模电课件第六章
合集下载
模电课件 第六章

c2 c1
i +
V1
V2
c1
u-id
I
-UEE
I
I
I
ic1 1 ic 2 ic1
uBE 2 uBE 1
1 e UT
uid
1 e UT
I
I
I
ic 2 1 ic1 ic 2
uBE 1 uBE 2
1 e UT
uid
1 eUT
第六章 集成运算放大器电路原理
iC1,iC2 I
iC2
iC1
I
Ir
Ir
第六章 集成运算放大器电路原理 多集电极晶体管镜像电流源
3.比例电流源
第六章 集成运算放大器电路原理
UBE1 IE1R1 UBE2 IE2R2 U BE1 U BE 2
IE1R1 IE2R2
IC2
IE2
R1
I E1
R1 R2
Ir
Ir
UCC U BE1 Rr R1
4.微电流电流源
第六章 集成运算放大器电路原理
第六章 集成运算放大器电路原理
iC1,iC2
第六章 集成运算放大器电I 路原理
iC2 Q
iC1
I 2
iC1
iC2
6 UT 4 UT2 UT 0 2UT 4UT 6UT uid
可见,增益AU正比于恒流源电流I。那 么,改变I就可以控制增益。
如果使I受到另外一个信号ub的控制, 那么就可以实现信号的相乘。
)(UGS
UGSTH )2
W1
W2
L1
L2
IO W2 / L2 Ir W1 / L1
二. CMOS共源放大第器六章 集成运算放大器电路原理
第六章 集成运算放大器电路原理 三.CMOS差动放大器
模电课件第六章负反馈技术new

2019/90/3 .01
1000 模电课件a3(-225o)
相位补偿原理与技术
补偿电容Cφ值的计算:kk
f1'
2 ( R01
1 Ri 2 )(C
C01
Ci2 )
C
1
2f1'( R01
Ri2 )
A( j )
10000
(1 j f )(1 j f )(1 j f )
B Xf if 1
Xo
uo
RF
Auf
uO ui
uO is R1
Af
1 R1
1 1 B R1
RC1
if
R1
RF
RC2 RC3
RF R1
2019/9/3
+ R1 u-i
ii id
is =ui/R1
模电课件
R1 Rem
+EC + -uO
Re3
-EE
反馈组态:电压并联负反馈
uO RF
R1
Auf
uO ui
RF
uO
uO RF
R1
RC1
if
R1
+ u- i
ii id
RF
RC2 RC3 R1
+EC + -uO
Re3
R1
Rem -EE
2019/9/3
模电课件
【例4】电路的级间反馈满足深度负反馈条件,试
估算电路的闭环电压增益。 令输入端口断路
反馈组态 电压串联负反馈
20Tl(gjT() jdB) dB
20lg A( j) dB
《模拟电路第六章》PPT课件

电路引入了电压负反响
4. 电压反响和电流反响的判断
+
仅受基极电流的控制
反响电流
电路引入了电流负反响
引入电压负反响稳定输出电压,引入电流负反响稳定 输出电流!
5. 串联反响和并联反响的判断
在输入端,输入量、反响量和净输入量以电压的方式 叠加,为串联反响;以电流的方式叠加,为并联反响。
uF
iNiIiF
反响放大电路可用方 框图表示。
要研究哪些问题?
放大电路输出量的一局部或全部通过一定的方式引回到 输入回路,影响输入,称为反响。
怎样引回
是从输出 电压还是 输出电流 引出反馈
多少 怎样引出
影响放大电路的输入 电压还是输入电流
2. 正反响和负反响
引入反响后其变化是增大? 还是减小?
引入反响后其变化是 增大?还是减小?
uDuIuF
引入了并联反响
引入了串联反响
分立元件放大电路中反响的分析
图示电路有无引入反响?是直流反响还是
交流反响?是正反响还是负反响?假设为交
流负反响,其组态为哪种?
作用?
