模电课件
合集下载
模拟电路基础ppt课件
一般来说,有三种方法来定量地 分析一个电子器件的特性,即特 性曲线图示法、解析式表示法和 参数表示法
+
-
二极管符号
15
1.3 半导体二极管
1.3.1二极管的特性曲线
在二极管加有反向电压, 当电压值较小时,电流极 小,其电流值为反向饱和 电流IS。当反向电压超过 超过某个值时,电流开始 急剧增大,称之为反向击 穿,称此电压为二极管的 反向击穿电压,用符号 UER表示。
2
第一章 半导体器件基础
1.1 半导体及其特性 1.2 PN结及其特性 1.3 半导体二极管 1.4 半导体三极管及其工作原理 1.5 三极管的共射特性曲线及主要参数
3
1.1 半导体及其特性
1.1.1本征半导体及其特性
定义:纯净的半导体经过一定 的工艺过程制成单晶体,称为 本征半导体。
稳压管的主要参数: (1) 稳定电压UZ:UZ是在规定电流下稳压管的反向击穿电压。 (2) 稳定电流IZ:IZ是稳压管工作在稳压状态时的参考电流,电流低于
此值时稳压效果变坏,甚至不稳压。 (3) 最大稳定电流IZM|:稳压管的电流超过此值时,会因结温升过高而
损坏。 (4) 动态电阻rD:rD是稳压管工作在稳压区时,端电压变化量与其电流
在无外电场和无其它激发作用下,参与扩散运动的多子数 目等于参与漂移运动的少子数目,从而达到动态平衡。
13
1.2 PN结及其特性
1.2.2 PN结的导电特性
PN结外加正向电压时 处于导通状态
PN结外加反向电压时 处于截止状态
势垒区
⊝ ⊝ ⊝ ⊝⊕ ⊕ ⊕ ⊕
⊝ ⊝ ⊝ ⊝⊕ ⊕ ⊕ ⊕
⊝ ⊝ ⊝ ⊝⊕ ⊕ ⊕ ⊕
N型半导体 : 在本征半导体中掺入少量
+
-
二极管符号
15
1.3 半导体二极管
1.3.1二极管的特性曲线
在二极管加有反向电压, 当电压值较小时,电流极 小,其电流值为反向饱和 电流IS。当反向电压超过 超过某个值时,电流开始 急剧增大,称之为反向击 穿,称此电压为二极管的 反向击穿电压,用符号 UER表示。
2
第一章 半导体器件基础
1.1 半导体及其特性 1.2 PN结及其特性 1.3 半导体二极管 1.4 半导体三极管及其工作原理 1.5 三极管的共射特性曲线及主要参数
3
1.1 半导体及其特性
1.1.1本征半导体及其特性
定义:纯净的半导体经过一定 的工艺过程制成单晶体,称为 本征半导体。
稳压管的主要参数: (1) 稳定电压UZ:UZ是在规定电流下稳压管的反向击穿电压。 (2) 稳定电流IZ:IZ是稳压管工作在稳压状态时的参考电流,电流低于
此值时稳压效果变坏,甚至不稳压。 (3) 最大稳定电流IZM|:稳压管的电流超过此值时,会因结温升过高而
损坏。 (4) 动态电阻rD:rD是稳压管工作在稳压区时,端电压变化量与其电流
在无外电场和无其它激发作用下,参与扩散运动的多子数 目等于参与漂移运动的少子数目,从而达到动态平衡。
13
1.2 PN结及其特性
1.2.2 PN结的导电特性
PN结外加正向电压时 处于导通状态
PN结外加反向电压时 处于截止状态
势垒区
⊝ ⊝ ⊝ ⊝⊕ ⊕ ⊕ ⊕
⊝ ⊝ ⊝ ⊝⊕ ⊕ ⊕ ⊕
⊝ ⊝ ⊝ ⊝⊕ ⊕ ⊕ ⊕
N型半导体 : 在本征半导体中掺入少量
模拟电子技术ppt课件
9.1.1 功率放大电路的特点
一、主要技术指标 1. 最大输出功率Pom 输出功率 PO :输入为正弦波且不失真 。
注:交流功率,PO=UOIO POm=UOmIOm
第九章 功率放大电路
2. 转换效率η
直流功率:直流电源 电压和其输出电流平 均值的乘积
二、功率放大电路中的晶体管
晶体管工作在极限应用状态(ICM ; U(BR)CEO ; PCM)。 大功率管,散热,保护
静态:
动态:
电容电压 :
T1导通,T2截止 T2导通,T1截止
甲乙类工作状态
第九章 功率放动态电阻很小,R2 的阻值也较小。
第九章 功率放大电路
若静态 工作点 失调, 如虚焊
第九章 功率放大电路
三、OCL电路的输出功率和效率
-Vcc
第九章 功率放大电路
二、集电极最大电流
第九章 功率放大电路
三、集电极最大功耗
四、参数选择:
第九章 功率放大电路
9.4 功率放大电路的安全运行
9.4.1 功放管的二次击穿 9.4.2 功放管的散热问题
第九章 功率放大电路
9.4 功率放大电路的安全运行 9.4.1 功放管的二次击穿
第九章 功率放大电路
9.4.2 功放管的散热问题
有效值: 最大输出功率:
第九章 功率放大电路
若忽略UCES: 在忽略基极回路电流的情况下,电源提供的电流
第九章 功率放大电路
电源在负载获得最大交流信号时所消耗的平均功率:
若忽略UCES:
第九章 功率放大电路
两种互补功率放大电路性能指标的比较:
OCL电路
OTL电路
第九章 功率放大电路
四、 OTL电路中晶体管的选择 一、最大管压降
一、主要技术指标 1. 最大输出功率Pom 输出功率 PO :输入为正弦波且不失真 。
注:交流功率,PO=UOIO POm=UOmIOm
第九章 功率放大电路
2. 转换效率η
直流功率:直流电源 电压和其输出电流平 均值的乘积
二、功率放大电路中的晶体管
晶体管工作在极限应用状态(ICM ; U(BR)CEO ; PCM)。 大功率管,散热,保护
