小学数学概念全部归纳

合集下载

(完整版)小学数学知识点总结大全(完整版)

(完整版)小学数学知识点总结大全(完整版)

小学数学知识点大全第一章数和数的运算一、概念(一)整数1、整数的意义自然数和0都是整数。

2、自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。

一个物体也没有,用0表示。

0也是自然数。

3、计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。

其中“一”是计数的基本单位。

10个1是10,10个10是100……每相邻两个计数单位之间的进率都是10。

这样的计数法叫做十进制计数法。

4、数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

5、整数的读法:从高位到低位,一级一级地读。

读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。

每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。

6、整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。

7、一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。

有时还可以根据需要,省略这个数某一位后面的数,写成近似数。

⑴准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。

改写后的数是原数的准确数。

例如把 1254300000 改写成以万做单位的数是 125430 万;改写成以亿做单位的数 12.543 亿。

⑵近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。

例如: 1302490015 省略亿后面的尾数是 13 亿。

⑶四舍五入法:求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1。

这种求近似数的方法就叫做四舍五入法。

8、整数大小的比较:位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。

以此类推。

(二)小数1、小数的意义把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。

小学生数学分类归纳总结

小学生数学分类归纳总结

小学生数学分类归纳总结在小学数学学习过程中,学生需要学习和掌握各种不同的数学概念和技巧。

为了帮助小学生更好地理解和运用数学知识,我们可以进行分类归纳总结。

本文将按照数的性质、数的运算、几何形状和图表统计等方面对小学数学知识进行分类总结。

一、数的性质1. 自然数:自然数是最基本的数,包括0和正整数。

2. 整数:整数包括正整数、零和负整数。

3. 分数:分数是带有分母和分子的数,可以表示一个整体的一部分。

4. 小数:小数是带有小数点的数,可以表示一个整体的一部分或者一个实际数值。

二、数的运算1. 加法:加法是求两个或多个数的和。

2. 减法:减法是从一个数中减去另一个数。

3. 乘法:乘法是将两个或多个数相乘得到积。

4. 除法:除法是将一个数分成若干个相等的部分。

三、几何形状1. 点:点是几何图形中最基本的要素,没有具体大小和形状。

2. 线:线是由无数个点按照一定规律连接而成的。

3. 线段:线段是由两个端点和连接两个端点的点组成的一段线。

4. 角:角是由两条射线公共端点组成的,用来度量物体之间的旋转程度。

5. 三角形:三角形是由三条线段组成的几何图形。

6. 矩形:矩形有四条边,且相邻两边相等且平行的四边形。

7. 圆:圆是由一条曲线和一个固定点组成的几何形状,曲线上的每个点到固定点的距离都相等。

四、图表统计1. 条形图:条形图用长方形的长度表示数据的大小。

2. 饼图:饼图通过划分扇形的大小来表示数据的比例关系。

3. 折线图:折线图通过连接各个数据点来展示数据的变化趋势。

4. 数据表:数据表将数据以表格的形式进行排列,更加直观地展示数据。

通过对小学数学知识的分类归纳总结,我们可以更好地整理和理解学习内容。

小学生可以通过掌握数的性质和运算规律,提高运算能力;通过学习几何形状,加深对图形的认识和理解;通过图表统计,掌握表达数据的方式和方法。

因此,分类归纳总结对于小学生的数学学习具有重要的帮助和指导作用。

总结:小学生数学分类归纳总结,从数的性质、数的运算、几何形状和图表统计等方面进行了详细的介绍。

小学数学知识点总结大全(完整版)

小学数学知识点总结大全(完整版)