_
1. 假设从第三级 射极输出,那么电 路引入了哪种组态
+
+
+
+
的交流负反响? 2. 假设在第三级的
_
uF
_
射极加旁路电容, 那么反响的性质有
通过R3引入的是局部反响
通过R4引入的是级间反响 通常,重点研究级间反响或称总体反响。
二、交流负反响的四种组态
1. 电压反响和电流反响
描述放大电路和反响网络在输出端的连接方
式,即反响网络的取样对象。
将输出电压的一局部
或全部引回到输入回路来
4. 电压反响和电流反响的判断
+
仅受基极电流的控制
反响电流
电路引入了电流负反响
引入电压负反响稳定输出电压,引入电流负反响稳定 输出电流!
5. 串联反响和并联反响的判断
在输入端,输入量、反响量和净输入量以电压的方式 叠加,为串联反响;以电流的方式叠加,为并联反响。
uF
iNiIiF
反响放大电路可用方 框图表示。
要研究哪些问题?
放大电路输出量的一局部或全部通过一定的方式引回到 输入回路,影响输入,称为反响。
怎样引回
是从输出 电压还是 输出电流 引出反馈
多少 怎样引出
影响放大电路的输入 电压还是输入电流
2. 正反响和负反响
引入反响后其变化是增大? 还是减小?
引入反响后其变化是 增大?还是减小?
uDuIuF
引入了并联反响
引入了串联反响
分立元件放大电路中反响的分析
图示电路有无引入反响?是直流反响还是
交流反响?是正反响还是负反响?假设为交
流负反响,其组态为哪种?
作用?
_
1. 假设从第三级 射极输出,那么电 路引入了哪种组态
+
+
+
+
的交流负反响? 2. 假设在第三级的
_
uF
_
射极加旁路电容, 那么反响的性质有
通过R3引入的是局部反响
通过R4引入的是级间反响 通常,重点研究级间反响或称总体反响。
二、交流负反响的四种组态
1. 电压反响和电流反响
描述放大电路和反响网络在输出端的连接方
式,即反响网络的取样对象。
将输出电压的一局部
或全部引回到输入回路来
《模拟电子技术》课件第6章 集成运算放大电路

IE2
IE1Re1 Re2
VT Re2
ln
IE1 IE2
§6.2 电流源电路
IR R
IC1
T1
IE1 Re1
IB1 IB2
VCC
I C 2=IO
T2
IE2 Re2
当值足够大时
IR IC1 IE 1 IO IC2 IE 2
IO
IR
Re1 Re2
VT Re2
ln
IR IO
IO
IR
Re1 Re2
四、微电流源
R c + vo R c
VCC
Rs
+
vi1
T1 RL T2
Rs
+
vi2
Re
VEE
2、差模信号和共模信号的概念
vid = vi1 vi2 差模信号
vic
=
1 2
(vi1
vi2 )
共模信号
Avd
=
vod vid
差模电压增益
其中vod ——差模信号产生的输出
Avc
=
voc vic
共模电压增益
总输出电压
IE3
IC2
IC1
1
IC2
2
IC 1
2 IC1 β
IO
1
IR 2
2
2
IR
IC1
T1
R IB3
T3
IE3
IB1 IB2
V CC IO= IC2 = IC1
T2
IR R
IC1
IB3
T1 I B1
VCC
IO
T3
IE3 IC2
T2 IB2
三、比例电流源
模电课件第六章负反馈技术优秀课件

引2021入/3/1负反馈后的通频带模为电课件 BW f fHf fLf fHf
4减少非线性失真
晶体管器件的非线性失真
ib
无反馈时产生的线性失真现象
xi
放大电路
xo
Q
Xi ( s )
2021/3/1
u be
X d(s) Σ
基本放大器
A(s)
X f(s)
反馈网络 B(s)
模电课件
X o(s)
5改变放大器的输入电阻
Xd Xi Xf X Xdf((ss)) B B ((ss )I)I oo ((ss ))
