2015-2016学年深圳福田区初二上期末数学模拟试卷

合集下载

2015-2016人教版八年级数学第一学期期末考试试卷及答案

2015-2016人教版八年级数学第一学期期末考试试卷及答案

2015-2016学年度第一学期八年级数学期末考试试卷一、精心选一选(本大题共8小题。

每小题3分,共24分)下面每小题均给出四个选项,请将正确选项的代号填在题后的括号内. 1.下列运算中,计算结果正确的是( ).A. 236a a a ⋅=B. 235()a a =C. 2222()a b a b =D. 3332a a a += 2.23表示( ).A. 2×2×2B. 2×3C. 3×3D. 2+2+2 3.在平面直角坐标系中。

点P (-2,3)关于x 轴的对称点在( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4.等腰但不等边的三角形的角平分线、高线、中线的总条数是( ).A. 3B. 5C. 7D. 95.在如图中,AB = AC 。

BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 交于点D ,则下列结论中不正确的是( ). A. △ABE ≌△ACFB. 点D 在∠BAC 的平分线上C. △BDF ≌△CDED. 点D 是BE的中点 6.在以下四个图形中。

对称轴条数最多的一个图形是( ).7.下列是用同一副七巧板拼成的四幅图案,则与其中三幅图案不同的一幅是( ).D.C.B.A.8.下列四个统计图中,用来表示不同品种的奶牛的平均产奶量最为合适的是( ).FEDC BAA. B. C. D.二、细心填一填(本大题共6小题,每小题3分,共18分)9.若单项式23m a b 与n ab -是同类项,则22m n -= .l0.中国文字中有许多是轴对称图形,请你写出三个具有轴对称图形的汉字 . 11.如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形.12.如图,已知方格纸中的每个小方格都是相同的正方形.∠AOB 画在方格纸上,请在小方格的顶点上标出一个点P 。

使点P 落在∠AOB 的平分线上.BOA13.数的运算中有一些有趣的对称,请你仿照等式“12×231=132×21”的形式完成:(1)18×891 = × ;(2)24×231 = × .14.下列图案是由边长相等的灰白两色正方形瓷砖铺设的地面,则按此规律可以得到:(1)第4个图案中白色瓷砖块数是 ; (2)第n 个图案中白色瓷砖块数是 .第1个图案 第2个图案 第3个图案三、耐心求一求(本大题共4小题.每小题6分。

