数电组合逻辑电路设计

合集下载

数电实验报告 实验二 利用MSI设计组合逻辑电路

数电实验报告 实验二 利用MSI设计组合逻辑电路

数电实验报告实验二利用MSI设计组合逻辑电路姓名:学号:班级:院系:指导老师:2016年目录实验目的: .............................................................. 错误!未定义书签。

实验器件与仪器: .................................................. 错误!未定义书签。

实验原理: .............................................................. 错误!未定义书签。

实验内容: .............................................................. 错误!未定义书签。

实验过程: .............................................................. 错误!未定义书签。

实验总结: .............................................................. 错误!未定义书签。

实验:实验目的:1.熟悉编码器、译码器、数据选择器等组合逻辑功能模块的功能与使用方法。

2.掌握用MSI设计的组合逻辑电路的方法。

实验器件与仪器:1.数字电路实验箱、数字万用表、示波器。

2.虚拟器件:74LS00,74LS197,74LS138,74LS151实验原理:中规模的器件,如译码器、数据选择器等,它们本身是为实现某种逻辑功能而设计的,但由于它们的一些特点,我们也可以用它们来实现任意逻辑函数。

1.用译码器实现组合逻辑电路译码器是将每个输入的二进制代码译成对应的输出高、低电平信号。

如3线-8线译码器。

当附加控制门Gs的输入为高电平(S = 1)的时候,可由逻辑图写出。

从上式可看出。

-同时又是S2、S1、S0这三个变量的全部最小项的译码输出。

组合逻辑电路设计步骤

组合逻辑电路设计步骤

组合逻辑电路设计步骤1. 介绍组合逻辑电路是数字电路的一种重要类型,它由逻辑门组成,能够根据输入信号的组合产生输出信号。

在本文中,我们将详细介绍组合逻辑电路的设计步骤,包括设计需求分析、逻辑功能表的制定、逻辑方程的推导、逻辑门的选择和电路的验证等内容。

2. 设计需求分析在进行组合逻辑电路设计之前,首先需要明确设计的需求。

这包括确定电路的输入和输出信号的数量、确定逻辑功能的要求以及了解电路的工作条件等。

设计需求分析的目的是为了确保设计的电路能够满足实际应用的要求。

3. 制定逻辑功能表逻辑功能表是组合逻辑电路设计的基础,它描述了输入信号与输出信号之间的关系。

制定逻辑功能表的过程包括列出所有可能的输入组合和对应的输出值,并根据设计需求确定逻辑功能的真值表达式。

制定逻辑功能表的步骤如下: 1. 列出所有可能的输入组合。

2. 根据设计需求确定每个输入组合对应的输出值。

3. 将输入组合和对应的输出值列成表格,形成逻辑功能表。

4. 推导逻辑方程逻辑方程是描述组合逻辑电路功能的数学表达式,它由逻辑变量和逻辑运算符组成。

推导逻辑方程的过程是根据逻辑功能表中的输入和输出值,通过逻辑运算符的组合得出逻辑方程。

推导逻辑方程的步骤如下: 1. 根据逻辑功能表中的输入和输出值,列出每个输出变量与输入变量之间的逻辑关系。

2. 根据逻辑关系,使用逻辑运算符将每个输出变量与输入变量连接起来,形成逻辑方程。

5. 选择逻辑门逻辑门是组合逻辑电路中最基本的元件,它能够实现逻辑运算。

根据推导出的逻辑方程,选择适合的逻辑门来实现电路的功能。

常见的逻辑门有与门、或门、非门、异或门等。

选择逻辑门时需要考虑电路的性能要求、功耗、成本以及逻辑门的可用性等因素。

6. 电路验证在完成组合逻辑电路的设计之后,需要对电路进行验证,以确保其能够按照设计要求正常工作。

电路验证的过程包括仿真和实际测试两个阶段。

在仿真阶段,可以使用电路仿真软件对电路进行仿真,验证逻辑功能是否正确。

数电知识点章节总结

数电知识点章节总结

数电知识点章节总结1.1 二进制和十进制在数字电路中,我们经常使用二进制来表示数字。

二进制是一种仅包含0和1两个数字的数制系统,它是计算机中数据存储和处理的基础。

与之相比,十进制是我们平时生活中常用的数制系统。

在数字电路中,我们需要能够熟练地进行二进制和十进制之间的转换,以便能够正确地理解和设计数字电路。

1.2 布尔代数布尔代数是一种特殊的数学体系,它基于逻辑运算而非算术运算。

在数字电路中,布尔代数被广泛应用于逻辑设计中,它可以帮助我们描述和分析数字电路中各种逻辑关系。

因此,对于数字电路的学习来说,布尔代数是一个非常重要的基础知识。

1.3 逻辑门逻辑门是数字电路中最基本的组成单元。

它可以实现各种逻辑运算,如与、或、非等。

了解逻辑门的工作原理和特性可以帮助我们更好地理解数字电路的工作原理和设计方法。

1.4 组合逻辑电路和时序逻辑电路数字电路可以分为组合逻辑电路和时序逻辑电路两种类型。

组合逻辑电路由逻辑门构成,其输出仅由当前输入确定,不受之前的输入或状态影响。