静态:
动态:
电容电压 :
T1导通,T2截止 T2导通,T1截止
甲乙类工作状态
第九章 功率放动态电阻很小,R2 的阻值也较小。
第九章 功率放大电路
若静态 工作点 失调, 如虚焊
第九章 功率放大电路
三、OCL电路的输出功率和效率
-Vcc
第九章 功率放大电路
二、集电极最大电流
第九章 功率放大电路
三、集电极最大功耗
四、参数选择:
第九章 功率放大电路
9.4 功率放大电路的安全运行
9.4.1 功放管的二次击穿 9.4.2 功放管的散热问题
第九章 功率放大电路
9.4 功率放大电路的安全运行 9.4.1 功放管的二次击穿
第九章 功率放大电路
9.4.2 功放管的散热问题
有效值: 最大输出功率:
第九章 功率放大电路
若忽略UCES: 在忽略基极回路电流的情况下,电源提供的电流
第九章 功率放大电路
电源在负载获得最大交流信号时所消耗的平均功率:
若忽略UCES:
第九章 功率放大电路
两种互补功率放大电路性能指标的比较:
OCL电路
OTL电路
第九章 功率放大电路
四、 OTL电路中晶体管的选择 一、最大管压降
《模电课件大全》课件
THANKS
感谢观看
案例二:无线通信系统的实现
总结词
无线通信系统的实现案例探讨了模拟电子技术在无线通信领域的应用,重点介绍了无线发射机和无线 接收机的设计和实现。
详细描述
该案例首先介绍了无线通信系统的基本原理和组成,然后详细阐述了无线发射机和无线接收机的设计 和实现过程。通过电路图、原理分析和测试数据等手段,展示了无线通信系统的关键技术和性能指标 。最后,对无线通信系统的优势和局限性进行了分析和讨论。
模拟电子技术的发展趋势
总结词
随着科技的不断发展,模拟电子技术也在不断进步和 完善,未来将朝着更高精度、更高速度、更低功耗的 方向发展。
详细描述
随着集成电路和微电子技术的不断发展,模拟电子器件 的精度和稳定性得到了显著提高,同时其体积和成本也 在不断降低。此外,随着数字信号处理技术的广泛应用 ,模拟电子技术也与数字电子技术相互融合,形成了混 合信号处理技术。未来,模拟电子技术将继续朝着更高 精度、更高速度、更低功耗的方向发展,为各领域的科 技进步提供更加有力的支持。
02
模拟电子技术基础
电子元件
01
02
03
电子元件的种类
电子元件是构成电子设备 的基本单元,包括电阻、 电容、电感、二极管、晶 体管等。
电子元件的作用
电子元件在模拟电子技术 中起着关键作用,它们可 以用于信号处理、放大、 滤波、振荡等。
电子元件的特性
每种电子元件都有其独特 的电气特性,如电阻的阻 值、电容的容值、电感的 感值等。
音频信号的滤波
通过模拟电子技术,可以 对音频信号进行滤波处理 ,去除噪声和其他干扰。
音频信号的调制
通过模拟电子技术,可以 将音频信号调制到高频载 波上,以便于传输和广播 。
模拟电子技术基础ppt课件
2. PN 结外加反向电压时处于截止状态(反偏) 反向接法时,外电场与内电场的方向一致,增强了内 电场的作用;
外电场使空间电荷区变宽; 不利于扩散运动,有利于漂移运动,漂移电流大于扩 散电流,电路中产生反向电流 I ; 由于少数载流子浓度很低,反向电流数值非常小。
24
P
耗尽层
N
IS
内电场方向
外电场方向
在硅或锗的晶体中掺入少量的 5 价杂质元素,如 磷、锑、砷等,即构成 N 型半导体(或称电子型 半导体)。
常用的 5 价杂质元素有磷、锑、砷等。
12
本征半导体掺入 5 价元素后,原来晶体中的某些 硅原子将被杂质原子代替。杂质原子最外层有 5 个价 电子,其中 4 个与硅构成共价键,多余一个电子只受 自身原子核吸引,在室温下即可成为自由电子。
36
二、温度对二极管伏安特性的影响(了解)
在环境温度升高时,二极管的正向特性将左移,反
向特性将下移。
I / mA
15
温度增加
10
5
– 50 – 25
–0.01 0 0.2 0.4 U / V
–0.02
二极管的特性对温度很敏感。
37
1.2.3 二极管的参数
(1) 最大整流电流IF
(2) 反向击穿电压U(BR)和最高反向工作电压URM
3. 折线模型
3. 杂质半导体总体上保持电中性。
4. 杂质半导体的表示方法如下图所示。
(a)N 型半导体
(b) P 型半导体
图 杂质半导体的的简化表示法 17
1.1.3 PN结
在一块半导体单晶上一侧掺杂成为 P 型半导体,另 一侧掺杂成为 N 型半导体,两个区域的交界处就形成了 一个特殊的薄层,称为 PN 结。
外电场使空间电荷区变宽; 不利于扩散运动,有利于漂移运动,漂移电流大于扩 散电流,电路中产生反向电流 I ; 由于少数载流子浓度很低,反向电流数值非常小。
24
P
耗尽层
N
IS
内电场方向
外电场方向
在硅或锗的晶体中掺入少量的 5 价杂质元素,如 磷、锑、砷等,即构成 N 型半导体(或称电子型 半导体)。
常用的 5 价杂质元素有磷、锑、砷等。
12
本征半导体掺入 5 价元素后,原来晶体中的某些 硅原子将被杂质原子代替。杂质原子最外层有 5 个价 电子,其中 4 个与硅构成共价键,多余一个电子只受 自身原子核吸引,在室温下即可成为自由电子。
36
二、温度对二极管伏安特性的影响(了解)