广东省深圳市福田区学八年级数学上学期期末考试试题(含解析) 新人教版

广东省深圳市福田区学八年级数学上学期期末考试试题(含解析) 新人教版

广东省深圳市福田区2015-2016学年度八年级数学上学期期末考试试题一、选择题:(本题共12小题,每小题3分,共36分.)1.下列各数是无理数的是()A.B.C.3.14159 D.2.在平面直角坐标系中,点P(﹣3,4)关于x轴的对称点的坐标是()A.(﹣4,﹣3)B.(﹣3,﹣4)C.(3,4)D.(3,﹣4)3.点A(1,y1)、B(2,y2)在直线y=2x+2上,y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2 D.不能确定4.若直角三角形的三边长分别为6、10、m,则m2的值为()A.8 B.64 C.136 D.136或645.方程组的解是()A.B.C.D.6.一组数据1,1,2,3,4,4,5,6的众数是()A.1 B.4 C.1和4 D.3.57.如图,对于图中标记的各角,下列条件能够推理得到a∥b的是()A.∠1=∠4 B.∠2=∠4C.∠3+∠2=∠4 D.∠2+∠3+∠4=180°8.如图,动点P从(1,2)出发,沿图中箭头所示方向运动,每当碰到长方形的边时反弹(反弹时反射角等于入射角),假设反弹可以无限进行下去,则在点P运动路径上的点是()A.(0,5)B.(5,0)C.(3,3)D.(7,3)9.在坐标平面内有下列三条直线:①经过点(0,2)且平行于x轴的直线;②直线y=2x﹣8;③经过点(0,12)且平行于直线y=﹣2x的直线,其中经过点(5,2)但不经过第三象限的直线共有()A.0条B.1条C.2条D.3条10.若+=n(n为整数),则m的值可以是()A.B.18 C.24 D.7511.甘老师将一摞笔记本分给若干同学,每个同学5本,则剩下8本;每个同学8本,又差了7本,若设有x个同学,y本笔记本,则可得方程组()A.B.C.D.12.如图,平行于x轴的直线l与y轴、直线y=3x、直线y=x分别交于点A、B、C.则下列结论正确的个数有()①∠AOB+∠BOC=45°;②BC=2AB;③OB2=10AB2;④OC2=OB2.A.1个B.2个C.3个D.4个二、填空题(本题共4小题,每小题3分,共12分)13.的算术平方根为.14.对顶角相等的逆命题是命题(填写“真”或“假”).15.一副三角板如图所示叠放在一起,则图中∠ABC=.16.如图,直线l1的表达式为y=﹣3x+3,且直线l1与x轴交与点D,直线l2经过点A、B,且与直线l1交于点C,则△BDC的面积为.三、解答题:(本题共7小题,其中第17小题8分,第18小题5分,第19小题6分,第20小题7分,第21小题8分,第22小题8分,第23小题10分共52分)17.计算:(1)(2)(﹣)×﹣.18.解方程组:.19.如图所示,现有下列4个亊项:(1)∠1=∠2,(2)∠3=∠B,(3)FG⊥AB于G,(4)CD⊥AB于D.以上述4个事项中的(1)、(2)、(3)三个作为一个命题的己知条件,(4)作为该命题的结论,可以组成一个真命题.请你证明这个真命题.20.我市某中学七、2015~2016学年度八年级各选派10名选手参加学校举办的环保知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀,这次竞赛后,七、2015~2016学年度八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表(不完整)如下所示:队别平均分中位数方差合格率优秀率2015~2016学年度七年级m 3.41 90% 20%2015~2016学年度八年级7.1 n 80% 10%(1)观察条形统计图,可以发现:2015~2016学年度八年级成绩的标准差,2015~2016学年度七年级成绩的标准差(填“>”、“<”或“=”),表格中m= ,n= ;(2)计算2015~2016学年度七年级的平均分;(3)有人说2015~2016学年度七年级的合格率、优秀率均高于2015~2016学年度八年级,所以2015~2016学年度七年级队成绩比2015~2016学年度八年级队好,但也有人说2015~2016学年度八年级队成绩比2015~2016学年度七年级队好.请你给出两条支持2015~2016学年度八年级队成绩好的理由.21.某服装店用7000元购进A、B两种新式服装,按标价售出后获得毛利润4000元(毛利润=售价﹣进价),这两种服装的进价,标价如表所示:A型B型类型价格进价(元/件)60 100标价(元/件)100 150求这两种服装各购进的件数?22.如图,是一个圆柱形的饼干盒,在盒子外侧下底面的点A处有甲、乙两只蚂蚁,它们都想要吃到上底面外侧B′处的食物:甲蚂蚁沿A→A′→B′的折线爬行,乙蚂蚁沿圆柱的侧面爬行:若∠AOB=∠A′O′B′=90°(AA′、BB′都与圆柱的中轴线OO′平行),圆柱的底面半径是12cm,高为1cm,则:(1)A′B′=cm,甲蚂蚁要吃到食物需爬行的路程长l1= cm;(2)乙蚂蚁要吃到食物需爬行的最短路程长l2= cm(π取3);(3)若两只蚂蚁同时出发,且爬行速度相同,在乙蚂蚁采取最佳策略的前提下,哪只蚂蚁先到达食物处?请你通过计算或合理的估算说明理由.(参考数据:π取3,≈1.4)23.二轮自行车的后轮磨损比前轮要大,当轮胎的磨损度(%)达到100时,轮胎就报废了,当两个轮的中的一个报废后,自行车就不可以继续骑行了.过去的资料表明:把甲、乙两个同质、同型号的新轮胎分别安装在一个自行车的前、后轮上后,甲、乙轮胎的磨损度(%)y1、y2与自行车的骑行路程x (百万米)都成正比例关系,如图(1)所示:(1)线段OB表示的是(填“甲”或“乙”),它的表达式是(不必写出自变量的取值范围);(2)求直线OA的表达式,根据过去的资料,这辆自行车最多可骑行多少百万米?(3)爱动脑筋的小聪,想了一个增大自行车骑行路程的方案:如图(2),当自行车骑行a百万米后,我们可以交换自行车的前、后轮胎,使得甲、乙两个轮胎在b百万米处,同时报废,请你确定方案中a、b的值.广东省深圳市福田区2015~2016学年度八年级上学期期末数学试卷参考答案与试题解析一、选择题:(本题共12小题,每小题3分,共36分.)1.下列各数是无理数的是()A.B.C.3.14159 D.【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、是有理数,故A错误;B、是有理数,故B错误;C、3.14159是有理数,故C错误;D、是无理数,故D正确;故选:D.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.在平面直角坐标系中,点P(﹣3,4)关于x轴的对称点的坐标是()A.(﹣4,﹣3)B.(﹣3,﹣4)C.(3,4)D.(3,﹣4)【考点】关于x轴、y轴对称的点的坐标.【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),即关于横轴的对称点,横坐标不变,纵坐标变成相反数,这样就可以求出对称点的坐标.【解答】解:点A(﹣3,4)关于x轴的对称点的坐标是(﹣3,﹣4),故选:B.【点评】本题主要考查了平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,是需要识记的内容,比较简单.3.点A(1,y1)、B(2,y2)在直线y=2x+2上,y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2 D.不能确定【考点】一次函数图象上点的坐标特征.【分析】根据k=2>0,y将随x的增大而增大,得出y1与y2的大小关系.【解答】解:∵k=2>0,∴y将随x的增大而增大,∵1<2,∴y1<y2.故选B.【点评】本题考查一次函数的图象性质:当k>0,y随x增大而增大;当k<0时,y将随x的增大而减小.4.若直角三角形的三边长分别为6、10、m,则m2的值为()A.8 B.64 C.136 D.136或64【考点】勾股定理.【专题】分类讨论.【分析】分10是直角边和斜边两种情况,利用勾股定理列式计算即可得解.【解答】解:10是直角边时,m2=62+102=136,10是斜边时,m2=102﹣62=64,所以m2的值为136或64.故选D.【点评】本题考查了勾股定理解直角三角形,当已知条件中没有明确哪是斜边时,要注意分类讨论.5.方程组的解是()A.B.C.D.【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:3x=3,即x=1,把x=1代入①得:y=﹣1,则方程组的解为,故选A【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.6.一组数据1,1,2,3,4,4,5,6的众数是()A.1 B.4 C.1和4 D.3.5【考点】众数.【分析】根据众数的定义:一组数据中出现次数最多的数据即可得出答案.【解答】解:在这组数据中,1和4都出现了2次,出现次数最多,所以这组数据的众数为:1和4.故选C.【点评】本题考查了众数的知识,属于基础题,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.7.如图,对于图中标记的各角,下列条件能够推理得到a∥b的是()A.∠1=∠4B.∠2=∠4C.∠3+∠2=∠4D.∠2+∠3+∠4=180°【考点】平行线的判定.【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:A、∠1=∠4,因为它们不是a、b被截得的同位角或内错角,不符合题意;B、∠2=∠4,因为它们不是a、b被截得的同位角或内错角,不符合题意;C、∠3+∠2=∠4,因为它们是a、b被截得的同位角或内错角,符合题意;D、∠2+∠3+∠4=180°,因为∠2+∠3与∠4是a、b被截得的同位角,不符合题意.故选:C.【点评】本题考查了平行线的判定方法;正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.8.如图,动点P从(1,2)出发,沿图中箭头所示方向运动,每当碰到长方形的边时反弹(反弹时反射角等于入射角),假设反弹可以无限进行下去,则在点P运动路径上的点是()A.(0,5)B.(5,0)C.(3,3)D.(7,3)【考点】规律型:点的坐标.【分析】根据反射角与入射角的定义作出图形,即可解答.【解答】解:如图,只有(5,0)在点P运动路径上,故选:B.【点评】本题考查了对点的坐标的规律变化的认识,利用反射角与入射角的定义作出图形是解题的关键.9.在坐标平面内有下列三条直线:①经过点(0,2)且平行于x轴的直线;②直线y=2x﹣8;③经过点(0,12)且平行于直线y=﹣2x的直线,其中经过点(5,2)但不经过第三象限的直线共有()A.0条B.1条C.2条D.3条【考点】一次函数的性质.【分析】根据①经过点(0,2)且平行于x轴的直线是y=2,画图可得此直线经过点(5,2)经过第一、二象限;②把(5,2)代入y=2x﹣8,左右相等,因此y=2x﹣8过(5,2),此直线经过一、三、四象限;③经过点(0,12)且平行于直线y=﹣2x的直线是y=﹣2x+12,此直线经过点(5,2),经过第一、二、四象限进行分析即可.【解答】解:①如图,经过点(0,2)且平行于x轴的直线经过点(5,2),但不经过第三象限的直线;②直线y=2x﹣8经过点(5,2),也经过第三象限的直线;③经过点(0,12)且平行于直线y=﹣2x的直线经过点(5,2),但不经过第三象限的直线,共2条,故选:C.【点评】此题主要考查了一次函数的性质,关键是正确判断出一次函数经过的象限,掌握凡是函数图象经过的点必能满足解析式.10.若+=n(n为整数),则m的值可以是()A.B.18 C.24 D.75【考点】二次根式的加减法.【分析】根据二次根式的性质正确化简求出答案.【解答】解:∵+=n(n为整数),∴2+=n,∴化简后被开方数为3,故只有=5符合题意.故选:D.【点评】此题主要考查了二次根式的加减,正确化简二次根式是解题关键.11.甘老师将一摞笔记本分给若干同学,每个同学5本,则剩下8本;每个同学8本,又差了7本,若设有x个同学,y本笔记本,则可得方程组()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】设有x个同学,有y个笔记本,根据若每个同学5本,则剩下8本;每个同学8本,又差了7本,可列出方程组.