时序逻辑电路则包含了存储元件,其输出不仅受当前输入影响,还受到之前的输入和状态的影响。

了解这两种类型的数字电路有助于我们设计和分析复杂的数字电路系统。

1.5 数字逻辑电路的应用数字逻辑电路广泛应用于计算机、通信、数码显示、计数器、定时器等领域。

掌握数字逻辑电路的基础知识可以帮助我们更好地理解和应用数字电路技术。

第二章:数字电路设计2.1 组合逻辑电路设计组合逻辑电路的设计是数字电路设计的基础。

在这一部分,我们将学习如何使用逻辑门和其他逻辑元件来设计实现各种逻辑功能的数字电路。

2.2 时序逻辑电路设计时序逻辑电路设计是数字电路设计的进阶内容。

在这一部分,我们将学习如何设计和分析包含存储元件的数字电路系统,以实现更加复杂的功能。

2.3 FPGA和CPLDFPGA(可编程逻辑器件)和CPLD(复杂可编程逻辑器件)是现代数字电路设计中常用的集成电路。

它们具有可编程性和灵活性,可以满足各种复杂数字系统的设计需求。

数电实验 组合逻辑电路

数电实验 组合逻辑电路

实验报告课程名称: 数字电子技术实验 指导老师: 成绩:__________________ 实验名称: 组合逻辑电路 实验类型: 设计型实验 同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一.实验目的和要求1. 加深理解典型组合逻辑电路的工作原理。

2. 熟悉74LS00、74LS11、74LS55等基本门电路的功能及其引脚。

3. 掌握组合集成电路元件的功能检查方法。

4. 掌握组合逻辑电路的功能测试方法及组合逻辑电路的设计方法。

5. 熟悉全加器和奇偶位判断电路的工作原理。

二.实验内容和原理组合逻辑电路设计的一般步骤如下: 1.根据给定的功能要求,列出真值表;2. 求各个输出逻辑函数的最简“与-或”表达式;3. 将逻辑函数形式变换为设计所要求选用逻辑门的形式;4. 根据所要求的逻辑门,画出逻辑电路图。

实验内容:1. 测试与非门74LS00和与或非门74LS55的逻辑功能。

2. 用与非门74LS00和与或非门74LS55设计一个全加器电路,并进行功能测试。

专业: 电子信息工程 姓名:学号: 日期:装 订 线3. 用与非门74LS00和与或非门74LS55设计四位数奇偶位判断电路,并进行功能测试。

三. 主要仪器设备与非门74LS00,与或非门74LS55,导线,开关,电源、实验箱四.实验设计与实验结果1、一位全加器全加器实现一位二进制数的加法,他由被加数、加数和来自相邻低位的进数相加,输出有全加和与向高位的进位。

输入:被加数Ai,加数Bi,低位进位Ci-1输出:和Si,进位Ci实验名称:组合逻辑电路姓名:学号:列真值表如下:画出卡诺图:根据卡诺图得出全加器的逻辑函数:S= A⊕B⊕C; C= AB+(A⊕B)C为使得能在现有元件(两个74LS00 与非门[共8片]、三个74LS55 与或非门)的基础上实现该逻辑函数。

数电实验-组合逻辑电路设计

数电实验-组合逻辑电路设计

数字逻辑电路实验实验报告学号:班级:姓名:实验3:组合逻辑电路(3)——组合逻辑电路设计一实验内容利用Quartus II实现0到9的Hamming码编码和解码电路,并在芯片中下载实现。

要求:实现对从0000到1001输入的编码和解码,并可发现并纠正传输中的单错,对双错不做要求。

在芯片中下载电路并在实验板上验证。

二实验原理2.1电路需求分析Hamming码是一套可定位码字传输中单错并纠正单错的编码体系,以4位二进制为例,其编解码和纠错原理如下:将7位二进制数的各位由低到高依次编号为1B、10B、11B、100B、……、111B。

其中为2的整数次幂的位(即1B、10B、100B)位校验位,其他四位作为数据位。

编码时,三个校验位分别与编号特定位为1的位上数字做奇偶校验(即编号位1B、11B、101B、111B的校验结果为1B位的值,10B、10B、100B、110B的校验结果为10B的值,100B、101B、110B和111B的校验结果为100B的值)。

偶校验在电路实现中更直接容易。

译码时,在仅考虑无错或单错的情形下,若三个校验位的校验结果均正确,则结果是四个数据位本身;若某位或某几位校验结果有错,可据此综合定位错误的位置:若仅1位校验结果有错,则错误出于该校验位本身;若2位校验结果有错,则该2位校验位所共同参与校验且不参与另一位校验的数据位结果有错;若三维结果均有错,则必然为111B位有错。

分析可知,编码电路可根据上述原理使用异或门实现,也可根据编码真值表由与门实现;译码电路中可使用3×4次异或运算生成校验结果,再由校验结果定位错误位后对相应位取反实现。

2.2Quartus软件从管脚分配到下载验证的过程Quartus中,在设计好电路的输入输出并选择合适的芯片型号后,可使用Pin Planner工具进行管脚分配:窗口下方有当前设计电路中所有的输入和输出节点,在Location中可选择对应节点对应的管脚。

组合逻辑电路的设计实验报告

组合逻辑电路的设计实验报告

竭诚为您提供优质文档/双击可除组合逻辑电路的设计实验报告篇一:数电实验报告实验二组合逻辑电路的设计实验二组合逻辑电路的设计一、实验目的1.掌握组合逻辑电路的设计方法及功能测试方法。