小学数学知识点总结大全(完整版)小学数学知识点大全第一章数和数的运算一、概念(一)整数1、整数的意义自然数和0都是整数。

2、自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。

一个物体也没有,用0表示。

0也是自然数。

3、计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。

其中“一”是计数的基本单位。

10个1是10,10个10是100……每相邻两个计数单位之间的进率都是10。

这样的计数法叫做十进制计数法。

4、数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

5、整数的读法:从高位到低位,一级一级地读。

读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。

每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。

6、整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。

7、一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。

有时还可以根据需要,省略这个数某一位后面的数,写成近似数。

准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。

改写后的数是原数的准确数。

例如把1254300000 改写成以万做单位的数是125430 万;改写成以亿做单位的数 12.543 亿。

近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。

例如:1302490015 省略亿后面的尾数是13 亿。

?四舍五入法:求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1。

这种求近似数的方法就叫做四舍五入法。

8、整数大小的比较:位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。

以此类推。

(二)小数1、小数的意义把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。

小学数学总结知识归纳全部

小学数学总结知识归纳全部

小学数学总结知识归纳全部数学是小学阶段学生必修的一门学科,也是培养学生逻辑思维和解决问题能力的重要课程之一。

下面将对小学数学知识进行全面总结和归纳,帮助学生复习和巩固所学的知识。

一、整数与小数1. 整数的认识和运算:- 整数的概念:正整数、负整数及零- 整数的大小比较- 整数的加法、减法和乘法运算- 整数的拓展运算:加减法混合运算2. 小数的认识和运算:- 小数的概念和写法- 小数的大小比较- 小数的加法、减法和乘法运算- 小数与整数的加法和减法二、算式与方程1. 算式的认识和解答:- 算式的概念和构成要素- 算式的四则运算:加法、减法、乘法和除法- 算式的拓展运算:多个运算符的混合运算2. 方程的认识和解答:- 方程的概念和基本形式- 方程的解的概念- 一元一次方程的解法三、图形与几何1. 基本图形的认识和性质:- 点、线、线段、射线、角的认识- 三角形、四边形、圆的认识和性质2. 位置与方向:- 点的坐标与平面直角坐标系- 直线的方向与位置关系- 平面镜像与对称性3. 空间几何与立体图形:- 空间几何基本概念:点、线、面、体- 立体图形的认识和性质:球体、长方体、正方体、圆柱体、圆锥体、棱柱体四、计量与单位1. 长度、面积和容量的认识和换算:- 常见长度单位的换算:米、厘米、千米- 常见面积和容量单位的换算:平方米、立方米2. 时间的认识和计算:- 时、分、秒的概念和换算- 24小时制与12小时制的关系3. 质量和重量的认识和换算:- 常见质量单位的换算:克、千克、吨五、数据与统计1. 数据与图表的认识:- 数据的概念和收集方式- 统计图表的种类和构成:表格、条形图、折线图、圆饼图2. 数据的分析和应用:- 数据的集中趋势:平均数、中位数、众数- 数据的离散程度:极差、方差- 数据的应用:调查、统计、预测六、概率与推理1. 概率的认识和计算:- 概率的概念和计算方式- 等可能事件和互斥事件的计算2. 推理与解题:- 推理的基本方法:归纳、演绎- 解题的思维方法:逻辑推理、分析综合通过对小学数学知识的全面总结和归纳,希望能够帮助小学生巩固所学的数学知识,提高解决问题的能力和思维水平。

