI=∠DAI,∠ABI=∠CBI,∠ACI=∠BCI,在△ABI和△ADI中,AB=ADBAI=DAIAI=AI⎧⎪∠∠⎨⎪⎩∴△ABI≌△ADI(SAS)∴DI=BI又∵AB+BI=AC,AB+DC=AC∴DI=DC∴∠DCI=∠DIC设∠DCI=∠DIC=β则∠ABI=∠ADI=2∠DCI=2β在△ABC 中,∠BAC+2∠ABI+2∠DCI=180°,即42180ββ︒++=a ,∴180=3066β︒︒=--a a 在△ABI 中,180︒∠=-∠-∠AIB BAI ABI121802αβ︒=-- 1=23160028αα︒︒⎛⎫--- ⎪⎝⎭ =1206α︒-【点睛】本题考查全等三角形的判定和性质,以及三角形角度计算,利用截长补短构造全等三角形是解题的关键.5.如图,已知△ABC 为等边三角形,点D ,E 分别在边BC ,AC 上,且BD =CE ,若BE 交AD 于点F ,则∠AFE 的大小为_____(度).【答案】60【解析】【分析】根据△ABC 为等边三角形得到AB =BC ,∠ABD =∠BCE =60°,再利用BD =CE 证得△ABD ≌△BCE ,得到∠BAD =∠CBE ,再利用内角和外角的关系即可得到∠AFE=60°.【详解】∵△ABC 为等边三角形,点D ,E 分别在边BC ,AC 上,且BD =CE ,∴AB =BC ,∠ABD =∠BCE =60°,在△ABD 和△BCE 中,AB BC ABD BCE BD CE =⎧⎪∠∠⎨⎪=⎩=,∴△ABD ≌△BCE (SAS ),∴∠BAD =∠CBE ,∵∠ABF+∠CBE=∠ABC=60°,∴∠ABF+∠BAD=60°,∵∠AFE=∠ABF+∠BAD,∴∠AFE=60°,故答案为:60.【点睛】此题考查三角形全等的判定定理及性质定理,题中证明三角形全等后得到∠BAD=∠CBE,再利用外角和内角的关系求∠AFE是解题的关键.6.如图,已知点(,0)A a在x轴正半轴上,点(0,)B b在y轴的正半轴上,ABC∆为等腰直角三角形,D为斜边BC上的中点.若2OD=,则a b+=________.【答案】2【解析】【分析】根据等腰直角三角形的性质,可得AP与BC的关系,根据垂线的性质,可得答案【详解】如图:作CP⊥x轴于点P,由余角的性质,得∠OBA=∠PAC,在Rt△OBA和Rt△PAC中,OBA PACAOB CPABA AC∠∠⎧⎪∠∠⎨⎪⎩===,Rt△OBA≌Rt△PAC(AAS),∴AP=OB=b,PC=OA=a.由线段的和差,得OP=OA+AP=a+b,即C点坐标是(a+b,a),由B (0,b ),C (a+b ,a ),D 是BC 的中点,得D (2a b +,2a b +), ∴OD=22a b +() ∴22a b +()=2, ∴a+b=2.故答案为2.【点睛】本题解题主要①利用了等腰直角三角形的性质;②利用了全等三角形的判定与性质;③利用了线段中点的性质.7.如图,C 为线段AE 上一动点(不与A . E 重合),在AE 同侧分别作等边△ABC 和等边△CDE,AD 与BE 交于点O,AD 与BC 交于点P ,BE 与CD 交于点Q,连接PQ,以下五个结论:①AD=BE;②PQ ∥AE;③CP=CQ;④BO=OE;⑤∠AOB=60°,一定成立的有________(填序号)【答案】①②③⑤【解析】【分析】①根据全等三角形的判定方法,证出△ACD ≌△BCE ,即可得出AD=BE .③先证明△ACP ≌△BCQ ,即可判断出CP=CQ ,③正确;②根据∠PCQ=60°,可得△PCQ 为等边三角形,证出∠PQC=∠DCE=60°,得出PQ ∥AE ,②正确.④没有条件证出BO=OE ,得出④错误;⑤∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,⑤正确;即可得出结论.【详解】解:∵△ABC 和△CDE 都是等边三角形,∴AC=BC ,CD=CE ,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD ,∴∠ACD=∠BCE ,在△ACD 和△BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ),∴AD=BE ,结论①正确.∵△ACD≌△BCE,∴∠CAD=∠CBE,又∵∠ACB=∠DCE=60°,∴∠BCD=180°-60°-60°=60°,∴∠ACP=∠BCQ=60°,在△ACP和△BCQ中,ACP BCQCAP CBQ AC BC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACP≌△BCQ(AAS),∴CP=CQ,结论③正确;又∵∠PCQ=60°,∴△PCQ为等边三角形,∴∠PQC=∠DCE=60°,∴PQ∥AE,结论②正确.∵△ACD≌△BCE,∴∠ADC=∠AEO,∴∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,∴结论⑤正确.没有条件证出BO=OE,④错误;综上,可得正确的结论有4个:①②③⑤.故答案是:①②③⑤.【点睛】此题是三角形综合题目,考查了全等三角形的判定和性质的应用、等边三角形的性质和应用、平行线的判定;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.8.如图,平面直角坐标系中,A(0,3),B(4,0),BC∥y轴,且BC<OA,第一象限内有一点P(a,2a-3),若使△ACP是以AC斜边的等腰直角三角形,则点P的坐标为_______________.【答案】(103,113).【解析】【详解】解:∵点P的坐标为(a,2a-3),∴点P在直线y=2x-3上,如图所示,当点P在AC的上方时,过P作y轴的垂线,垂足为D,交BC的延长线于E,则∠E=∠ADP=90°,∵△ACP是以AC为斜边的等腰直角三角形,∴AP=PC,∠APD=∠PCE,∴△APD≌△PCE,∴PE=AD,又∵OD=2a-3,AO=3,∴AD=2a-6=PE,∵DE=OB=4,DP=a,又∵DP+PE=DE,∴a+(2a-6)=4,解得a=10 3∴2a-3=11 3,∴P(103,113);当点P在AC下方时,过P作y轴的垂线,垂足为D,交BC于E,a=2,此时,CE=2,BE=2,即BC=2+2=4>AO,不合题意;综上所述,点P的坐标为P(103,113)故答案为P(103,113).9.如图:已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC边上的中点,两边PE,PF分别交AB,AC于点E,F,给出以下四个结论:①AE=CF;②EF=AP;③2S四边形AEPF=S△ABC;④当∠EPF在△ABC内绕顶点P旋转时(点E不与A,B重合)有BE+CF=EF;上述结论中始终正确的序号有__________.【答案】①③【解析】【分析】根据题意,容易证明△AEP≌△CFP,然后能推理得到①③都是正确.【详解】∵AB=AC,∠BAC=90°,点P是BC的中点,∴∠EAP=12∠BAC=45°,AP=12BC=CP.①在△AEP与△CFP中,∵∠EAP=∠C=45°,AP=CP,∠APE=∠CPF=90°-∠APF,∴△AEP≌△CFP,∴AE=CF.正确;②只有当F在AC中点时EF=AP,故不能得出EF=AP,错误;③∵△AEP≌△CFP,同理可证△APF≌△BPE.∴S四边形AEPF=S△AEP+S△APF=S△CPF+S△BPE=12S△ABC,即2S四边形AEPF=S△ABC;正确;④根据等腰直角三角形的性质,EF=2PE,所以,EF随着点E的变化而变化,只有当点E为AB的中点时,EF=2PE=AP,在其它位置时EF≠AP,故④错误;故答案为:①③.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,证得△AEP和△CFP 全等是解题的关键,也是本题的突破点.10.如图,要在河流的南边,公路的左侧M区处建一个工厂,位置选在到河流和公路的距离相等,并且到河流与公路交叉A处的距离为1cm(指图上距离),则图中工厂的位置应在_____.【答案】∠BAC的平分线上,与A相距1cm的地方.【解析】【分析】由已知条件及要求满足的条件,根据角平分线的性质作答,注意距A1cm处.【详解】工厂的位置应在∠BAC的平分线上,与A相距1cm的地方;理由:角平分线上的点到角两边的距离相等.【点睛】此题考查角平分线的性质:角平分线上的任意一点到角的两边距离相等.作图题一定要找到相关的知识为依托,同时满足多个要求时,要逐个满足.二、八年级数学全等三角形选择题(难)11.如图,点P是AB上任意一点,∠ABC=∠ABD,还应补充一个条件,才能推出△APC≌△APD.从下列条件中补充一个条件,不一定能推出△APC≌△APD的是( )A.BC=BD;B.AC=AD;C.∠ACB=∠ADB;D.∠CAB=∠DAB【答案】B【解析】根据题意,∠ABC=∠ABD,AB是公共边,结合选项,逐个验证得出:A、补充BC=BD,先证出△BPC≌△BPD,后能推出△APC≌△APD,故正确;B、补充AC=AD,不能推出△APC≌△APD,故错误;C、补充∠ACB=∠ADB,先证出△ABC≌△ABD,后能推出△APC≌△APD,故正确;D、补充∠CAB=∠DAB,先证出△ABC≌△ABD,后能推出△APC≌△APD,故正确.故选B.点睛:本题考查了三角形全等判定,三角形全等的判定定理:有AAS,SSS,ASA,SAS.注意SSA是不能证明三角形全等的,做题时要逐个验证,排除错误的选项.12.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是( )①AD平分∠BAC;②作图依据是S.A.S;③∠ADC=60°;④点D在AB的垂直平分线上A.1个B.2个C.3个D.4个【答案】C【解析】①根据作图的过程可以判定AD是∠BAC的∠平分线;②根据作图的过程可以判定出AD的依据;③利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质求∠ADC的度数;④利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三合一”的性质可以证明点在AB的中垂线上.解:如图所示,①根据作图的过程可知,AD是∠BAC的∠平分线;故①正确;②根据作图的过程可知,作出AD的依据是SSS;故②错误;③∵在△ABC中,∠C=90°,∠B=30°,∴∠CBA=60°.又∵AD是∠BAC的平分线,∴∠1=∠2=12∠CAB=30°,∴∠3=90°-∠2=60°,即∠ADC=60°.故③正确;④∵∠1=∠B=30°,∴AD=BD,∴点D在AB的中垂线上.故④正确;故选C.“点睛”此题主要考查的是作图-基本作图,涉及到角平分线的作法以及垂直平分线的性质,熟练根据角平分线的性质得出∠ADC的度数是解题的关键.13.如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下面结论:①△ABD≌△EBC;②AC=2CD;③AD=AE=EC;④∠BCE+∠BCD=180°.其中正确的是()A.①②③B.①②④C.①③④D.②③④【答案】C【解析】已知BD为△ABC的角平分线,根据角平分线的定义可得∠ABD=∠CBD,在△AB D和△EB C 中,BD=BC,∠ABD=∠CBD,BE=BA,由SAS可判定△ABD≌△EBC,即可得①正确;根据已知条件,无法证明AC=2CD,②错误;已知BD为△ABC的角平分线,BD=BC,BE=BA,可得∠BCD=∠BDC=∠BAE=∠BEA,再由∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,可得∠DCE=∠DAE,所以AE=EC;再由△ABD≌△EBC,可得AD=EC,所以AD=AE=EC,即③正确;由△ABD≌△EBC,可得∠BCE=∠BDA,所以∠BCE+∠BCD=∠BDA+∠BDC=180°,④正确.故选C.点睛:本题考查了全等三角形的判定及性质、等腰三角形的的性质、三角形外角的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等性质是解题的关键.14.如图,BD是∠ABC的角平分线,AD⊥AB,AD=3,BC=5,则△BCD的面积为()A.7.5 B.8 C.10D.15【答案】A【解析】作DE⊥BC于E,根据角平分线的性质,由BD是∠ABC的角平分线,AD⊥AB,DE⊥BC,求出DE=DA=3,根据三角形面积公式计算S△BCD=12×BC×DE=7.5,故选:A.15.如图,等腰直角△ABC中,∠BAC=90 ,AD⊥BC于D,∠ABC的平分线分别交AC、AD 于E、F两点,M为EF的中点,延长AM交BC于点N,连接DM.下列结论:①AE=AF;②AM⊥EF;③AF=DF;④DF=DN,其中正确的结论有()A.1个B.2个C.3个D.4个【答案】C【解析】试题解析:∵∠BAC=90°,AC=AB,AD⊥BC,∴∠ABC=∠C=45°,AD=BD=CD,∠ADN=∠ADB=90°,∴∠BAD=45°=∠CAD,∵BE平分∠ABC,∴∠ABE=∠CBE=12∠ABC=22.5°,∴∠BFD=∠AEB=90°-22.5°=67.5°,∴∠AFE=∠BFD=∠AEB=67.5°,∴AF=AE,故①正确;∵M为EF的中点,∴AM⊥EF,故②正确;过点F作FH⊥AB于点H,∵BE平分∠ABC,且AD⊥BC,∴FD=FH<FA,故③错误;∵AM ⊥EF ,∴∠AMF=∠AME=90°,∴∠DAN=90°-67.5°=22.5°=∠MBN ,在△FBD 和△NAD 中{FBD DANBD ADBDF ADN∠∠∠∠=== ∴△FBD ≌△NAD ,∴DF=DN ,故④正确;故选C .16.如图,在等腰直角△ABC 中,∠ACB=90°,点O 为斜边AB 的中点,点D 、E 分别在直角边AC 、BC 上,且∠DOE=90°,DE 交OC 于点P ,则下列结论:①图中全等三角形有三对;②△ABC 的面积等于四边形CDOE 面积的倍;③DE 2+2CD•CE=2OA 2;④AD 2+BE 2=2OP•OC.正确的有( )个.A .1B .2C .3D .4【答案】C【解析】【分析】 结论(1)正确.因为图中全等的三角形有3对;结论(2)错误.由全等三角形的性质可以判断;结论(3)正确.利用全等三角形和等腰直角三角形的性质可以判断.结论(4)正确.利用相似三角形、全等三角形、等腰直角三角形和勾股定理进行判断.【详解】结论(1)正确,理由如下:图中全等的三角形有3对,分别为△AOC ≌△BOC ,△AOD ≌△COE ,△COD ≌△BOE . 由等腰直角三角形的性质,可知OA=OC=OB ,易得△AOC ≌△BOC .∵OC ⊥AB ,OD ⊥OE ,∴∠AOD=∠COE .在△AOD 与△COE 中,∴△AOD ≌△COE (ASA ),同理可证:△COD ≌△BOE .结论(2)错误.理由如下:∵△AOD≌△COE,∴S△AOD=S△COE,∴S四边形CDOE=S△COD+S△COE=S△COD+S△AOD=S△AOC=S△ABC即△ABC的面积等于四边形CDOE的面积的2倍.结论(3)正确,理由如下:∵△AOD≌△COE,∴CE=AD,∴CD+CE=CD+AD=AC=OA,∴(CD+CE)2=CD2+CE2+2CD•CE=DE2+2CD•CE=2OA2;结论(4)正确,理由如下:∵△AOD≌△COE,∴AD=CE;∵△COD≌△BOE,∴BE=CD.在Rt△CDE中,由勾股定理得:CD2+CE2=DE2,∴AD2+BE2=DE2.∵△AOD≌△COE,∴OD=OE,又∵OD⊥OE,∴△DOE为等腰直角三角形,∴DE2=2OE2,∠DEO=45°.∵∠DEO=∠OCE=45°,∠COE=∠COE,∴△OEP∽△OCE,∴,即OP•OC=O E2.∴DE2=2OE2=2OP•OC,∴AD2+BE2=2OP•OC.综上所述,正确的结论有3个,故选C.【点睛】本题是几何综合题,考查了等腰直角三角形、全等三角形、相似三角形和勾股定理等重要几何知识点.难点在于结论(4)的判断,其中对于“OP•OC”线段乘积的形式,可以寻求相似三角形解决问题.=,D、E是斜边BC上两点,且∠DAE=45°,将17.如图,在Rt△ABC中,AB AC△ADC绕点A顺时针旋转90︒后,得到△AFB,连接EF.列结论:+=①△ADC≌△AFB;②△ABE≌△ACD;③△AED≌△AEF;④BE DC DE 其中正确的是( )A.②④B.①④C.②③D.①③【答案】D【解析】解:∵将△ADC绕点A顺时针旋转90 后,得到△AFB,∴△ADC≌△AFB,故①正确;②无法证明,故②错误;③∵△ADC≌△AFB,∴AF=AD,∠FAB=∠DAC.∵∠DAE=45°,∴∠BAE+∠DAC=45°,∠FA E=∠DAE=45°.在△FAE和△DAE中,∵AF=AD,∠FAE=∠DAE,AE=AE,∴△FAE≌△DAE,故③正确;④∵△ADC≌△AFB,∴DC=BF,∵△FAE≌△DAE,∴EF=ED,∵BF+BE>EF,∴DC+BE>ED .故④错误.故选D.18.在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,如图,那么下列各条件中,不能使Rt△AB C≌Rt△A′B′C′的是( )A.AB=A′B′=5,BC=B′C′=3B.AB=B′C′=5,∠A=∠B′=40°C.AC=A′C′=5,BC=B′C′=3D.AC=A′C′=5,∠A=∠A′=40°【答案】B【解析】∵在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°A选项:AB=A′B′=5,BC=B′C′=3,符合直角三角形全等的判定条件HL,∴A选项能使Rt△ABC≌Rt△A′B′C′;B选项:AB=B′C′=5,∠A=∠B′=40°,不符合符合直角三角形全等的判定条件,∴B选项不能使Rt△ABC≌Rt△A′B′C′;C选项符合Rt△ABC和Rt△A′B′C全等的判定条件SAS;∴C选项能使Rt△ABC≌Rt△A′B′C′;D选项符合Rt△ABC和Rt△A′B′C全等的判定条件ASA,∴D选项能使Rt△ABC≌Rt△A′B′C′;故选:B.