【解答】解:设有x个同学,有y个笔记本,可得:.故选A【点评】本题考查二元一次方程组的应用,关键是理解题意的能力,设出人数和本数,可以本数的数量作为等量关系列出方程组.12.如图,平行于x轴的直线l与y轴、直线y=3x、直线y=x分别交于点A、B、C.则下列结论正确的个数有()①∠AOB+∠BOC=45°;②BC=2AB;③OB2=10AB2;④OC2=OB2.A.1个B.2个C.3个D.4个【考点】两条直线相交或平行问题.【分析】由直线y=x得出∠AOC=45°,得出①正确;由直线y=3x和y=x得出OA=3AB,OA=AC,因此AC=3AB,BC=2AB,得出②正确;由勾股定理得出③正确,④不正确;即可得出结论.【解答】解:∵直线y=x,∴∠AOC=45°,即∠AOB+∠BOC=45°,∴①正确;∵平行于x轴的直线l与直线y=3x、直线y=x分别交于点B、C,∴OA=3AB,OA=AC,∴AC=3AB,∴BC=2AB,∴②正确;∵OB2=AB2+OA2=AB2+(3AB)2=10AB2,∴③正确;∵OC2=OA2+AC2=(3AB)2+(3AB2)=18AB2=OB2=OB2,∴④不正确;结论正确的有3个,故选:C.【点评】本题考查了两条直线相交或平行问题、直线的特征、勾股定理;熟练掌握两条直线相交或平行特征,得出OA=3AB,OA=AC,AC=3AB是解决问题的关键.二、填空题(本题共4小题,每小题3分,共12分)13.的算术平方根为.【考点】算术平方根.【专题】计算题.【分析】首先根据算术平方根的定义计算先=2,再求2的算术平方根即可.【解答】解:∵=2,∴的算术平方根为.故答案为:.【点评】此题考查了算术平方根的定义,解题的关键是知道=2,实际上这个题是求2的算术平方根.注意这里的双重概念.14.对顶角相等的逆命题是假命题(填写“真”或“假”).【考点】命题与定理.【分析】先根据互逆命题的定义写出对顶角相等的逆命题,再判断真假.【解答】解:“对顶角相等”的逆命题是:相等的角是对顶角,它是假命题.故答案为:假.【点评】本题考查了互逆命题及真假命题的定义.两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题;正确的命题叫做真命题,错误的命题叫做假命题.15.一副三角板如图所示叠放在一起,则图中∠ABC=75°.【考点】三角形内角和定理.【分析】因为三角板的度数为45°,60°,所以根据三角形内角和定理即可求解.【解答】解:如图,∵∠BAC=45°,∠ACB=60°,∴∠ABC=180°﹣45°﹣60°=75°.故答案为:75°.【点评】本题考查了三角板度数的常识和三角形内角和定理,熟练掌握定理是解题的关键.16.如图,直线l1的表达式为y=﹣3x+3,且直线l1与x轴交与点D,直线l2经过点A、B,且与直线l1交于点C,则△BDC的面积为.【考点】两条直线相交或平行问题.【分析】利用待定系数法确定直线l2的解析式;解由两条直线解析式所组成的方程组,确定C点坐标,根据直线l1的表达式求D点坐标;然后根据三角形面积公式计算即可.【解答】解:把y=0代入y=﹣3x+3得﹣3x+3=0,解得x=1,所以D点坐标为(1,0);设直线l2的解析式为y=kx+b,把A(4,0)、B(3,﹣)代入得,解得,所以直线l2的解析式为y=x﹣6;解得,所以C点坐标为(2,﹣3),所以S△BDC=S△ADC﹣S△ADB=×(4﹣1)×(3﹣)=.故答案为.【点评】本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.例如:若直线y1=k1x+b1与直线y2=k2x+b2平行,那么k1=k2.三、解答题:(本题共7小题,其中第17小题8分,第18小题5分,第19小题6分,第20小题7分,第21小题8分,第22小题8分,第23小题10分共52分)17.计算:(1)(2)(﹣)×﹣.【考点】二次根式的混合运算.【分析】(1)首先化简二次根式,进而得出答案;(2)利用二次根式乘法运算法则化简求出答案.【解答】解:(1)===1;(2)(﹣)×﹣=﹣﹣=3﹣2=.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.18.解方程组:.【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】方程组利用代入消元法求出解即可.【解答】解:,把① 代入②得:5x+2x﹣8=6,即x=2,把x=2代入①得:y=﹣2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.如图所示,现有下列4个亊项:(1)∠1=∠2,(2)∠3=∠B,(3)FG⊥AB于G,(4)CD⊥AB于D.以上述4个事项中的(1)、(2)、(3)三个作为一个命题的己知条件,(4)作为该命题的结论,可以组成一个真命题.请你证明这个真命题.【考点】命题与定理;平行线的判定与性质.【分析】先由平行线的判定定理得出DE∥BC,GF∥CD,再由FG⊥AB于G得出∠BGF=90°,进而可得出结论.【解答】证明:∵∠3=∠B,∴DE∥BC,∴∠1=∠BCD.∵∠1=∠2,∴∠2=∠BCD,∴GF∥CD,∴∠CDB=∠BGF.∵FG⊥AB,∴∠BGF=90°,∴∠CDB=90°,∴CD⊥AB.【点评】本题考查的是命题与定理,熟知平行线的判定与性质是解答此题的关键.20.我市某中学七、2015~2016学年度八年级各选派10名选手参加学校举办的环保知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀,这次竞赛后,七、2015~2016学年度八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表(不完整)如下所示:队别平均分中位数方差合格率优秀率2015~2016学年度七年级m 3.41 90% 20%2015~2016学年度八年级7.1 n 80% 10%(1)观察条形统计图,可以发现:2015~2016学年度八年级成绩的标准差<,2015~2016学年度七年级成绩的标准差(填“>”、“<”或“=”),表格中m= 6 ,n= 7.5 ;(2)计算2015~2016学年度七年级的平均分;(3)有人说2015~2016学年度七年级的合格率、优秀率均高于2015~2016学年度八年级,所以2015~2016学年度七年级队成绩比2015~2016学年度八年级队好,但也有人说2015~2016学年度八年级队成绩比2015~2016学年度七年级队好.请你给出两条支持2015~2016学年度八年级队成绩好的理由.【考点】标准差;加权平均数;中位数;方差.【分析】(1)求出2015~2016学年度八年级成绩的方差<2015~2016学年度七年级成绩的方差,得出2015~2016学年度八年级成绩的标准差<年级成绩的标准差;求出2015~2016学年度七年级成绩和2015~2016学年度八年级成绩的中位数即可得出m和n;(2)由平均数公式即可得出结果;(3)从方差,平均分角度考虑,给出两条支持2015~2016学年度八年级队成绩好的理由即可.【解答】解:(1)∵2015~2016学年度八年级成绩的方差=[2(5﹣7.1)2+(6﹣7.1)2+2(7﹣7.1)2+4(8﹣7.1)2+(9﹣7.1)2]=1.69<3.41,∴2015~2016学年度八年级成绩的标准差<年级成绩的标准差;2015~2016学年度七年级成绩为3,6,6,6,6,6,7,8,9,10,∴中位数为6,即m=6;2015~2016学年度八年级成绩为5,5,6,7,7,8,8,8,8,9,∴中位数为7.5,即n=7.5;故答案为:<,6,7.5;(2)2015~2016学年度七年级成绩的平均分=(3×1+5×6+7×1+8×1+9×1+10×1)÷10=6.7;(3)①2015~2016学年度八年级队平均分高于2015~2016学年度七年级队;②2015~2016学年度八年级队的成绩比2015~2016学年度七年级队稳定;③2015~2016学年度八年级队的成绩集中在中上游;所以支持2015~2016学年度八年级队成绩好.【点评】此题考查了条形统计图,扇形统计图,以及中位数,平均数,以及方差,弄清题意是解本题的关键.21.某服装店用7000元购进A、B两种新式服装,按标价售出后获得毛利润4000元(毛利润=售价﹣进价),这两种服装的进价,标价如表所示:A型B型类型价格进价(元/件)60 100标价(元/件)100 150求这两种服装各购进的件数?【考点】二元一次方程组的应用.【分析】设A种服装购进x件,B种服装购进y件,根据用7000元购进A、B两种新式服装,按标价售出后获得毛利润4000元,列方程组求解.【解答】解:设A种服装购进x件,B种服装购进y件,由题意,得,解得:.答:A种服装购进50件,B种服装购进40件.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.22.如图,是一个圆柱形的饼干盒,在盒子外侧下底面的点A处有甲、乙两只蚂蚁,它们都想要吃到上底面外侧B′处的食物:甲蚂蚁沿A→A′→B′的折线爬行,乙蚂蚁沿圆柱的侧面爬行:若∠AOB=∠A′O′B′=90°(AA′、BB′都与圆柱的中轴线OO′平行),圆柱的底面半径是12cm,高为1cm,则:(1)A′B′=12cm,甲蚂蚁要吃到食物需爬行的路程长l1= 12+1 cm;(2)乙蚂蚁要吃到食物需爬行的最短路程长l2= 5 cm(π取3);(3)若两只蚂蚁同时出发,且爬行速度相同,在乙蚂蚁采取最佳策略的前提下,哪只蚂蚁先到达食物处?请你通过计算或合理的估算说明理由.(参考数据:π取3,≈1.4)【考点】平面展开-最短路径问题.【分析】(1)由∠A′O′B′=90°,可知△B′A′O′为等腰直角三角形,故此A′B′=A′O′,然后根据l1=A′B′+AA′求解即可;(2)先求得弧A′B′的长,然后根据勾股定理求得矩形AA′B′B的对角线的长度即可;(3)将≈1.4代入从而可求得l1、l2的近似值,从而可作出判断.【解答】解:(1)∵∠A′O′B′=90°,O′A′=O′B′,∴A′B′=A′B′=A′O′=12.∴l1=A′B′+AA′=12+1.故答案为:12;12+1.(2)==6π=18.将圆柱体的侧面展开得到如图1所示矩形AA′B′B.∵=18,∴A′B′=18.在Rt△ABB′中,AB′===5.故答案为:5.(3)∵l1=12+1≈12×1.2+1=15.4∴=237.16.∵==324,∴.∴l1<l2.∴甲蚂蚁先到达食物处.【点评】本题主要考查的是平面展开路径最短、勾股定理的应用、扇形的弧长公式的应用,将圆柱体的侧面展开求得l2的长度是解题的关键.23.二轮自行车的后轮磨损比前轮要大,当轮胎的磨损度(%)达到100时,轮胎就报废了,当两个轮的中的一个报废后,自行车就不可以继续骑行了.过去的资料表明:把甲、乙两个同质、同型号的新轮胎分别安装在一个自行车的前、后轮上后,甲、乙轮胎的磨损度(%)y1、y2与自行车的骑行路程x (百万米)都成正比例关系,如图(1)所示:(1)线段OB表示的是甲(填“甲”或“乙”),它的表达式是y=20x (不必写出自变量的取值范围);(2)求直线OA的表达式,根据过去的资料,这辆自行车最多可骑行多少百万米?(3)爱动脑筋的小聪,想了一个增大自行车骑行路程的方案:如图(2),当自行车骑行a百万米后,我们可以交换自行车的前、后轮胎,使得甲、乙两个轮胎在b百万米处,同时报废,请你确定方案中a、b的值.【考点】一次函数的应用.【分析】(1)根据图象可得OB表示的轮胎比OA表示的轮胎磨损慢,据此即可确定是甲或乙,利用待定系数法即可求得函数解析式;(2)利用待定系数法求得OA的函数解析式,然后求得当y=100时对应的x的值即可;(3)根据两个轮胎的磨损度都是100,即可列出方程组求解.【解答】解:(1)线段OB表示的是甲,设OB的解析式是y=kx,则1.5k=30,解得:k=20,则OB的表达式是y=20x.故答案是:甲,y=20x;(2)设直线OA的表达式为y=mx,根据题意得:1.5m=50,解得:m=,则OA的解析式是y=x.当y=100时,100=x,解得:x=3.答:这辆自行车最多可骑行3百万米.(3)根据题意,得,解这个方程组,得.【点评】本题考查了二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出两个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.。