小学三年级数学概念整理

小学三年级数学概念整理

小学三年级数学概念整理
数的认识
初步认识1~99之间的整数,能够把物品按照一定的数目分组,并能正确地用数字表示出来。

加法
掌握两数相加的方法,理解加法法则:加0不变,数的交换律、结合律。

减法
掌握两数相减的方法,理解减法法则:减0不变,数的交换律、消去律。

乘法
初步掌握数的乘法,理解乘法法则:乘1不变,0与任何数相
乘都得0,数的交换律、结合律、分配律。

除法
初步了解两个整数间的除法关系,掌握用除法算出商和余数的
简便方法。

小数
初步了解小数的概念,会用小数数位表示有限的小数。

分数
初步了解分数的概念,会用分数表示一个数是若干份中的几份,会用分数比较大小。

金钱
初步认识人民币的基本单位和面值。

长度、面积和体积
初步认识长度、面积和体积的概念,学会用长度、面积和体积单位进行测量。

几何图形
初步认识平面图形(三角形、正方形、长方形、梯形、圆)和立体图形(立方体、正方体)。

时间
初步认识钟表的指针,会读整点和半点,会区分上午和下午。

小学数学知识点归纳梳理大全

小学数学知识点归纳梳理大全

小学数学知识点归纳梳理大全第一章数的认识1.1 自然数和零的认识1.2 整数的认识1.3 分数的认识1.4 小数的认识第二章加减法2.1 加法的基本概念和性质2.2 减法的基本概念和性质2.3 两位数的加减法2.4 三位数的加减法2.5 带有进位和借位的加减法第三章乘法与除法3.1 乘法的基本概念和性质3.2 乘法口诀表3.3 两位数的乘法3.4 三位数的乘法3.5 除法的基本概念和性质3.6 两位数的除法3.7 三位数的除法3.8 带有余数的除法第四章分数运算4.1 分数的加减法4.2 分数的乘法4.3 分数的除法4.4 分数的化简4.5 分数的比较和排序第五章小数运算5.1 小数的加减法5.2 小数的乘法5.3 小数的除法5.4 小数的化简与比较第六章数字的应用6.1 百分数的认识与转化6.2 货币和找零的计算6.3 数字的估算与近似6.4 数字的应用问题解决第七章几何图形与测量7.1 点、线、面的认识7.2 直线与曲线的区别7.3 角的认识与分类7.4 三角形的认识与分类7.5 四边形的认识与分类7.6 圆的认识与性质7.7 长度的测量7.8 面积的测量7.9 体积的测量第八章数据统计8.1 图表的阅读与制作8.2 数据的收集与整理8.3 数据的分析与解读8.4 实际问题的解决第九章逻辑推理9.1 命题、真值与逻辑连接词9.2 命题的组合与析取9.3 条件语句与拟反命题9.4 几何图形的推理第十章应用题10.1 简单应用题10.2 复杂应用题10.3 字母代数式的解答在小学阶段,数学是一个非常重要的学科,它不仅是培养学生逻辑思维和分析问题的能力,也是培养他们解决实际问题的能力的关键。

而对于老师和家长来说,掌握小学数学知识点的归纳和梳理是非常重要的,可以帮助学生更好地掌握知识并应用到实际生活中。

本文将从数的认识开始介绍,包括自然数和零、整数、分数和小数的认识。

对于每个知识点,将详细介绍其基本概念和性质,以及相应的运算规则和习题练习。

小学数学知识点总结大全(完整版)

小学数学知识点总结大全(完整版)

小学数学知识点总结大全(完整版)一、整数的认识小学数学学习中,最基本的是数字知识,数字包含整数、分数、小数等。

整数是小学必须掌握的数学知识之一,整数有正整数、负整数和0三种,在数轴上表示正整数、负整数和0,正数向右,负数向左,原点为0。

在小学数学中,我们要学会根据需要解决实际问题,对加减乘除四则运算进行灵活运用。

例如:小明口袋里有8个苹果,他给同桌3个,还剩几个?这道题目就需要我们用到整数的加减。

二、算式及运算的基础1.基础算式:加减、乘、除四种运算方式,是小学数学基础,通常要求在小学2-3年级之前必须掌握。

例如:3+5=8,7-4=3,6*9=54,15÷3=5。

2.算术口诀表:算术口诀表,通常包含5×6,6×7,7×8,8×9,它们是小学数学学习乘法口诀的基础。

在学习乘法口诀时,我们可以通过口诀表来强化记忆。

3.分数的认识:分数在小学二年级就会涉及到,分数是指把整数分成若干等份的一种表示方法。

在学习分数时,需要学生能够计算分数的加减乘除及分子分母的互换。

三、几何图形的认识几何图形的认识在小学数学学习中很重要,几何图形包括正方形、长方形、三角形、圆形等。

在几何图形的学习中,学生需要掌握图形的基本形状、结构,依据题目进行计算。

四、长度、体积、重量的认识在学习长度、体积和重量时,我们需要了解“米、厘米、千克、克、升、毫升”的概念,从而可以解决实际生活中的问题。

五、时间的认识时间的认识是小学数学学习的一个重要知识点,我们需要学会根据时钟或日历,确定时间的时、分、秒,之后才能够在实际生活中进行计算,例如小明早上6点醒来,他需要多少时间做好早餐?六、分析数据信息在小学数学学习中,需要学生对一些简单的统计及数据进行分析,例如:某班级有40名学生,带零食来的有20个,其余的没有带,最多的是带了什么零食?最少的是带了什么零食?七、题型总结1.加减乘除计算类:是小学数学学习基本题型。