2.熟悉组合电路的特点。

二、实验仪器及材料a)TDs-4数电实验箱、双踪示波器、数字万用表。

b)参考元件:74Ls86、74Ls00。

三、预习要求及思考题1.预习要求:1)所用中规模集成组件的功能、外部引线排列及使用方法。

2)组合逻辑电路的功能特点和结构特点.3)中规模集成组件一般分析及设计方法.4)用multisim软件对实验进行仿真并分析实验是否成功。

2.思考题在进行组合逻辑电路设计时,什么是最佳设计方案?四、实验原理1.本实验所用到的集成电路的引脚功能图见附录2.用集成电路进行组合逻辑电路设计的一般步骤是:1)根据设计要求,定义输入逻辑变量和输出逻辑变量,然后列出真值表;2)利用卡络图或公式法得出最简逻辑表达式,并根据设计要求所指定的门电路或选定的门电路,将最简逻辑表达式变换为与所指定门电路相应的形式;3)画出逻辑图;4)用逻辑门或组件构成实际电路,最后测试验证其逻辑功能。

五、实验内容1.用四2输入异或门(74Ls86)和四2输入与非门(74Ls00)设计一个一位全加器。

1)列出真值表,如下表2-1。

其中Ai、bi、ci分别为一个加数、另一个加数、低位向本位的进位;si、ci+1分别为本位和、本位向高位的进位。

2)由表2-1全加器真值表写出函数表达式。

3)将上面两逻辑表达式转换为能用四2输入异或门(74Ls86)和四2输入与非门(74Ls00)实现的表达式。

4)画出逻辑电路图如图2-1,并在图中标明芯片引脚号。

按图选择需要的集成块及门电路连线,将Ai、bi、ci接逻辑开关,输出si、ci+1接发光二极管。

改变输入信号的状态验证真值表。

2.在一个射击游戏中,每人可打三枪,一枪打鸟(A),一枪打鸡(b),一枪打兔子(c)。

数电入门组合逻辑电路

数电入门组合逻辑电路

加法器(Adder)*
• 上次我们自己搭了一个“半加器”,而实 际应用的都是全加器,但多位连接方式不 同:
• “串行加法器”:结构简单,延时严重;
• “超前进位加法器”:结构复杂,运算速 度快,常用的有一款74LS283。
• 组合逻辑电路概述 • 数据选择器和数据分配器* • 加法器* • 编码器和译码器 • 结识七段数码管 • 小实验:编码-译码-显示
结识七段数码管
• 数码管大家应该不陌生,它的原理也很简 单,仅仅是由七段长条形的发光二极管拼 成“8”字形,外加上小数点,可以显示数字 和个别字母。
• 二极管公共端为负极:“共阴”数码管, 输入为正逻辑;反之为“共阳”数码管, 负逻辑。
g f GNDa b a
a
b
c
f
Hale Waihona Puke bgde
c
e
d ·dp
f g
编码器(Encoder)
• 普通编码器:任何时刻只允许输入一个编 码信号,否则输出将发生混乱。
• 优先编码器:允许同时输入两个以上的编 码信号,在设计的优先编码器的时候已经 将所有的输入信号按优先顺序排了队,当 几个输入信号同时出现时,只对其中优先 权最高的一个进行编码。例:74LS148。
74LS14 8
• 验证74LS48的功能:D--A接到8个逻辑电平 开关上,输出与共阴极数码管的a--g相连。 观察不同输入时数码管的显示。另外,验证 各附加控制端的功能。
• 也可以自己想办法让数码管显示其他字符!
• 将74LS148和74LS48通过非门相连,构成编 码—译码—显示电路。其中,非门可选用 74LS00。
小实验:编码-译码-显示
• 每人拿到74148、7448、7400、数码管各 一……一会自己有好点子可以多要几 片……

数字电子技术实验-组合逻辑电路设计

数字电子技术实验-组合逻辑电路设计
实验箱使用注意事项
学生在使用实验箱时,应注意遵守实验室规定,正确连接电源和信号线, 避免短路和过载等事故发生。
实验工具介绍
实验工具类型
数字电子技术实验中常用的实验工具包括万用表、示波器、信号 发生器和逻辑分析仪等。
实验工具功能
这些工具用于测量电路的各种参数,如电压、电流、波形等,以及 验证电路的功能和性能。
01
02
03
逻辑门
最基本的逻辑元件,如与 门、或门、非门等,用于 实现基本的逻辑运算。
触发器
用于存储一位二进制信息, 具有置位、复位和保持功 能。
寄存器
由多个触发器组成,用于 存储多位二进制信息。
组合逻辑电路的设计方法
列出真值表
根据逻辑功能,列出输入和输 出信号的所有可能取值情况。
写出表达式
根据真值表,列出输出信号的 逻辑表达式。
05 实验结果与分析
实验结果展示
实验结果一
根据给定的逻辑函数表达式,成 功设计了对应的组合逻辑电路, 实现了预期的逻辑功能。
实验结果二
通过仿真软件对所设计的组合逻 辑电路进行了仿真测试,验证了 电路的正确性和稳定性。
实验结果三
在实际硬件平台上搭建了所设计 的组合逻辑电路,经过测试,实 现了预期的逻辑功能,验证了电 路的可实现性。
路图。
确保电路图清晰易懂,标注必要 的说明和标注。
检查电路图的正确性,确保输入 与输出之间的逻辑关系正确无误。
连接电路并测试
根据逻辑电路图,正确连接各 逻辑门和输入输出端口。
检查连接无误后,进行功能测 试,验证电路是否满足设计要 求。
如果测试结果不符合预期,检 查电路连接和设计,并进行必 要的调整和修正。
数字电子技术实验-组合逻辑电路 设计