点睛:此题主要考查学生对直角三角全等的判定的理解和掌握,解答此题不仅仅是掌握直角三角形全等的判定,还要熟练掌握其它判定三角形全等的方法,才能尽快选出此题的正确答案.19.如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则下列四个结论:①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP,其中结论正确的的序号为()A.①②③B.①②④C.②③④D.①②③④【答案】A【解析】【分析】根据角平分线性质即可推出②,根据勾股定理即可推出AR=AS,根据等腰三角形性质推出∠QAP=∠QPA,推出∠QPA=∠BAP,根据平行线判定推出QP∥AB即可;没有条件证明△BRP≌△QSP.【详解】试题分析:解:∵PR⊥AB,PS⊥AC,PR=PS,∴点P在∠A的平分线上,∠ARP=∠ASP=90°,∴∠SAP=∠RAP,在Rt△ARP和Rt△ASP中,由勾股定理得:AR2=AP2﹣PR2,AS2=AP2﹣PS2,∵AP=AP,PR=PS,∴AR=AS,∴②正确;∵AQ=QP,∴∠QAP=∠QPA,∵∠QAP=∠BAP,∴∠QPA=∠BAP,∴QP∥AR,∴③正确;没有条件可证明△BRP≌△QSP,∴④错误;连接RS,∵PR=PS,∵PR⊥AB,PS⊥AC,∴点P在∠BAC的角平分线上,∴PA平分∠BAC,∴①正确.故答案为①②③.故选A.点睛:本题考查了等边三角形的性质和判定,全等三角形的性质和判定,平行线的性质和判定,角平分线性质的应用,熟练掌握全等三角形的判定和性质是解题的关键.20.如图,四边形ABCD 中,∠A 、∠B 、∠C 、∠D 的角平分线恰相交于一点P ,记△APD 、△APB 、△BPC 、△DPC 的面积分别为S 1、S 2、S 3、S 4,则有( )A .1324S S S S +=+B .1234S S S S +=+C .1423S S S S +=+D .13S S =【答案】A【解析】【分析】作辅助线,利用角平分线性质定理,明确8个三角形中面积两两相等即可解题.【详解】四边形ABCD,四个内角平分线交于一点P,即点p 到四边形各边距离相等,(角平分线性质定理),如下图,可将四边形分成8个三角形,面积分别是a 、a 、b 、b 、c 、c 、d 、d,则S 1=a+d, S 2=a+b, S 3=b+c, S 4=c+d,∴S 1+S 3=a+b+c+d= S 2+S 4故选A【点睛】本题考查了角平分线性质定理,作高线和理解角平分线性质定理是解题关键.21.如图,△ABC 中,∠ABC=45°,CD ⊥AB 于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与CD 相交于点F ,DH ⊥BC 于H ,交BE 于G .下列结论:①BD=CD ;②AD+CF=BD ;③CE=12BF ;④AE=BG .其中正确的是A.①②B.①③C.①②③D.①②③④【答案】C【解析】【分析】根据∠ABC=45°,CD⊥AB可得出BD=CD,利用AAS判定Rt△DFB≌Rt△DAC,从而得出DF=AD,BF=AC.则CD=CF+AD,即AD+CF=BD;再利用AAS判定Rt△BEA≌Rt△BEC,得出CE=AE=12AC,又因为BF=AC所以CE=12AC=12BF,连接CG.因为△BCD是等腰直角三角形,即BD=CD.又因为DH⊥BC,那么DH垂直平分BC.即BG=CG.在Rt△CEG中,CG是斜边,CE是直角边,所以CE<CG.即AE<BG.【详解】解:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.故①正确;在Rt△DFB和Rt△DAC中,∵∠DBF=90°−∠BFD,∠DCA=90°−∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC.∴BF=AC;DF=AD.∵CD=CF+DF,∴AD+CF=BD;故②正确;在Rt△BEA和Rt△BEC中.∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC.∴CE=AE=12 AC.又由(1),知BF=AC,∴CE=12AC=12BF;故③正确;连接CG.∵△BCD是等腰直角三角形,∴BD=CD.又DH⊥BC,∴DH垂直平分BC.∴BG=CG.在Rt△CEG中,∵CG是斜边,CE是直角边,∴CE<CG.∵CE=AE,∴AE<BG.故④错误.故选C.【点睛】本题考查了等腰直角三角形、等腰三角形的判定与性质、全等三角形的判定与性质.此类问题涉及知识点较多,需要对相关知识点有很高的熟悉度.22.如图,△ABC中,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则下列结论不正确的是A.BF=DF B.∠1=∠EFD C.BF>EF D.FD∥BC【答案】B【解析】【分析】根据余角的性质得到∠C=∠ABE,∠EBC=∠BAC.根据SAS推出△ABF≌△ADF,根据全等三角形的性质得到BF=DF,故A正确;由全等三角形的性质得到∠ABE=∠ADF,等量代换得到∠ADF=∠C,根据平行线的判定得到DF∥BC,故D正确;根据直角三角形的性质得到DF >EF,等量代换得到BF>EF;故C正确;根据平行线的性质得到∠EFD=∠EBC=∠BAC=2∠1,故B错误.【详解】∵AB⊥BC,BE⊥AC,∴∠C+∠BAC=∠ABE+∠BAC=90°,∴∠C=∠ABE.同理:∠EBC=∠BAC.在△ABF与△ADF中,∵12AD ABAF AF=⎧⎪∠=∠⎨⎪=⎩,∴△ABF≌△ADF,∴BF=DF,故A正确,∵△ABF≌△ADF,∴∠ABE=∠ADF,∴∠ADF=∠C,∴DF∥BC,故D正确;∵∠FED=90°,∴DF>EF,∴BF>EF;故C正确;∵DF∥BC,∴∠EFD=∠EBC.∵∠EBC=∠BAC=∠BAC=2∠1,∴∠EFD=2∠1,故B错误.故选B.【点睛】本题考查了全等三角形的判定和性质,平行线的判定和性质,证得△ABF≌△ADF是解题的关键.23.如图,在△ABC中,∠ABC=45°, BC=4,以AC为直角边,点A为直角顶点向△ABC的外侧作等腰直角三角形ACD,连接BD,则△DBC的面积为( ) .A.8 B.10 C.42D.82【答案】A【解析】【分析】将△ABD绕着点A顺时针旋转90°得到△AEC,BD与EC交于点O,连接BE,根据旋转的性质得到AE=AB,∠BAE=∠DOC=90°,过D点作DF⊥BC,证△EBC≌BFD,可得DF=BC=4,再用三角形面积公式即可得出答案.【详解】解:如下图所示,将△ABD绕着点A顺时针旋转90°得到△AEC,BD与EC交于点O,连接BE,根据旋转的性质可知EC=BD,AE=AB,∠BAE=∠DOC=90°,∴△ABE是等腰直角三角形,∴∠ABE=45°,又∵∠ABC=45°,∴∠EBC=90°,∵∠BDF+∠DBF=90°,∠ECB+∠DBF=90°,∴∠BDF=∠ECB在△EBC 和△BFD 中 EBC=BFD=90ECB=BDFEC=BD ⎧∠∠⎪∠∠⎨⎪⎩∴△EBC ≌△BFD (AAS )∴DF=BC=4∴△DBC 的面积=11BC DF=44=822⋅⨯⨯ 故选A.【点睛】本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定,是一道综合性较强的题,难度较大,关键是正确的作出辅助线构造全等三角形.24.如图,Rt △ACB 中,∠ACB=90°,△ABC 的角平分线AD 、BE 相交于点P ,过P 作PF ⊥AD 交BC 的延长线于点F ,交AC 于点H ,则下列结论:①∠APB=135°;②BF=BA ;③PH=PD ;④连接CP ,CP 平分∠ACB ,其中正确的是( )A .①②③B .①②④C .①③④D .①②③④【答案】D【解析】 分析:根据三角形内角和定理以及角平分线定义判断①;根据全等三角形的判定和性质判断②③;根据角平分线的判定与性质判断④.详解:在△ABC 中,∵∠ACB=90°,∴∠BAC+∠ABC=90°,又∵AD、BE 分别平分∠BAC、∠ABC,∴∠BAD+∠ABE=(∠BAC+∠ABC)=45°,∴∠APB=135°,故①正确.∴∠BPD=45°,又∵PF⊥AD,∴∠FPB=90°+45°=135°,∴∠APB=∠FPB,又∵∠ABP=∠FBP,BP=BP,∴△ABP≌△FBP,∴∠BAP=∠BFP,AB=FB,PA=PF,故②正确.在△APH和△FPD中,∵∠APH=∠FPD=90°,∠PAH=∠BAP=∠BFP,PA=PF,∴△APH≌△FPD,∴PH=PD,故③正确.∵△ABC的角平分线AD、BE相交于点P,∴点P到AB、AC的距离相等,点P到AB、BC的距离相等,∴点P到BC、AC的距离相等,∴点P在∠ACB的平分线上,∴CP平分∠ACB,故④正确.故选D.点睛:本题考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理.掌握相关性质是解题的关键.25.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,PE,PF分别交AB,AC于点E,F,给出下列四个结论:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC=2S四边形AEPF,上述结论正确的有()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】利用“角边角”证明△APE和△CPF全等,根据全等三角形的可得AE=CF,再根据等腰直角三角形的定义得到△EFP是等腰直角三角形,根据全等三角形的面积相等可得△APE的面积等于△CPF的面积相等,然后求出四边形AEPF的面积等于△ABC的面积的一半.【详解】∵AB=AC,∠BAC=90°,点P是BC的中点,∴AP⊥BC,AP=PC,∠EAP=∠C=45°,∴∠APF+∠CPF=90°,∵∠EPF是直角,∴∠APF+∠APE=90°,∴∠APE=∠CPF,在△APE和△CPF中,45APE CPFAP PCEAP C∠∠⎧⎪⎨⎪∠∠︒⎩====,∴△APE≌△CPF(ASA),∴AE=CF,故①②正确;∵△AEP≌△CFP,同理可证△APF≌△BPE,∴△EFP是等腰直角三角形,故③错误;∵△APE≌△CPF,∴S△APE=S△CPF,∴四边形AEPF=S△AEP+S△APF=S△CPF+S△BPE=12S△ABC.故④正确,故选C.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,根据同角的余角相等求出∠APE=∠CPF,从而得到△APE和△CPF全等是解题的关键,也是本题的突破点.26.Rt△ABC中,AB=AC,D点为Rt△ABC外一点,且BD⊥CD,DF为∠BDA的平分线,当∠ACD=15°,下列结论:①∠ADC=45°;②AD=AF;③AD+AF=BD;④BC﹣CE=2D,其中正确的是( )A.①③B.①②④C.①③④D.①②③④【答案】C【解析】【分析】由题意可证点A,点C,点B,点D四点共圆,可得∠ADC=∠ABC=45°;由角平分线的性质和外角性质可得∠AFD=∠BDF+∠DBF>∠ADF,可得AD≠AF;如图,延长CD至G,使DE=DG,在BD上截取DH=AD,连接HF,由“SAS”可证△ADF≌△HDF,可得∠DHF=∠DAF=30°,AF=HF,由等腰三角形的性质可得BH=AF,可证BD=BH+DH=AF+AD;由“SAS”可证△BDG≌△BDE,可得∠BGD=∠BED=75°,由三角形内角和定理和等腰三角形的性质可得BC=BG=2DE+EC.【详解】∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,且∠ACD=15°,∵∠BCD=30°,∵∠BAC=∠BDC=90°,∴点A,点C,点B,点D四点共圆,∴∠ADC=∠ABC=45°,故①符合题意,∠ACD=∠ABD=15°,∠DAB=∠DCB=30°,∵DF为∠BDA的平分线,∴∠ADF=∠BDF,∵∠AFD=∠BDF+∠DBF>∠ADF,∴AD≠AF,故②不合题意,如图,延长CD至G,使DE=DG,在BD上截取DH=AD,连接HF,∵DH=AD,∠HDF=∠ADF,DF=DF,∴△ADF≌△HDF(SAS)∴∠DHF=∠DAF=30°,AF=HF,∵∠DHF=∠HBF+∠HFB=30°,∴∠HBF=∠BFH=15°,∴BH=HF,∴BH=AF,∴BD=BH+DH=AF+AD,故③符合题意,∵∠ADC=45°,∠DAB=30°=∠BCD,∴∠BED=∠ADC+∠DAB=75°,∵GD=DE,∠BDG=∠BDE=90°,BD=BD,∴△BDG≌△BDE(SAS)∴∠BGD=∠BED=75°,∴∠GBC=180°﹣∠BCD﹣∠BGD=75°,∴∠GBC=∠BGC=75°,∴BC=BG,∴BC=BG=2DE+EC,∴BC﹣EC=2DE,故④符合题意,故选:C.【点睛】本题考查全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,27.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC-CD-DA向终点A运动,设点P的运动时间为t秒,当t的值为_____秒时,△ABP和△DCE全等.A.1 B.1或3 C.1或7 D.3或7【答案】C【解析】【分析】分两种情况进行讨论,根据题意得出BP=2t=2和AP=16-2t=2即可求得.【详解】解:因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS证得△ABP≌△DCE,由题意得:BP=2t=2,所以t=1,因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS证得△BAP≌△DCE,由题意得:AP=16-2t=2,解得t=7.所以,当t的值为1或7秒时.△ABP和△DCE全等.故选C.【点睛】本题考查全等三角形的判定,判定方法有:ASA,SAS,AAS,SSS,HL.28.如图,在△ABC中,AB=AC,高BD,CE交于点O,AO交BC于点F,则图中共有全等三角形()A.8对B.7对C.6对D.5对【答案】B【解析】【分析】易证△ABC 是关于AF 对称的图形,其中的小三角形也关于AF 对称,共可找出7对三角形.【详解】全等的三角形有:①△AFB≌△AFC;②△CEB≌△BDC;③△AEO≌△ADO;④△EOB≌△DOC;⑤△OBF≌△OFC;⑥△AOB≌△AOC ;⑦△AEC≌△ADB证明①△AFB≌△AFC∵AB=AC,CE⊥AB,BD⊥AC 又∵1122ABC S AB CE AC BD == ∴CE=BD∴在Rt△BCE 和Rt△CBD 中BC BC CE BD =⎧⎨=⎩∴△BCE≌△CBD∴BE=CD,∴AE=AD在Rt△AEO 和Rt△ADO 中AE AD AO AO=⎧⎨=⎩ ∴△AEO≌△ADO∴∠EOD=∠DOA在△BAF 和△CAF 中AB AC BAF CAF AF AF =⎧⎪∠=∠⎨⎪=⎩∴△BAF≌△CAF,得证其余全等证明过程类似故选:B【点睛】本题考查全等的证明,解题关键是利用等腰三角形的性质,推导出图形中边的关系,为证全等作准备29.如图所示,设甲、乙、丙、丁分别表示△ABC ,△ACD ,△EFG ,△EGH .已知∠ACB =∠CAD =∠EFG =∠EGH =70°,∠BAC =∠ACD =∠EGF =∠EHG =50°,则叙述正确的是( )A.甲、乙全等,丙、丁全等B.甲、乙全等,丙、丁不全等C.甲、乙不全等,丙、丁全等D.甲、乙不全等,丙、丁不全等【答案】B【解析】【分析】根据题意即是判断甲、乙是否全等,丙丁是否全等.运用判定定理解答.【详解】解:∵∠ACB=CAD=70°,∠BAC=∠ACD=50°,AC为公共边,∴△ABC≌△ACD,即甲、乙全等;△EHG中,∠EGH=70°≠∠EHG=50°,即EH≠EG,虽∠EFG=∠EGH=70°,∠EGF=∠EHG=50°,∴△EFG不全等于△EGH,即丙、丁不全等.综上所述甲、乙全等,丙、丁不全等,B正确,故选:B.【点睛】本题考查的是全等三角形的判定,但考生需要有空间想象能力.判定两个三角形全等的一般方法有:SSS、SAS、AAS、HL.找着∠EGH=70°≠∠EHG=50°,即EH≠EG是正确解决本题的关键.30.如图,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE交于O,连结AO,则图中共有全等三角形的对数为()A.2对B.3对C.4对D.5对【答案】C【解析】【分析】先根据条件,利用AAS可知△ADB≌△AEC,然后再利用HL、ASA即可判断△AOE≌△AOD,△BOE≌△COD,△AOC≌△AOB.【详解】∵AB=AC,BD⊥AC于D,CE⊥AB于E,∴∠ADB=∠AEC=90°,∵∠A为公共角,∴△ADB≌△AEC,(AAS)∴AE=AD,∠B=∠C∴BE=CD,∵AE=AD,OA=OA,∠ADB=∠AEC=90°,∴△AOE≌△AOD(HL),∴∠OAC=∠OAB,∵∠B=∠C,AB=AC,∠OAC=∠OAB,∴△AOC≌△AOB.(ASA)∵∠B=∠C,BE=CD,∠ODC=∠OEB=90°,∴△BOE≌△COD(ASA).综上:共有4对全等三角形,故选C.【点睛】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.做题时要从已知条件开始结合全等的判定方法逐一验证,由易到难,不重不漏.。