小学数学概念全部归纳

小学数学概念全部归纳

小学数学概念全部归纳整数概念【自然数】我们在数物体的时候,用来表示物体个数的1,2,3,4,5,...叫做自然数。

【整数】在小学阶段,整数通常指自然数。

【数字】表示数目的符号叫做数字,通常把数字叫做数码。

【加法】把两个数合并成一个数的运算,叫做加法。

【加数】在加法中相加的两个数,叫做加数。

【和】在加法中两个加数相加得到的数叫做和。

【减法】已知两个数的和与其中一个数,求另一个加数的运算,叫做减法。

【被减数】在减法中,已知的和叫做被减数。

【减数】在减法中,减去的已知加数叫做减数。

【差】在减法中,求出的未知加数叫做差。

【乘法】求几个相同加数的和的简便运算,叫做乘法。

【因数】在乘法中,相乘的两个数都叫做积的因数。

【积】在乘法中,乘得的结果叫做积。

【除法】已知两个因数的积,与其中一个因数,求另外一个因数的运算,叫做除法。

【被除数】在除法中已知的积叫做被除数。

【除数】在除法中,已知的一个因数叫做除数。

【商】在除法中,未知的因数叫做商。

【十进制计数法】每相邻的两个计数单位间的进率是十。

【整数四则混合运算】我们学过的加减乘除四种运算,统称为四则运算。

【第一级运算】在四则运算中,加法和减法叫做第一级运算。

【第二级运算】在四则运算中,乘法和除法叫做第二级运算。

【整除】两个整数相除,如果用字母透露表现可以这样说:整数a除以整数b(b不等于0)除得的商正好是整数而没有余数,我们就说a能被b整除,也能够说b能整除a。

【约数和倍数】如果数a能被b(b不等于)整除,a叫做b的倍数,b叫做a的约数或a的因数。

【质数】一个数,如果只要1和它自己两个约数,这样的数叫做质数或者素数。

比方2、3、5、7、11都是质数。

【素数】素数就是质数。

【合数】一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。

【质因数】每个合数都可以写成几个质数相乘的形式。

其中每个质数都是这个合数的因数,叫做这个合数的质因数。

【分解质因数】把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

小学数学知识点总结大全(完整版)

小学数学知识点总结大全(完整版)

小学数学知识点大全第一章数和数的运算一、概念(一)整数1、整数的意义自然数和0都是整数。

2、自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。

一个物体也没有,用0表示。

0也是自然数。

3、计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。

其中“一”是计数的基本单位。

10个1是10,10个10是100……每相邻两个计数单位之间的进率都是10。

这样的计数法叫做十进制计数法。

4、数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

5、整数的读法:从高位到低位,一级一级地读。

读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。

每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。

6、整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。

7、一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。

有时还可以根据需要,省略这个数某一位后面的数,写成近似数。

⑴准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。

改写后的数是原数的准确数。

例如把1254300000 改写成以万做单位的数是125430 万;改写成以亿做单位的数12.543 亿。

⑵近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。

例如:1302490015 省略亿后面的尾数是13 亿。

⑶四舍五入法:求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1。

这种求近似数的方法就叫做四舍五入法。

8、整数大小的比较:位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。

以此类推。

(二)小数1、小数的意义把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。

小学数学必需掌握的数学概念归纳总结

小学数学必需掌握的数学概念归纳总结

小学必需掌握的数学概念、公式一、和差倍问题二、年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;三、归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;四、植树问题:五、鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

六、盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量。

基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量。

基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。

关键问题:确定对象总量和总的组数。

七、牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。

小学数学知识点总结大全(完整版)

小学数学知识点总结大全(完整版)

(7)解答加法应用题:a求总数的应用题:已知甲数是多少,乙数是多少,求甲乙两数的和是多少。

b求比一个数多几的数应用题:已知甲数是多少和乙数比甲数多多少,求乙数是多少。

(8)解答减法应用题:a求剩余的应用题:从已知数中去掉一部分,求剩下的部分。

-b求两个数相差的多少的应用题:已知甲乙两数各是多少,求甲数比乙数多多少,或乙数比甲数少多少。

c求比一个数少几的数的应用题:已知甲数是多少,,乙数比甲数少多少,求乙数是多少。

(9)解答乘法应用题:a求相同加数和的应用题:已知相同的加数和相同加数的个数,求总数。

b求一个数的几倍是多少的应用题:已知一个数是多少,另一个数是它的几倍,求另一个数是多少。

( 10) 解答除法应用题:a把一个数平均分成几份,求每一份是多少的应用题:已知一个数和把这个数平均分成几份的,求每一份是多少。

b求一个数里包含几个另一个数的应用题:已知一个数和每份是多少,求可以分成几份。

C 求一个数是另一个数的的几倍的应用题:已知甲数乙数各是多少,求较大数是较小数的几倍。

d已知一个数的几倍是多少,求这个数的应用题。

(11)常见的数量关系:总价= 单价×数量路程= 速度×时间工作总量=工作时间×工效总产量=单产量×数量3、典型应用题具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题。