数电实验报告实验二利用MSI设计组合逻辑电路

数电实验报告实验二利用MSI设计组合逻辑电路

数电实验报告实验二利用MSI设计组合逻辑电路一、实验目的1. 学习MSI(Medium Scale Integration,即中规模集成电路)的基本概念和应用。

2.掌握使用MSI设计和实现组合逻辑电路的方法。

3.了解MSI的类型、特点及其在实际电路设计中的作用。

二、实验设备与器件1.实验设备:示波器、信号发生器、万用表。

2.实验器件:组合逻辑集成电路74LS151三、实验原理1.MSI的概念MSI是Medium Scale Integration的简称,指的是中规模集成电路。

MSI由几十个至几千个门电路组成,功能比SSI(Small Scale Integration,即小规模集成电路)更为复杂,但比LSI(Large Scale Integration,即大规模集成电路)简单。

2.74LS151介绍74LS151是一种常用的组合逻辑集成电路之一,具有8个输入端和1个输出端。

其功能是从八个输入信号中选择一个作为输出。

利用该器件可以轻松实现数据选择器、多路选择器等功能。

四、实验内容本实验的任务是利用74LS151设计一个简单的多路选择器电路。

具体实验步骤如下:1.将74LS151插入实验板中,注意引脚的正确连接。

2.将信号发生器的输出接入到74LS151的A、B、C三个输入端中,分别作为输入0、输入1、输入2、将示波器的探头分别接到74LS151的输出端Y,记录下不同输入情况下Y的输出情况。

3.分别将信号发生器的输出接入74LS151的D0、D1、D2、D3、D4、D5、D6、D7八个输入端,接通电源,记录下不同输入情况下Y的输出情况。

4.通过以上实验数据,绘制74LS151的真值表。

五、实验结果与数据处理根据实验步骤所述,我们完成了实验,并得到了以下数据:输入0:0000001111001111输入1:1111110010100101输入2:1010101001010101根据这些数据,我们可以绘制74LS151的真值表如下:输入0,输入1,输入2,输出Y--------,--------,--------,--------0,0,0,00,0,1,10,1,0,00,1,1,11,0,0,11,0,1,01,1,0,11,1,1,1六、实验总结通过本次实验,我们学习了MSI的基本概念和应用,初步掌握了使用MSI设计和实现组合逻辑电路的方法。

数字电子电路技术 第三章 SSI组合逻辑电路的分析与设计 课件

数字电子电路技术 第三章 SSI组合逻辑电路的分析与设计 课件

表3-1 例3-1真值表
第四步:确定电路的逻 辑功能。
由真值表可知,三个变
量输入A,B,C,只有两
个及两个以上变量取值为1 时,输出才为1。可见电路 可实现多数表决逻辑功能。
A BC F 0 00 0 0 01 0 0 10 0 0 11 1 1 00 0 1 01 1
1 10 1
21.10.2020
h
11
2. 组合逻辑电路设计方法举例。
例3-3 一火灾报警系统,设有烟感、温感和 紫外光感三种类型的火灾探测器。为了防止误报警, 只有当其中有两种或两种以上类型的探测器发出火 灾检测信号时,报警系统产生报警控制信号。设计 一个产生报警控制信号的电路。
解:(1)分析设计要求,设输入输出变量并逻辑赋值;
用方法和应用举例。
21.10.2020
h
4
3.1 SSI组合逻辑电路的分析和设计
小规模集成电路是指每片在十个门以下的集成芯片。
3.1.1 组合逻辑电路的分析方法
所谓组合逻辑电路的分析,就是根据给定的逻辑 电路图,求出电路的逻辑功能。
1. 分析的主要步骤如下: (1)由逻辑图写表达式; (2)化简表达式; (3)列真值表; (4)描述逻辑功能。
21.10.2020
h
18
对M个信号编码时,应如何确定位数N?
N位二进制代码可以表示多少个信号?
例:对101键盘编码时,采用几位二进制代码? 编码原则:N位二进制代码可以表示2N个信号, 则对M个信号编码时,应由2N ≥M来确定位数N。
例:对101键盘编码时,采用了7位二进制代码 ASCⅡ码。27=128>101。
0111
1000
1011
1101
1 1 1 1 21.10.2020

习题3组合逻辑电路分析与设计数字电子技术含答案

习题3组合逻辑电路分析与设计数字电子技术含答案

习题3组合逻辑电路分析与设计数字电子技术含答案(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--习题 3组合逻辑电路分析与设计数字电子技术[题] 分析图题所示电路,列出真值表,写出输出函数表达式,并说明电路的逻辑功能。

解:由电路图得真值表如下所示:所以:A B时,11Y12A B 时,31Y =A B =时,21Y =电路实现比较器的功能。

A ,B 是输入;Y 1,Y 2,Y 3分别是A<B ,A=B ,A>B 时的输出。

[题] 分析图题所示电路,说明电路的逻辑功能。

解:电路的逻辑函数表达式为:(10Y S EN A S EN B EN Y EN ⎧=⋅⋅+⋅⋅=⎪⎨=⎪⎩时);输出高阻态(时)电路的逻辑功能是:在使能条件EN=1且S=0时,输出A ;在使能条件EN=1且S=1时,输出B ;使能条件EN=0时,输出高阻态。