【精选试卷】深圳菁华中英文实验中学小升初数学解答题专项练习阶段练习(含答案解析)

【精选试卷】深圳菁华中英文实验中学小升初数学解答题专项练习阶段练习(含答案解析)

一、解答题1.将如图所示的三角形以AB为轴旋转后,得到的立体图形的体积是多少?2.一堆圆锥形的小麦,底面的半径是6m,高6m。

每立方米小麦大约重720kg,这堆小麦大约重多少吨?(得数保留整数),第二天与第一天看的页数同样多,还剩下这本书的3.明明看一本故事书,第一天看了27几分之几?4.有一个半径是8米的圆形花坛,在它的周围铺设一条2米宽的人行道,这条人行道的面积是多少平方米?(π取3.14)5.动手操作.(1)在上面的方格图中标出点A(7,2),B(11,6),C(13,6),D(13,2),再依次连接各点围成封闭图形.(2)画出这个封闭图形绕A点逆时针方向旋转90º后的图形.6.下面两幅统计图反映的是乐乐、佳佳近阶段在家学习的情况。

(1)从图上可以看出,________的成绩提高得快;________的练习时间多一些,比另一个人的练习时间多________%。

(2)你喜欢谁的学习方式?为什么?算出他这五次的平均成绩。

7.一辆汽车从甲地开往乙地,前3小时行了156千米。

照这样的速度,从甲地到乙地共需8小时,甲、乙两地相距多少千米?(用比例解)8.王叔叔开车从甲地到乙地,第一天行了全程的28%,第二天行了110千米,这时距离乙地还有一半路程,甲、乙两地相距多少千米?9.把一个底面积是3.14平方分米,高9分米的圆柱体铁块熔铸成一个底面积是18. 84平方分米的圆锥体,圆锥的高是多少分米?,第二天看了全书的60%,还剩多少10.小刚有一本科技书共90页,第一天看了全书的15页没有看?11.操作题。

(1)用数对表示三角形三个顶点的位置:A(,),B(,),C(,)(2)画出三角形按2: 1放大后的图形。

12.小雪和小丽都喜欢集邮,共集邮390张。

小丽集的张数的25和小雪的57相等。

小雪和小丽各集了多少张?(列方程解答)13.小丁与小华去图书馆买书。

小丁带的钱是小华的2倍,小华向小丁借了24元钱,两人把所有的钱都买了书。

【单元练】深圳菁华中英文实验中学九年级数学下册第二十八章《锐角三角函数》阶段练习(含答案解析)

【单元练】深圳菁华中英文实验中学九年级数学下册第二十八章《锐角三角函数》阶段练习(含答案解析)