在环境温度升高时,二极管的正向特性将左移,反
向特性将下移。
I / mA
15
温度增加
10
5
– 50 – 25
–0.01 0 0.2 0.4 U / V
–0.02
二极管的特性对温度很敏感。
37
1.2.3 二极管的参数
(1) 最大整流电流IF
(2) 反向击穿电压U(BR)和最高反向工作电压URM
3. 折线模型
3. 杂质半导体总体上保持电中性。
4. 杂质半导体的表示方法如下图所示。
(a)N 型半导体
(b) P 型半导体
图 杂质半导体的的简化表示法 17
1.1.3 PN结
在一块半导体单晶上一侧掺杂成为 P 型半导体,另 一侧掺杂成为 N 型半导体,两个区域的交界处就形成了 一个特殊的薄层,称为 PN 结。
模电第一章课件
பைடு நூலகம்
图1.6 PN结的形成过程
空间电荷区:在交界面附近出现的带电离子集中 的薄层,又称耗尽层、阻挡层。
内电场:空间电荷区的左半部是带负电的杂质离 子,右半部是带正电的杂质离子,空间电荷区中 就形成一个N区指向P区的内建电场。
接触电位差 U :达到动态平衡后的PN结, 内建电场的方向由N区指向P区的电位差。
1.1 半导体的基础知识 1.2 PN结与半导体二极管 1.3 特殊二极管
1.4 半导体三极管
1.5 场效应晶体管
1.1 半导体的基础知识
1.1.1 导体、绝缘体、和半导体 1.1.2 本征半导体 1.1.3 杂质半导体
1.1.1 导体、绝缘体和半导体
导体:导电的物质,如铜、铝、铁、银等。 绝缘体:不导电的物质,石英、橡胶等。 半导体:导电性能介于导体和绝缘体之 间。常用的半导体材料有硅(Si)、锗 (Ge)、砷化镓(GaAs)等。
4.最大反向工作电压UFM:二极管安全运行时所能承受的最大反向电压。一 般取击穿电压U(BR)的一半作为UFM 。
5.反向电流:指二极管未击穿时反向电流。IR 值越小,二极管单向导电性越 好。随温度变化而改变。 6. 最高工作频率fM :fM 由PN结的结电容大小决定。二极管的工作频率超过 fM,单向导电性变差。
1.2.3
PN结的电容效应
PN结的结电容:在外加电压发生变化时,PN结耗尽层内的空间电 荷量和耗尽层外的载流子数目均发生变化的电容效应。 按产生的机理不同结电容可分为:
一是势垒电容CB 二是扩散电容CD
一、势垒电容CB
指阻挡层中电荷量随外加电压变化而改变所呈 现的电容效应,用CB表示。CB的大小与PN结面积、 阻挡层宽度、半导体材料的介电常数有关, 且随外加反向电压变化而 变化。反向电压越大,CB 越小。 利用PN结的势垒电容 效应,可制造变容二极 管(压控可变电容器)
图1.6 PN结的形成过程
空间电荷区:在交界面附近出现的带电离子集中 的薄层,又称耗尽层、阻挡层。
内电场:空间电荷区的左半部是带负电的杂质离 子,右半部是带正电的杂质离子,空间电荷区中 就形成一个N区指向P区的内建电场。
接触电位差 U :达到动态平衡后的PN结, 内建电场的方向由N区指向P区的电位差。
1.1 半导体的基础知识 1.2 PN结与半导体二极管 1.3 特殊二极管
1.4 半导体三极管
1.5 场效应晶体管
1.1 半导体的基础知识
1.1.1 导体、绝缘体、和半导体 1.1.2 本征半导体 1.1.3 杂质半导体
1.1.1 导体、绝缘体和半导体
导体:导电的物质,如铜、铝、铁、银等。 绝缘体:不导电的物质,石英、橡胶等。 半导体:导电性能介于导体和绝缘体之 间。常用的半导体材料有硅(Si)、锗 (Ge)、砷化镓(GaAs)等。
4.最大反向工作电压UFM:二极管安全运行时所能承受的最大反向电压。一 般取击穿电压U(BR)的一半作为UFM 。
5.反向电流:指二极管未击穿时反向电流。IR 值越小,二极管单向导电性越 好。随温度变化而改变。 6. 最高工作频率fM :fM 由PN结的结电容大小决定。二极管的工作频率超过 fM,单向导电性变差。
1.2.3
PN结的电容效应
PN结的结电容:在外加电压发生变化时,PN结耗尽层内的空间电 荷量和耗尽层外的载流子数目均发生变化的电容效应。 按产生的机理不同结电容可分为:
一是势垒电容CB 二是扩散电容CD
一、势垒电容CB
指阻挡层中电荷量随外加电压变化而改变所呈 现的电容效应,用CB表示。CB的大小与PN结面积、 阻挡层宽度、半导体材料的介电常数有关, 且随外加反向电压变化而 变化。反向电压越大,CB 越小。 利用PN结的势垒电容 效应,可制造变容二极 管(压控可变电容器)
模拟电路基础教程PPT完整全套教学课件全
返回目录 CONTENTS PAGE
透彻掌握器 件特性
1
重视对电路 构成原理的
学习
2
理论与实践 的关系
3
返回目录 CONTENTS PAGE
目前国内使用较多的电路设计仿真软件有PSPICE、Proteus和Multisim 等。就模拟电路仿真来说,Multisim 以其界面友好、功能强大、易于学习 的优点而受到高校电类专业师生和工程技术人员的青睐。Multisim13.0版 本已上市,但目前使用比较稳定、用户数较多的还是10.0版本。对于使用 者来说,只要有一台计算机和Multisim 软件,就相当于拥有了一间设备齐全 的电路实验室,可以调用元器件,搭建电路,利用虚拟仪器进行测量,对电路 进行仿真测试,可以实时修改各类电路参数,实时仿真,从而帮助使用者了解 各种电路变化对电路性能的影响,对电路的测量直观、智能,是进行电路分 析和设计的有效辅助工具。使用者在学习和解题的过程中,可以通过 Multisim 对电路中某个节点的电压波形、某条支路的电流波形、电路结构 变化产生的影响等方方面面问题快速仿真而得到答案。