引入电流负反馈后
放大器
Io
Rof
Uo Io
1 A o(Xs)i(B s)(s)R ΣoXd(s)
A(s)
Ao Xd
Ro
R U o I 2021/3/1
o
o
X i (s)0 RL
反馈网络
X模f电(s课)件
Xd Xi Xf
电U 压o负1反馈ARo能(osI)o稳B(定s)输出电压
X X df((ss)) B B ((ss))U U oo ((ss))
Io
引入电压负反馈后
放大器
Rof
Uo Io
RXo i(s)
1 Ao(s)B(s)
ΣXd(s)
A(s)
Ro
Ao Xd
Uo
R U o I 2021/3/1
o
o
X i (s)0 RL
反馈网络
X模f电(s课)件
B(s)
6改变放大器的输出电阻
(2) 电流(并联、串联)负反馈
只R要o是引无入反电馈流时放负大反电馈路,的放输大出电电阻路,的A输o(s出)是电当负阻载都电将增加,
模拟电子技术第6章-PPT课件

K CMR
反映抑制零漂能力的指标
Avd = 共模抑制比 Avc
6.2.2 射极耦合差分式放大电路
1. 电路组成及工作原理
1. 电路组成及工作原理
静态
1 I =I I C1 C2 C I O 2
V =V CE1 CE2
VE V R CC I C c2
V I R ( 0 . 7 V ) C C C c2
IC IB1 IB2 β
动态
大小相等,相位相反。 仅输入差模信号,v v i1和 i2 大小相等, 相位相反。 v v , v 和 v o O 1v O 20 O1 O2 信号被放大。
2. 抑制零点漂移原理
温度变化和电源电压波动,
都将使集电极电流产生变化。
且变化趋势是相同的,
其效果相当于在两个输入 端加入了共模信号。
A v d1 KCMR A v c1
ro r be
KCMR 越大,抑制零漂能力 越强
单端输出时的总输出电压
v ic v A v ( 1 ) o1 v d1id K v CMR id
(4)频率响应
高频响应与共射电路相同,低频可放大直流信号。
例
T1、T2、T3均 为 硅 管 , β1 β2 50 ,β3 80 , 当vi 0时 ,vO 0V。
5、应用实例
A、T2和T3组成的镜 像电流源作为T1 管的有源负载
IC2=IC1 =IEF
B、由于镜像电流源 的交流电阻很大, 所以可大大提高 T1的电压增益。
6.2.1 差分式放大电路的一般结构
1. 用三端器件组成的差分式放大电路
6.2.1 差分式放大电路的一般结构
2. 有关概念
精品课件-模拟电子技术-第6章

第六章 集成运算放大器
6.2.2 长尾式差动放大电路
图6 – 5 长尾式差动放大电路
第六章 集成运算放大器
1. 静态工作点的稳定性
静态时, 输入短路, 由于流过电阻Re的电流为IE1 和IE2之和, 且电路对称,IE1=IE2,故
U EE U BE 2I R E1 e I B Rs1
I B1
(1)由于电路难以绝对对称,所以输出仍然存在零漂。 (2)由于每一管子没有采取消除零漂的措施,所以当温度 变化范围十分大时,有可能差动放大管进入截止或饱和,使放 大电路失去放大能力。 (3)在实际工作中,常常需要对地输出,即从c1或c2对地输 出(这种输出我们称为单端输出),而这时的零漂与单管放大电 路的一样,仍然十分严重。 为此,人们又提出了长尾式差动放大电路。
第六章 集成运算放大器
第六章 集成运算放大器
6.1 零点漂移 6.2 差动放大电路 6.3 电流源电路 6.4 集成运算放大器介绍 6.5 集成运放的性能指标
第六章 集成运算放大器
图6-1 集成运放框图
第六章 集成运算放大器
6.1 零点漂移
运算放大器均是采用直接耦合方式。在第二章对直接耦 合方式的特点及问题作了介绍,这里主要讨论直接耦合放大电 路的零点漂移问题。