一、选择题1.如图,在等边△ABC中,点O在边AB上,⊙O过点B且分别与边AB、BC相交于点D、E,F是AC上的点,判断下列说法错误的是()A.若EF⊥AC,则EF是⊙O的切线B.若EF是⊙O的切线,则EF⊥ACC.若BE=EC,则AC是⊙O的切线D.若32BE EC,则AC是⊙O的切线C解析:C【分析】A、连接OE,根据同圆的半径相等得到OB=OE,根据等边三角形的性质得到∠BOE=∠BAC,求得OE∥AC,于是得到A选项正确;B、由于EF是⊙O的切线,得到OE⊥EF,根据平行线的性质得到B选项正确;C、根据等边三角形的性质和圆的性质得到AO=OB,过O作OH⊥AC于H,根据三角函数得到OH=32AO≠OB,于是得到C选项错误;D、根据等边三角形的性质和等量代换即可得到D选项正确.【详解】A、如图,连接OE,则OB=OE,∵∠B=60°∴∠BOE=60°,∵∠BAC=60°,∴∠BOE=∠BAC,∴OE∥AC,∵EF⊥AC,∴OE⊥EF,∴EF是⊙O的切线∴A选项正确,不符合题意.B、∵EF是⊙O的切线,∴OE⊥EF,由A知:OE∥AC,∴AC⊥EF,∴B选项正确,不符合题意.C、∵∠B=60°,OB=OE,∴BE=OB,∵BE=CE,∴BC=AB=2BO,∴AO=OB,如图,过O作OH⊥AC于H,∵∠BAC=60°,∴OH=32AO≠OB,∴C选项错误,符合题意.D、如C中的图,∵BE 3,∴CE=33BE,∵AB=BC,BO=BE,∴AO=CE23OB,∴OH=32AO=OB,∴AC是⊙O的切线,∴D选项正确.故选:C.【点睛】本题为圆的综合题,掌握切线的判定和性质、平行线的判定和性质以及勾股定理是解答本题的关键.2.如图,在正方形方格纸中,每个小方格边长为1,A,B,C,D都在格点处,AB与CD相交于点O ,则sin ∠BOD 的值等于( )A .1010B .31010C .2105D .105B 解析:B【分析】根据平行线的性质和锐角三角函数定义以及勾股定理,通过转化的数学思想可以求得sin ∠BOD 的值,本题得以解决. 【详解】解:连接AE 、EF ,如图所示,则AE ∥CD ,∴∠FAE=∠BOD ,∵每个小正方形的边长为1, 则222222112,2425,3332,AE AF EF =+==+==+=∴△FAE 是直角三角形,∠FEA=90°,∴32310sin 1025EF FAE AF ∠=== ∴310sin 10BOD ∠=故选:B .【点睛】本题考查了解直角三角形、锐角三角函数定义、勾股定理和勾股定理的逆定理等知识,熟练掌握勾股定理和勾股定理的逆定理是解题的关键.3.下列说法中,正确的有( )个①a 为锐角,则1sina cosa +>;②314172︒+︒=︒cos cos cos ﹔③在直角三角形中,只要已知除直角外的两个元素,就可以解这个三角形﹔④坡度越大,则坡角越大,坡越陡;⑤1302==︒sinA ; ⑥当Rt ABC ∆的三边长扩大为2倍时,则sinA 的值也相应扩大2倍. A .1B .2C .3D .4B 解析:B【分析】①根据三角函数的定义判断;②函数值不是简单度数相加;③至少已知一条边能解直角三角形;④根据坡度的性质即可判定④对;⑤只能说∠A=30°;⑥角度数不变,函数值就不变.【详解】①在Rt △ACB 中,设c 为斜边,∠α的对边、邻边分别为a ,b ,那么sinα+cosα=1a b c+>,所以①对; ②不对,函数值是角与边的关系,不是简单度数相加;③不对,只知道角不知道边也不能解直角三角形;④垂直高度与水平距离之比即坡度所以④对;⑤也不对,sinA=1302=︒,是明显错误; ⑥不对,角度数不变,函数值就不变.综上,①④正确,共2个,故选:B .【点睛】 本题主要考查了解直角三角形以及锐角三角函数.学生学这一部分知识时要细心去理解文字所表达的意思.关键是熟练掌握有关定义和性质.4.如图,将一副三角尺如图所示叠放在一起,则BE CE的值是( )A 3B 3C .2D 3B 解析:B【分析】设AC=AB=x ,求得3tan 33AC x CD x D ===,根据相似三角形的性质即可得到结论. 【详解】 解:设AC=AB=x , 则3tan 33AC x CD x D ===, ∵∠BAC=∠ACD=90°,∴∠BAC+∠ACD=180°,∴AB ∥CD ,∴△ABE ∽△DCE , ∴333BE AB x CE CD x===, 故选:B .【点睛】本题主要考查相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.5.如图,在矩形ABCD 中,AB =6,BC =62,点E 是边BC 上一动点,B 关于AE 的对称点为B ′,过B ′作B ′F ⊥DC 于F ,连接DB ′,若△DB ′F 为等腰直角三角形,则BE 的长是( )A .6B .3C .2D .2﹣6D解析:D【分析】 根据 B 关于 AE 的对称点为 B′,可得2AB AD '=1AB D ∴等腰直角三角形,可得D B E '、、三点共线,可求出BE 的长.【详解】解:26,62,2AB AB AB AD AD ==='∴=', 又△DB′F 为等腰直角三角形,045FDB ∴∠=,又在矩形 ABCD ,090ADF ∠=,045ADB ∴='∠,又22AB AD '=, AB D ∴'等腰直角三角形, 090AB D ∴='∠,090AB E ∠=',D BE ∴'、、三点共线,在等腰直角△RCE ,CE=CD=6,∴BE=BC-CE=626-,故选D..【点睛】本题考查三角形的性质及解直角三角形,找出D B E '、、三点共线是解题关键. 6.如图,点A 为∠α边上的任意一点,作AC ⊥BC 于点C ,CD ⊥AB 于点D ,下列用线段比表示cosα的值,错误的是( )A .BD BCB .BC AB C .AD AC D .CD ACC 解析:C 【分析】利用垂直的定义以及互余的定义得出∠α=∠ACD ,进而利用锐角三角函数关系得出答案. 【详解】解:∵AC ⊥BC ,CD ⊥AB ,∴∠α+∠BCD =∠ACD +∠BCD ,∴∠α=∠ACD ,∴cosα=cos ∠ACD =BD BC =BC AB =DC AC, 只有选项C 错误,符合题意.故选:C .【点睛】 此题主要考查了锐角三角函数的定义,得出∠α=∠ACD 是解题关键.7.在Rt △ABC 中,若∠ACB =90°,tanA =12,则sinB =( ) A .12 B .32 C 5 D 25D 解析:D【分析】作出草图,根据∠A 的正切值设出两直角边分别为k ,2k ,然后利用勾股定理求出斜边,则∠B 的正弦值即可求出.【详解】解:如图,∵在Rt △ABC 中,∠C =90°,tanA =12, ∴设AC =2k ,BC =k ,则AB =22(2k)k +=5k , ∴sinB =AC AB=2k 5k =255. 故选:D .【点睛】考核知识点:勾股定理,三角函数.理解正弦、正切定义是关键.8.如图,分别以直角三角形三边为边向外作等边三角形,面积分别为1S 、2S 、3S ;如图2,分别以直角三角形的三边为直径向外半圆,面积分别为4S 、5S 、6S .其中116S =,245S =,511S =,614S =,则34S S +=( )A .86B .64C .54D .48C 解析:C 【分析】 分别用AC ,AB 和BC 表示出123,,S S S ,然后根据222BC AB AC =-即可得出123,,S S S 的关系.同理,得出456,,S S S 的关系,从而可得答案.【详解】解:如图,1S 对应ACD ∆的面积,过D 作DH AC ⊥于H ,ACD ∆为等边三角形,160,,,2DAC AH CH AC AD AC ∴∠=︒=== sin 60,DH AD ∴︒=33,DH AD AC ∴==2113,24S AC DH AC ∴=•=同理:222333,,44S BC S AB == ∵222BC AB AC =-, ∴213,S S S -=如图2,同理可得:456S S S =+,∴3421564516111454.S S S S S S +=-++=-++=故选:C .【点睛】本题考查了勾股定理、等边三角形的性质.锐角三角函数等知识点,其中勾股定理:如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么222+=a b c .9.如图,为测量瀑布AB 的高度,测量人员在瀑布对面山上的D 点处测得瀑布顶端A 点的仰角是30,测得瀑布底端B 点的俯角是10︒,AB 与水平面垂直.又在瀑布下的水平面测得27.0CG m =,17.6GF m =(注:C 、G 、F 三点在同一直线上,CF AB ⊥于点F ),斜坡20.0CD m =,坡角40ECD ∠=︒,那么瀑布AB 的高度约为( ).(精确到0.1m 3 1.73≈,sin 400.64︒≈,cos400.77︒≈,tan 400.84︒≈,sin100.17︒≈,cos100.98︒≈,tan100.18︒≈)A.44.8m B.45.4m C.47.4m D.114.6m B解析:B【分析】如图,作DM⊥AB于M,DN⊥EF于N,在Rt△DCN中,求出CN即可得到FN的长,由四边形DMFN是矩形可得DM的长,然后分别在Rt△ADM和Rt△DMB中,解直角三角形求出AM,BM即可解决问题.【详解】解:如图,作DM⊥AB于M,DN⊥EF于N,在Rt△DCN中,CN=CD•cos40°≈20.0×0.77=15.4(米),∵CF=CG+GF=44.6(米),∴FN=CN+CF=60.0(米),易得四边形DMFN是矩形,∴DM=FN=60.0(米),在Rt△ADM中,AM=DM•tan30°=3 1.7360.060.0=34.633(米),在Rt△DMB中,BM=DM•tan10°≈60.0×0.18=10.8(米),∴AB=AM+BM=45.4(米),即瀑布AB的高度约为45.4米,故选:B.【点睛】本题考查解直角三角形的应用—仰角俯角问题,坡度坡角问题等知识,解题的关键是灵活运用三角函数解决问题,属于中考常考题型.10.如图,等边ABC 边长为a ,点O 是ABC 的内心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①ODE 形状不变;②ODE 的面积最小不会小于四边形ODBE 的面积的四分之一;③四边形ODBE 的面积始终不变;④BDE 周长的最小值为1.5a .上述结论中正确的个数是( )A .4B .3C .2D .1A解析:A【分析】 连接OB 、OC ,利用SAS 证出△ODB ≌△OEC ,从而得出△ODE 是顶角为120°的等腰三角形,即可判断①;过点O 作OH ⊥DE ,则DH=EH ,利用锐角三角函数可得OH=12OE 和3OE ,然后三角形的面积公式可得S △ODE 32,从而得出OE 最小时,S △ODE 最小,根据垂线段最短即可求出S △ODE 的最小值,然后证出S 四边形ODBE =S △OBC 23即可判断②和③;求出BDE 的周长=a +DE ,求出DE 的最小值即可判断④.【详解】解:连接OB 、OC∵ABC 是等边三角形,点O 是ABC 的内心,∴∠ABC=∠ACB=60°,BO=CO ,BO 、CO 平分∠ABC 和∠ACB∴∠OBA=∠OBC=12∠ABC=30°,∠OCA=∠OCB=12∠ACB=30° ∴∠OBA=∠OCB ,∠BOC=180°-∠OBC -∠OCB=120°∵120FOG ∠=︒∴∠=FOG ∠BOC∴∠FOG -∠BOE=∠BOC -∠BOE∴∠BOD=∠COE在△ODB 和△OEC 中BOD COE BO COOBD OCE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ODB ≌△OEC∴OD=OE∴△ODE 是顶角为120°的等腰三角形,∴ODE 形状不变,故①正确;过点O 作OH ⊥DE ,则DH=EH ∵△ODE 是顶角为120°的等腰三角形∴∠ODE=∠OED=12(180°-120°)=30° ∴OH=OE·sin ∠OED=12OE ,EH= OE·cos ∠OED=32OE ∴DE=2EH=3OE∴S △ODE =12DE·OH=34OE 2 ∴OE 最小时,S △ODE 最小,过点O 作OE′⊥BC 于E′,根据垂线段最短,OE′即为OE 的最小值∴BE′=12BC=12a 在Rt △OBE′中OE′=BE′·tan ∠OBE′=12a 33∴S △ODE 的最小值为34OE′2=2348a ∵△ODB ≌△OEC ∴S 四边形ODBE =S △ODB +S △OBE = S △OEC +S △OBE =S △OBC =12BC·OE′=2312a ∵2348a =14×2312a ∴S △ODE ≤14S 四边形ODBE 即ODE 的面积最小不会小于四边形ODBE 的面积的四分之一,故②正确; ∵S 四边形ODBE =2312a ∴四边形ODBE 的面积始终不变,故③正确;∵△ODB ≌△OEC∴DB=EC∴BDE 的周长=DB +BE +DE= EC +BE +DE=BC +DE=a +DE∴DE 最小时BDE 的周长最小 ∵DE=3OE∴OE 最小时,DE 最小而OE 的最小值为OE′=36a ∴DE 的最小值为3×36a =12a ∴BDE 的周长的最小值为a +12a =1.5a ,故④正确; 综上:4个结论都正确,故选A .【点睛】此题考查的是等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短的应用,掌握等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短是解决此题的关键.二、填空题11.如图ABC 的内接圆于O ,45C ∠=︒,4AB =,则O 的半径为______.【分析】连接OAOB 根据圆周角定理易知:∠AOB=90°即△AOB是等腰直角三角形;已知了斜边AB 的长可求出直角边即半径的长【详解】解:如图连接OAOB 由圆周角定理知∠AOB=2∠C=90°;∵OA 解析:22 【分析】 连接OA 、OB ,根据圆周角定理,易知:∠AOB=90°,即△AOB 是等腰直角三角形;已知了斜边AB 的长,可求出直角边即半径的长.【详解】解:如图,连接OA 、OB , 由圆周角定理知,∠AOB=2∠C=90°;∵OA=OB ,∴△AOB 是等腰直角三角形; 则2sin 454222OA AB =⋅=⨯=, 故答案为:22.【点睛】本题主要考查了等腰直角三角形的性质和圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.12.如图,在Rt ABC 中,,906A AC cm ∠==,8AB cm =,把AB 边翻折,使边落在BC 边上,点A 落在点E 处,折痕为BD ,则tan DBE ∠的值为_______ .【分析】先由勾股定理求得BC=10然后由翻折的性质可知CE=2设AD=x 则DE=xCD=6-x 在Rt △DCE 中利用勾股定理可求得DE 的长从而可求得tan ∠DBE 的值【详解】解:在Rt △ABC 中由勾股解析:13【分析】先由勾股定理求得BC=10,然后由翻折的性质可知CE=2,设AD=x ,则DE=x ,CD=6-x ,在Rt △DCE 中,利用勾股定理可求得DE 的长,从而可求得tan ∠DBE 的值.【详解】解:在Rt △ABC 中,由勾股定理得:22226810AC AB +=+=.由翻折的性质可知:BE=AB= 8,AD=ED,∠DEB=∠DAB=90°,∴CE=2,∠DEC=90°.设DE=AD=x,则CD=6-x.在Rt△DCE中,由勾股定理得:CD2=DE2+CE2,即(6-x)2=x2+22,解得:x= 83.∴DE= 83.tan∠DBE=838DEEB=13.故答案是:13.【点睛】本题主要考查的是翻折的性质、勾股定理、锐角三角函数的定义,在Rt△DCE中,由勾股定理得到关于x的方程是解题的关键.13.如图,菱形ABCD的对角线AC、BD相交于点O,OH⊥AB于H.若菱形ABCD的周长为16,∠BAD=60°,则OH=_____.【分析】由菱形的性质可得AB=BC=CD=ADBO=DO可证△ABD是等边三角形可得BD=4BO=2解直角三角形即可求解【详解】∵四边形ABCD 是菱形∴AB=BC=CD=ADBO=DO∵菱形ABCD3【分析】由菱形的性质可得AB=BC=CD=AD,BO=DO,可证△ABD是等边三角形,可得BD=4,BO=2,解直角三角形即可求解.【详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD, BO=DO,∵菱形ABCD的周长为16,∴AB=AD=4,∵∠BAD=60°,∴△ABD是等边三角形,∴BD=4,∠ABD=60°,∴BO=DO=2,在Rt△OBH中,∠ABD=60°,BO =2,∴sin60OHOB︒=,∴OH=2332⨯=.故答案为:3.【点睛】本题考查了菱形的性质,等边三角形的判定和性质,解直角三角形等知识,求出BO的长是解题的关键.14.如图所示,菱形ABCD的边长为8,且AE⊥BC于E,AF⊥CD于F,∠B=60°,则菱形的面积为____.【分析】根据已知条件解直角三角形ABE可求出AE的长再由菱形的面积等于底×高计算即可【详解】∵菱形ABCD的边长为8∴AB=BC=8∵AE⊥BC于E∠B=60°∴sinB=即∴AE∴菱形的面积故答案解析:323【分析】根据已知条件解直角三角形ABE可求出AE的长,再由菱形的面积等于底×高计算即可.【详解】∵菱形ABCD的边长为8,∴AB=BC=8,∵AE⊥BC于E,∠B=60°,∴sinB=AEAB 38AE =,∴AE43=,∴菱形的面积843323=⨯=故答案为:323【点睛】本题考查了菱形的性质以及特殊角的三角函数值,菱形面积公式的运用.