模拟电路基础教程PPT课件
1.1.4 一般电子系统的构成 1.电子系统的分类
返回目录 CONTENTS PAGE
模拟电子 系统
数字电子 系统
模拟电路基础教程PPT课件
2.电子系统的构成
返回目录 CONTENTS PAGE
模拟电路基础教程PPT课件
返回目录 CONTENTS PAGE
1.1.5 模拟电子技术的发展
在式(1-1-1)中,K 为常数,使u(t)和T(t)之间形成如图1-1-1所示的相 似形关系。如果K 不能保持为常数,则称模拟信号发生了失真。失真问 题是模拟电路中始终需要引起注意和克服的重要问题。
模拟电子技术PPT课件
处理模拟信号的电子电路称为模拟电路。
1.4 放大电路模型
信号的放大是最基本的模拟信号处理 功能。
这里研究的是线性放大,即放大电路 输出信号中包含的信息与输入信号完全相 同。输出波形的任何变形,都被认为是产 生了失真。
1、放大电路的符号及模拟信号放大
• 电压放大模型
• 电流放大模型
• 互阻放大模型
电压增益
+ Vs
–
Ri ——输入电阻
+
+
+
Vi
Ri
AVOVi
Vo RL
–
–
–
Ro ——输出电阻
由输出回路得 则电压增益为
Vo AV
AVVVoOi ViRAoVROLRRLo RLRL
由此可见 RL
AV 即负载的大小会影响增益的大小
要想减小负载的影响,则希望 Ro RL 理想情况 Ro 0
(考虑改变放大电路的参数)
由输入回路得
Ii
Is
Rs Rs Ri
要想减小对信号源的衰减,则希望…?
Ri Rs
理想 Ri 0
3. 互阻放大模型(自学) 4. 互导放大模型(自学) 5. 隔离放大电路模型
Ro
+
+
+
Vi
Ri
AV Vi
Vo
–
–O
–
输入输出回路没有公共端
1.5 放大电路的主要性能指标
放大电路的性能指标是衡量它的品质优劣 的标准,并决定其适用范围。
Vs 0
另一方法
+ Vs=0
–
放大电路
IT
+ VT
–
Vo AVOVi
1.4 放大电路模型
信号的放大是最基本的模拟信号处理 功能。
这里研究的是线性放大,即放大电路 输出信号中包含的信息与输入信号完全相 同。输出波形的任何变形,都被认为是产 生了失真。
1、放大电路的符号及模拟信号放大
• 电压放大模型
• 电流放大模型
• 互阻放大模型
电压增益
+ Vs
–
Ri ——输入电阻
+
+
+
Vi
Ri
AVOVi
Vo RL
–
–
–
Ro ——输出电阻
由输出回路得 则电压增益为
Vo AV
AVVVoOi ViRAoVROLRRLo RLRL
由此可见 RL
AV 即负载的大小会影响增益的大小
要想减小负载的影响,则希望 Ro RL 理想情况 Ro 0
(考虑改变放大电路的参数)
由输入回路得
Ii
Is
Rs Rs Ri
要想减小对信号源的衰减,则希望…?
Ri Rs
理想 Ri 0
3. 互阻放大模型(自学) 4. 互导放大模型(自学) 5. 隔离放大电路模型
Ro
+
+
+
Vi
Ri
AV Vi
Vo
–
–O
–
输入输出回路没有公共端
1.5 放大电路的主要性能指标
放大电路的性能指标是衡量它的品质优劣 的标准,并决定其适用范围。
Vs 0
另一方法
+ Vs=0
–
放大电路
IT
+ VT
–
Vo AVOVi
模电的课件
理、步骤、数据记录等。
实验实施
03
按照实验方案进行实验操作,注意观察和记录实验数据,及时
处理异常情况。
实验结果分析与讨论
实验结果整理
对实验数据进行整理和分析,确保数据的准确性和可靠性。
结果讨论
根据实验结果,对实验原理、操作过程、数据处理等方面进行讨 论和总结。
改进建议
针对实验中存在的问题和不足,提出改进建议和措施,为今后的 实验教学提供参考。
模拟电路的特点
模拟电路具有连续性、真实性等特点 ,能够实现对模拟信号的放大、滤波 、转换等功能。
模拟电路与数字电路区别
信号形式
模拟电路处理的是连续的模拟信 号,而数字电路处理的是离散的
数字信号。
信号处理方式
模拟电路通过对模拟信号进行放大 、滤波等操作实现信号的处理,而 数字电路则通过逻辑门电路对数字 信号进行运算和处理。
放大电路
01
02
03
电压放大电路
通过电阻和电容等元件, 将输入信号放大,输出电 压幅度远大于输入电压幅 度。
电流放大电路
通过晶体管等元件,将输 入信号放大,输出电流幅 度远大于输入电流幅度。
功率放大电路
通过晶体管等元件,将输 入信号放大,输出功率远 大于输入功率,用于驱动 负载。
滤波电路
低通滤波电路
精度和稳定性
由于数字信号只有高低电平两种状 态,因此数字电路的精度和稳定性 通常比模拟电路更高。
模拟电路应用领域
通信领域
模拟电路在通信领域中有着广 泛的应用,如手机、电话、无 线电等通信设备中都离不开模
拟电路。
音频领域