电路实现数据选择器的功能。

[题] 图题是一个密码锁控制电路。

开锁条件是必须将开锁开关闭合,且要拨对密码。

如果以上两个条件都得到满足,开锁信号为1,报警信号为3 0,即锁打开而不报警。

否则,开锁信号为0,报警信号为1。

试分析该电路的密码是多少。

解:1Y S ABCD =⋅2Y S ABCD =⋅分析电路可知:电路的密码是1001。

[题] 图题所示电路由4位二进制比较器7485和4位二选一数据选择器74157组成。

其中74157控制端B A /的控制作用为:B A /=0时,Y i =A i ,否则,Y i =B i 。

试分析图示电路的逻辑功能。

解:当A B ≤时,输出A ;当AB 时,输出B ;所以电路的功能是输出A ,B 中较小的数。

4 [题] 某建筑物的自动电梯系统有五个电梯,其中三个是主电梯(设为A 、B 、C ),两个备用电梯。

当上下人员拥挤,主电梯全被占用时,才允许使用备用电梯。

现需设计一个监控主电梯的逻辑电路,当任何两个主电梯运行时,产生一个信号(Y 1),通知备用电梯准备运行;当三个主电梯都在运行时,则产生另一个信号(Y 2),使备用电梯主电源接通,处于可运行状态。

电子教案数字电子技术第三章组合逻辑电路XX1

电子教案数字电子技术第三章组合逻辑电路XX1
电子教案数字电子技术第三章组合逻 辑电路XX1
3rew
演讲完毕,谢谢听讲!
再见,see you again
2020/11/28
电子教案数字电子技术第三章组合逻 辑电路XX1
•解:(1)列出真值表:
(2)由真值表写出各输出的逻辑表达式为:
电子教案数字电子技术第三章组合逻 辑电路XX1
• 重新整理 得:
• (3)由表达式 画
• 出逻辑图:
电子教案数字电子技术第三章组合逻 辑电路XX1
• (4)增加控制使能标志GS :
• 当按下S0~ S9
• 任意一个键 时,
• GS=1,表示 有
例4.3.1 试用8选1数据选择器74151实现逻辑函数:
解:将逻辑函数转换成 最小项表达式:
=m3+m5+m6+m7 画出连线图。
电子教案数字子技术第三章组合逻 辑电路XX1
(2)当逻辑函数的变量个数大于数据选择器的地址输入变 量个数时。 例4.3.2 试用4选1数据选择器实现逻辑函数: 解:将A、B接到地址输入端,C加到适当的数据输入端。 作出逻辑函数L的真值表,根据真值表画出连线图。
按内部连接方式不同,七段数字显示器分为共阴极和共阳极两 种。
2.七段显示译码器7448 七段显示译码器7448是一种 与共阴极数字显示器配合 使用的集成译码器。
电子教案数字电子技术第三章组合逻 辑电路XX1
电子教案数字电子技术第三章组合逻 辑电路XX1
•7448的逻辑功能: (1)正常译码显示。LT=1,BI/RBO=1时,对输入为十
如果想用与非门组成半加器,则将上式用代数法变换 成与非形式:
由此画出用与非门组成的半加器。
电子教案数字电子技术第三章组合逻 辑电路XX1

《数字电子技术》第3章 组合逻辑电路

《数字电子技术》第3章 组合逻辑电路
Y1 I2 I3 I6 I7
Y3 ≥1 I9 I8
Y3
I2I3I6I7
&
Y0 I1 I3 I5 I7 I9
I1I3I5I7I9
I9 I8
逻辑图
Y2
Y1
Y0
≥1
≥1
≥1
I7I6I5I4
I3I2
(a) 由或门构成
Y2
Y1
I1 I0 Y0
&
&
&
I7I6I5I4
I3I2
(b) 由与非门构成
A
消除竞争冒险
B
C
Y AB BC AC
2
& 1
1
3
&
4
&
5
≥1
Y
3.2 编码器
编码
将具有特定含义的信息编 成相应二进制代码的过程。
编码器(即Encoder)
实现编码功能的电路
被编 信号
编 码 器
编码器
二进制编码器 二-十进制编码器
二进制 代码 一般编码器
优先编码器 一般编码器 优先编码器
(1) 二进制编码器
A B F AB AB B
&
&
00
1
01
0
C
&
F &
10 11
0F AABA BC1 AB &
1
AAB BC AB
(4)分析得出逻辑功A能 A B B C AB
A =1
同或逻辑 AB AB B
F
F AB AB A☉B
3.1.3 组合逻辑电路的设计
组合逻辑电路的设计就是根据给出的实际逻 辑问题求出实现这一关系的逻辑电路。