关键是掌握菱形的性质.15.计算:tan60°﹣cos30°=________;如果∠A是锐角,且sinA= 12,那么∠A=________゜.30【分析】由特殊角三角函数值进行计算即可求出答案【详解】解:;∵∠A是锐角∴;故答案为:;30【点睛】本题考查了特殊角的三角函数值解题的关键是掌握特殊角的三角函数值进行解题解析:23330 【分析】 由特殊角三角函数值进行计算,即可求出答案.【详解】解:323tan 60tan 30333︒-︒=-=; ∵1sin 2A =,∠A 是锐角, ∴30A ∠=︒; 故答案为:233;30. 【点睛】本题考查了特殊角的三角函数值,解题的关键是掌握特殊角的三角函数值进行解题. 16.在直角三角形ABC 中,∠ACB=90°,D 、E 是边AB 上两点,且CE 所在直线垂直平分线段AD ,CD 平分∠BCE ,BC=23,则AB=_____. 4【解析】分析:由CE 所在直线垂直平分线段AD 可得出CE 平分∠ACD 进而可得出∠ACE=∠DCE 由CD 平分∠BCE 利用角平分线的性质可得出∠DCE=∠DCB 结合∠ACB=90°可求出∠ACE ∠A 的度解析:4【解析】分析:由CE 所在直线垂直平分线段AD 可得出CE 平分∠ACD ,进而可得出∠ACE=∠DCE ,由CD 平分∠BCE 利用角平分线的性质可得出∠DCE=∠DCB ,结合∠ACB=90°可求出∠ACE 、∠A 的度数,再利用余弦的定义结合特殊角的三角函数值,即可求出AB 的长度. 详解:∵CE 所在直线垂直平分线段AD ,∴CE 平分∠ACD ,∴∠ACE=∠DCE .∵CD 平分∠BCE ,∴∠DCE=∠DCB .∵∠ACB=90°,∴∠ACE=13∠ACB=30°, ∴∠A=60°,∴AB=236032BC sin =︒=4.故答案为4.点睛:本题考查了线段垂直平分线的性质、角平分线的性质以及特殊角的三角函数值,通过角的计算找出∠A=60°是解题的关键.17.如图,在2×2的网格中,以顶点O 为圆心,以2个单位长度为半径作圆弧,交图中格线于点A ,则tan ∠ABO 的值为_____.2+【分析】连接OA 过点A 作AC ⊥OB 于点C 由题意知AC=1OA=OB=2从而得出OC==BC=OB ﹣OC=2﹣在Rt △ABC 中根据tan ∠ABO=可得答案【详解】如图连接OA 过点A 作AC ⊥OB 于点解析:2+3.【分析】 连接OA ,过点A 作AC ⊥OB 于点C ,由题意知AC=1、OA=OB=2,从而得出OC=22OA AC -=3、BC=OB ﹣OC=2﹣3,在Rt △ABC 中,根据tan ∠ABO=AC BC 可得答案.【详解】如图,连接OA ,过点A 作AC ⊥OB 于点C ,则AC=1,OA=OB=2,∵在Rt △AOC 中,222221OA AC -=-3∴BC=OB ﹣OC=23∴在Rt △ABC 中,tan ∠ABO=23AC BC =-3 故答案是:3【点睛】本题考查了解直角三角形,根据题意构建一个以∠ABO 为内角的直角三角形是解题的关键.18.一座楼梯的示意图如图所示,BC 是铅垂线,CA 是水平线,AB ,AC 的夹角为θ(θ=30°).要在楼梯上铺一条地毯,已知BC=2m ,楼梯宽1cm ,则地毯的面积至少需要_____________平方米.()【分析】由三角函数的定义得到AC得出AC+BC的长度由矩形的面积即可得出结果【详解】在Rt△ABC中(米)∴AC+BC=米∴地毯的面积至少需要1×()=()(米2);故答案为:()【点睛】本题考解析:(2+23)【分析】由三角函数的定义得到AC,得出AC+BC的长度,由矩形的面积即可得出结果.【详解】在Rt△ABC中,22333BCACtanθ===(米),∴AC+BC=(2+23)米,∴地毯的面积至少需要1×(2+23)=(2+23)(米2);故答案为:(2+23).【点睛】本题考查了勾股定理、矩形面积的计算;由三角函数求出BC是解决问题的关键.19.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=____.5【分析】过P作PD⊥OB交OB于点D在直角三角形POD中利用锐角三角函数定义求出OD的长再由PM=PN利用三线合一得到D为MN中点根据MN求出MD的长由OD-MD即可求出OM的长【详解】过P作PD解析:5.【分析】过P作PD⊥OB,交OB于点D,在直角三角形POD中,利用锐角三角函数定义求出OD的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD的长,由OD-MD 即可求出OM的长.【详解】过P作PD⊥OB,交OB于点D,在Rt △OPD 中,cos60°12OD OP ==,OP =12, ∴OD =6. ∵PM =PN ,PD ⊥MN ,MN =2,∴MD =ND 12=MN =1, ∴OM =OD ﹣MD =6﹣1=5.故答案为:5.【点晴】本题考查的是勾股定理,含30度直角三角形的性质,等腰三角形的性质等知识,熟练掌握直角三角形的性质是解本题的关键.20.如图:在矩形ABCD 中,4AB =,8BC =,对角线AC ,BD 相交于点O ,过点O 作OE AC ⊥交AD 于点E .求OE 的长是 . 【分析】利用矩形的性质求解再证明利用锐角三角函数可得答案【详解】矩形矩形故答案为:【点睛】本题考查的是矩形的性质解直角三角形知识掌握以上知识点是解题关键5【分析】利用矩形的性质求解AC ,再证明OAE ACB ∠=∠,利用锐角三角函数可得答案.【详解】矩形ABCD ,4AB =,8BC =,222290,4845,ABC AC AB BC ∴∠=︒=++=4125,,82OA OC tan ACB ==∠== 矩形ABCD ,//,AD BC ∴,OAE ACB ∴∠=∠,OE OA ⊥1tan tan ,2OAE ACB ∴∠=∠= 1,2=OE ∴=【点睛】本题考查的是矩形的性质,解直角三角形知识,掌握以上知识点是解题关键.三、解答题21.(1)计算:|﹣1|﹣(3﹣π)0(﹣12)-1+2cos60°; (2)解方程:2x (x ﹣1)=x ﹣1.解析:(1)3;(2)x 1=1,x 2=0.5.【分析】(1)根据实数的混合运算顺序和运算法则计算即可;(2)利用因式分解法求解即可.【详解】(1)原式=1﹣1+4+(﹣2)+2×12=3; (2)∵2x (x ﹣1)=x ﹣1.∴2x (x ﹣1)﹣(x ﹣1)=0,∴(x ﹣1)(2x ﹣1)=0,则x ﹣1=0或2x ﹣1=0,解得x 1=1,x 2=0.5.【点睛】本题主要考查实数的运算、解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.22.如图,AB 为O 的直径,,C D 为O 上两点,且C 为弧BD 的中点,过点C 作AD 的垂线,交AD 的延长线于点E ,交AB 的延长线于点F ,连结AC(1)求证:EF 是O 的切线;(2)当32,sin 5BF F ==时,求AE 的长.解析:24 5【分析】(1)连接OC,如图,由弧BC=弧CD得到∠BAC=∠DAC,加上∠OCA=∠OAC.则∠OCA=∠DAC,所以OC∥AE,从而得到OC⊥FE,然后根据切线的判定定理得到结论;(2)设半径OB=OC=3x,则OF=5x=3x+2,列方程得到OC=3,OD=5,求得AF=8,根据三角函数的定义即可得到结论.【详解】(1)证明:连接OC,如图,∵点C为弧BD的中点,∴弧BC=弧CD.∴∠BAC=∠DAC,∵OA=OC,∴∠OCA=∠OAC.∴∠OCA=∠DAC,∴OC∥AE,∵AE⊥FE,∴OC⊥FE.∴FE是⊙O的切线;(2)∵3in5OCs FOF==,∴设OB=OC=3x,OF=5x,∵OF=OB+BF,BF=2∴5x=3x+2,∴x=1,∴OC=3,OF=5,∴AF=8, ∵3in 58AE AE s F AF ===, ∴245AE =. 【点睛】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.23.如图,已知⊙O 的直径 AB 与弦 CD 互相垂直,垂足为点 E .⊙O 的切线 BF 与弦 AC 的延长线相交于点 F ,且AC=8,tan ∠BDC=34.(1)求⊙O 的半径长;(2)求线段 CF 长.解析:(1)5;(2)92 【分析】(1)过O 作OH 垂直于AC ,利用垂径定理得到H 为AC 中点,求出AH 的长为4,根据同弧所对的圆周角相等得到tanA =tan ∠BDC ,求出OH 的长,利用勾股定理即可求出圆的半径OA 的长;(2)由AB 垂直于CD 得到E 为CD 的中点,得到EC =ED ,在直角三角形AEC 中,由AC 的长以及tanA 的值求出CE 与AE 的长,由FB 为圆的切线得到AB 垂直于BF ,得到CE 与FB 平行,由平行得比例列出关系式求出AF 的长,根据AF−AC 即可求出CF 的长.【详解】(1)作OH AC ⊥于H ,则142AH AC ==,在Rt AOH ∆中,344AH tanA tan BDC ==∠=,,3OH ∴=,∴半径225OA AH OH =+=; (2)AB CD ⊥,E ∴为CD 的中点,即CE DE =, 在Rt AEC ∆中,384AC tanA ==,,设3CE k =,则4AE k =, 根据勾股定理得:222AC CE AE =+,即2291664k k +=,解得85k =则2432,55CE DE AE ===, BF 为圆O 的切线,FB AB ∴⊥,又AE CD ⊥,//CD FB ∴,AC AE AF AB ∴=,即328510AF =, 解得:252AF =, 则92CF AF AC =-=. 【点睛】此题考查了切线的性质,垂径定理,锐角三角函数定义,勾股定理,以及平行线的性质,熟练掌握切线的性质是解本题的关键.24.热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30,看这栋高楼底部的俯角为60︒,热气球与高楼的水平距离为66m ,这栋高楼有多高?(结果精确到0.1m ,参考数据:3 1.73≈)解析:152.2【分析】过点A 作AD BC ⊥于点D ,根据仰角和俯角的定义得到BAD ∠和CAD ∠的度数,利用特殊角的正切值求出BD 和CD 的长,加起来得到BC 的长.【详解】解:如图,过点A 作AD BC ⊥于点D ,根据题意,30BAD ∠=︒,60CAD ∠=︒,66AD m =, 3tan 30662233BD AD m =⋅︒=⨯=, tan 60663663CD AD m =⋅︒=⨯=,223663883152.2BC m =+=≈.【点睛】本题考查解直角三角形的应用,解题的关键是掌握利用特殊角的三角形函数值解直角三角形的方法.25.有一只拉杆式旅行箱(图1),其侧面示意图如图2所示,已知箱体长50cm AB =,拉杆BC 的伸长距离最大时可达35cm ,点A 、B 、C 在同一条直线上,在箱体底端装有圆形的滚筒A ,A 与水平地面切于点D ,在拉杆伸长至最大的情况下,当点B 距离水平地面38cm 时,点C 到水平面的距离CE 为59cm ,设AF ∥MN .(1)求A 的半径长;(2)当人的手自然下垂拉旅行箱时,人感觉较为舒服,某人将手自然下垂在C 端拉旅行箱时,CE 为80cm ,64CAF ∠=︒,求此时拉杆BC 的伸长距离.(精确到1cm ,参考数据:sin 640.90︒≈,cos640.39︒≈,tan64 2.1︒≈)解析:(1)圆形滚轮的半径AD 的长是8cm ;(2)拉杆BC 的伸长距离为30cm .【分析】(1)作BH ⊥AF 于点K ,交MN 于点H ,则△ABK ∽△ACG ,设圆形滚轮的半径AD 的长是xcm ,根据相似三角形的对应边的比相等,即可列方程求得x 的值;(2)求得CG 的长,然后在直角△ACG 中,求得AC 即可解决问题;【详解】(1)作BH AF ⊥于点K ,交MN 于点H .则BK CG ,ABK ACG ∆∆∽.设圆形滚轮的半径AD 的长是cm x . 则BK AB CG AC =,即3850595035x x -=-+, 解得:8x =. 则圆形滚轮的半径AD 的长是8cm ;(2)在Rt ACG ∆中,80872(cm)CG =-=.则sin CG CAF AC ∠=∴AC=72=sin 0.9CG CAF ∠=80(cm) ∴805030(cm)BC AC AB =-=-=.【点睛】本题考查解直角三角形的应用,相似三角形的判定与性质,锐角三角函数等知识,关键把实际问题转化为数学问题加以计算.26.解答下列各题.(1)计算:20170(1)9(3)2cos30π--+︒.(2)解方程:(3)(1)3--=x x .解析:(1)13+2)10x =,24x =.【分析】(1)根据零指数幂的意义,算术平方根,以及特殊锐角的三角函数值代入计算即可; (2)先将原方程去括号、移项,整理后再运用因式分解法解方程.【详解】解:(1)20170(1)9(3)2cos30π-+-+︒13132=-+-+1313=-+-+13=.(2)由原方程得:2433x x -+=,240x x -=,(4)0x x -=,∴10x =,24x =.【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).同时还考查了特殊角三角函数值. 27.计算或解方程:(1⎛ ⎝ (26045cos 60︒+︒-︒(3)2430x x -+=解析:(1);(2)72;(3)1231x x ==, 【分析】(1)先将二次根式化为最简,然后去括号,合并同类二次根式即可;(2)根据特殊角的三角函数值计算;(3)利用因式分解法或配方法解方程.【详解】(1)解:原式=.=.(2)解:原式12=-. 131272=+-=(3)解:243x x -=-.()224412121x x x x -+=-=-=±∴21x -=或21x -=-,∴1231x x ==,;【点睛】此题考查实数的混合计算和一元二次方程的计算,关键是根据一元二次方程、二次根式和三角函数进行解答.28.如图,在ABC ∆中,5AC =,3tan 4A =,45B ∠=︒.点P 从点A 出发,沿AB 方向以每秒4个单位长度的速度向终点B 运动(不与点A 、B 重合).过点P 作PH AB ⊥,交折线--A C B 于点H ,点Q 为线段AP 的中点,以PH 、PQ 为边作矩形PQGH .设点P 的运动时间为t (秒).(1)直接写出矩形PQGH 的边PH 的长(用含t 的代数式表示);(2)当点G 落在边AC 上时,求t 的值;(3)当矩形PQGH 与ABC ∆重叠部分图形是四边形时,设重叠部分图形的面积为S (平方单位).求S 与t 之间的函数关系式;(4)当ABC ∆的重心落在矩形PQGH 的内部时,直接写出此时t 的取值范围.解析:1)3,01774,14t t PH t t <≤⎧⎪=⎨-<<⎪⎩;(2)1411;(3)229,012147814,114t t S t t t ⎧<≤⎪⎪=⎨⎪-+≤<⎪⎩;(4)113122t <<. 【分析】(1)分两种情况讨论:当点Q 在线段AC 上时;当点Q 在线段BC 上时;(2)当点G 落在AC 上,显然H 在BC 上,利用正切定义tan GQ A AQ=,列方程即可求解;(3)分情况讨论:当01t ≤<时, 14111t <<时,147114t ≤<时,分别求得S 与t 的关系式即可;(4)根据题意不难写出t 的取值范围即可.【详解】解析(1)①当点H 在AC 边上时,点P 速度为4/s ,时间为ts , 4AP t ∴=90APH ∠=︒tan 3PH AP A t ∴=⋅∠=.②4AP t =,作CD AB ⊥于D , 3tan 4CD A AD ∠== 且5AC =,4AD ∴=,3CD =,45B ∠=︒,90CDB ∠=︒,45BCD B ∴∠=︒=∠,3BD CD ∴==,7AB =,74BP AB AP t ∴=-=-,90HPB ∠=︒,45B ∠=︒,74HP BP t ∴==-(2)当点G 落在AC 上,如图,此时4AP t =,122AQ AP t ==,74GQ PH t ==- tan GQ A AQ =,即74324t t -=, 解得:1411t = (3)当01t <≤时,如图,此时3PH t =,4AP t =,122AQ PQ AP t ===3tan 2EQ AQ A t =⋅∠= 213932222PQEH S S t t t t ⎛⎫==+⋅= ⎪⎝⎭四 当14111t <<时,如图,此时重叠部分为五边形,不考虑.当147114t ≤<时,如图,此时74PH t =-,4AP t =,122AQ PQ AP t === 22(74)814PQGH S S PQ PH t t t t ==⋅=-=-+四.(4)如图,建立坐标系点A 为原为,点()7,0B ,点()4,3C ,由重心坐标公式可知,1133A B C G x x x x ++== 13A B C G y y y y ++== ∴重心011,13G ⎛⎫ ⎪⎝⎭①0G 第一次进入矩形时0G 在PH 上,此时11114312AP t t ==⇒=, ②0G 第一次出去矩形时,0G 在GH 上, 此时031742G PH y t t ===-⇒=③0G 在GQ 上时,113AQ =,22243AP AQ t ===, 此时11764t =>不满足题意不考虑; ∴当0G 在矩形内部时,(不含边长),113122t <<. 【点睛】本题属于四边形综合题,考查了解直角三角形的应用,矩形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.。