圳市福田区2016-2017学年八年级上期末数学试卷含答案解析

圳市福田区2016-2017学年八年级上期末数学试卷含答案解析

2016-2017学年广东省深圳市福田区八年级(上)期末数学试卷一、选择题(每小题只有一个选项符合题意,每小题3分,共36分)1.下列数据中不能作为直角三角形的三边长是()A.1、1、B.5、12、13 C.3、5、7 D.6、8、102.4的平方根是()A.4 B.﹣4 C.2 D.±23.在给出一组数0,π,,3.1415926,,,0.1234567891011…(自然数依次相连),其中无理数有()A.2个 B.3个 C.4个 D.5个4.下列计算正确的是()A.=﹣4 B.=±4 C.=﹣4 D.=﹣45.在直角坐标系中,点M(1,2)关于x轴对称的点的坐标为()A.(﹣1,2)B.(2,﹣1)C.(﹣1,﹣2)D.(1,﹣2)6.下列命题是真命题的是()A.同旁内角互补B.直角三角形的两个锐角互余C.三角形的一个外角等于它的两个内角之和D.三角形的一个外角大于任意一个内角7.如图,下列条件不能判断直线a∥b的是()A.∠1=∠4 B.∠3=∠5 C.∠2+∠5=180°D.∠2+∠4=180°8.某一次函数的图象经过点(1,2),且y随x的增大而减小,则这个函数的表达式可能是()A.y=2x+4 B.y=3x﹣1 C.y=﹣3x+1 D.y=﹣2x+49.已知小华上学期语文、数学、英语三科平均分为92分,他记得语文得了88分,英语得了95分,但他把数学成绩忘记了,你能告诉他应该是以下哪个分数吗?()A.93 B.95 C.94 D.9610.已知点(﹣6,y1),(3,y2)都在直线y=﹣x+5 上,则y1与y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较11.已知函数y=kx+b的图象如图所示,则函数y=﹣bx+k的图象大致是()A.B.C.D.12.甲乙两人同解方程时,甲正确解得,乙因为抄错c而得,则a+b+c的值是()A.7 B.8 C.9 D.10二、填空题(每小题3分,共12分)13.点P(3,﹣2)到x轴的距离为个单位长度.14.如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x,y的二元一次方程组的解是.15.如图,已知直线y=2x+4与x轴交于点A,与y轴交于点B,以点A为圆心,AB为半径画弧,交x轴正半轴于点C,则点C坐标为.16.如图,已知一次函数y=﹣x+1的图象与x轴、y轴分别交于A点、B点,点M在坐标轴上,并且使以点A、B、M为顶点的三角形是等腰三角形,则这样的点M有个.三、解答题(共52分)17.计算:(1)|﹣3|+(﹣1)0﹣+()﹣1(2)(2﹣)(2+)+(2﹣)2﹣.18.解方程组:.19.如图所示,点B、E分别在AC、DF上,BD、CE均与AF相交,∠1=∠2,∠C=∠D,求证:∠A=∠F.20.宣传交通安全知识,争做安全小卫士.某校进行“交通安全知识”宣传培训后进行了一次测试.学生考分按标准划分为不合格、合格、良好、优秀四个等级,为了解全校的考试情况,对在校的学生随机抽样调查,得到图(1)的条形统计图,请结合统计图回答下列问题:(1)该校抽样调查的学生人数为名;抽样中考生分数的中位数所在等级是;(2)抽样中不及格的人数是多少?占被调查人数的百分比是多少?(3)若已知该校九年级有学生500名,图(2)是各年级人数占全校人数百分比的扇形图(图中圆心角被等分),请你估计全校优良(良好与优秀)的人数约有多少人?21.受地震的影响,某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200斤.超市决定从甲、乙两大型养殖场调运鸡蛋,已知甲养殖场每天最多可调出800斤,乙养殖场每天最多可调出900斤,从两养殖场调运鸡蛋到超市的路程和运费如表:到超市的路程(千米)运费(元/斤•千米)甲养殖场2000.012乙养殖场1400.015(1)若某天调运鸡蛋的总运费为2670元,则从甲、乙两养殖场各调运了多少斤鸡蛋?(2)设从甲养殖场调运鸡蛋x斤,总运费为W元,试写出W与x的函数关系式,怎样安排调运方案才能使每天的总运费最省?22.如图,已知P为等边△ABC内的一点,且PA=5,PB=3,PC=4,将线段BP绕点P按逆时针方向旋转60°至PQ的位置.(1)求证:△ABP≌△CBQ(2)求证:∠BPC=150°.23.如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.2016-2017学年广东省深圳市福田区八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题只有一个选项符合题意,每小题3分,共36分)1.下列数据中不能作为直角三角形的三边长是()A.1、1、B.5、12、13 C.3、5、7 D.6、8、10【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理进行计算分析,从而得到答案.【解答】解:A、12+12=()2,能构成直角三角形,故选项错误;B、52+122=132,能构成直角三角形,故选项错误;C、32+52≠72,不能构成直角三角形,故选项正确;D、62+82=102,能构成直角三角形,故选项错误.故选:C.2.4的平方根是()A.4 B.﹣4 C.2 D.±2【考点】平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选D.3.在给出一组数0,π,,3.1415926,,,0.1234567891011…(自然数依次相连),其中无理数有()A.2个 B.3个 C.4个 D.5个【考点】实数.【分析】根据无理数的概念即可判断.【解答】解:π,,,0.1234567891011…(自然数依次相连)是无理数,故选(C)4.下列计算正确的是()A.=﹣4 B.=±4 C.=﹣4 D.=﹣4【考点】立方根;算术平方根.【分析】利用算术平方根及立方根定义计算各项,即可做出判断.【解答】解:A、原式没有意义,错误;B、原式=4,错误;C、原式=|﹣4|=4,错误;D、原式=﹣4,正确,故选D5.在直角坐标系中,点M(1,2)关于x轴对称的点的坐标为()A.(﹣1,2)B.(2,﹣1)C.(﹣1,﹣2)D.(1,﹣2)【考点】关于x轴、y轴对称的点的坐标.【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y),进而求出即可.【解答】解:点M(1,2)关于x轴对称的点的坐标为:(1,﹣2).故选:D.6.下列命题是真命题的是()A.同旁内角互补B.直角三角形的两个锐角互余C.三角形的一个外角等于它的两个内角之和D.三角形的一个外角大于任意一个内角【考点】命题与定理.【分析】根据平行线的性质对A进行判断;根据互余的定义对B进行判断;根据三角形外角性质对C、D进行判断.【解答】解:A、两直线平行,同旁内角互补,所以A选项为假命题;B、直角三角形的两个锐角互余,所以B选项为真命题;C、三角形的一个外角等于与之不相邻的两个内角之和,所以C选项为假命题;D、三角形的一个外角大于任意一个与之不相邻得任意一个内角,所以D选项为假命题.故选B.7.如图,下列条件不能判断直线a∥b的是()A.∠1=∠4 B.∠3=∠5 C.∠2+∠5=180°D.∠2+∠4=180°【考点】平行线的判定.【分析】要判断直线a∥b,则要找出它们的同位角、内错角相等,同旁内角互补.【解答】解:A、能判断,∠1=∠4,a∥b,满足内错角相等,两直线平行.B、能判断,∠3=∠5,a∥b,满足同位角相等,两直线平行.C、能判断,∠2=∠5,a∥b,满足同旁内角互补,两直线平行.D、不能.故选D.8.某一次函数的图象经过点(1,2),且y随x的增大而减小,则这个函数的表达式可能是()A.y=2x+4 B.y=3x﹣1 C.y=﹣3x+1 D.y=﹣2x+4【考点】一次函数的性质.【分析】设一次函数关系式为y=kx+b,y随x增大而减小,则k<0;图象经过点(1,2),可得k、b之间的关系式.综合二者取值即可.【解答】解:设一次函数关系式为y=kx+b,∵图象经过点(1,2),∴k+b=2;∵y随x增大而减小,∴k<0.即k取负数,满足k+b=2的k、b的取值都可以.故选D.9.已知小华上学期语文、数学、英语三科平均分为92分,他记得语文得了88分,英语得了95分,但他把数学成绩忘记了,你能告诉他应该是以下哪个分数吗?()A.93 B.95 C.94 D.96【考点】算术平均数.【分析】设他的数学分为x分,由题意得,(88+95+x)÷3=92,据此即可解得x 的值.【解答】解:设数学成绩为x分,则(88+95+x)÷3=92,解得x=93.故选A.10.已知点(﹣6,y1),(3,y2)都在直线y=﹣x+5 上,则y1与y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较【考点】一次函数图象上点的坐标特征.【分析】直接把各点代入直线y=﹣x+5,求出y1,y2的值,再比较出其大小即可.【解答】解:∵点(﹣6,y1),(3,y2)都在直线y=﹣x+5上,∴y1=﹣×(﹣6)+5=7,y2=4,∵7>4,∴y1>y2.故选A.11.已知函数y=kx+b的图象如图所示,则函数y=﹣bx+k的图象大致是()A.B.C.D.【考点】一次函数图象与系数的关系.