模拟电路可以实现对音频信号 的放大和处理,因此在音响、 录音设备等音频领域中也有广 泛的应用。
模电课件
共射极放大电路
一般硅管VBE=0.7V,锗管VBE=0.2V, 已知。
(2)画小信号等效电路
H参数小信号等效电路
(3)求放大电路动态指标 电压增益 根据
vi ib ( Rb rbe ) ic β ib
vo ic ( Rc // RL )
则电压增益为
H参数小信号等效电路
iC f 2 (iB , vCE )
BJT双口网络
在小信号情况下,对上两式取全微分得 vBE vBE dvBE VCEQ diB I BQ dvCE iB vCE iC iC diC VCEQ diB I BQ dvCE iB vCE 用小信号交流分量表示 vbe= hieib+ hrevce
则
26( mV ) rbe 200 (1 ) I EQ ( mA )
• 流过rbb′的电流是ib,流过re 的电流是ie,(1+β)re 是re 折合到基极回路的等效电阻。 • rbe是交流(动态)电阻,只能用来计算放大电路的动态 性能指标,不能用来求静态工作点Q的值,但它的大小 和IEQ的大小有关
建立小信号模型的思路
当放大电路的输入信号电压很小时,就可以把三极 管小范围内的特性曲线近似地用直线来代替,从而可以 把三极管这个非线性器件所组成的电路当作线性电路来 处理。
H参数的引出 对于BJT双口网络,已知输入 输出特性曲线如下: iB=f(vBE) vCE=const iC=f(vCE) iB=const 可以写成: vBE f1 (iB , vCE )
rbe 200 (1 ) 26( mV ) I EQ ( mA )
•
的适用范围是 0.1mA<I数小信号模型分析基本共射极放大电路 (1)利用直流通路求Q点
模电上课PPT课件
Io
Uο RL
2.34
U RL
Uab 3U
3) 流过每管电流平均值 ID
ID
1 3
Io
0.78
U RL
4) 每管承受的最高反向电压 UDRM
UDRM 3 2U 2.45U
第20页/共78页
5.3 二极管峰值采样电路
• 在半波整流电路中利用二极管单向导电性,将交流电压 转化为直流脉动电压,分析过程中,二极管正向偏置导 通时,输入电压直接传输到输出端。
u
电学参数: 暗电流,光电流,最高工作范围
光学参数:
光谱范围,灵敏度,峰值波长
实物照片
第9页/共78页
补充:选择二极管限流电阻
步骤: 1. 设定工作电压(如 0.7 V;2 V (LED);UZ ) 2. 确定工作电流(如 1 mA;10 mA;5 mA) 3. 根据欧姆定律求电阻 R = (UI UD)/ ID (R 要选择标称值)
g U1
IO
g为转移电导,电导量纲。 电流控制电流源CCCS
控制变量必须在电 路其他位置标出!
I1
IO IO I1
I1
IO
为电流传输(放大)系数,无量纲。
第31页/共78页
放大电路主要性能指标包括:放大倍数、输入
电阻和输出电阻
1. 放大倍数
放大倍数是反映放大电路放大能力的关键指标,定义为 放大电路输出信号与输入信号的比值,根据放大电路的 输入输出变量不同可以有四种形式的放大倍数:
第10页/共78页
5.3.2 二极管在整流电路中的应用
整流电路的目的是把交流电压转变为直流脉动的电压。 常见的整流电路有单相半波、全波、桥式整流等
u2
1. 单相半波整流电路
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
nP
2 Q 1
Q
O
x x = 0 处为 P 与 N 区的交界处
图 1.2.9
综上所述:
PN 结总的结电容 Cj 包括势垒电容 Cb 和扩散电容 Cd 两部分。一般来说,当二极管正向偏置时,扩散电
容起主要作用,即可以认为 Cj Cd;当反向偏置时,势
垒电容起主要作用,可以认为 Cj Cb。 Cb 和 Cd 值都很小,通常为几个皮法 ~ 几十皮法, 有些结面积大的二极管可达几百皮法。
当正向电压超过死区电压后, 随着电压的升高,正向电流迅速 增大。
0 0.4 0.8 U / V
正向特性
2. 反向特性 二极管加反向电压,反 向电流很小; 当电压超过零点几伏后, 反向电流不随电压增加而增 大,即饱和;
I / mA
–50 –25 0U / V
击穿 – 0.02
电压 U(BR) – 0.04
Cb
由于 PN 结 宽度 l 随外加 电压 U 而变化,因此势垒电容 Cb不是一个常数。其 Cb = f (U) 曲线如图示。
O
图 1.2.8
U
2. 扩散电容 Cd 是由多数载流子在扩散过程中积累而引起的。 在某个正向电压下,P 区中的电子浓度 np(或 N 区的 空穴浓度 pn)分布曲线如图中曲线 1 所示。 当电压加大,np (或 pn)会升高,如 曲线 2 所示(反之浓度会降低)。 正向电压时,变化载流子积累电荷 量发生变化,相当于电容器充电和放电 的过程 —— 扩散电容效应。 当加反向电压时,扩散运动被削弱, 扩散电容的作用可忽略。
+4
+4
+4 自由电子
+4
+4 +5
+4 施主原子
+4
+4
+4
图 1.1.4
N 型半导体的晶体结构
二、 P 型半导体