(1)平均数问题:平均数是等分除法的发展。

解题关键:在于确定总数量和与之相对应的总份数。

算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。

数量关系式:数量之和÷数量的个数=算术平均数。

加权平均数:已知两个以上若干份的平均数,求总平均数是多少。

数量关系式(部分平均数×权数)的总和÷(权数的和)=加权平均数。

差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。

数量关系式:(大数-小数)÷2=小数应得数最大数与各数之差的和÷总份数=最大数应给数最大数与个数之差的和÷总份数=最小数应得数。

小学数学知识点整理归纳汇总(超详细)

小学数学知识点整理归纳汇总(超详细)

小学数学知识归纳总结(打印版)基本概念第一章数和数的运算(一)整数1、整数的意义自然数和0都是整数。

2、自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。

一个物体也没有,用0表示。

0也是自然数。

3、计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。

其中“一”是计数的基本单位。

10个1是10,10个10是100……每相邻两个计数单位之间的进率都是10。

这样的计数法叫做十进制计数法。

4、数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

5、整数的读法:从高位到低位,一级一级地读。

读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。

每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。

6、整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。

7、一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。

有时还可以根据需要,省略这个数某一位后面的数,写成近似数。

⑴准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。

改写后的数是原数的准确数。

例如把1254300000改写成以万做单位的数是125430万;改写成以亿做单位的数12.543亿。

⑵近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。

例如:1302490015省略亿后面的尾数是13亿。

⑶四舍五入法:求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1。

这种求近似数的方法就叫做四舍五入法。

8、整数大小的比较:位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。

以此类推。

把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。

小学数学概念总结.doc

小学数学概念总结.doc

小学数学概念总结1、加法交换律:两数相加交换加数的位置,和不变。

2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

3、乘法交换律:两数相乘,交换因数的位置,积不变。

4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。

如:(2+4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。

o 除以任何不是o的数都得o。

简便乘法:被乘数、乘数末尾有o的乘法,可以先把o前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。

等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

8、什么叫方程式?答:含有未知数的等式叫方程式。

9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。

10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。

11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。

异分母的分数相加减,先通分,然后再加减。

12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。

异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

15、分数除以整数(0除外),等于分数乘以这个整数的倒数。

16、真分数:分子比分母小的分数叫做真分数。

17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。

假分数大于或等于1。

18、带分数:把假分数写成整数和真分数的形式,叫做带分数。