第六章 集成运算放大器
图6 – 3 差动放大电路的基本形式
第六章 集成运算放大器
1. 共模信号及共模电压放大倍数Auc 所谓共模信号,是指在差动放大管V1和V2的基极接入幅度 相等、极性相同的信号,如图6-4(a)所示,即
Uic1 Uic2
下标ic表示为共模输入信号。通常,共模信号都是无用信号。
I E1
1
,
Rs1 Rs2 Rs
模电第六章(童诗白)讲解的ppt

& Xd
& Xf
& A & F
& Uo
电流反馈
电压反馈
Back
Next
Home
5
• 对输出端的影响:串联反馈在输入级与反馈网络的连接 对输出端的影响: 处断开;并联反馈使输入端对地短路。 处断开;并联反馈使输入端对地短路。
+ +
& Ud
+ & U -
& A
f
& Xo
& Ii
& Id
& If
& Xo
解:据图示瞬时极性: 据图示瞬时极性:
& & & Ib = (Ii − I f ) ↓
所以,为并联负反馈。 所以,为并联负反馈。 & 短路, 若将 U 0 短路,同时将输 入信号接地, 入信号接地 , 使输入量对 反馈网络的影响, 反馈网络的影响,则:
C1 Rs + us –
I& f
& Ic2
I&i I&b
6.1 反馈的基本概念及判断方法 6.2 负反馈放大电路的四种基本组态 6.3 负反馈放大电路的计算 6.4 深度负反馈放大电路放大倍数 的分析 6.5 负反馈对放大电路性能的影响 6.6 负反馈放大电路的稳定性 6.7* 放大电路中其它形式的负反 馈 本章小结 内容简介
Home
内容简介
Home
1
Back
Next
Home
4
2. 基本放大电路的计算
(1) 开环时反馈网络的负载效应
• 对输入端的影响:电流反馈使输出电流所在回路开路; 对输入端的影响:电流反馈使输出电流所在回路开路; 电压反馈使输出端短路。 电压反馈使输出端短路。
模电6 ppt课件

2020/11/13
(6-12)
三、过零比较器: (UR =0时) uo
ui
+
+ uo
+UOM 0
ui
-UOM
+
+ uo ui
2020/11/13
uo
+UOM
0 -UOM
ui
(6-13)
例:利用电压比较器将正
ui
弦波变为方波。
ui
+
+ uo
uo
+Uom -Uom
2020/11/13
t t
(6-14)
-Uom 传输特性
特点:运放处于开环状态。
当ui > UR时 , uo = +Uom 2020/11/13 当ui < UR时 , uo = -Uom
(6-11)
二、 若ui从反相端输入 uo
UR
+
ui
+ uo
+Uom
0
UR
ui
-Uom
当ui < UR时 , uo = +Uom 当ui >UR时 , uo = -Uom
电路改进:用稳压管稳定输出电压。
uo
ui
+
uo
+
+UZ
UZ
0
ui
-UZ
电压比较器的另一种形式
——将双向稳压管接在
负反馈回路上
ui
2020/11/13
UZ
R
+
R´
+
uo
(6-15)
比较器的特点
1. 电路简单。
ui
2. 当Ao不够大时,
模拟电子技术课件第六章

U TH − RU = − 2 Z = u+ R3 + R2
+ R2 Uz R2 + R3
R2
R3 +Uz
电容C放电,uC下降
u 当uC=u-<u+时, O=UZ
返回电容C充电状态。
R2 Uz R2 + R3
3. 周期与频率的计算(P182 自学)
26
6.5.1 矩形波产生电路
4. 占空比可变的矩形波产生电路
2
6.2 正弦波振荡电路的振荡条件(P172)
正弦波振荡电路就是一个无输入信号的正反馈放大器 。
Xi = 0
•
• •
•
•
•
X i′
Xo
X i′
•
A
•
A
Xo
Xf
•
•
Xf
•
F