【分析】根据一次函数与系数的关系,由函数y=kx+b的图象位置可得k>0,b >0,然后根据系数的正负判断函数y=﹣bx+k的图象位置.【解答】解:∵函数y=kx+b的图象经过第一、二、三象限,∴k>0,b>0,∴函数y=﹣bx+k的图象经过第一、二、四象限.故选C.12.甲乙两人同解方程时,甲正确解得,乙因为抄错c而得,则a+b+c的值是()A.7 B.8 C.9 D.10【考点】二元一次方程组的解.【分析】根据题意可以得到a、b、c的三元一次方程组,从而可以求得a、b、c 的值,本题得以解决.【解答】解:由题意可得,,解得,,∴a+b+c=4+5+(﹣2)=7,故选A.二、填空题(每小题3分,共12分)13.点P(3,﹣2)到x轴的距离为2个单位长度.【考点】点的坐标.【分析】根据点到x轴的距离等于纵坐标的长度解答.【解答】解:点P(3,﹣2)到x轴的距离为2个单位长度.故答案为:2.14.如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x,y的二元一次方程组的解是.【考点】一次函数与二元一次方程(组).【分析】由图可知:两个一次函数的交点坐标为(﹣4,﹣2);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【解答】解:函数y=ax+b和y=kx的图象交于点P(﹣4,﹣2),即x=﹣4,y=﹣2同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.故答案为:.15.如图,已知直线y=2x+4与x轴交于点A,与y轴交于点B,以点A为圆心,AB为半径画弧,交x轴正半轴于点C,则点C坐标为.【考点】一次函数图象上点的坐标特征;勾股定理.【分析】先根据坐标轴上点的坐标特征得到A(﹣2,0),B(0,4),再利用勾股定理计算出AB=2,然后根据圆的半径相等得到AC=AB=2,进而解答即可.【解答】解:当y=0时,2x+4=0,解得x=﹣2,则A(﹣2,0);当x=0时,y=2x+4=4,则B(0,4),所以AB=,因为以点A为圆心,AB为半径画弧,交x轴于点C,所以AC=AB=2,所以OC=AC﹣AO=2﹣2,所以的C的坐标为:,故答案为:16.如图,已知一次函数y=﹣x+1的图象与x轴、y轴分别交于A点、B点,点M在坐标轴上,并且使以点A、B、M为顶点的三角形是等腰三角形,则这样的点M有7个.【考点】一次函数图象上点的坐标特征;等腰三角形的判定.【分析】分别以点AB为圆心,以AB的长为半径画圆,两圆与坐标轴的交点即为M点,再由OA=OB可知原点也符合题意.【解答】解:如图,共7个点.故答案为:7.三、解答题(共52分)17.计算:(1)|﹣3|+(﹣1)0﹣+()﹣1(2)(2﹣)(2+)+(2﹣)2﹣.【考点】实数的运算;零指数幂;负整数指数幂.【分析】(1)原式利用绝对值的代数意义,算术平方根定义,以及零指数幂、负整数指数幂法则计算即可得到结果;(2)原式利用平方差公式,完全平方公式,以及分母有理化计算即可得到结果.【解答】解:(1)原式=3+1﹣4+3=3;(2)原式=4﹣5+4﹣4+2﹣=5﹣.18.解方程组:.【考点】解二元一次方程组.【分析】两个方程中,x或y的系数既不相等也不互为相反数,需要先求出x或y的系数的最小公倍数,即将方程中某个未知数的系数变成其最小公倍数之后,再进行加减.【解答】解:,②×2﹣①得:5y=15,y=3,把y=3代入②得:x=5,∴方程组的解为.19.如图所示,点B、E分别在AC、DF上,BD、CE均与AF相交,∠1=∠2,∠C=∠D,求证:∠A=∠F.【考点】平行线的判定与性质;对顶角、邻补角.【分析】根据对顶角的性质得到BD∥CE的条件,然后根据平行线的性质得到∠B=∠C,已知∠C=∠D,则得到满足AB∥EF的条件,再根据两直线平行,内错角相等得到∠A=∠F.【解答】证明:∵∠2=∠3,∠1=∠2,∴∠1=∠3,∴BD∥CE,∴∠C=∠ABD;又∵∠C=∠D,∴∠D=∠ABD,∴AB∥EF,∴∠A=∠F.20.宣传交通安全知识,争做安全小卫士.某校进行“交通安全知识”宣传培训后进行了一次测试.学生考分按标准划分为不合格、合格、良好、优秀四个等级,为了解全校的考试情况,对在校的学生随机抽样调查,得到图(1)的条形统计图,请结合统计图回答下列问题:(1)该校抽样调查的学生人数为50名;抽样中考生分数的中位数所在等级是良好;(2)抽样中不及格的人数是多少?占被调查人数的百分比是多少?(3)若已知该校九年级有学生500名,图(2)是各年级人数占全校人数百分比的扇形图(图中圆心角被等分),请你估计全校优良(良好与优秀)的人数约有多少人?【考点】扇形统计图;用样本估计总体;条形统计图;中位数.【分析】(1)从条形图中各部分人数加起来就是所求的结果,中位数数据从小到大排列位于中间位置的数.(2)不及格的有8人,8除以总人数就是我们要求的结果.(3)从扇形统计图中根据九年级的人数可求出全校的人数,进而求出全校优良人数.【解答】解:(1)8+14+18+10=50,中位数是18,位于良好里面;故答案为:50,良好.(2)8人,×100%=16%;抽样中不及格的人数是8人.占被调查人数的百分比是16%.(3)500÷=1500,1500×=840(人).全校优良人数有840人.21.受地震的影响,某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200斤.超市决定从甲、乙两大型养殖场调运鸡蛋,已知甲养殖场每天最多可调出800斤,乙养殖场每天最多可调出900斤,从两养殖场调运鸡蛋到超市的路程和运费如表:到超市的路程(千米)运费(元/斤•千米)甲养殖场2000.012乙养殖场1400.015(1)若某天调运鸡蛋的总运费为2670元,则从甲、乙两养殖场各调运了多少斤鸡蛋?(2)设从甲养殖场调运鸡蛋x斤,总运费为W元,试写出W与x的函数关系式,怎样安排调运方案才能使每天的总运费最省?【考点】一次函数的应用.【分析】(1)设从甲养殖场调运鸡蛋x斤,从乙养殖场调运鸡蛋y斤,根据题意列方程组即可得到结论;(2)从甲养殖场调运了x斤鸡蛋,从乙养殖场调运了斤鸡蛋,根据题意列方程组得到300≤x≤800,总运费W=200×0.012+140×0.015×=0.3x+2520,,根据一次函数的性质得到W随想的增大而增大,于是得到当x=300时,W最小=2610元,【解答】解:(1)设从甲养殖场调运鸡蛋x斤,从乙养殖场调运鸡蛋y斤,根据题意得:,解得:,∵500<800,700<900,∴符合条件.答:从甲、乙两养殖场各调运了500斤,700斤鸡蛋;(2)从甲养殖场调运了x斤鸡蛋,从乙养殖场调运了斤鸡蛋,根据题意得:,解得:300≤x≤800,总运费W=200×0.012x+140×0.015×=0.3x+2520,,∵W随x的增大而增大,∴当x=300时,W最小=2610元,∴每天从甲养殖场调运了300斤鸡蛋,从乙养殖场调运了900斤鸡蛋,每天的总运费最省.22.如图,已知P为等边△ABC内的一点,且PA=5,PB=3,PC=4,将线段BP绕点P按逆时针方向旋转60°至PQ的位置.(1)求证:△ABP≌△CBQ(2)求证:∠BPC=150°.【考点】旋转的性质;全等三角形的判定与性质;等边三角形的性质.【分析】(1)根据SAS即可证明.(2))由△ABP≌△CBQ,推出PA=QC=4,由BP=BQ,∠PBQ=60°,推出△PBQ是等边三角形,由PQ=3,∠BPQ=60°,在△PQC中,PC2+PQ2=43+32=52=QC2,推出△PQC是直角三角形,推出∠QPC=90°,即可得出∠BPC=∠BPQ+∠QPC=150°.【解答】证明:(1)∵BP=BQ,∠PBQ=60°,又∵△ABC是等边三角形,∴AB=BC,∠ABC=60°,∴∠PBQ=∠ABC,∴∠ABP=∠CBQ,在△ABP和△CBQ中,,∴△ABP≌△CBQ.(2)∵△ABP≌△CBQ,∴PA=QC=4,∵BP=BQ,∠PBQ=60°,∴△PBQ是等边三角形,∴PQ=3,∠BPQ=60°,∵在△PQC中,PC2+PQ2=43+32=52=QC2,∴△PQC是直角三角形,∴∠QPC=90°,∴∠BPC=∠BPQ+∠QPC=60°+90°=150°.23.如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.【考点】一次函数综合题.【分析】(1)利用待定系数法即可求得函数的解析式;(2)求得C的坐标,即OC的长,利用三角形的面积公式即可求解;(3)当△OMC的面积是△OAC的面积的时,根据面积公式即可求得M的横坐标,然后代入解析式即可求得M的坐标.【解答】解:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:,则直线的解析式是:y=﹣x+6;(2)在y=﹣x+6中,令x=0,解得:y=6,S△OAC=×6×4=12;(3)设OA的解析式是y=mx,则4m=2,解得:m=,则直线的解析式是:y=x,∵当△OMC的面积是△OAC的面积的时,∴当M的横坐标是×4=2,在y=x中,当x=1时,y=,则M的坐标是(1,);在y=﹣x+6中,x=1则y=5,则M的坐标是(1,5).则M的坐标是:M1(1,)或M2(1,5).当M的横坐标是:﹣1,在y=x中,当x=﹣1时,y=7,则M的坐标是(﹣1,7);综上所述:M的坐标是:M1(1,)或M2(1,5)或M3(﹣1,7).。