简述组合逻辑电路的设计步骤

简述组合逻辑电路的设计步骤

简述组合逻辑电路的设计步骤组合逻辑电路是一种基本的数字电路,它由逻辑门和它们之间的连线组成。

它的设计是通过将逻辑功能转化为逻辑门的连接方式来实现的。

下面将详细介绍组合逻辑电路的设计步骤。

一、明确设计目标在进行组合逻辑电路的设计之前,首先需要明确设计目标。

设计目标包括电路的功能需求、输入输出要求、时钟频率等。

二、分析逻辑功能在明确设计目标后,需要对所需的逻辑功能进行分析。

通过分析逻辑功能,可以确定电路需要使用的逻辑门类型和数量。

三、选择逻辑门类型根据分析逻辑功能的结果,选择合适的逻辑门类型。

常用的逻辑门有与门、或门、非门、异或门等。

选择逻辑门类型时,需要考虑电路的功耗、延迟时间、面积等因素。

四、确定逻辑门数量根据逻辑功能需求和选择的逻辑门类型,确定所需的逻辑门数量。

可以通过真值表、卡诺图等方法来确定逻辑门数量。

五、绘制逻辑图根据逻辑功能需求和确定的逻辑门数量,绘制逻辑图。

逻辑图是用来表示逻辑门和它们之间的连线关系的图形化表示方法。

在绘制逻辑图时,需要注意逻辑门的输入和输出端口的位置,以便后续的连线。

六、进行连线设计在绘制逻辑图后,需要进行连线设计。

连线设计是将逻辑门和它们之间的连线连接起来的过程。

在进行连线设计时,需要注意信号的传输路径、防止信号冲突、减少电路延迟等。

七、进行逻辑验证在完成连线设计后,需要进行逻辑验证。

逻辑验证是通过对输入信号进行模拟或实际的测试,来验证电路是否满足所需的逻辑功能。

可以使用逻辑仿真工具或实际硬件进行验证。

八、进行时序分析在完成逻辑验证后,需要进行时序分析。

时序分析是对电路的时序性能进行评估的过程。

通过时序分析,可以评估电路的时钟频率、最大延迟时间等。

九、进行布局设计在完成时序分析后,需要进行布局设计。

布局设计是将电路的逻辑图转化为物理布局的过程。

在进行布局设计时,需要考虑电路的面积、功耗、信号传输路径等因素。

十、进行物理验证在完成布局设计后,需要进行物理验证。

物理验证是通过对实际硬件进行测试,来验证电路的物理性能。

数电组合逻辑电路门电路设计

数电组合逻辑电路门电路设计

数电组合逻辑电路门电路设计
数电组合逻辑电路的设计包括确定逻辑功能和选择适当的门电路进行实现。

首先,确定所需的逻辑功能。

这可能是一个布尔代数的表达式,如与、或、非等。

例如,如果需要实现一个逻辑与门,可以使用以下布尔代数表达式:Y = A * B。

然后,选择适当的门电路进行实现。

常见的门电路有与门、或门、非门等。

与门用于实现逻辑与功能,或门用于实现逻辑或功能,非门用于实现逻辑非功能。

对于上面的例子,可以选择一个与门电路进行实现。

与门电路有两个输入端和一个输出端。

根据布尔表达式,将输入A和
B连接到与门的两个输入端,将输出Y连接到与门的输出端。

最后,根据具体的设计需求,选择合适的门电路芯片进行设计。

常见的门电路芯片有与门芯片、或门芯片、非门芯片等。

可以根据需要的输入输出端口数目和电压要求选择合适的芯片。

综上所述,数电组合逻辑电路门电路设计包括确定逻辑功能、选择适当的门电路和门电路芯片进行实现。

《数字电子技术》组合逻辑电路(半加器全加器及逻辑运算)

《数字电子技术》组合逻辑电路(半加器全加器及逻辑运算)

《数字电子技术》组合逻辑电路(半加器全加器及逻辑运算)一、实验目的1、掌握组合逻辑电路的功能测试。

2、验证半加器和全加器的逻辑功能。

3、学会二进制数的运算规律。

二、实验原理数字电路分为组合逻辑电路和时序逻辑电路两类。

任意时刻电路的输出信号仅取决于该时刻的输入信号,而与信号输入前电路所处的状态无关,这种电路叫做组合逻辑电路。

分析一个组合电路,一般从输出开始,逐级写出逻辑表达式,然后利用公式或卡诺图等方法进行化简,得到仅含有输入信号的最简输出逻辑函数表达式,由此得到该电路的逻辑功能。

两个一位二进制数相加,叫做半加,实现半加操作的电路称为半加器。

两个一位二进制数相加的真值表见表5-1,表中Si 表示半加和,Ci 表示向高位的进位,Ai 、Bi 表示两个加数。

表5-1 半加器真值表从二进制数加法的角度看,表中只考虑了两个加数本身,没有考虑低位来的进位,这也就是半加一词的由来。

由表5-1可直接写出半加器的逻辑表达式:Si=AiBi AiBi +、Ci=AiBi 由逻辑表达式可知,半加器的半加和Si 是Ai 、Bi 的异或,而进位Ci 是Ai 、Bi 相与,故半加器可用一个集成异或门和一个与门组成。

两个同位的加数和来自低位的进位三者相加,这种加法运算就是全加,实现全加运算的电路叫做全加器。

如果用Ai 、Bi 分别表示A 、B 两个多位二进制数的第i 位,1i C -表示低位(第i-1位)来的进位,则根据全加运算的规则可列出真值表如表5-2。

表5-2 全加器的真值表利用卡诺图可求出Si 、Ci 的简化函数表达式:i i i i-1i i i i i i S =A B C C =(A B )C +A B ⊕⊕⊕可见,全加器可用两个异或门和一个与或门组成。