深圳和平中英文实验学校数学全等三角形(篇)(Word版 含解析)

深圳和平中英文实验学校数学全等三角形(篇)(Word版 含解析)

深圳和平中英文实验学校数学全等三角形(篇)(Word 版 含解析) 一、八年级数学轴对称三角形填空题(难)1.在直角坐标系中,O 为坐标原点,已知点 A (1,2),点 P 是 y 轴正半轴上的一点,且△AOP 为等腰三角形,则点 P 的坐标为_____________.【答案】5(0,5),(0,4),0,4⎛⎫ ⎪⎝⎭【解析】【分析】有三种情况:①以O 为圆心,以OA 为半径画弧交y 轴于D ,求出OA 即可;②以A 为圆心,以OA 为半径画弧交y 轴于P ,求出OP 即可;③作OA 的垂直平分线交y 轴于C ,则AC =OC ,根据勾股定理求出OC 即可.【详解】有三种情况:①以O 为圆心,以OA 为半径画弧交y 轴于D ,则OA =OD =22125+=;∴D (0,5);②以A 为圆心,以OA 为半径画弧交y 轴于P ,OP =2×y A =4,∴P (0,4);③作OA 的垂直平分线交y 轴于C ,则AC =OC ,由勾股定理得:OC =AC =()2212OC +-,∴OC =54, ∴C (0,54); 故答案为:5(0,5),(0,4),0,4⎛⎫ ⎪⎝⎭.【点睛】本题主要考查对线段的垂直平分线,等腰三角形的性质和判定,勾股定理,坐标与图形性质等知识点的理解和掌握,能求出符合条件的所有情况是解此题的关键.2.如图,ABC ∆中,90BAC ∠=︒,AD BC ⊥,ABC ∠的平分线BE 交AD 于点F ,AG 平分DAC ∠.给出下列结论:①BAD C ∠=∠;②EBC C ∠=∠;③AE AF =;④//FG AC ;⑤EF FG =.其中正确的结论是______.【答案】①③④【解析】【分析】①根据等角的余角相等即可得到结果,故①正确;②如果∠EBC=∠C ,则∠C=12∠ABC ,由于∠BAC=90°,那么∠C=30°,但∠C 不一定等于30°,故②错误;③由BE 、AG 分别是∠ABC 、∠DAC 的平分线,得到∠ABF=∠EBD .由于∠AFE=∠BAD+∠FBA ,∠AEB=∠C+∠EBD ,得到∠AFE=∠AEB ,可得③正确;④连接EG ,先证明△ABN ≌△GBN ,得到AN=GN ,证出△ANE ≌△GNF ,得∠NAE=∠NGF ,进而得到GF ∥AE ,故④正确;⑤由AE=AF ,AE=FG ,而△AEF 不一定是等边三角形,得到EF 不一定等于AE ,于是EF 不一定等于FG ,故⑤错误.【详解】∵∠BAC=90°,AD ⊥BC ,∴∠C+∠ABC=90°,∠C+∠DAC=90°,∠ABC+∠BAD=90°,∴∠ABC=∠DAC ,∠BAD=∠C ,故①正确;若∠EBC=∠C ,则∠C=12∠ABC , ∵∠BAC=90°,那么∠C=30°,但∠C 不一定等于30°,故②错误;∵BE 、AG 分别是∠ABC 、∠DAC 的平分线,∴∠ABF=∠EBD ,∵∠AFE=∠BAD+∠ABF ,∠AEB=∠C+∠EBD ,又∵∠BAD=∠C ,∴∠AFE=∠AEF ,∴AF=AE ,故③正确;∵AG 是∠DAC 的平分线,AF=AE ,∴AN ⊥BE ,FN=EN ,在△ABN 与△GBN 中,∵90ABN GBN BN BN ANB GNB ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴△ABN ≌△GBN (ASA ),∴AN=GN ,又∵FN=EN ,∠ANE=∠GNF ,∴△ANE ≌△GNF (SAS ),∴∠NAE=∠NGF ,∴GF ∥AE ,即GF ∥AC ,故④正确;∵AE=AF ,AE=FG ,而△AEF 不一定是等边三角形,∴EF 不一定等于AE ,∴EF 不一定等于FG ,故⑤错误.故答案为:①③④.【点睛】本题主要考查等腰三角形的判定和性质定理,全等三角形的判定和性质定理,直角三角形的性质定理,掌握掌握上述定理,是解题的关键.3.如图,已知等边ABC ∆的边长为8,E 是中线AD 上一点,以CE 为一边在CE 下方作等边CEF ∆,连接BF 并延长至点,N M 为BN 上一点,且5CM CN ==,则MN 的长为_________.【答案】6【解析】【分析】作CG ⊥MN 于G ,证△ACE ≌△BCF ,求出∠CBF=∠CAE=30°,则可以得出124CG BC ==,在Rt △CMG 中,由勾股定理求出MG ,即可得到MN 的长.【详解】解:如图示:作CG ⊥MN 于G ,∵△ABC和△CEF是等边三角形,∴AC=BC,CE=CF,∠ACB=∠ECF=60°,∴∠ACB-∠BCE=∠ECF-∠BCE,即∠ACE=∠BCF,在△ACE与△BCF中AC BCACE BCFCE CF=⎧⎪∠=∠⎨⎪=⎩∴△ACE≌△BCF(SAS),又∵AD是三角形△ABC的中线∴∠CBF=∠CAE=30°,∴124CG BC==,在Rt△CMG中,2222543MG CM CG=-=-=,∴MN=2MG=6,故答案为:6.【点睛】本题考查了勾股定理,等边三角形的性质,全等三角形的性质和判定的应用,解此题的关键是推出△ACF≌△BCF.4.如图,已知正六边形 ABCDEF 的边长是 5,点 P 是 AD 上的一动点,则 PE+PF 的最小值是_____.【答案】10【解析】利用正多边形的性质,可得点B关于AD对称的点为点E,连接BE交AD于P点,那么有PB=PF,PE+PF=BE最小,根据正六边形的性质可知三角形APB是等边三角形,因此可知BE 的长为10,即PE+PF的最小值为10.故答案为10.5.在平面直角坐标系中,点A在x轴的正半轴上,点B在y轴的正半轴上,∆为等腰三角形,符合条件的C点有∠=︒,在x轴或y轴上取点C,使得ABC36ABO__________个.【答案】8【解析】【分析】观察数轴,按照等腰三角形成立的条件分析可得答案.【详解】解:如下图所示,若以点A为圆心,以AB为半径画弧,与x轴和y轴各有两个交点,但其中一个会与点B重合,故此时符合条件的点有3个;若以点B为圆心,以AB为半径画弧,同样与x轴和y轴各有两个交点,但其中一个与点A重合,故此时符合条件的点有3个;线段AB的垂直平分线与x轴和y轴各有一个交点,此时符合条件的点有2个.∴符合条件的点总共有:3+3+2=8个.故答案为:8.【点睛】本题考查了等腰三角形的判定,可以观察图形,得出答案.6.在锐角三角形ABC中.BC=32,∠ABC=45°,BD平分∠ABC.若M,N分别是边BD,BC上的动点,则CM+MN的最小值是____.【答案】4【解析】【分析】过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,则CE即为CM+MN 的最小值,再根据BC=32,∠ABC=45°,BD平分∠ABC可知△BCE是等腰直角三角形,由锐角三角函数的定义即可求出CE的长.【详解】解:过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,则CE即为CM+MN的最小值,∵BC=32,∠ABC=45°,BD平分∠ABC,∴△BCE是等腰直角三角形,∴CE=BC•cos45°=32×22=4.∴CM+MN的最小值为4.【点睛】 本题考查了轴对称最短路线问题,难度较大,根据题意作出辅助线,构造出等腰直角三角形,利用锐角三角函数的定义求解是解答此题的关键.7.如图,1AB A B =,1112A B A A =,2223A B A A =,3334A B A A =,…,当2n ≥,70A ∠=︒时,11n n n A A B --∠=__________.【答案】1702n -︒ 【解析】【分析】先根据三角形外角的性质及等腰三角形的性质分别求出121B A A ∠,232B A A ∠及343B A A ∠的度数,再找出规律即可得出11n n n A A B --∠的度数.【详解】解:∵在1ABA ∆中,70A ∠=︒,1AB A B =∴170BA A A ∠==︒∠∵1112A A A B =,1BA A ∠是121A A B ∆的外角∴12111211703522B A A A B A BA A ︒∠=∠===︒∠ 同理可得,2321217017.542B A A BA A ︒∠===︒∠,343131708.7582B A A BA A ︒∠===︒∠ ∴111702n n n n A A B ---︒∠=. 故答案为:1702n -︒ 【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据特殊情况找出规律是解题关键.8.如图,将ABC ∆沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的1A 处,称为第1次操作,折痕DE 到BC 的距离记为1h ,还原纸片后,再将ADE ∆沿着过AD 中点1D 的直线折叠,使点A 落在DE 边上的2A 处,称为第2次操作,折痕11D E 到BC 的距离记为2h ,按上述方法不断操作下去…经过第2020次操作后得到的折痕20192019D E 到BC 的距离记为2020h ,若11h =,则2020h 的值为______.【答案】2019122-【解析】【分析】根据中点的性质及折叠的性质可得DA=DA ₁=DB,从而可得∠ADA ₁=2∠B,结合折叠的性质可得.,∠ADA ₁=2∠ADE,可得∠ADE=∠B,继而判断DE// BC,得出DE 是△ABC 的中位线,证得AA ₁⊥BC,AA ₁=2,由此发现规律:01 2122h =-=-₁同理21122h =-3211122222h =-⨯=-…于是经过第n 次操作后得到的折痕Dn-1 En-1到BC 的距离1122n n h -=-,据此求得2020h 的值. 【详解】解:如图连接AA ₁,由折叠的性质可得:AA ₁⊥DE, DA= DA ₁ ,A ₂、A ₃…均在AA ₁上 又∵ D 是AB 中点,∴DA= DB ,∵DB= DA ₁ ,∴∠BA ₁D=∠B ,∴∠ADA ₁=∠B +∠BA ₁D=2∠B,又∵∠ADA ₁ =2∠ADE ,∴∠ADE=∠B∵DE//BC,∴AA ₁⊥BC ,∵h ₁=1∴AA ₁ =2, ∴012122h =-=-₁ 同理:21122h =-; 3211122222h =-⨯=-; …∴经过n 次操作后得到的折痕D n-1E n-1到BC 的距离1122n n h -=-∴20202019122h =-【点睛】本题考查了中点性质和折叠的性质,本题难度较大,要从每次折叠发现规律,求得规律的过程是难点.9.等腰三角形一边长等于4,一边长等于9,它的周长是__.【答案】22【解析】【分析】等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形;【详解】解:因为4+4=8<9,0<4<9+9=18,∴腰的不应为4,而应为9,∴等腰三角形的周长=4+9+9=22.故答案为22.【点睛】本题主要考查了等腰三角形的性质和三角形的三边关系;求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.10.如图,已知AB AC =,AD 平分BAC ∠,60DEB EBC ∠=∠=︒,若3BE =,DE =BC =____________.【答案】33+【解析】【分析】延长ED 交BC 于点M ,延长AD 交BC 于点N ,作DF ∥BC 于点F.由已知条件推出△BEM 是等边三角形,△FDE 是等边三角形,在△DNM 中求出NM 的长度,即可求出BC 的长度.【详解】如图,延长ED 交BC 于点M ,延长AD 交BC 于点N ,作DF ∥BC 于点F ,∵AB AC =,AD 平分BAC ∠,∴AN ⊥BC ,BN=CN ,∵60DEB EBC ∠=∠=︒,∴△BEM 是等边三角形,∴△FDE 是等边三角形, ∵3BE =,3DE =33DM =-∵△BEM 是等边三角形,∴∠EMB=60°,∵AN ⊥BC ,∴∠DNM=90°,∴∠NDM=30°,∴13322NM DM ==, ∴33333BN BM NM -+=-=-= ∴233BC BN ==+【点睛】本题考查了等边三角形的性质,解题的关键是作出辅助线构造等边三角形.二、八年级数学轴对称三角形选择题(难)11.如图,等腰 Rt △ABC 中,∠BAC =90°,AD ⊥BC 于D ,∠ABC 的平分线分别交 AC ,AD 于E ,F ,点M 为 EF 的中点,AM 的延长线交 BC 于N ,连接 DM ,NF ,EN .下列结论:①△AFE 为等腰三角形;②△BDF ≌△ADN ;③NF 所在的直线垂直平分AB ;④DM 平分∠BMN ;⑤AE =EN =NC ;⑥AE BN EC BC=.其中正确结论的个数是( )A .2个B .3个C .4个D .5个【答案】D【解析】【分析】 ①由等腰三角形的性质得∠BAD=∠CAD=∠C=45°,再根据三角形外角性质得∠AEF=∠CBE+∠C=22.5°+45°=67.5°,∠AFE=∠FBA+∠BAF=22.5°+45°=67.5°,则得到∠AEF=∠AFE ,可判断△AEF 为等腰三角形,于是可对①进行判断;求出BD=AD ,∠DBF=∠DAN ,∠BDF=∠ADN ,证△DFB ≌△DAN ,由题意可得BF>BD=AD,所以BF ≠AF,所以点F 不在线段AB 的垂直平分线上,所以③不正确,由∠ADB=∠AMB=90°, 可知A 、B 、D 、M 四点共圆, 可求出∠ABM=∠ADM=22.5°,继而可得∠DMN=∠DAN+∠ADM=22.5°+22.5°=45°, 即可求出DM 平分∠BMN ,所以④正确;根据全等三角形的性质可得△AFB ≌△CAN , 继而可得AE=CN ,根据线段垂直平分线的性质和等腰三角形的判定可得△ENC 是等腰直角三角形,继而可得AE=CN=EN ,所以⑤正确;根据等腰三角形的判定可得△BAN 是等腰三角形,可得BD=AB ,继而可得22BD BC A BC B ==,由⑤可得22AE EN EC EC ==所以⑥正确. 【详解】解:∵等腰Rt △ABC 中,∠BAC=90°,AD ⊥BC ,∴∠BAD=∠CAD=∠C=45°,∵BE 平分∠ABC ,∴∠ABE=∠CBE=12∠ABC=22.5°, ∴∠AEF=∠CBE+∠C=22.5°+45°=67.5°,∠AFE=∠FBA+∠BAF=22.5°+45°=67.5° ∴∠AEF=∠AFE ,∴△AEF 为等腰三角形,所以①正确;∵∠BAC=90°,AC=AB ,AD ⊥BC ,∴∠ABC=∠C=45°,AD=BD=CD ,∠ADN=∠ADB=90°,∴∠BAD=45°=∠CAD ,∵BE平分∠ABC,∴∠ABE=∠CBE= 12∠ABC=22.5°,∴∠BFD=∠AEB=90°-22.5°=67.5°,∴AFE=∠BFD=∠AEB=67.5°,∴AF=AE,AM⊥BE,∴∠AMF=∠AME=90°,∴∠DAN=90°-67.5°=22.5°=∠MBN,在△FBD和△NAD中,∠FBD=∠DAN ,BD=AD ,∠BDF=∠ADN ,∴△FBD≌△NAD,所以②正确;因为BF>BD=AD,所以BF AF,所以点F不在线段AB的垂直平分线上,所以③不正确∵∠ADB=∠AMB=90°,∴A、B、D、M四点共圆,∴∠ABM=∠ADM=22.5°,∴∠DMN=∠DAN+∠ADM=22.5°+22.5°=45°,∴DM平分∠BMN ,所以④正确;在△AFB和△CNA中,∠BAF=∠C=45°,AB=AC, ∠ABF=∠CAN=22.5°,∴△AFB≌△CAN(ASA),∴AF=CN,∵AF=AE,∴AE=CN,∵AE=AF,FM=EM,∴AM⊥EF,∴∠BMA=∠BMN=90°,∵BM=BM,∠MBA=∠MBN,∴△MBA≌△MBN,∴AM=MN,∴BE垂直平分线段AN,∴AB=BN,EA=EN,∵BE=BE,∴△ABE≌△NBE,∴∠ENB=∠EAB=90°,∴EN⊥NC.∴△ENC是等腰直角三角形,∴AE=CN=EN,所以⑤正确;∵AF=FN,所以∠FAN =∠FNA,因为∠BAD =∠FND=45°,所以∠FAN+ ∠BAD =∠FNA+∠FND,所以∠BAN =∠BNA,所以AB=BN,所以2BDBCABCB==,由⑤可知,△ENC是等腰直角三角形,AE=CN=EN,∴22 AE ENEC EC==,所以AE BNEC BC=,所以⑥正确,故选D.【点睛】本题考查了全等三角形的判定与性质,三角形外角性质,三角形内角和定理,直角三角形斜质的应用,能正确证明推出两个三角形全等是解此题的关键.12.如图,AB⊥AC,CD、BE分别是△ABC的角平分线,AG∥BC,AG⊥BG,下列结论:①∠BAG=2∠ABF;②BA平分∠CBG;③∠ABG=∠ACB;④∠CFB=135°,其中正确的结论有()个A.1 B.2 C.3 D.4【答案】C【解析】【分析】由已知条件可知∠ABC+∠ACB=90°,又因为CD、BE分别是△ABC的角平分线,所以得到∠FBC+∠FCB=45°,所以求出∠CFB=135°;有平行线的性质可得到:∠ABG=∠ACB,∠BAG=2∠ABF.所以可知选项①③④正确.【详解】∵AB⊥AC.∴∠BAC=90°,∵∠BAC+∠ABC+∠ACB=180°,∴∠ABC+∠ACB=90°∵CD、BE分别是△ABC的角平分线,∴2∠FBC+2∠FCB=90°∴∠FBC+∠FCB=45°∴∠BFC=135°故④正确.∵AG∥BC,∴∠BAG=∠ABC∵∠ABC=2∠ABF∴∠BAG=2∠ABF 故①正确.∵AB⊥AC,∴∠ABC+∠ACB=90°,∵AG⊥BG,∴∠ABG+∠GAB=90°∵∠BAG=∠ABC,∴∠ABG=∠ACB 故③正确.故选C.【点睛】本题考查了等腰三角形的判定与性质,平行线的性质.掌握相关的判定定理和性质定理是解题的关键.13.如图,在等边三角形ABC中,在AC边上取两点M、N,使∠MBN=30°.若AM=m,MN=x,CN=n,则以x,m,n为边长的三角形的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.随x,m,n的值而定【答案】C【解析】【分析】将△ABM绕点B顺时针旋转60°得到△CBH.连接HN.想办法证明∠HCN=120°HN=MN=x即可解决问题.【详解】将△ABM绕点B顺时针旋转60°得到△CBH.连接HN.∵△ABC 是等边三角形,∴∠ABC =∠ACB =∠A =60°.∵∠MON =30°,∴∠CBH +∠CBN =∠ABM +∠CBN =30°,∴∠NBM =∠NBH .∵BM =BH ,BN =BN ,∴△NBM ≌△NBH ,∴MN =NH =x .∵∠BCH =∠A =60°,CH =AM =n ,∴∠NCH =120°,∴x ,m ,n 为边长的三角形△NCH 是钝角三角形.故选C .【点睛】本题考查了等边三角形的性质、全等三角形的判定和性质、旋转的性质等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,属于中考常考题型.14.如图,等腰ABC ∆中,AB AC =,120BAC ∠=,AD BC ⊥于点D ,点P 是BA 延长线上一点,点O 是线段AD 上一点,OP OC =.下列结论:①30APO DCO ∠+∠=;②APO DCO ∠=∠;③OPC ∆是等边三角形;④AB AO AP =+.其中正确结论的个数是( )A .1B .2C .3D .4【答案】D【解析】【分析】 ①②连接OB ,根据垂直平分线性质即可求得OB=OC=OP ,即可解题;③根据周角等于360°和三角形内角和为180°即可求得∠POC=2∠ABD=60°,即可解题;④AB 上找到Q 点使得AQ=OA ,易证△BQO≌△PAO,可得PA=BQ ,即可解题.【详解】连接OB ,∵AB AC =,AD ⊥BC ,∴AD 是BC 垂直平分线,∴OB OC OP ==,∴APO ABO ∠=∠,DBO DCO ∠=∠,∵AB=AC ,∠BAC =120∘∴30ABC ACB ∠=∠=︒∴30ABO DBO ∠+∠=︒,∴30APO DCO ∠+∠=.故①②正确;∵OBP ∆中,180BOP OPB OBP ∠=︒-∠-∠,BOC ∆中,180BOC OBC OCB ∠=︒-∠-∠,∴360POC BOP BOC OPB OBP OBC OCB ∠=︒-∠-∠=∠+∠+∠+∠,∵OPB OBP ∠=∠,OBC OCB ∠=∠,∴260POC ABD ∠=∠=︒,∵PO OC ,∴OPC ∆是等边三角形,故③正确;在AB 上找到Q 点使得AQ=OA ,则AOQ ∆为等边三角形,则120BQO PAO ∠=∠=︒,在BQO ∆和PAO ∆中,BQO PAO QBO APO OB OP ∠∠⎧⎪∠∠⎨⎪⎩===∴BQO PAO AAS ∆∆≌(),∴PA BQ =,∵AB BQ AQ =+,∴AB AO AP =+,故④正确.故选:D.【点睛】本题主要考查全等三角形的判定与性质、线段垂直平分线的性质,本题中求证BQO PAO ∆∆≌是解题的关键.15.在平面直角坐标系中,等腰△ABC 的顶点A 、B 的坐标分别为(1,0)、(2,3),若顶点C 落在坐标轴上,则符合条件的点C 有( )个.A .9B .7C .8D .6【答案】C【解析】【分析】要使△ABC 是等腰三角形,可分三种情况(①若CA =CB ,②若BC =BA ,③若AC =AB )讨论,通过画图就可解决问题.【详解】①若CA =CB ,则点C 在AB 的垂直平分线上.∵A (1,0),B (2,3),∴AB 的垂直平分线与坐标轴有2个交点C 1,C 2.②若BC =BA ,则以点B 为圆心,BA 为半径画圆,与坐标轴有3个交点(A 点除外)C 3,C 4,C 5;③若AC =AB ,则以点A 为圆心,AB 为半径画圆,与坐标轴有4个交点C 6,C 7,C 8,C 9.而C 8(0,-3)与A 、B 在同一直线上,不能构成三角形,故此时满足条件的点有3个.综上所述:符合条件的点C 的个数有8个.故选C .【点睛】本题考查了等腰三角形的判定、垂直平分线的性质的逆定理等知识,还考查了动手操作的能力,运用分类讨论的思想是解答本题的关键.16.如图,∠AOB=30º,∠AOB 内有一定点P,且OP=12,在OA 上有一动点Q,OB 上有一动点R。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