广东省深圳市2015-2016学年八年级数学上册期末检测考试题

广东省深圳市2015-2016学年八年级数学上册期末检测考试题

2015-2016学年广东省深圳市龙岗区八年级(上)期末数学试卷一、选择题(每小题 3分,共36分) 1数学 讥,£,n, Vs ,中无理数的个数是( )A . 1B . 2C . 3D . 42•下列长度的线段不能构成直角三角形的是 ( )4. 点M ( 2, 1)关于x 轴对称的点的坐标是()A . (1,- 2)B . (- 2, 1)C . (2, - 1)5. 下列各式中,正确的是 ( )A ..:= ± B .::=4 C ._';= - 3 D .寸:,;■ \6.若函数y= (k - 1)x |k|+b+1是正比例函数,则 k 和b 的值为()A . k= ±1, b= - 1B . k= ±, b=0C . k=1 , b= - 1D . k= - 1, b= - 1 AC=9 , BC=12,则点C 到AB 的距离是(T&下列命题中,不成立的是()A .两直线平行,同旁内角互补 B. 同位角相等,两直线平行 C.一个三角形中至少有一个角不大于 60度D .三角形的一个外角大于任何一个内角 9.为筹备班级的初中毕业联欢会,班长对全班学生爱吃哪几种水果作了民意调查.那么最 终买什么水果,下面的调查数据中最值得关注的是 ( )A . 8, 15, 17B . 1.5, 2, 3C . 6, 8,10 D . 5, 12, 13-6)D . (- 1 , 3)D . (- 1, 2)7.在 Rt △ ABC 中,/ C=90°3612 9A . B. ! C. _((-4,A .中位数B .平均数C.众数D.加权平均数10. 2016年龙岗年货博览会”在大运中心体育馆展销,小丽从家出发前去购物,途中发现忘了带钱,于是打电话让妈妈马上从家里送来,同时小丽也往回走,遇到妈妈后聊了一会儿,接着继续前往大运中心体育馆. 设小丽从家出发后所用时间为t,小丽与体育馆的距离为S,下面能反映S与t的函数关系的大致图象是()和B的式子表示/ x为(a~ 312•如图,把一个等腰直角三角形放在间距是1的横格纸上, 三个顶点都在横格上,则此三、填空题(每小题3分,共12 分)13. 16的平方根是__________14. ___________________________________________________________________________ 数据3, 4, 6, 8, X, 7的众数是7,则数据4, 3, 6, 8, 2, x的中位数是______________________ 15•观察下列各式:一―"=■:- 1 , • :="门J;,二一=2 - 「;••请利用你发现的规律计算:(匸• —「;+】二+x( =+匚)= ---------------------------------------------- .16.如图,在矩形ABCD中,AB=3 , BC=4,现将点A、C重合,使纸片折叠压平,折痕为EF,那么重叠部分三、解答题(第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第 22题9分,第23题9分,共52分) 17•计算: 了-丨 —?7|-4一亠^19.每年9月举行 全国中学生数学联赛 ”成绩优异的选手可参加 全国中学生数学冬令营” 冬令营再选拔出50名优秀选手进入 国家集训队”第31界冬令营已于2015年12月在江西请你根据以上提供的信息解答下列问题:平均数中位数众数 方差 一组74104 二组7220•已知:如图,/ C= / 1,/ 2和/ D 互余,BE 丄FD 于点G •求证:AB // CD .18.解方程组:◎ 5x+0・ 7y=35x+0, 4y=40△ AEF 的面积= __________省鹰谭一中成功举行.并绘制成如下的统计图:每组25人, 成绩整理 £21. 双十一”当天,某淘宝网店做出优惠活动,按原价应付额不超过200元的一律9折优惠,超过200元的,其中200元按9折算,超过200元的部分按8折算.设某买家在该店购物按原价应付x元,优惠后实付y元.(1 )当x>200时,试写出y与x之间的函数关系式(如果是一次函数,请写成y=kx+b的形式);(2)该买家挑选的商品按原价应付300元,求优惠后实付多少元?22. 如图,l i反映了甲离开A地的时间与离A地的距离的关系12反映了乙离开A地的时间与离开A 地距离之间的关系,根据图象填空:(1 )当时间为0时,甲离A地______________ 千米;(2) __________________ 当时间为时,甲、乙两人离A地距离相等;(3)图中P点的坐标是 ___________ ;(4)l i对应的函数表达式是:S i = ;(5)当t=2时,甲离A地的距离是__________千米;(6)当S=28时,乙离开A地的时间是 ____________ 时.杆千米勺时23. 如图,在直角坐标系中,矩形OABC的顶点0与坐标原点重合,顶点A、C分别在坐标轴上,顶点B的坐标为(6, 4), E为AB的中点,过点D ( 8, 0)和点E的直线分别与BC、y轴交于点F、G.(1)求直线DE的函数关系式;(2)函数y=mx - 2的图象经过点F且与x轴交于点H,求出点F的坐标和m值;(3)在(2)的条件下,求出四边形OHFG的面积.2015-2016学年广东省深圳市龙岗区八年级(上)期末数学试卷一、选择题(每小题3分,共36分)1数学忑,打n 需,0.;中无理数的个数是()A . 1 B. 2 C. 3 D. 4【考点】无理数.【分析】无理数就是无限不循环小数•理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称. 即有限小数和无限循环小数是有理数,而无限不循环小数是无理数•由此即可判定选择项.【解答】解: 二,故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:n, 2n等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2•下列长度的线段不能构成直角三角形的是()A . 8, 15, 17 B. 1.5, 2, 3C. 6, 8, 10 D . 5, 12, 13【考点】勾股定理的逆定理.【分析】由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方,即可解答. 【解答】解:A、82+152=172,能构成直角三角形,不符合题意;B、1.52+22老2,不能构成直角三角形,符合题意;C、62+82=102,能构成直角三角形,不符合题意;2 2 2D、5 +12 =13,能构成直角三角形,不符合题意;故选:B.【点评】本题考查勾股定理的逆定理的应用. 判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.A . ( 5, 2)B . (3,- 4)C . (- 4, - 6)D . (- 1 , 3)【考点】点的坐标.【分析】根据第二象限内点的横坐标小于零,纵坐标大于零,可得答案.【解答】解:笑脸位于第二象限,故D符合题意;故选:D.【点评】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+, -).4•点M (2, 1)关于x轴对称的点的坐标是()A • (1,- 2)B. (- 2, 1)C.(2, - 1)D • (- 1, 2)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【解答】解:M (2, 1)关于x轴对称的点的坐标是(2,- 1), 故选:C.【点评】本题考查了关于x轴的对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.5 •下列各式中,正确的是()A、「=±1 B . ± _?=4 C.寻-.〔=-3 D. i = - 4【考点】二次根式的混合运算.【专题】计算题.【分析】根据算术平方根的定义对A进行判断;根据平方根的定义对B进行判断;根据立方根的定义对C进行判断;根据二次根式的性质对D进行判断.【解答】解:A、原式=4,所以A选项错误;B、原式=±4,所以B选项错误;C、原式=-3=,所以C选项正确;D、原式=| - 4|=4,所以D选项错误.故选:C.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.6. 若函数y= (k - 1)x|k|+b+1是正比例函数,则k和b的值为()A . k= ±1, b= - 1 B. k= ±, b=0 C. k=1 , b= - 1 D. k= - 1, b= - 1【考点】正比例函数的定义.【分析】根据正比例函数定义可得b+仁0, |k|=1,且k- 1老,再解即可.【解答】解:由题意得:b+1=0, |k|=1,且k- 1老,解得:b= - 1, k= - 1, 故选:D.【点评】此题主要考查了正比例函数定义,关键是掌握形如y=kx (k是常数,k◎的函数叫做正比例函数.7. 在Rt△ ABC 中,/ C=90° AC=9 , BC=12,则点C 到AB 的距离是()12 9B ° !C ,D . 4勾股定理;点到直线的距离;三角形的面积. 计算题.【分析】根据题意画出相应的图形,如图所示,在直角三角形 ABC 中,由AC 及BC 的长,利用勾股定理求出 AB 的长,然后过 C 作CD 垂直于AB ,由直角三角形的面积可以由两直 角边乘积的一半来求,也可以由斜边AB 乘以斜边上的高 CD 除以2来求,两者相等,将AC ,AB 及BC 的长代入求出 CD 的长,即为C 到AB 的距离. 【解答】 解:根据题意画出相应的图形,如图所示:在 Rt △ ABC 中,AC=9 , BC=12 , 根据勾股定理得:AB= 「■一 =15,过C 作CD 丄AB ,交AB 于点D , 又 V AB C = AC?BC= AB?CD ,.^_AC-BC_9X12_36・・CD=-------------- ,AB 155 则点C 到AB 的距离是 I 5故选A【点评】此题考查了勾股定理,点到直线的距离,以及三角形面积的求法,熟练掌握勾股定 理是解本题的关键.&下列命题中,不成立的是 ( )A •两直线平行,同旁内角互补 B. 同位角相等,两直线平行 C.一个三角形中至少有一个角不大于 60度D •三角形的一个外角大于任何一个内角 【考点】命题与定理.【分析】根据平行线的性质对 A 进行判断;根据平行线的判定方法对 B 进行判断;根据三角形内角和定理对 C 进行判断;根据三角形外角性质对 D 进行判断. 【解答】解:A 、两直线平行,同旁内角互补,所以A 选项为真命题;B 、 同位角相等,两直线平行,所以 B 选项为真命题;C 、 一个三角形中至少有一个角不大于 60度,所以C 选项为真命题;D 、 三角形的一个外角大于任何一个不相邻的内角,所以D 选项为假命题.故选D •【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题•许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成如A.【考点】 【专果••那么…形式•有些命题的正确性是用推理证实的,这样的真命题叫做定理.9•为筹备班级的初中毕业联欢会,班长对全班学生爱吃哪几种水果作了民意调查•那么最 终买什么水果,下面的调查数据中最值得关注的是 ( )A •中位数B •平均数C .众数D .加权平均数【考点】统计量的选择.【分析】根据平均数、中位数、众数、方差的意义进行分析选择.【解答】解:平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描 述一组数据离散程度的统计量. 既然是为筹备班级的初中毕业联欢会做准备,那么买的水果肯定是大多数人爱吃的才行,故最值得关注的是众数.故选C .【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义. 反映数据集中程度的平均数、 中位数、众数各有局限性,因此要对统计量进行合理的选择和 恰当的运用.10. 2016年 龙岗年货博览会”在大运中心体育馆展销,小丽从家出发前去购物,途中发现 忘了带钱,于是打电话让妈妈马上从家里送来, 同时小丽也往回走,遇到妈妈后聊了一会儿,接着继续前往大运中心体育馆.设小丽从家出发后所用时间为 t ,小丽与体育馆的距离为 S ,下面能反映S 与t 的函数关系的大致图象是()【考点】函数的图象.【分析】根据去购物路程随时间的增加而增加, 返回时路程随时间的增加而减少, 聊天时路程不变,再去购物时路程随时间的增加而增加,可得答案. 【解答】解:由题意,得路程增加,路程减少,路程不变,路程增加, 故选:D .【点评】本题考查了函数图象,理解题意:去购物路程增加,返回路程减少,聊天时路程不 变是解题关键.【考点】三角形的外角性质.【分析】根据B 为角X 和a 的对顶角所在的三角形的外角,再根据三角形一个外角等于和 它不相邻的两个内角的和解答.a~ 3和3的式子表示/ x 为(【解答】解:如图,I a= / 1 , /• 3=x+ / 1整理得:x= 3 - a故选B .12•如图,把一个等腰直角三角形放在间距是 1的横格纸上,三个顶点都在横格上,则此三【考点】全等三角形的判定与性质;勾股定理;等腰直角三角形.【分析】 作BD 丄a 于D , CE 丄a 于E 则/ BDA= / AEC=90 °证出/ ABD= / CAE ,由AAS 证明△ ABD ◎△ CAE ,得出对应边相等 AE=BD=1,由勾股定理求出 AC ,再由勾股定理求 出BC 即可.【解答】 解:如图所示:作 BD 丄a 于D , CE 丄a 于E ,则/ BDA= / AEC=90 °•••/ ABD+ / BAD=90 °•••/ BAC=90 °•••/ CAE+ / BAD=90 °•••/ ABD= / CAE ,f ZBDA=ZAEC在厶ABD 和厶CAE 中,,厶BD 二ZC4E ,AB=AC • △ ABD ◎△ CAE (AAS ),• AE=BD=1 ,•/ CE=2 ,•••由勾股定理得:AB=AC=,屯2Z =匸,••• BC=工:「「:二丄= I.故选:B .【点评】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、勾股定理;熟练掌 握勾股定理,通过作辅助线证明三角形全等是解决问题的关键.、填空题(每小题 3分,共12 分)【点评】本题主要利用三角形外角的性质求解, 需要熟练掌握并灵活运用.a13. 16的平方根是±.【考点】平方根.【专题】计算题.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a 的平方根,由此即可解决问题.【解答】解:•••(±)2=16 ,二16的平方根是±4.故答案为:±4.【点评】本题考查了平方根的定义•注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.14. 数据3, 4, 6, 8, x, 7的众数是7,则数据4, 3, 6, 8, 2, x的中位数是5.【考点】中位数;众数.【分析】根据众数和中位数的概念求解.【解答】解::•这组数据的众数为7,/• x=7 ,这组数据按从小到大的顺序排列为:2, 3, 4, 6, 7, 8,则中位数为:…=5 .2故答案为:5.【点评】本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.15. 观察下列各式:右=^ - 1,启逅最=2—晅••请利用你发现的规律计算:(;+ -_.-,+••+: | )X(—+匚)=沁.【考点】分母有理化.【专题】规律型;实数.【分析】原式第一个因式中各项分母有理化后,再利用平方差公式计算即可得到结果.【解答】解:原式=(二-匚+2 -二+二-2+ 川川丨〔厂匚)=(业厂—匚)X(】1门• ’+ 匚)=2016 - 2=2014 ,故答案为:2014【点评】此题考查了分母有理化,二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子. 即一项符号和绝对值相同,另一项符号相反绝对值相同.16. 如图,在矩形ABCD中,AB=3 , BC=4,现将点A、C重合,使纸片折叠压平,折痕为EF,那么重叠部分。

2015-2016学年度第一学期期末八年级数学试题(含答案)

2015-2016学年度第一学期期末八年级数学试题(含答案)

2015—2016学年度第一学期期末考试八 年 级 数 学 试 卷试卷说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,满分120分,考试时间100分钟。