在硅或锗的晶体中掺入少量的 3 价杂质元素,如 硼、镓、铟等,即构成 P 型半导体。
+4 +4 空穴 +4 +4 +3 +4
3 价杂质原子称为 受主原子。 空穴浓度多于电子 浓度,即 p >> n。空穴 为多数载流子,电子为 少数载流子。
1. 扩散运动
P
N
电子和空穴 浓度差形成多数 载流子的扩散运 动。
2. 扩散运动 形成空间电荷区
P
耗尽层 空间电荷区
N
—— PN 结,耗 尽层。
图 1.2.1
3. 空间电荷区产生内电场 空间电荷区正负离子之间电位差 UD —— 电位壁垒; —— 内电场;内电场阻止多子的扩散 —— 阻挡层。 4. 漂移运动 内电场有利 于少子运动—漂 移。 少子的运动 与多子运动方向 相反
反向饱 和电流
反向特性
如果反向电压继续升高,大到一定数值时,反向电 流会突然增大;
这种现象称击穿,对应电压叫反向击穿电压。
击穿并不意味管子损坏,若控制击穿电流,电压降 低后,还可恢复正常。
3. 伏安特性表达式(二极管方程)
I I S (e
U
UT
- 1)
IS :反向饱和电流
UT :温度的电压当量
第一章
半导体器件
1.1 半导体的特性 1.2 半导体二极管
1.3 1.4 双极型三极管(BJT) 场效应三极管
1.1
半导体的特性
1. 导体:电阻率 < 10-4 ·cm 的物质。如铜、 银、铝等金属材料。
2. 绝缘体:电阻率 > 109 · cm 物质。如橡胶、 塑料等。 3. 半导体:导电性能介于导体和半导体之间的物 质。大多数半导体器件所用的主要材料是硅 (Si) 和锗 (Ge)。 半导体导电性能是由其原子结构决定的。
1.1.2 杂质半导体
杂质半导体有两种
N 型半导体 P 型半导体
一、 N 型半导体
在硅或锗的晶体中掺入少量的 5 价杂质元素,如 磷、锑、砷等,即构成 N 型半导体(或称电子型半导
体) 。
常用的 5 价杂质元素有磷、锑、砷等。
本征半导体掺入 5 价元素后,原来晶体中的某些 硅原子将被杂质原子代替。杂质原子最外层有 5 个价 电子,其中 4 个与硅构成共价键,多余一个电子只受 自身原子核吸引,在室温下即可成为自由电子。 自由电子浓度远大于空穴的浓度,即 n >> p 。电 子称为多数载流子(简称多子),空穴称为少数载流子 (简称少子)。
在常温(300 K)下, UT 26 mV
二极管加反向电压,即 U < 0,且 |U| >> UT ,则 I - IS。
二极管加正向电压,即 U > 0,且 U >> UT ,则
U
e 1 ,可得 I I Se 基本上成指数关系。
UT
U
UT
,说明电流 I 与电压 U
结论:
二极管具有单向导电性。加正向电压时导通,呈现
(b) P 型半导体
图 1.1.6
杂质半导体的的简化表示法
1.2
半导体二极管
1.2.1 PN 结及其单向导电性
在一块半导体单晶上一侧掺杂成为 P 型半导体,另 一侧掺杂成为 N 型半导体,两个区域的交界处就形成了 一个特殊的薄层,称为 PN 结。
P
PN结
N
图 1.2.1
PN 结的形成
一、 PN 结中载流子的运动
电压壁垒 UD,硅材料约为(0.6 ~ 0.8) V,
锗材料约为(0.2 ~ 0.3) V。
二、 PN 结的单向导电性
1. PN 外加正向电压 又称正向偏置,简称正偏。
空间电荷区变窄,有利 于扩散运动,电路中有 较大的正向电流。
P
空间电荷区
N
I
V
内电场方向 外电场方向 R
图 1.2.2
在 PN 结加上一个很小的正向电压,即可得到较大的 正向电流,为防止电流过大,可接入电阻 R。 2. PN 结外加反向电压(反偏) 反向接法时,外电场与内电场的方向一致,增强了内 电场的作用; 外电场使空间电荷区变宽; 不利于扩散运动,有利于漂移运动,漂移电流大于扩 散电流,电路中产生反向电流 I ; 由于少数载流子浓度很低,反向电流数值非常小。
1.2.2 二极管的伏安特性
半导体二极管又称晶体二极管。
二极管的结构: 将 PN 结封装在塑料、玻璃或金属外壳里,再从 P 区和 N 区分别焊出两根引线作正、负极。
(a)外形图
(b)符号
图 1.2.4
二极管的外形和符号
半导体二极管的类型: 按半导体材料分:有硅二极管、锗二极管等。 按 PN 结结构分:有点接触型和面接触型二极管。 点接触型管子中不允许通过较大的电流,因结电容 小,可在高频下工作。 面接触型二极管 PN 结的面积大,允许流过的电流 大,但只能在较低频率下工作。 按用途划分:有整流二极管、检波二极管、稳压二 极管、开关二极管、发光二极管、变容二极管等。
+4 共 价 键 +4 +4 价 电 子 +4 +4 +4
当温度 T = 0 K 时,半 导体不导电,如同绝缘体。
+4
+4
+4
图 1.1.2
单晶体中的共价键结构
若 T ,将有少数价 电子克服共价键的束缚成 为自由电子,在原来的共 价键中留下一个空位 —— 空穴。
T
+4 空穴 +4
+4
+4 自由电子
很小的正向电阻,如同开关闭合;加反向电压时截止, 呈现很大的反向电阻,如同开关断开。 从二极管伏安特性曲线可以看出,二极管的电压与 电流变化不呈线性关系,其内阻不是常数,所以二极管 属于非线性器件。
1.2.3 二极管的主要参数