F
自激振荡的条件: 而X f = FX o = FAXi '
X f = Xi '
即 AF = 1
3
1. 振荡条件
AF = 1
因为: A(ω ) = | A | ∠ϕ A
14
6.4.1 变压器反馈式LC振荡电路
Is
1 LC并联回路选频特性
等效阻抗
1 ( R + jωL) jωC Z= 1 + R + jωL jωC
一般有 R << ωL 则
Z= L C 1 ) ωC
•
U
R + j(ωL −
当 ω = ω0 = 谐振时
1 LC
时, 电路谐振。 ω 0 =
1 LC
为谐振频率
首端 L1 中间端 L2 尾端 C
+ R2 Uz R2 + R3
R2
R3 +Uz
电容C放电,uC下降
u 当uC=u-<u+时, O=UZ
返回电容C充电状态。
R2 Uz R2 + R3
3. 周期与频率的计算(P182 自学)
26
6.5.1 矩形波产生电路
4. 占空比可变的矩形波产生电路
2
6.2 正弦波振荡电路的振荡条件(P172)
正弦波振荡电路就是一个无输入信号的正反馈放大器 。
Xi = 0
•
• •
•
•
•
X i′
Xo
X i′
•
A
•
A
Xo
Xf
•
•
Xf
•
F
F
自激振荡的条件: 而X f = FX o = FAXi '
X f = Xi '
即 AF = 1
3
1. 振荡条件
AF = 1
因为: A(ω ) = | A | ∠ϕ A
14
6.4.1 变压器反馈式LC振荡电路
Is
1 LC并联回路选频特性
等效阻抗
1 ( R + jωL) jωC Z= 1 + R + jωL jωC
一般有 R << ωL 则
Z= L C 1 ) ωC
•
U
R + j(ωL −
当 ω = ω0 = 谐振时
1 LC
时, 电路谐振。 ω 0 =
1 LC
为谐振频率
首端 L1 中间端 L2 尾端 C
模电课件第6章

所以IC2也很小。
ro≈rce2(1+
Re2 )
rbe2 Re2
(参考射极偏置共射放大电路的输出电阻 R)o
当电源电压发生变化时,IC2的变化远小于IREF的变化,电
源电压波动对IC2影响不大,故:此电流源有很高的恒定性。
6.1.1 BJT电流源电路
3. 高输出阻抗电流源
IR EF V CC V B3E R V B E 2 V EE
电流源:是指电流恒定的电源
电流源的作用
为放大电路提供稳定的偏置电流
可作为放大电路的有源负载,以 便提高放大电路的电压增益
电流源的特点: 直流电阻小,交流电阻大
6.1.1 BJT电流源电路
CH6 模拟集成电路
1. 镜像电流源
T1、T2的参数全同 即β1=β2,ICEO1=ICEO2
VB E2=VB E1 IE2 = IE1 IC2 =IC1
CH6 模拟集成电路
1. MOSFET镜像电流源
IOID 2IRE F V D DV R SS V G S
当器件具有不同的宽长比时
IO
W2 W1
/ /
L2 L1
IRE
F
(=0)
ro= rds2
MOSFET基本镜像电路流
6.1.2 FET电流源电路
1. MOSFET镜像电流源
用T3代替R,T1~T3特性相同,
CH6 模拟集成电路
6.2.1 差分式放大电路的一般结构
1. 用三端器件组成的差分式放大电路
由于电源具有恒流 特性,并带有高阻 值的动态输出电阻, 因而电路具有稳定 的直流偏置和很强 的抑制共模信号的 能力。
CH6 模拟集成电路
一般集成运算放大器都采用直接耦合方式,即级—级之间 不用任何耦合件,这样信号损失小,效率高,频响好,频带宽。 但前后级Q点会相互影响,产生零点漂移,即当温度变化使第一 级放大器静态点发生微小变化时,这种变化量会被后面的电路逐 级放大,最终在输出端产生较大的电压漂移 。
模电第六章_ppt课件