深圳深圳菁华中英文实验中学数学三角形解答题单元测试题(Word 版 含解析)一、八年级数学三角形解答题压轴题(难)1.阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究一:如图1.在△ABC 中,已知O 是∠ABC 与∠ACB 的平分线BO 和CO 的交点,通过分析发现1902BOC A ︒∠=+∠.理由如下: ∵BO 和CO 分别是∠ABC 与∠ACB 的平分线,∴112ABC ∠=∠,122ACB ∠=∠; ∴()0011112()18090222ABC ACB A A ∠+∠=∠+∠=-∠=-∠, ∴11180(12)180909022BOC A A ︒︒︒︒⎛⎫∠=-∠+∠=--∠=+∠ ⎪⎝⎭(1)探究二:如图2中,已知O 是∠ABC 与外角∠ACD 的平分线BO 和CO 的交点,试分析∠BOC 与∠A 有怎样的关系?并说明理由.(2)探究二:如图3中,已知O 是外角∠DBC 与外角∠ECB 的平分线BO 和CO 的交点,试分析∠BOC 与∠A 有怎样的关系?【答案】(1)12BOC A ∠=∠,理由见解析;(2)1902BOC A ︒∠=-∠. 【解析】【分析】(1)根据角平分线的定义可得∠OBC =12∠ABC ,∠OCD =12∠ACD ,再根据三角形的一个外角等于与它不相邻的两个内角的和和角平分线的定义可得∠OCD =12∠ACD =12∠A +∠OBD ,∠BOC =∠OCD -∠OBC ,然后整理即可得解;(2)根据三角形的外角性质以及角平分线的定义表示出∠OBC 和∠OCB ,再根据三角形的内角和定理解答;【详解】(1)12BOC A ∠=∠,理由如下: ∵BO 和CO 分别是ABC ∠与ACD ∠的平分线, ∴12OBD ABC ∠=∠,12OCD ACD ∠=∠, 又∵ACD ∠是ABC 的一个外角, ∴1122OCD ACD A OBD ∠=∠=∠+∠, ∵OCD ∠是BOC 的一个外角, ∴1122BOC OCD OBD A OBD OBD A ∠=∠-∠=∠+∠-∠=∠ 即12BOC A ∠=∠ (2)∵BO 与CO 分别是∠CBD 与∠BCE 的平分线,∴∠OBC =12∠CBD ,∠OCB =12∠BCE 又∵∠CBD 与∠BCE 都是△ABC 的外角,∴∠CBD =∠A +∠ACB ,∠BCE =∠A +∠ABC ,∴∠OBC =12∠CBD =12(∠A +∠ACB ),∠OCB =12∠BCE =12(∠A +∠ABC ), ∴∠BOC =180°-(∠OBC +∠OCB ) ∴1902BOC A ︒∠=-∠ 【点睛】本题考查了三角形的外角性质,角平分线的定义,三角形的内角和定理,熟记性质并准确识图,整体思想的利用是解题的关键.2.在一个三角形中,如果一个角是另一个角的3倍,这样的三角形我们称之为“灵动三角形”.如,三个内角分别为120°,40°,20°的三角形是“灵动三角形”.如图,∠MON =60°,在射线OM 上找一点A ,过点A 作AB ⊥OM 交ON 于点B ,以A 为端点作射线AD ,交线段OB 于点C (规定0°< ∠OAC < 90°).(1)∠ABO 的度数为 °,△AOB (填“是”或“不是”灵动三角形); (2)若∠BAC =60°,求证:△AOC 为“灵动三角形”;(3)当△ABC 为“灵动三角形”时,求∠OAC 的度数.【答案】(1)30°;(2)详见解析;(3)∠OAC=80°或52.5°或30°.【解析】【分析】(1)根据垂直的定义、三角形内角和定理求出∠ABO的度数,根据“智慧三角形”的概念判断;(2)根据“智慧三角形”的概念证明即可;(3)分点C在线段OB和线段OB的延长线上两种情况,根据“智慧三角形”的定义计算.【详解】(1)答案为:30°;是;(2)∵AB⊥OM∴∠B AO=90°∵∠BAC=60°∴∠OAC=∠B AO-∠BAC=30°∵∠MON=60°∴∠ACO=180°-∠OAC-∠MON=90°∴∠ACO=3∠OAC,∴△AOC为“灵动三角形”;(3)设∠OAC= x°则∠BAC=90-x, ∠ACB=60+x ,∠ABC=30°∵△ABC为“智慧三角形”,Ⅰ、当∠ABC=3∠BAC时,°,∴30=3(90-x),∴x=80Ⅱ、当∠ABC=3∠ACB时,∴30=3(60+x)∴x= -50 (舍去)∴此种情况不存在,Ⅲ、当∠BCA=3∠BAC时,∴60+x=3(90-x),∴x=52.5°,Ⅳ、当∠BCA=3∠ABC时,∴60+x=90°,∴x=30°,Ⅴ、当∠BAC=3∠ABC时,∴90-x=90°,∴x=0°(舍去)Ⅵ、当∠BAC=3∠ACB时,∴90-x=3(60+x),∴x= -22.5(舍去),∴此种情况不存在,∴综上所述:∠OAC=80°或52.5°或30°。