1. 最大整流电流 IF 二极管长期运行时,允许通过的最大正向平均电流。 2. 最高反向工作电压 UR 工作时允许加在二极管两端的反向电压值。通常将 击穿电压 UBR 的一半定义为 UR 。 3. 反向电流 IR
图 1.2.1(b)
阻挡层 空间电荷区
P
N
内电场
UD
5. 扩散与漂移的动态平衡 扩散运动使空间电荷区增大,扩散电流逐渐减小; 随着内电场的增强,漂移运动逐渐增加; 当扩散电流与漂移电流相等时,PN 结总的电流
等于零,空间电荷区的宽度达到稳定。即扩散运动与
漂移运动达到动态平衡。
空间电荷区的宽度约为几微米 ~ 几十微米;
通常希望 IR 值愈小愈好。
4. 最高工作频率 fM fM 值主要 决定于 PN 结结电容的大小。结电容愈大, 二极管允许的最高工作频率愈低。
*1.2.4 二极管的电容效应
当二极管上的电压发生变化时,PN 结中储存的电荷 量将随之发生变化,使二极管具有电容效应。 势垒电容 电容效应包括两部分 扩散电容 1. 势垒电容 是由 PN 结的空间电荷区变化形成的。
自由电子和空穴使本 征半导体具有导电能力, 但很微弱。
空穴可看成带正电的 载流子。
+4
+4
+4
+4
+4
图 1.1.3
本征半导体中的 自由电子和空穴
1. 半导体中两种载流子
带负电的自由电子 带正电的空穴
2. 本征半导体中,自由电子和空穴总是成对出现, 称为 电子 - 空穴对。
3. 本征半导体中自由电子和空穴的浓度用 ni 和 pi 表示,显然 ni = pi 。 4. 由于物质的运动,自由电子和空穴不断的产生又 不断的复合。在一定的温度下,产生与复合运动会达到 平衡,载流子的浓度就一定了。 5. 载流子的浓度与温度密切相关,它随着温度的升 高,基本按指数规律增加。
价电子
硅原子结构
2 Q 1
Q
O
x x = 0 处为 P 与 N 区的交界处
图 1.2.9
综上所述:
PN 结总的结电容 Cj 包括势垒电容 Cb 和扩散电容 Cd 两部分。一般来说,当二极管正向偏置时,扩散电
容起主要作用,即可以认为 Cj Cd;当反向偏置时,势
垒电容起主要作用,可以认为 Cj Cb。 Cb 和 Cd 值都很小,通常为几个皮法 ~ 几十皮法, 有些结面积大的二极管可达几百皮法。
当正向电压超过死区电压后, 随着电压的升高,正向电流迅速 增大。
0 0.4 0.8 U / V
正向特性
2. 反向特性 二极管加反向电压,反 向电流很小; 当电压超过零点几伏后, 反向电流不随电压增加而增 大,即饱和;
I / mA
–50 –25 0U / V
击穿 – 0.02
电压 U(BR) – 0.04
Cb
由于 PN 结 宽度 l 随外加 电压 U 而变化,因此势垒电容 Cb不是一个常数。其 Cb = f (U) 曲线如图示。
O
图 1.2.8
U
2. 扩散电容 Cd 是由多数载流子在扩散过程中积累而引起的。 在某个正向电压下,P 区中的电子浓度 np(或 N 区的 空穴浓度 pn)分布曲线如图中曲线 1 所示。 当电压加大,np (或 pn)会升高,如 曲线 2 所示(反之浓度会降低)。 正向电压时,变化载流子积累电荷 量发生变化,相当于电容器充电和放电 的过程 —— 扩散电容效应。 当加反向电压时,扩散运动被削弱, 扩散电容的作用可忽略。
+4
+4
+4 自由电子
+4
+4 +5
+4 施主原子
+4
+4
+4
图 1.1.4
N 型半导体的晶体结构
二、 P 型半导体
在硅或锗的晶体中掺入少量的 3 价杂质元素,如 硼、镓、铟等,即构成 P 型半导体。
+4 +4 空穴 +4 +4 +3 +4
3 价杂质原子称为 受主原子。 空穴浓度多于电子 浓度,即 p >> n。空穴 为多数载流子,电子为 少数载流子。
1. 扩散运动
P
N
电子和空穴 浓度差形成多数 载流子的扩散运 动。
2. 扩散运动 形成空间电荷区
P
耗尽层 空间电荷区
N
—— PN 结,耗 尽层。
图 1.2.1
3. 空间电荷区产生内电场 空间电荷区正负离子之间电位差 UD —— 电位壁垒; —— 内电场;内电场阻止多子的扩散 —— 阻挡层。 4. 漂移运动 内电场有利 于少子运动—漂 移。 少子的运动 与多子运动方向 相反
反向饱 和电流
反向特性
如果反向电压继续升高,大到一定数值时,反向电 流会突然增大;
这种现象称击穿,对应电压叫反向击穿电压。
击穿并不意味管子损坏,若控制击穿电流,电压降 低后,还可恢复正常。
3. 伏安特性表达式(二极管方程)
I I S (e
U
UT
- 1)
IS :反向饱和电流
UT :温度的电压当量
第一章
半导体器件
1.1 半导体的特性 1.2 半导体二极管
1.3 1.4 双极型三极管(BJT) 场效应三极管
1.1
半导体的特性
1. 导体:电阻率 < 10-4 ·cm 的物质。如铜、 银、铝等金属材料。
2. 绝缘体:电阻率 > 109 · cm 物质。如橡胶、 塑料等。 3. 半导体:导电性能介于导体和半导体之间的物 质。大多数半导体器件所用的主要材料是硅 (Si) 和锗 (Ge)。 半导体导电性能是由其原子结构决定的。
1.1.2 杂质半导体
杂质半导体有两种
N 型半导体 P 型半导体
一、 N 型半导体