v o1 v o2 vo Avd = v i1 v i2 vid
Rc 2 v o1 rbe 2 v i1
以双倍的元器件换 取抑制零漂的能力
接入负载时
1 β(R c || R L) 2 A vd = r be
<B> 双入、单出
v o1 vo 1 Rc 1 Avd1 = Av d vid 2 v i1 2 2 rbe
V = V BE2 BE1
则 I =I E2 E1 , IC2= IC1
I R EF I C 1 2 I B IC2 2 IB
2 I C 2 (1 ) 当 2 时,IC2和IREF是镜像关系。
6.1.1 BJT电流源电路
1. 镜像电流源
当BJT的β较大时,基极电流IB可以忽略
6.2 差分式放大电路
6.2.0 概述 6.2.1 差分式放大电路的一般结构 6.2.2 射极耦合差分式放大电路 6.2.3 源极耦合差分式放大电路
6.2.0 概述
1. 直接耦合放大电路
# 为什么一般的集成运 算放大器都要采用直接 耦合方式?
可以放大直流信号
2.直接耦合放大电路 电源电压波动 的零点漂移 也是原因之一
V V ( V ) V V CC BE E E CC E E Io=IC2≈IREF= R R
无论C2支路的负载值如何, IC2的电 流值将保持不变。
代表符号
动态(交流)电阻
i 1 C 2 r ( ) o I B 2 v CE 2
rce
一般ro在几百千欧以上
差模输入电阻
不论是单端输入还是双端输入,差模输入电阻Rid是基本放 大电路的两倍。
R r id = 2 be
Rc 2 v o1 rbe 2 v i1
以双倍的元器件换 取抑制零漂的能力
接入负载时
1 β(R c || R L) 2 A vd = r be
<B> 双入、单出
v o1 vo 1 Rc 1 Avd1 = Av d vid 2 v i1 2 2 rbe
V = V BE2 BE1
则 I =I E2 E1 , IC2= IC1
I R EF I C 1 2 I B IC2 2 IB
2 I C 2 (1 ) 当 2 时,IC2和IREF是镜像关系。
6.1.1 BJT电流源电路
1. 镜像电流源
当BJT的β较大时,基极电流IB可以忽略
6.2 差分式放大电路
6.2.0 概述 6.2.1 差分式放大电路的一般结构 6.2.2 射极耦合差分式放大电路 6.2.3 源极耦合差分式放大电路
6.2.0 概述
1. 直接耦合放大电路
# 为什么一般的集成运 算放大器都要采用直接 耦合方式?
可以放大直流信号
2.直接耦合放大电路 电源电压波动 的零点漂移 也是原因之一
V V ( V ) V V CC BE E E CC E E Io=IC2≈IREF= R R
无论C2支路的负载值如何, IC2的电 流值将保持不变。
代表符号
动态(交流)电阻
i 1 C 2 r ( ) o I B 2 v CE 2
rce
一般ro在几百千欧以上
差模输入电阻
不论是单端输入还是双端输入,差模输入电阻Rid是基本放 大电路的两倍。
R r id = 2 be
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v o1 2 v i1
1 2
AVD
Rc 2 rbe
接入负载时
AVD=(R2cr/b/eRL)
3. 主要指标计算
(1)差模电压增益
<C> 单端输入 ro re
等效于双端输入
指标计算 与双端输入相 同入
(2)共模电压增益
<A> 双端输出 共模信号的输入使两管
集电极电压有相同的变化。
所以 vocvoc 1voc 20
2rbe Rc // RL
2ro
ro rbe
双出
( Rc
A V
=
Vo Vi
(Rc // RL )
rbe
对于此电路Rc就是镜 像电流源的交流电阻,
因此增益为
A V
=
RL
rbe
放大管
比用电阻Rc就作负载时提高了。
end
6.2 差分式放大电路
6.2.0 概述
• 直接耦合放大电路
• 零点漂移
• 差分式放大电路中的一般概念
6.2.1 基本差分式放大电路
• 电路组成及工作原理 • 抑制零点漂移原理
差分式放大电路对共模信号有很强抑制作用。
2. 抑制零点漂移 另一方面
由此iC 看1出,温度升高时,引起两集电极电流增加,使得 流过Re上的iC1电 流增iE1加,发射极电位上升,从而限制了集电极电 温 流度 的增加。这一过程类vE似( 于vB分1、 压vB式2不 射变极)偏置vBE电1和 路vB 的E2 温 度iB 稳1和 定iB过1 程。所以,iC2即 使i电E2路处于单端输出方式时,仍有较强的抑制零 漂能力。iC2
IT 0
Ro
=
VT IT
一般Ro在几百千欧以上
1. 镜像电流源
精度更高的镜像电流源