【点睛】考查的是三角形内角和定理、“智慧三角形”的概念,用分类讨论的思想解决问题是解本题的关键.3.探究与发现:如图1所示的图形,像我们常见的学习用品--圆规.我们不妨把这样图形叫做“规形图”,(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,∠A=40°,则∠ABX+∠ACX等于多少度;②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数;③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度数.【答案】(1)详见解析;(2)①50°;②85°;③63°.【解析】【分析】(1)连接AD并延长至点F,根据外角的性质即可得到∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD,即可得出∠BDC=∠A+∠B+∠C;(2)①根据(1)得出∠ABX+∠ACX+∠A=∠BXC,再根据∠A=40°,∠BXC=90°,即可求出∠ABX+∠ACX的度数;②先根据(1)得出∠ADB+∠AEB=90°,再利用DC平分∠ADB,EC平分∠AEB,即可求出∠DCE的度数;③由②得∠BG1C=110(∠ABD+∠ACD)+∠A,设∠A为x°,即可列得110(133-x)+x=70,求出x的值即可.【详解】(1)如图(1),连接AD并延长至点F,根据外角的性质,可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD,又∵∠BDC=∠BDF+∠CDF,∠BAC=∠BAD+∠CAD,∴∠BDC=∠A+∠B+∠C;(2)①由(1),可得∠ABX+∠ACX+∠A=∠BXC,∵∠A=40°,∠BXC=90°,∴∠ABX+∠ACX=90°-40°=50°;②由(1),可得∠DBE=∠DAE+∠ADB+∠AEB,∴∠ADB+∠AEB=∠DBE-∠DAE=130°-40°=90°,∴12(∠ADB+∠AEB)=90°÷2=45°,∵DC平分∠ADB,EC平分∠AEB,∴12ADC ADB∠=∠,12AEC AEB∠=∠,∴∠DCE=∠ADC+∠AEC+∠DAE,=12(∠ADB+∠AEB)+∠DAE,=45°+40°, =85°;③由②得∠BG1C=110(∠ABD+∠ACD)+∠A,∵∠BG1C=70°,∴设∠A为x°,∵∠ABD+∠ACD=133°-x°∴110(133-x)+x=70,∴13.3-110x+x=70,解得x=63,即∠A的度数为63°.【点睛】此题考查三角形外角的性质定理,三角形的外角等于与它不相邻的内角的和,,根据此定理得到角度的规律,由此解决问题,此题中得到平分角的变化规律是解题的难点.4.如图,四边形ABCD,BE、DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β(1)如图,若α+β=120°,求∠MBC+∠NDC的度数;(2)如图,若BE与DF相交于点G,∠BGD=30°,请写出α、β所满足的等量关系式;(3)如图,若α=β,判断BE、DF的位置关系,并说明理由.【答案】(1)120°;(2)β﹣α=60° 理由见解析;(3)平行,理由见解析.【解析】【分析】(1)利用四边形的内角和求出∠ABC与∠ADC的和,利用角平分线的定义以及α+β=120°推导即可;(2)由(1)得,∠MBC+∠NDC=α+β,利用角平分线的定义得∠CBG+∠CDG=12(α+β),在△BCD中利用三角形的内角和定理得∠BDC+∠CDB =180°﹣β,在△BDG中利用三角形的内角和定理得出关于α、β的等式整理即可得出结论;(3)延长BC交DF于H,由(1)得∠MBC+∠NDC=α+β,利用角平分线的定义得∠CBE+∠CDH=12(α+β),利用三角形的外角的性质得∠CDH=β﹣∠DHB,然后代入∠CBE+∠CDH=12(α+β)计算即可得出一组内错角相等.【详解】(1)解:(1)在四边形ABCD中,∠BAD+∠ABC+∠BCD+∠ADC=360°,∴∠ABC+∠ADC=360°-(α+β),∵∠MBC+∠ABC=180°,∠NDC+∠ADC=180°∴∠MBC+∠NDC=180°-∠ABC+180°-∠ADC=360°-(∠ABC+∠ADC)=360°-[360°-(α+β)]=α+β,∵α+β=120°,∴∠MBC+∠NDC=120°;(2)β﹣α=60°理由:如图1,连接BD,由(1)得,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBG=12∠MBC,∠CDG=12∠NDC,∴∠CBG+∠CDG=12∠MBC+12∠NDC=12(∠MBC+∠NDC)=12(α+β),在△BCD中,∠BDC+∠CDB=180°﹣∠BCD=180°﹣β,在△BDG中,∠GBD+∠GDB+∠BGD=180°,∴∠CBG+∠CBD+∠CDG+∠BDC+∠BGD=180°,∴(∠CBG+∠CDG)+(∠BDC+∠CDB)+∠BGD=180°,∴12(α+β)+180°﹣β+30°=180°,∴β﹣α=60°,(3)平行,理由:如图2,延长BC交DF于H,由(1)有,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBE=12∠MBC,∠CDH=12∠NDC,∴∠CBE+∠CDH=12∠MBC+12∠NDC=12(∠MBC+∠NDC)=12(α+β),∵∠BCD=∠CDH+∠DHB,∴∠CDH=∠BCD﹣∠DHB=β﹣∠DHB,∴∠CBE+β﹣∠DHB=12(α+β),∵α=β,∴∠CBE+β﹣∠DHB=12(β+β)=β,∴∠CBE=∠DHB,∴BE∥DF.【点睛】此题是三角形综合题,主要考查了平角的意义,四边形的内角和,三角形内角和,三角形的外角的性质,角平分线的意义,用整体代换的思想是解本题的关键,整体思想是初中阶段的一种重要思想,要多加强训练.5.如图,△ABC的三条角平分线相交于点I,过点I作DI⊥IC,交AC于点D.(1)如图①,求证:∠AIB=∠ADI;(2)如图②,延长BI,交外角∠ACE的平分线于点F.①判断DI与CF的位置关系,并说明理由;②若∠BAC=70°,求∠F的度数.【答案】(1)证明见解析;(2)解:①结论:DI∥CF,②35°.【解析】分析:(1)只要证明∠AIB=90°+12∠ACB,∠ADI=90°+12∠ACB即可;(2)①只要证明∠IDC=∠DCF即可;②首先求出∠ACE-∠ABC=∠BAC=70°,再证明∠F=12∠ACE-12∠ABC=12(∠ACE-∠ABC)即可解决问题;详解:(1)证明:∵AI,BI分别平分∠BAC,∠ABC,∴∠BAI=12∠BAC,∠ABI=12∠ABC,∴∠BAI+∠ABI=12(∠BAC+∠ABC)=12(180°-∠ACB)=90°-12∠ACB.在△ABI中,∠AIB=180°-(∠BAI+∠ABI)=180°-(90°-12∠ACB)=90°+12∠ACB.∵CI平分∠ACB,∴∠DCI=12∠ACB.∵DI⊥IC,∴∠DIC=90°,∴∠ADI=∠DIC+∠DCI=90°+12∠ACB.∴∠AIB=∠ADI. (2)解:①结论:DI∥CF.理由:∵∠IDC=90°-∠DCI=90°-12∠ACB,CF平分∠ACE,∴∠ACF=12∠ACE=12(180°-∠ACB)=90°-12∠ACB,∴∠IDC=∠ACF,∴DI∥CF.②∵∠ACE=∠ABC+∠BAC,∴∠ACE-∠ABC=∠BAC=70°.∵∠FCE=∠FBC+∠F,∴∠F=∠FCE-∠FBC.∵∠FCE=12∠ACE,∠FBC=12∠ABC,∴∠F=12∠ACE-12∠ABC=12(∠ACE-∠ABC)=35°.点睛:本题考查了三角形的外角性质:三角形的一个外角等于另外两个内角之和,三角形内角和定理:三角形的内角和为180°,难度适中,此类题型的关键在于结合题目条件与三角形的外角性质,三角形内角和定理.6.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2= °;(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为:;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间的关系为:.【答案】(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由见解析;(4)∠2=90°+∠1﹣α.【解析】试题分析:(1)根据四边形内角和定理以及邻补角的定义,得出∠1+∠2=∠C+∠α,进而得出即可;(2)利用(1)中所求的结论得出∠α、∠1、∠2之间的关系即可;(3)利用三角外角的性质,得出∠1=∠C+∠2+α=90°+∠2+α;(4)利用三角形内角和定理以及邻补角的性质可得出∠α、∠1、∠2之间的关系.试题分析:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∴∠1+∠2=∠C+∠α,∵∠C=90°,∠α=50°,∴∠1+∠2=140°,故答案为140;(2)由(1)得∠α+∠C=∠1+∠2,∴∠1+∠2=90°+∠α.故答案为∠1+∠2=90°+∠α.(3)∠1=90°+∠2+∠α.理由如下:如图③,设DP与BE的交点为M,∵∠2+∠α=∠DME,∠DME+∠C=∠1,∴∠1=∠C+∠2+∠α=90°+∠2+∠α.(4)如图④,设PE与AC的交点为F,∵∠PFD=∠EFC,∴180°-∠PFD=180°-∠EFC,∴∠α+180°-∠1=∠C+180°-∠2,∴∠2=90°+∠1-∠α.故答案为∠2=90°+∠1-∠α点睛:本题考查了三角形内角和定理和外角的性质、对顶角相等的性质,熟练掌握三角形外角的性质是解决问题的关键.7.已知:如图①,BP、CP分别平分△ABC的外角∠CBD、∠BCE,BQ、CQ分别平分∠PBC、∠PCB,BM、CN分别是∠PBD、∠PCE的角平分线.(1)当∠BAC=40°时,∠BPC=,∠BQC=;(2)当BM∥CN时,求∠BAC的度数;(3)如图②,当∠BAC=120°时,BM、CN所在直线交于点O,直接写出∠BOC的度数.【答案】(1) 70°,125°;(2)∠BAC=60° (3) 45°【解析】分析:(1)根据三角形的外角性质分别表示出∠DBC与∠BCE,再根据角平分线的性质可求得∠CBP+∠BCP,最后根据三角形内角和定理即可求解;根据角平分线的定义得出∠QBC=12∠PBC,∠QCB=12∠PCB,求出∠QBC+∠QCB的度数,根据三角形内角和定理求出即可;(2)根据平行线的性质得到∠MBC+∠NCB=180°,依此求解即可;(3)根据题意得到∠MBC+∠NCB,再根据三角形外角的性质和三角形内角和定理得到∠BOC 的度数.详解:(1)∵∠DBC=∠A+∠ACB,∠BCE=∠A+∠ABC,∴∠DBC+∠BCE=180°+∠A=220°,∵BP、CP分别是△ABC的外角∠CBD、∠BCE的角平分线,∴∠CBP+∠BCP=12(∠DBC+∠BCE)=110°,∴∠BPC=180°﹣110°=70°,∵BQ、CQ分别是∠PBC、∠PCB的角平分线,∴∠QBC=12∠PBC,∠QCB=12∠PCB,∴∠QBC+∠QCB=55°,∴∠BQC=180°﹣55°=125°;(2)∵BM∥CN,∴∠MBC+∠NCB=180°,∵BM、CN分别是∠PBD、∠PCE的角平分线,∴34(∠DBC+∠BCE)=180°,即34(180°+∠BAC)=180°,解得∠BAC=60°;(3)∵∠BAC=120°,∴∠MBC+∠NCB=34(∠DBC+∠BCE)=34(180°+α)=225°,∴∠BOC=225°﹣180°=45°.点睛:本题考查三角形外角的性质及三角形的内角和定理,解答的关键是沟通外角和内角的关系.8.我校快乐走班数学兴趣小组开展了一次活动,过程如下:设∠BAC=θ(0°<θ<90°)小棒依次摆放在两射线之间,并使小棒两端分别落在两射线上.活动一:如图甲所示,从点A1开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直,A1A2为第1根小棒.数学思考:(1)小棒能无限摆下去吗?答:.(填“能“或“不能”)(2)设AA1=A1A2=A2A3=1.则θ=度;活动二:如图乙所示,从点A1开始,用等长的小棒依次向右摆放,其中A1A2为第1根小棒,且A1A2=AA1.数学思考:(3)若只能摆放5根小棒,求θ的范围.【答案】(1)能.(2)θ=22.5;(3) 15°≤θ<18°.【解析】【分析】(1)根据已知条件:小棒两端能分别落在两射线上进行判断即可;(2)根据等腰三角形的性质和三角形的外角性质即得结果;(3)根据等腰三角形的性质和三角形的内角和定理可得关于θ的不等式组,解不等式组即得结果.【详解】(1)∵根据已知条件∠BAC=θ(0°<θ<90°)小棒两端能分别落在两射线上,∴小棒能继续摆下去;(2)∵A1A2=A2A3,A1A2⊥A2A3,∴∠A2A1A3=45°,∴∠AA2A1+∠θ=45°,∵∠AA2A1=∠θ,∴∠θ=22.5°;(3)如图乙,∵A 2A 1=A 2A 3,∴∠A 2A 3A 1=∠A 2A 1A 3=2θ°,∵A 2A 3=A 4A 3,∴∠A 3A 2A 4=∠A 3A 2A 4=3θ°,∵A 4A 3=A 4A 5,∴∠A 4A 3A 5=∠A 4A 5A 3=4θ°,根据三角形内角和定理和等腰三角形的性质,可得6θ⩾90°,5θ<90°,∴15°⩽θ<18°.【点睛】本题考查了等腰三角形的性质、三角形内角和定理和三角形的外角性质,根据题意找出规律并结合等腰三角形的性质是解题的关键.9.已知,在ABC 中,∠A =60°,(1)如图①,∠ABC 和∠ACB 的角平分线交于点O ,则∠BOC= ;(2)如图②,∠ABC 和∠ACB 的三等分线分别对应交于点O 1,O 2,则2_________BO C ∠=;(3)如图③,∠ABC 和∠ACB 的n 等分线分别对应交于点O 1,O 2,……,1n O -(内部有1n -个点),则1-∠=n BO C ;(4)如图③,∠ABC 和∠ACB 的n 等分线分别对应交于点O 1,O 2,……,1n O -,若190-∠=︒n BO C ,求n 的值.【答案】(1)120°;(2)100°;(3)60120+⎛⎫︒⎪⎝⎭n n ;(4)n=4 【解析】【分析】 (1)根据三角形的内角和定理即可求出∠ABC +∠ABC ,然后根据角平分线的定义即可求出∠OBC +∠OCB ,再根据三角形的内角和定理即可求出结论;(2)根据三角形的内角和定理即可求出∠ABC +∠ABC ,然后根据三等分线的定义即可求出∠O 2BC +∠O 2CB ,再根据三角形的内角和定理即可求出结论;(3)根据三角形的内角和定理即可求出∠ABC +∠ABC ,然后根据n 等分线的定义即可求出∠O n -1BC +∠O n -1CB ,再根据三角形的内角和定理即可求出结论;(4)根据(3)的结论列出方程即可求出结论.【详解】解:(1)∵在ABC 中,∠A =60°,∴∠ABC +∠ABC=180°-∠A=120°∵∠ABC 和∠ACB 的角平分线交于点O ,∴∠OBC=12∠ABC ,∠OCB=12∠ACB ∴∠OBC +∠OCB=12∠ABC +12∠ACB =12(∠ABC +∠ACB ) =60°∴∠BOC=180°-(∠OBC +∠OCB )=120°故答案为:120°.(2)∵在ABC 中,∠A =60°,∴∠ABC +∠ABC=180°-∠A=120°∵∠ABC 和∠ACB 的三等分线分别对应交于点O 1,O 2,∴∠O 2BC=23∠ABC ,∠O 2CB=23∠ACB ∴∠O 2BC +∠O 2CB=23∠ABC +23∠ACB =23(∠ABC +∠ACB ) =80°∴2∠=BO C 180°-(∠O 2BC +∠O 2CB )=100°故答案为:100°.(3)∵在ABC 中,∠A =60°,∴∠ABC +∠ABC=180°-∠A=120°∵∠ABC 和∠ACB 的n 等分线分别对应交于点O 1,O 2,……,1n O -∴∠O n -1BC=1n n -∠ABC ,∠O n -1CB=1n n-∠ACB ∴∠O n -1BC +∠O n -1CB=1n n -∠ABC +1n n -∠ACB =1n n-(∠ABC +∠ACB ) =120120-⎛⎫⎪⎝⎭n n °∴1-∠=n BO C 180°-(∠O 2BC +∠O 2CB )=60120+⎛⎫︒⎪⎝⎭n n 故答案为:60120+⎛⎫︒ ⎪⎝⎭n n (4)由(3)知:1-∠=n BO C 60120+⎛⎫︒⎪⎝⎭n n ∴6012090+=n n解得:n=4 经检验:n=4是原方程的解.【点睛】本题考查了n 等分线的定义和三角形的内角和定理,掌握n 等分线的定义和三角形的内角和定理是解决此题的关键.10.(问题背景)(1)如图1的图形我们把它称为“8字形”,请说明∠A +∠B =∠C +∠D ;(简单应用)(2)如图2,AP 、CP 分别平分∠BAD .∠BCD ,若∠ABC =36°,∠ADC =16°,求∠P 的度数;(问题探究)(3)如图3,直线AP 平分∠BAD 的外角∠FAD ,CP 平分∠BCD 的外角∠BCE ,若∠ABC =36°,∠ADC =16°,请猜想∠P 的度数,并说明理由.(拓展延伸)(4)在图4中,若设∠C =α,∠B =β,∠CAP =13∠CAB ,∠CDP =13∠CDB ,试问∠P 与∠C 、∠B 之间的数量关系为: ______ (用α、β表示∠P ,不必证明) 【答案】(1)证明见解析;(2)26°;(3)26°;(4)∠P =23α+13β. 【解析】【分析】(1)根据三角形内角和定理即可证明.(2)根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据(1)的结论列出整理即可得解;(3)表示出∠PAD和∠PCD,再根据(1)的结论列出等式并整理即可得解;(4)列出方程组即可解决问题.【详解】(1)证明:在△AOB中,∠A+∠B+∠AOB=180°,在△COD中,∠C+∠D+∠COD=180°,∵∠AOB=∠COD,∴∠A+∠B=∠C+∠D;(2) 如图2,∵AP、CP分别平分∠BAD、∠BCD,∴∠1=∠2,∠3=∠4,∵∠2+∠B=∠3+∠P,∠1+∠P=∠4+∠D,∴2∠P=∠B+∠D,∴∠P=12(∠B+∠D)=12×(36°+16°)=26°;(3)如图3,∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∴∠PAD=180°-∠2,∠PCD=180°-∠3,∵∠P+(180°-∠1)=∠D+(180°-∠3),∠P+∠1=∠B+∠4,∴2∠P=∠B+∠D,∴∠P=12(∠B+∠D)=12×(36°+16°)=26°;(4)∠P=23α+13β.。

相关文档
最新文档