小学数学学科的重要概念归纳

小学数学学科的重要概念归纳

小学数学学科的重要概念归纳数学是一门基础学科,对于小学生的学习发展具有重要意义。

在小学阶段,学生接触数学的开始,同时也需要建立起一些重要的数学概念。

这些概念将成为他们数学学习的基础,为以后更深入的数学学习奠定坚实的基础。

在本文中,我们将对小学数学学科的几个重要概念进行归纳。

1. 数字和数的概念:数字是一种符号,用于表示数量或位置。

数是由数字组成的,用于表示具体的数量。

数字和数是数学中最基础的概念,它们贯穿于整个小学数学学习过程中。

学生学会认识数字和数的概念后,将能够进行简单的数学计算和量化。

2. 数的大小比较:数的大小比较是小学数学中的重要概念之一。

学生在此过程中需要学会对两个或多个数进行比较,并能正确地判断它们的大小关系。

这为将来更复杂的数学运算和问题解决奠定了基础。

3. 加法和减法:加法和减法是数学中基本的运算概念。

在小学数学学习中,学生需要通过掌握加法和减法的方法和规则,进行简单的数学计算。

这将培养他们的数学思维和逻辑能力,并帮助他们建立起对数学运算的基本理解。

4. 乘法和除法:乘法和除法是小学数学中基本的运算概念,也是数学学科发展中的重要环节。

通过学习乘法和除法的规则和方法,学生能够更灵活地进行数学计算,并能够解决一些实际问题。

此外,乘法和除法的学习还能够培养学生的逻辑思维能力和数学建模能力。

5. 分数:分数是小学数学中的重要概念之一。

学生通过学习分数的概念和运算,能够将整数和分数进行转化,并能够解决一些实际生活中的问题。

此外,分数的学习还有助于培养学生的抽象思维能力和数学的推理能力。

6. 小数:小数是小学数学中的重要内容之一。

通过学习小数的概念和运算,学生能够理解小数与分数的关系,并能够运用小数解决实际问题。

小数的学习还能够培养学生的准确性和精确性,提高他们的数学计算能力和问题解决能力。

7. 几何图形:几何图形是小学数学中的重要内容之一。

学生通过学习几何图形的概念和性质,能够认识和描述常见的几何图形,并能够解决与几何图形相关的问题。

请总结小学数学的核心概念。

请总结小学数学的核心概念。

请总结小学数学的核心概念。

小学数学的核心概念
数学是小学阶段的一门重要学科,它培养了学生的逻辑思维能力和问题解决能力。

下面是小学数学的核心概念的总结:
1. 数字和运算符:掌握数字的表示和运算符的使用是数学的基础。

小学数学中,学生需要学会识别和书写数字,并理解加法、减法、乘法和除法运算符的含义和使用方法。

2. 加法和减法:加法和减法是最基本的数学运算。

学生需要掌握加法和减法的概念,以及如何进行基本的计算。

他们还应该能够解决与加法和减法相关的问题。

3. 乘法和除法:乘法和除法是扩展数学运算的一部分。

学生需要理解乘法和除法的意义,以及如何进行乘法和除法的计算。

他们还应该能够解决与乘法和除法相关的问题。

4. 分数和小数:分数和小数是数学中的重要概念。

学生需要理解分数和小数的概念,并能够进行简单的计算和比较。

他们还应该能够将分数和小数与整数进行转化。

5. 几何形状:几何形状也是小学数学中的一个关键概念。

学生需要研究不同几何形状的名称、属性和特征,以及如何识别和描述它们。

6. 数据分析:数据分析是数学中的一项重要技能。

学生需要学会收集、整理和解读数据,并能够使用图表和图形来表示和分析数据。

这些是小学数学的核心概念的一些例子,帮助学生建立坚实的数学基础。

通过深入理解这些概念,学生将能够应用数学知识解决各种实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学概念全部归纳Prepared on 21 November 2021小学数学概念全部归纳整数概念【自然数】我们在数物体的时候,用来表示物体个数的1,2,3,4,5,...叫做自然数。

【整数】在小学阶段,整数通常指自然数。

【数字】表示数目的符号叫做数字,通常把数字叫做数码。

【加法】把两个数合并成一个数的运算,叫做加法。

【加数】在加法中相加的两个数,叫做加数。

【和】在加法中两个加数相加得到的数叫做和。

【减法】已知两个数的和与其中一个数,求另一个加数的运算,叫做减法。

【被减数】在减法中,已知的和叫做被减数。

【减数】在减法中,减去的已知加数叫做减数。

【差】在减法中,求出的未知加数叫做差。

【乘法】求几个相同加数的和的简便运算,叫做乘法。

【因数】在乘法中,相乘的两个数都叫做积的因数。

【积】在乘法中,乘得的结果叫做积。

【除法】已知两个因数的积,与其中一个因数,求另一个因数的运算,叫做除法。

【被除数】在除法中已知的积叫做被除数。

【除数】在除法中,已知的一个因数叫做除数。

【商】在除法中,未知的因数叫做商。

【计数单位】一,十,百,千,万,十万,百万,千万,亿......都叫做计数单位。

【十进制计数法】每相邻的两个计数单位间的进率是十。

【数位】写数的时候,把计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

第一个数位称为个位,依次是十位,百位,千位,万位,十万位......【有余数除法】一个整数除以另一个不为零的整数,得到整数的商以后还有余数,这样的除法叫做有余数的除法。