答题前,学生务必将自己的姓名和学校、班级、学号等填写在答题卷上;答案必须写在答题卷各题目指定区域内的相应位置上;考试结束后,只需将答题卷交回。

第Ⅰ卷(选择题)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项正确) 1、9的平方根是( ).A .3B .-3C .±3D .±32、将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( ).A .1、2、3B . 2、3、4C . 3、4、5D .4、5、63、下列说法:①实数与数轴上的点一一对应;②2a 没有平方根;③任何实数的立方根有且只有一个;④平方根与立方根相同的数是0和1.其中正确的有( ) A .1个 B .2个 C .3个 D .4个4、下列各组图形,可以经过平移变换由一个图形得到另一个图形的是( ).A B C D5、若一个多边形的内角和等于720°,则这个多边形的边数是( ). A .5 B .6 C .7 D .86、为筹备本班元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是( ) A .中位数 B .平均数 C .加权平均数 D .众数7、如图,已知棋子“车”的坐标为(-2,3),棋子“马” 的坐标为 (1,3),则棋子“炮”的坐标为( ).A .(3,1)B .(2,2)C .(3,2)D .(-2,2)8.下列一次函数中,y 的值随着x 值的增大而减小的是( ). A .y =x B .y =-x C .y =x +1 D .y = x -19、如图所示,两张等宽的纸条交叉重叠在一起,则重叠部分ABCD 一定是( ). A .菱形 B .矩形 C .正方形 D .梯形10、一水池蓄水20 m 3,打开阀门后每小时流出5 m 3,放水后池内剩下的水的立方数Q (m 3)与放水时间t (时)的函数关系用图表示为( )A B C D(第9题图)(第7题图)第Ⅱ卷(非选择题)二、填空题(本大题共5小题,每小题3分,共15分,将答案填写在题中横线上) 11、比较大小:3(填“>”、“<”、或“=”).12、写出一个你所学过的既是轴对称又是中心对称图形的四边形: .13、如图,是用形状、大小完全相同的等腰梯形密铺成的图案,则这个图案中的等腰梯形的底角(指锐角)是 度.14、 如图,若直线l 1:32-=x y 与l 2:3+-=x y 相交于点P ,则根据图象可得,二元一次方程组⎩⎨⎧=+=-332y x y x 的解是 . 15、 如图,在直角坐标平面内的△ABC 中,点A 的坐标为(0,2),点C 的坐标为(5,5),要使以A 、B 、 C 、D 为顶点的四边形是平行四边形,且点D 坐标在第一象限,那么点D 的坐标是 .三、解答题(本大题共10小题,共75分。

2015-2016学年广东省深圳市福田区八年级上学期期末数学试卷(带解析)

2015-2016学年广东省深圳市福田区八年级上学期期末数学试卷(带解析)