如果将数据表达式进行一些变换,半加器还可以用异或门、与非门等元器件组成多种形式的电路(见图5-2,图5-3)。

三、实验仪器及材料器件:74LS00 二输入端四与非门 3片74LA86 二输入端四异或门 1片74LS54 四组输入与或非门 1片四、预习要求1、预习组合逻辑电路的分析方法。

数电实验实验三 组合逻辑电路

数电实验实验三    组合逻辑电路

1. 测试用异或门和与非门组成的半加器的逻辑功能
如果不考虑来自低位的进位而能够实现将两个 1 位二进制数相加的电路,称为半加器,
半加器的符号如图 3-2 所示。
半加器的逻辑表达式为:
S = AB + AB = A B CO = AB
12
根据半加器的逻辑表达式可知,半加和 S 是输入 A、B 的异或,而进位 CO 则为输入 A、 B 相与,故半加器可用一个集成异或门和二个与非门组成,电路如图 3-3 所示。 (仿真图,并把仿真结果填入表中)
2. 用卡诺图或代数法化简,求出最简逻辑表达 式。
设计要求 逻辑抽象
真值表
3. 根据简化后的逻辑表达式,画出逻辑电路图。
若已知逻辑电路,欲分析组合电路的逻辑功能, 逻辑表达式
则分析步骤为:
代数法化减
卡诺图 卡诺图法化减
1. 由逻辑电路图写出各输出端的逻辑表达式。
2. 由逻辑表达式列出真值表。
最简逻辑表达式
实验三 组合逻辑电路
姓名: 赖馨兰 班级: 光信 1802 学号:1810830225
一、实验目的
1. 通过简单的组合逻辑电路设计与调试,掌握采用小规模(SSI)集成电路设计组合逻
辑电路的方法。
2. 用实验验证所设计电路的逻辑功能。
3. 熟悉、掌握各种逻辑门的应用。
二、实验原理
组合逻辑电路是最常见的逻辑电路之一,可以用一些常用的门电路来组合成具有其他功
要求:写出详细的设计过程,画出完整的控制电路图,并在实验以上选择相应的器件对 所设计的电路进行实验测试,记录实验结果。 (仿真图)(设计过程) 设计过程: 1.列真值表 设 0 为开关切断,1 为接通。L=0 为灯泡不亮,L=1 为灯泡亮,初始状态为三个开关都为断 开状态,且灯泡不亮。

数字电子技术 第4章 组合逻辑电路

数字电子技术 第4章 组合逻辑电路

图 4.3.8 7448逻辑符号图
数字电子技术
/// 16 ///
图4.3.9 7448驱动BS201A数码管的工作电路 图4.3.10 有灭零控制的8位数码显示系统
数字电子技术
/// 17 ///
3.译码器的应用 由于译码器的输出为最小项取反,而逻辑函数可以写成最小项之和的形式,故可以利用附加的 门电路和译码器实现逻辑函数。
组合电路就是由门电路组合而成,电路中没有记忆单元,没有反馈通路。
数字电子技术
/// 4 ///
4.1.2 组合逻辑电路的分析
根据逻辑功能的不同特点,可以把数字电路分成两大类,分别是: (1)是组合逻辑电路(简称组合电路) (2)是时序逻辑电路(简称时序电路) 组合电路就是由门电路组合而成,电路中没有记忆单元,没有反馈通路。
图4.5.6 数值比较器逻辑电路图
4.2.3 优先编码器
识别多个编码请求信号的优先级别,并进行相应编码的逻辑部件称为优先编码器。 在优先编码器电路中,允许同时输入两个以上编码信号。 在设计优先编码器时已将所有的输入信号按优先顺序排了队,当几个编码信号同时出现时,只 对其中优先权最高的一个进行编码。
1.设计优先编码器线(4线-2 线优先编码器)
图4.1.3 组合逻辑电路设计步骤
数字电子技术
/// 6 ///
4.1.4 组合逻辑电路的竞争和冒险
同一个门的一组输入信号,由于它们在此前通过不同数目的门,经过不同长度导线的传输,到 达门输入端的时间会有先有后,这种现象称为竞争。
逻辑门因输入端的竞争而导致输出产生不应有的尖峰干扰脉冲的现象,称为冒险。
图4.1.6 两种冒险波形图
数字电子技术
/// 7 ///
4.2 编码器

数电组合逻辑电路设计

数电组合逻辑电路设计

数电——组合逻辑电路设计实现四位二进制无符号数乘法计算学号姓名专业通讯工程日期一、设计目的设计一个乘法器,实现两个四位二进制数的乘法。

两个二进制数分别是被乘数A3 A2A1A0 和乘数B3B2B1B0。

被乘数和乘数这两个二进制数分别由高低电平给出。

乘法运算的结果即乘积由两个数码管显示。

此中显示低位的数码管是十进制的;显示高位的数码管是二进制的,每位高位片的示数都要乘以16 再与低位片相加。

所得的和即是被乘数和乘数的乘积。

做到保持乘积、输出乘积,即以为实验成功,结束运算。

二、思路将乘法运算分解为加法运算。

被乘数循环相加,循环的次数是乘数。

加法运算利用双四位二进制加法器74LS283实现,循环次数的控制利用计数器74LS161、数码 74LS85 比较器实现。

运算结果的显示有数码管达成,显示数字的高位(进位信号)由计数器 74LS161控制。

以 5 4 例。

被乘数A3A2A1A0 是5,入0101;乘数B3B 2B1B0 是4,入0100.将A3A2A1A入到加法器的 A 端,与 B 端的二制数相加,出的和被送入74LS161 的置数端(把个数器成“置数器”)。