余数比除数小。

【整数四则混合运算】我们学过的加减乘除四种运算,统称为四则运算。

【第一级运算】在四则运算中,加法和减法叫做第一级运算。

【第二级运算】在四则运算中,乘法和除法叫做第二级运算。

【整除】两个整数相除,如果用字母表示可以这样说:整数a除以整数b(b不等于0)除得的商正好是整数而没有余数,我们就说a能被b整除,也可以说b 能整除a。

【约数和倍数】如果数a能被b(b不等于0)整除,a叫做b的倍数,b叫做a 的约数或a的因数。

【偶数】能被2整除的数叫做偶数,因为0也能被2整除,所以0也是偶数。

【奇数】不能被2整除的数叫做奇数。

例如1、3、5、7......【质数】一个数,如果只有1和它本身两个约数,这样的数叫做质数或者素数。

例如2、3、5、7、11都是质数。

【素数】素数就是质数。

【合数】一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。

【质因数】每个合数都可以写成几个质数相乘的形式。

其中每个质数都是这个合数的因数,叫做这个合数的质因数。

【分解质因数】把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

【公约数】几个数公有的约数,叫做这几个数的公约数。

【最大公约数】在几个数的公约数中最大的一个,叫做这几个数的最大公约数。

【互质数】公约数只有1的两个数,叫做互质数。

例如5和7是互质数,8和9也是互质数。

【公倍数】几个数公用的倍数,叫做这几个数的公倍数。

【最小公倍数】在几个数的公倍数中最小的一个,叫做这几个数的最小公倍数。

【单价数量总价】每件商品的价钱,我们叫它单价,买了多少,叫做数量,一共用了多少钱,叫总价。

总价=单价×数量【速度、时间、路程】每小时(或每分钟或者每天)行进的路程,我们叫它速度,行进了几小时(或几分钟或几天)我们叫它时间,一共行进多少路,我们叫它路程。

路程=速度×时间【加法交换律】字母表示:a+b=b+a【加法结合律】字母表示:(a+b)+c=a+(b+c)【乘法交换律】字母表示:a×b=b×a【乘法结合律】字母表示:(a×b)×c=a×(b×c)【乘法分配律】字母表示:(a+b)×c=a×c+b×c【四位数的加法法则】(1)相同数位对齐;(2)从个位加起;(3)哪一位上的数相加满十,要向前一位进一。

【乘数是一位数的乘法法则】(1)从个位起,用乘数依次乘被乘数的每一位数;(2)哪一位上乘得的积满几十,就向前一位进几。

0和任何数相乘都得0。

【两个因数和积的变化规律】一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)若干倍。

【除法中商不变的性质】在除法里,被除数和除数同时扩大(或缩小)相同的倍数(零除外),商不变。

【乘法各部分间的关系】因数×因数=积一个因数=积÷另一个因数【除法各部分间的关系】被除数÷除数=商除数=被除数÷商被除数=商×除数【乘法的验算方法】用所得的积除以一个因数,如果得到另一个因数,就是乘法做对了。

【除法的验算方法】用除数和商相乘,如果得到被除数,或者用被除数除以商,如果得到除数,就是除法做对了。

【乘法的简便算法】三个数相乘,可以先把后面两个数相乘,再和第一个数相乘,结果不变。

【除法的简便算法】一个数连续用两个数除,每次都能除尽的时候,可以先把两个除数相乘,用它们的积去除这个数,结果不变。

【解答应用题的步骤】(1)弄清题意,并找出已知条件和所求问题;(2)分析题里数量间的关系,确定先算什么,再算什么,最后算什么(3)确定每一步该怎样算,列出算式,算出得数;(4)进行检验,写出答案。

【检验应用题】(1)按照原来的题意,依次检查每一步列式和计算,看是否正确(2)把得数当作已知条件,按照题意倒看一步一步地计算,看结果是不是符合原来的一个已知条件。

【加法各部分间的关系】和=加数+加数加数=和-另一个加数【减法各部分间的关系】差=被减数-减数减数=被减数-差被减数=减数+差【加减法的简便运算】一个数连续减去两个数,等于这个数减去两个数的和。

【有余数除法各部分间的关系】被除数=商×除数+余数【同级运算的顺序】一个算式里,如果只含有同一级运算,要从左往右依次计算。

【不同级运算的运算顺序】一个算式里,如果含有两级运算,要先做第二级运算,后做第一级运算。

例如100-7×5=100-35=65小数概念【小数】仿照整数的写法,写在整数的右面,用圆点隔开,用来表示十分之几,百分之几,千分之几......的数,叫做小数。