由于增加了T3,使 IC2更加接近IREF
2. 微电流源
IC 2IE2
VBE1 VBE2 Re2
V BE R e2
由于 VBE 很小,
所以IC2也很小
3. 多路电流源
4. 电流源作有源负载
镜像电流源
共射电路的电压增益为:
共模信号
AVD
=
v o v id
共模信号输出 差模电压增益
AVC
=
vo v ic
共模电压增益
+
+
+ -vid -vid
差放 差放(a)
+
-vo
+
vi1 +
+ vo1
-
+v-vidi2
差放
vo2 -
-
差分-式放大电路输(入b输) 出结构示意图
差模等效输入方式
总输出电压 v o= v o v o A V v iD d +viA c V v iC c差放
ro rbe
KCMR 越大,抑制零漂能力 越强
单端输出时的总输出电压
(4)频率响应
vo1AVDv1i d(1KCviM cvR i d)
高频响应与共射电路相同,低频可放大直流信号。
4. 几种方式指标比较
输出方式
双出
AVD
( Rc
//
1 2
RL )
rbe
AVC
0
K CM R
单出
(Rc // RL )
共模增益
AVC
voc vic
0
<B> 单端输出
AVC1
voc1 v ic
v oc2 v ic
Rc
Rc
rbe(1)2ro
2 ro
ro AVC1 抑制零漂能力增强
(3)共模抑制比
K CMR
AVD AVC
KC
MR
20lg
AVD AVC
dB
双端输出,理想情况 KCMR
单端输出
KCMR
A VD1 A VC1
根据1、2两式又有
K CMR =
AVD AVC
vi1
= vic
vid 2
-
v共i2模=等v效ic输入v方2i式d
共模抑制比 反映抑制零漂能力的指标
6.2.1 基本差分式放大电路
1. 电路组成及工作原理
静态 1
IC1=IC2IC2I0 VC E1=VC E2
VCC ICRC V E
V C C IC R C ( 0 .7 )
• 主要指标计算
• 几种方式指标比较
பைடு நூலகம்
6.2.2 FET差分式放大电路
6.2.3 差分式放大电路的传输特性
6.2.0 概述
1. 直接耦合放大电路
可以放大直流信号
# 为什么一般的集成运 算放大器都要采用直接 耦合方式?
2.直接耦电合源放电大压电波路动 的零点漂也移是原因之一
零漂: 输入短路 时 ,输 出仍有缓慢变化 的电压产生。
3. 主要指标计算
(双入、双出交流通路)
(1)差模电压增益
<A> 双入、双出
AVD
=
vo v id
v o1 v o2 v i1 v i2
2 v o1 R c
2 v i1
rbe
接入负以取载双抑时AV倍制D的零= 元漂器的(R件能c换力r/b/e12 RL)
<B> 双入、单出
AVD1
=
vo1 vid
漂了 100 uV
则输出漂移 10 mV。 F 第一级是关键
3. 减小零漂的措施
漂移 1 V+ 10 mV
(思考题)
F 用非线性元件进行温度补偿
F 调制解调方式。如“斩波稳零放大器”
F 采用差分式放大电路
4. 差分式放大电路中的一般概念
vi d=vi 1vi差2模差信模号信输号出
1 vic =2(vi1vi2)
6 集成电路运算放大器
6.1 集成电路运算放大器中的电流源 6.2 差分式放大电路 6.3 集成电路运算放大器 6.4 集成电路运算放大器的主要参数 *6.5 专用型集成电路运算放大器 *6.6 放大电路中的噪声与干扰
6.1 集成电路运算放大 器中的恒流源
• 镜像电流源 • 微电流源 • 多路电流源 • 电流源作有源负载
1. 镜像电流源
恒流特性
VB E2=VB E1 IE2 = IE1
IC2 =IC1 IREF
= VCC VBE V CC
R
R
无 论 Rc 的 值 如 何 , IC2的 电流 值 将 保 持 不 变。
(三极管工作状态)
1. 镜像电流源
交流电阻
Ro
=
V T I T
由 于T2的 集 电 极电 流 基本不变。所以交流量
主要原因: 温度变化引起,也称温漂。 温漂指标: 温度每升高1度时,输出漂移电压按电压增益
折算到输入端的等效输入漂移电压值。
例如
漂移
10 mV+100 uV
假设 AV1=100,
AV2=100AV ,3=1。
漂移 1 V+ 10 mV
若第一级漂了100 uV,
则输出漂移 1 V。
若第二级也漂 了100 uV,
IB 1
IB 1
IC
1. 电路组成及工作原理
动态 仅输入差模信号, vi1和vi2 大小相等,相位相反。 vc1和vc2 大小相等, 相位相反。 vovc1vc20,
信号被放大。
2. 抑制零点漂移
温度变 化和电源电 压波动,都 将使集电极 电流产生变 化。且变化 趋势是相同 的,其效果相当于在两个输入端加入了共模信号。