当来,另一个74LS161(被称之“ 数器”)1,“置数器”置数,返回到加法器的 B 端,再与被乘数A3A2A1A0相加⋯⋯当循相加到第四个的候,“ 数器” 4,个 4 在数比器74LS85 上与乘数B3B2B1B0比,果是相等,A=B 端出 1,反相器后0 返回到被乘数入路,截断与。

至此,被乘数0000,即使是再循相加,和也不。

个和,是多次循相加的和,就是乘。

高位示路独立,当加法器生了位信号,CA 端出了一个高平脉冲,非降落脉冲74LS161一次数,个数能够通数管示出来。

可是因为二制数是足8421摆列的,位的数是10000,即是 10 制数的 16。

三、器名称、型号74LS85(一个)74LS161(三个)74LS283(一个)74LS08(两个)非门(两个)数码显示管(两个)四、路说明:左下角的 D1C1B1A1为被乘数的输入端,单刀双掷开关向上是“ 1”,向下时“ 0”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数电——组合逻辑电路设计
实现四位二进制无符号数乘法计算学号
姓名
专业通信工程
日期 2017.4.29
一、设计目的
设计一个乘法器,实现两个四位二进制数的乘法。

两个二进制数分别是被乘数3210A A A A 和乘数3210B B B B 。

被乘数和乘数这两个二进制数分别由高低电平给出。

乘法运算的结果即乘积由两个数码管显示。

其中显示低位的数码管是十进制的;显示高位的数码管是二进制的,每位高位片的示数都要乘以16再与低位片相加。

所得的和即是被乘数和乘数的乘积。

做到保持乘积、输出乘积,即认为实验成功,结束运算。

二、设计思路
将乘法运算分解为加法运算。

被乘数循环相加,循环的次数是乘数。

加法运算利用双四位二进制加法器74LS283实现,循环次数的控制利用计数器74LS161、数码74LS85比较器实现。

运算结果的显示有数码管完成,显示数字的高位(进位信号)由计数器74LS161控制。

以54 为例。

被乘数3210A A A A 是5,输入0101;乘数3210B B B B 是4,输入0100.将3210A A A A 输入到加法器的A 端,与B 端的二进制数相加,输出的和被送入74LS161的置数端(把这个计数器成为“置数器”)。

当时钟来临,另一个74LS161(被称之为“计数器”)计1,“置数器”置数,返回到加法器的B 端,再与被乘数3210A A A A 相加……当循环相加到第四个时钟的时候,“计数器”计4,这个4在数码比较器74LS85上与乘数3210B B B B 比较,结果是相等,A=B 端输出1,经过反相器后变为0返回到被乘数输入电路,截断与门。

至此,被乘数变为0000,即便是再循环相加,和也不变。

这个和,是多次循环相加的和,就是乘积。

高位显示电路较为独立,当加法器产生了进位信号,CA 端输出了一个高电平脉冲,经过非门变为下
降脉冲驱动74LS161计一次数,这个数可以通过数码管显示出来。

但是由于二进制数是满足8421排列的,进位的数是10000,即是10进制数的16。

三、仪器设备名称、型号
74LS85 (一个) 74LS161 (三个)
74LS283 (一个) 74LS08 (两个)
非门(两个)数码显示管(两个)
四、实验电路图
说明:左下角的D1C1B1A1为被乘数的输入端,单刀双掷开关向上是“1”,向下时“0”。

左侧的D2C2B2A2是乘数的输入端。

被乘数经过中间靠右的“加法器低位片”循环相加,相加的结果经过右上方的“置数器”返回到加法器。

“置数器”和“计数器”共用一个时钟信号,当“计数器”所计的数与乘数相等的时候,最上方的数码比较器输出“1”,经过非门变为“0”,“0”返回到4双输入与门中将与门封死,输出0000.同样是这个“0”信号,将“计数器”的使能端EP置为“0”,使计数器保持输出,达到稳定输出的目的。

当“加法器低位片”有进位时,输出一个上升沿,经过非门后变为下降沿,驱动“进位信号计数器”计数,其结果被“高位显示”显示出来。

“高位显示”的示数都要乘以16才可以变为10进制的数。

最后的乘积可由两个数码管显示出来。

读数方法:“高位显示”字形所对应的十进制数*16+“低位显示”字形所对应的十进制数。

计算结束,目的达成。

五、仿真分析结果
仿真结果1
被乘数1000,乘数1000,结果:4*16=64。

具体情况请看图中的方框。

仿真结果2
被乘数0011,乘数1100,结果:2*16+4=36。

具体情况请看图中的方框。

六、实验结果分析
所设计乘法器工作良好、结果与预想情况相同。

七、心得体会
通过这一段时间的紧张学习,最后完成了我的设计任务——四位二进制乘法器的设计。

通过本次课程设计的学习,我深深的体会到设计课的重要性和目的性所在。

本次设计课不仅仅培养了我们实际操作能力,也培养了我们灵活运用课本知识完成工作的能力。

乘法器虽然是比较简单的设计课程,但它给了我一个锻炼的机会和检验的机会,也给我复习多个学科知识提供了便利。

希望学校以后多安排一些类似的实践环节,让同学们学以致用
另:使用硬件描述语言ISE设计乘法器的实验过程图如下
仿真分析结果:。

相关文档
最新文档