【小数的计数单位】小数的计数单位是十分之一,百分之一,千分之一...... 【小数加法】小数加法的意义与整数加法的意义相同,是把两个数合并成一个数的运算。

【小数减法】小数减法的意义与整数减法的意义相同,是已知2个加数的和与其中一个加数,求另一个加数的运算。

【小数乘整数】小数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

【一个数乘小数】一个数乘小数的意义是求这个数的十分之几,百分之几,千分之几......【小数除法】小数除法的意义和整数除法的意义相同,是已知两个因数的积与其中一个因数,求另一个因数的运算。

【循环小数】一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数。

【循环节】一个循环小数的小数部分,依次不断地重复出现的数字,叫做这个循环小数的循环节。

【纯循环小数】循环节从小数部分第一位开始的,叫做纯循环小数。

【混循环小数】循环节不从小数部分第一位开始的,叫做混循环小数。

【有限小数】小数部分的位数是有限的小数,叫做有限小数。

【无限小数】小数部分的位数是无限的小数,叫做无限小数。

循环小数是无限小数。

【小数的性质】小数的末尾添上0或者去掉0,小数的大小不变,这叫做小数的性质。

【小数加减法的计算法则】计算小数加减法,先把各数的小数点对起,再按照整数加减法的法则进行计算,最后在得数里对齐横线上的小数点点上小数点。

得数的小数部分末尾有0,一般要把0去掉。

分数概念【分数线】在分数里,中间的横线叫做分数线。

【分母】在分数里,分数线下面的数叫做分母,表示把单位“1”平均分成多少份。

【分子】在分数里,分数线上面的数叫做分子,表示有这样的多少份。

【分数单位】按照分母数字把单位“1”分成相等份数,表示其中一份的数,叫做分数单位。

例如六分之五的分数单位是六分之一。

【真分数】分子比分母小的分数叫做真分数。

真分数小于1。

【假分数】分子比分母大或者分子和分母相等的分数,叫做假分数。

【繁分数】一个分数,如果它的分子含有分数或者分母里含有分数,或者分子和分母里都含有分数,这个分数就叫做繁分数。

【带分数】由整数和真分数合成的数,通常叫做带分数。

例如二又五分之一。

【约分】把一个分数化成同他相等,但分子和分母都比较小的分数,叫做约分。

【最简分数】分子和分母是互质数的分数叫做最简分数。

【通分】把两个异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

例如比较两个分数的大小,就需要通分。

【分数加法】分数加法的意义与整数加法的意义相同,是把两个分数合并成一个分数的运算。

【分数减法】分数减法的意义与整数减法的意义相同,是已知两个加数的和与其中一个加数,求另一个加数的运算。

【分数乘整数】分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

【一个数乘分数】一个数乘分数的意义,就是求这个数的几分之几是多少。

【倒数】乘积是1的两个数叫做互为倒数。

例如八分之三和三分之八互为倒数,就是八分之三的倒数是三分之八。

【分数除法】分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。

【分数的基本性质】分数的分子和分母同时乘以或者除以相同的数(零除外),分数的大小不变,这叫做分数的基本性质。

【同分母分数加减法的法则】同分母分数相加减,分母不变,只把分子相加减。

计算结果能约分的要约成最简分数,是假分数的,一般要化成带分数或整数。

比和比例【百分数】表示一个数是另一个数的百分之几的数,叫做百分数。

百分数也叫做百分率和百分比。

【利息】取款时银行多付的钱叫做利息。

【本金】存入银行的钱叫做本金。

【利率】利息与本金的百分比叫做利率。

利率由银行规定,有按年计算的,也有按月计算的。

【利息的计算公式】利息=本金×利率×时间【成数】几成就是十分之几,或者百分之几十。

例如三成就是十分之三,改写成百分数就是30%。

【折扣】“几折”就表示十分之几,也就是百分之几十。

【比】两个数相除又叫做两个数的比。

【比号】比号用“:”表示,读作比。

【比的前项】比号前面的数叫做比的前项。

【比的后项】比号后面的数叫做比的后项。

【比值】比的前项除以后项所得的商,叫做比值。

【比例】表示两个比相等的式子叫做比例。

【比例的项】组成比例的四个数,叫做比例的项。

【比例的外项】组成比例的四个项中,两端的两项叫做比例的外项。

【比例的内项】组成比例的四个项中,中间的两项叫做比例的内项。

【解比例】根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另一个未知项。

相关文档
最新文档