在硅或锗的晶体中掺入少量的 5 价杂质元素,如 磷、锑、砷等,即构成 N 型半导体(或称电子型半导
体) 。
常用的 5 价杂质元素有磷、锑、砷等。
本征半导体掺入 5 价元素后,原来晶体中的某些 硅原子将被杂质原子代替。杂质原子最外层有 5 个价 电子,其中 4 个与硅构成共价键,多余一个电子只受 自身原子核吸引,在室温下即可成为自由电子。 自由电子浓度远大于空穴的浓度,即 n >> p 。电 子称为多数载流子(简称多子),空穴称为少数载流子 (简称少子)。
在常温(300 K)下, UT 26 mV
二极管加反向电压,即 U < 0,且 |U| >> UT ,则 I - IS。
二极管加正向电压,即 U > 0,且 U >> UT ,则
U
e 1 ,可得 I I Se 基本上成指数关系。
UT
U
UT
,说明电流 I 与电压 U
结论:
二极管具有单向导电性。加正向电压时导通,呈现
(b) P 型半导体
图 1.1.6
杂质半导体的的简化表示法
1.2
半导体二极管
1.2.1 PN 结及其单向导电性
在一块半导体单晶上一侧掺杂成为 P 型半导体,另 一侧掺杂成为 N 型半导体,两个区域的交界处就形成了 一个特殊的薄层,称为 PN 结。
P
PN结
N
图 1.2.1
PN 结的形成
一、 PN 结中载流子的运动
电压壁垒 UD,硅材料约为(0.6 ~ 0.8) V,
锗材料约为(0.2 ~ 0.3) V。
二、 PN 结的单向导电性
1. PN 外加正向电压 又称正向偏置,简称正偏。
空间电荷区变窄,有利 于扩散运动,电路中有 较大的正向电流。
P
空间电荷区
N
I
V
内电场方向 外电场方向 R
图 1.2.2
在 PN 结加上一个很小的正向电压,即可得到较大的 正向电流,为防止电流过大,可接入电阻 R。 2. PN 结外加反向电压(反偏) 反向接法时,外电场与内电场的方向一致,增强了内 电场的作用; 外电场使空间电荷区变宽; 不利于扩散运动,有利于漂移运动,漂移电流大于扩 散电流,电路中产生反向电流 I ; 由于少数载流子浓度很低,反向电流数值非常小。
1.2.2 二极管的伏安特性
半导体二极管又称晶体二极管。
二极管的结构: 将 PN 结封装在塑料、玻璃或金属外壳里,再从 P 区和 N 区分别焊出两根引线作正、负极。
(a)外形图
(b)符号
图 1.2.4
二极管的外形和符号
半导体二极管的类型: 按半导体材料分:有硅二极管、锗二极管等。 按 PN 结结构分:有点接触型和面接触型二极管。 点接触型管子中不允许通过较大的电流,因结电容 小,可在高频下工作。 面接触型二极管 PN 结的面积大,允许流过的电流 大,但只能在较低频率下工作。 按用途划分:有整流二极管、检波二极管、稳压二 极管、开关二极管、发光二极管、变容二极管等。
+4 共 价 键 +4 +4 价 电 子 +4 +4 +4
当温度 T = 0 K 时,半 导体不导电,如同绝缘体。
+4
+4
+4
图 1.1.2
单晶体中的共价键结构
若 T ,将有少数价 电子克服共价键的束缚成 为自由电子,在原来的共 价键中留下一个空位 —— 空穴。
T
+4 空穴 +4
+4
+4 自由电子
很小的正向电阻,如同开关闭合;加反向电压时截止, 呈现很大的反向电阻,如同开关断开。 从二极管伏安特性曲线可以看出,二极管的电压与 电流变化不呈线性关系,其内阻不是常数,所以二极管 属于非线性器件。
1.2.3 二极管的主要参数
1. 最大整流电流 IF 二极管长期运行时,允许通过的最大正向平均电流。 2. 最高反向工作电压 UR 工作时允许加在二极管两端的反向电压值。通常将 击穿电压 UBR 的一半定义为 UR 。 3. 反向电流 IR
图 1.2.1(b)
阻挡层 空间电荷区
P
N
内电场
UD
5. 扩散与漂移的动态平衡 扩散运动使空间电荷区增大,扩散电流逐渐减小; 随着内电场的增强,漂移运动逐渐增加; 当扩散电流与漂移电流相等时,PN 结总的电流
等于零,空间电荷区的宽度达到稳定。即扩散运动与
漂移运动达到动态平衡。
空间电荷区的宽度约为几微米 ~ 几十微米;
通常希望 IR 值愈小愈好。
4. 最高工作频率 fM fM 值主要 决定于 PN 结结电容的大小。结电容愈大, 二极管允许的最高工作频率愈低。
*1.2.4 二极管的电容效应
当二极管上的电压发生变化时,PN 结中储存的电荷 量将随之发生变化,使二极管具有电容效应。 势垒电容 电容效应包括两部分 扩散电容 1. 势垒电容 是由 PN 结的空间电荷区变化形成的。
自由电子和空穴使本 征半导体具有导电能力, 但很微弱。
空穴可看成带正电的 载流子。
+4
+4
+4
+4
+4
图 1.1.3
本征半导体中的 自由电子和空穴
1. 半导体中两种载流子
带负电的自由电子 带正电的空穴
2. 本征半导体中,自由电子和空穴总是成对出现, 称为 电子 - 空穴对。
3. 本征半导体中自由电子和空穴的浓度用 ni 和 pi 表示,显然 ni = pi 。 4. 由于物质的运动,自由电子和空穴不断的产生又 不断的复合。在一定的温度下,产生与复合运动会达到 平衡,载流子的浓度就一定了。 5. 载流子的浓度与温度密切相关,它随着温度的升 高,基本按指数规律增加。
价电子
硅原子结构