绝密★启用前2015-2016学年广东省深圳市福田区八年级上学期期末数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:114分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、(2015秋•福田区期末)如图,平行于x 轴的直线l 与y 轴、直线y=3x 、直线y=x 分别交于点A 、B 、C .则下列结论正确的个数有( )①∠AOB+∠BOC=45°;②BC=2AB ;③OB 2=10AB 2;④OC 2=OB 2.A .1个B .2个C .3个D .4个2、(2015秋•福田区期末)甘老师将一摞笔记本分给若干同学,每个同学5本,则剩下8本;每个同学8本,又差了7本,若设有x 个同学,y 本笔记本,则可得方程组( )A .B .C .D .3、(2015秋•福田区期末)若+=n(n 为整数),则m 的值可以是( ) A .B .18C .24D .754、(2015秋•福田区期末)在坐标平面内有下列三条直线: ①经过点(0,2)且平行于x 轴的直线; ②直线y=2x ﹣8;③经过点(0,12)且平行于直线y=﹣2x 的直线, 其中经过点(5,2)但不经过第三象限的直线共有( ) A .0条B .1条C .2条D .3条5、(2015秋•福田区期末)如图,动点P 从(1,2)出发,沿图中箭头所示方向运动,每当碰到长方形的边时反弹(反弹时反射角等于入射角),假设反弹可以无限进行下去,则在点P 运动路径上的点是( )A .(0,5)B .(5,0)C .(3,3)D .(7,3)6、如图,对于图中标记的各角,下列条件能够推理得到a ∥b 的是( )A .∠1=∠4B .∠2=∠4C .∠3+∠2=∠4D .∠2+∠3+∠4=180°7、(2015秋•福田区期末)一组数据1,1,2,3,4,4,5,6的众数是( ) A .1B .4C .1和4D .3.58、(2015秋•福田区期末)方程组的解是()A.B.C.D.9、(2015秋•福田区期末)若直角三角形的三边长分别为6、10、m,则m2的值为()A.8B.64C.136D.136或6410、(2015秋•福田区期末)点A(1,y1)、B(2,y2)在直线y=2x+2上,y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.不能确定11、(2015秋•福田区期末)在平面直角坐标系中,点P(﹣3,4)关于x轴的对称点的坐标是()A.(﹣4,﹣3)B.(﹣3,﹣4)C.(3,4)D.(3,﹣4)12、(2015秋•福田区期末)下列各数是无理数的是()A.B.C.3.14159D.第II卷(非选择题)二、填空题(题型注释)13、(2015秋•福田区期末)如图,直线l1的表达式为y=﹣3x+3,且直线l1与x轴交与点D,直线l2经过点A、B,且与直线l1交于点C,则△BDC的面积为.14、(2015秋•福田区期末)一副三角板如图所示叠放在一起,则图中∠ABC= .15、(2015秋•福田区期末)对顶角相等的逆命题是命题(填写“真”或“假”).16、(2014•鄂州)的算术平方根为.三、计算题(题型注释)17、(2015秋•福田区期末)解方程组:.18、(2015秋•福田区期末)计算:(1)(2)(﹣)×﹣.四、解答题(题型注释)19、(2015秋•福田区期末)二轮自行车的后轮磨损比前轮要大,当轮胎的磨损度(%)达到100时,轮胎就报废了,当两个轮的中的一个报废后,自行车就不可以继续骑行了.过去的资料表明:把甲、乙两个同质、同型号的新轮胎分别安装在一个自行车的前、后轮上后,甲、乙轮胎的磨损度(%)y 1、y 2与自行车的骑行路程x (百万米)都成正比例关系,如图(1)所示:(1)线段OB 表示的是 (填“甲”或“乙”),它的表达式是 (不必写出自变量的取值范围);(2)求直线OA 的表达式,根据过去的资料,这辆自行车最多可骑行多少百万米? (3)爱动脑筋的小聪,想了一个增大自行车骑行路程的方案:如图(2),当自行车骑行a 百万米后,我们可以交换自行车的前、后轮胎,使得甲、乙两个轮胎在b 百万米处,同时报废,请你确定方案中a 、b 的值.20、(2015秋•福田区期末)如图,是一个圆柱形的饼干盒,在盒子外侧下底面的点A 处有甲、乙两只蚂蚁,它们都想要吃到上底面外侧B′处的食物:甲蚂蚁沿A→A′→B′的折线爬行,乙蚂蚁沿圆柱的侧面爬行:若∠AOB=∠A′O′B′=90°(AA′、BB′都与圆柱的中轴线OO′平行),圆柱的底面半径是12cm ,高为1cm ,则:(1)A′B′= 12cm ,甲蚂蚁要吃到食物需爬行的路程长l 1= cm ;(2)乙蚂蚁要吃到食物需爬行的最短路程长l 2= cm (π取3);(3)若两只蚂蚁同时出发,且爬行速度相同,在乙蚂蚁采取最佳策略的前提下,哪只蚂蚁先到达食物处?请你通过计算或合理的估算说明理由.(参考数据:π取3,≈1.4)21、(2015秋•福田区期末)某服装店用7000元购进A 、B 两种新式服装,按标价售出后获得毛利润4000元(毛利润=售价﹣进价),这两种服装的进价,标价如表所示:求这两种服装各购进的件数?22、(2015秋•福田区期末)我市某中学七、八年级各选派10名选手参加学校举办的环保知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀,这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表(不完整)如下所示:(1)观察条形统计图,可以发现:八年级成绩的标准差 ,七年级成绩的标准差(填“>”、“<”或“=”),表格中m= ,n= ; (2)计算七年级的平均分;(3)有人说七年级的合格率、优秀率均高于八年级,所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.23、(2015秋•福田区期末)如图所示,现有下列4个亊项:(1)∠1=∠2,(2)∠3=∠B ,(3)FG ⊥AB 于G ,(4)CD ⊥AB 于D .以上述4个事项中的(1)、(2)、(3)三个作为一个命题的己知条件,(4)作为该命题的结论,可以组成一个真命题.请你证明这个真命题.参考答案1、C2、A3、D4、C5、B6、C7、C8、A9、D10、B11、B12、D13、14、75°15、假16、17、18、(1)1;(2).19、(1)甲,y=20x;(2)3百万米;(3)20、(1)12;12+1.(2)5.(3)甲蚂蚁先到达食物处.21、A种服装购进50件,B种服装购进40件.22、(1)<,6,7.5;(2)6.7;(3)①八年级队平均分高于七年级队;②八年级队的成绩比七年级队稳定;③八年级队的成绩集中在中上游23、见解析【解析】1、试题分析:由直线y=x得出∠AOC=45°,得出①正确;由直线y=3x和y=x得出OA=3AB,OA=AC,因此AC=3AB,BC=2AB,得出②正确;由勾股定理得出③正确,④不正确;即可得出结论.解:∵直线y=x,∴∠AOC=45°,即∠AOB+∠BOC=45°,∴①正确;∵平行于x轴的直线l与直线y=3x、直线y=x分别交于点B、C,∴OA=3AB,OA=AC,∴AC=3AB,∴BC=2AB,∴②正确;∵OB2=AB2+OA2=AB2+(3AB)2=10AB2,∴③正确;∵OC2=OA2+AC2=(3AB)2+(3AB2)=18AB2=OB2=OB2,∴④不正确;结论正确的有3个,故选:C.考点:两条直线相交或平行问题.2、试题分析:设有x个同学,有y个笔记本,根据若每个同学5本,则剩下8本;每个同学8本,又差了7本,可列出方程组.解:设有x个同学,有y个笔记本,可得:.故选A考点:由实际问题抽象出二元一次方程组.3、试题分析:根据二次根式的性质正确化简求出答案.解:∵+=n(n为整数),∴2+=n,∴化简后被开方数为3,故只有=5符合题意.故选:D.考点:二次根式的加减法.4、试题分析:根据①经过点(0,2)且平行于x轴的直线是y=2,画图可得此直线经过点(5,2)经过第一、二象限;②把(5,2)代入y=2x﹣8,左右相等,因此y=2x﹣8过(5,2),此直线经过一、三、四象限;③经过点(0,12)且平行于直线y=﹣2x的直线是y=﹣2x+12,此直线经过点(5,2),经过第一、二、四象限进行分析即可.解:①如图,经过点(0,2)且平行于x轴的直线经过点(5,2),但不经过第三象限的直线;②直线y=2x﹣8经过点(5,2),也经过第三象限的直线;③经过点(0,12)且平行于直线y=﹣2x的直线经过点(5,2),但不经过第三象限的直线,共2条,故选:C.考点:一次函数的性质.5、试题分析:根据反射角与入射角的定义作出图形,即可解答.解:如图,只有(5,0)在点P运动路径上,故选:B.考点:规律型:点的坐标.6、试题分析:在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.解:A、∠1=∠4,因为它们不是a、b被截得的同位角或内错角,不符合题意;B、∠2=∠4,因为它们不是a、b被截得的同位角或内错角,不符合题意;C、∠3+∠2=∠4,因为它们是a、b被截得的同位角或内错角,符合题意;D、∠2+∠3+∠4=180°,因为∠2+∠3与∠4是a、b被截得的同位角,不符合题意.故选:C.考点:平行线的判定.7、试题分析:根据众数的定义:一组数据中出现次数最多的数据即可得出答案.解:在这组数据中,1和4都出现了2次,出现次数最多,所以这组数据的众数为:1和4.故选C.考点:众数.8、试题分析:方程组利用加减消元法求出解即可.解:,①+②得:3x=3,即x=1,把x=1代入①得:y=﹣1,则方程组的解为,故选A考点:解二元一次方程组.9、试题分析:分10是直角边和斜边两种情况,利用勾股定理列式计算即可得解.解:10是直角边时,m2=62+102=136,10是斜边时,m2=102﹣62=64,所以m2的值为136或64.故选D.考点:勾股定理.10、试题分析:根据k=2>0,y将随x的增大而增大,得出y1与y2的大小关系.解:∵k=2>0,∴y将随x的增大而增大,∵1<2,∴y1<y2.故选B.考点:一次函数图象上点的坐标特征.11、试题分析:平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),即关于横轴的对称点,横坐标不变,纵坐标变成相反数,这样就可以求出对称点的坐标.解:点A(﹣3,4)关于x轴的对称点的坐标是(﹣3,﹣4),故选:B.考点:关于x轴、y轴对称的点的坐标.12、试题分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:A、是有理数,故A错误;B、是有理数,故B错误;C、3.14159是有理数,故C错误;D、是无理数,故D正确;故选:D.考点:无理数.13、试题分析:利用待定系数法确定直线l2的解析式;解由两条直线解析式所组成的方程组,确定C点坐标,根据直线l1的表达式求D点坐标;然后根据三角形面积公式计算即可.解:把y=0代入y=﹣3x+3得﹣3x+3=0,解得x=1,所以D点坐标为(1,0);设直线l2的解析式为y=kx+b,把A(4,0)、B(3,﹣)代入得,解得,所以直线l2的解析式为y=x﹣6;解得,所以C点坐标为(2,﹣3),所以S△BDC=S△ADC﹣S△ADB=×(4﹣1)×(3﹣)=.故答案为.考点:两条直线相交或平行问题.14、试题分析:因为三角板的度数为45°,60°,所以根据三角形内角和定理即可求解.解:如图,∵∠BAC=45°,∠ACB=60°,∴∠ABC=180°﹣45°﹣60°=75°.故答案为:75°.考点:三角形内角和定理.15、试题分析:先根据互逆命题的定义写出对顶角相等的逆命题,再判断真假.解:“对顶角相等”的逆命题是:相等的角是对顶角,它是假命题.故答案为:假.考点:命题与定理.16、试题分析:首先根据算术平方根的定义计算先=2,再求2的算术平方根即可.解:∵=2,∴的算术平方根为.故答案为:.考点:算术平方根.17、试题分析:方程组利用代入消元法求出解即可.解:,把①•代入②得:5x+2x﹣8=6,即x=2,把x=2代入①得:y=﹣2,则方程组的解为.考点:解二元一次方程组.18、试题分析:(1)首先化简二次根式,进而得出答案;(2)利用二次根式乘法运算法则化简求出答案.解:(1)===1;(2)(﹣)×﹣=﹣﹣=3﹣2=.考点:二次根式的混合运算.19、试题分析:(1)根据图象可得OB表示的轮胎比OA表示的轮胎磨损慢,据此即可确定是甲或乙,利用待定系数法即可求得函数解析式;(2)利用待定系数法求得OA的函数解析式,然后求得当y=100时对应的x的值即可;(3)根据两个轮胎的磨损度都是100,即可列出方程组求解.解:(1)线段OB表示的是甲,设OB的解析式是y=kx,则1.5k=30,解得:k=20,则OB的表达式是y=20x.故答案是:甲,y=20x;(2)设直线OA的表达式为y=mx,根据题意得:1.5m=50,解得:m=,则OA的解析式是y=x.当y=100时,100=x,解得:x=3.答:这辆自行车最多可骑行3百万米.(3)根据题意,得,解这个方程组,得.考点:一次函数的应用.20、试题分析:(1)由∠A′O′B′=90°,可知△B′A′O′为等腰直角三角形,故此A′B′=A′O′,然后根据l1=A′B′+AA′求解即可;(2)先求得弧A′B′的长,然后根据勾股定理求得矩形AA′B′B的对角线的长度即可;(3)将≈1.4代入从而可求得l1、l2的近似值,从而可作出判断.解:(1)∵∠A′O′B′=90°,O′A′=O′B′,∴A′B′=A′B′=A′O′=12.∴l1=A′B′+AA′=12+1.故答案为:12;12+1.(2)==6π=18.将圆柱体的侧面展开得到如图1所示矩形AA′B′B.∵=18,∴A′B′=18.在Rt△ABB′中,AB′===5.故答案为:5.(3)∵l1=12+1≈12×1.2+1=15.4∴=237.16.∵==324,∴.∴l1<l2.∴甲蚂蚁先到达食物处.考点:平面展开-最短路径问题.21、试题分析:设A种服装购进x件,B种服装购进y件,根据用7000元购进A、B两种新式服装,按标价售出后获得毛利润4000元,列方程组求解.解:设A种服装购进x件,B种服装购进y件,由题意,得,解得:.答:A种服装购进50件,B种服装购进40件.考点:二元一次方程组的应用.22、试题分析:(1)求出八年级成绩的方差<七年级成绩的方差,得出八年级成绩的标准差<年级成绩的标准差;求出七年级成绩和八年级成绩的中位数即可得出m和n;(2)由平均数公式即可得出结果;(3)从方差,平均分角度考虑,给出两条支持八年级队成绩好的理由即可.解:(1)∵八年级成绩的方差=[2(5﹣7.1)2+(6﹣7.1)2+2(7﹣7.1)2+4(8﹣7.1)2+(9﹣7.1)2]=1.69<3.41,∴八年级成绩的标准差<年级成绩的标准差;七年级成绩为3,6,6,6,6,6,7,8,9,10,∴中位数为6,即m=6;八年级成绩为5,5,6,7,7,8,8,8,8,9,∴中位数为7.5,即n=7.5;故答案为:<,6,7.5;(2)七年级成绩的平均分=(3×1+5×6+7×1+8×1+9×1+10×1)÷10=6.7;(3)①八年级队平均分高于七年级队;②八年级队的成绩比七年级队稳定;③八年级队的成绩集中在中上游;所以支持八年级队成绩好.考点:标准差;加权平均数;中位数;方差.23、试题分析:先由平行线的判定定理得出DE∥BC,GF∥CD,再由FG⊥AB于G得出∠BGF=90°,进而可得出结论.证明:∵∠3=∠B,∴DE∥BC,∴∠1=∠BCD.∵∠1=∠2,∴∠2=∠BCD,∴GF∥CD,∴∠CDB=∠BGF.∵FG⊥AB,∴∠BGF=90°,∴∠CDB=90°,∴CD⊥AB.考点:命题与定理;平行线的判定与性质.。

广东省深圳市福田区度八年级数学上学期期末考试试题(

广东省深圳市福田区度八年级数学上学期期末考试试题(

广东省深圳市福田区2015-2016学年度八年级数学上学期期末考试试题一、选择题:(本题共12小题,每小题3分,共36分.)1.下列各数是无理数的是()A.B.C.3.14159 D.2.在平面直角坐标系中,点P(﹣3,4)关于x轴的对称点的坐标是()A.(﹣4,﹣3)B.(﹣3,﹣4)C.(3,4)D.(3,﹣4)3.点A(1,y1)、B(2,y2)在直线y=2x+2上,y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2 D.不能确定4.若直角三角形的三边长分别为6、10、m,则m2的值为()A.8 B.64 C.136 D.136或645.方程组的解是()A.B.C.D.6.一组数据1,1,2,3,4,4,5,6的众数是()A.1 B.4 C.1和4 D.3.57.如图,对于图中标记的各角,下列条件能够推理得到a∥b的是()A.∠1=∠4 B.∠2=∠4C.∠3+∠2=∠4 D.∠2+∠3+∠4=180°8.如图,动点P从(1,2)出发,沿图中箭头所示方向运动,每当碰到长方形的边时反弹(反弹时反射角等于入射角),假设反弹可以无限进行下去,则在点P运动路径上的点是()A.(0,5)B.(5,0)C.(3,3)D.(7,3)9.在坐标平面内有下列三条直线:①经过点(0,2)且平行于x轴的直线;②直线y=2x﹣8;③经过点(0,12)且平行于直线y=﹣2x的直线,其中经过点(5,2)但不经过第三象限的直线共有()A.0条B.1条C.2条D.3条10.若+=n(n为整数),则m的值可以是()A.B.18 C.24 D.7511.甘老师将一摞笔记本分给若干同学,每个同学5本,则剩下8本;每个同学8本,又差了7本,若设有x个同学,y本笔记本,则可得方程组()A.B.C.D.12.如图,平行于x轴的直线l与y轴、直线y=3x、直线y=x分别交于点A、B、C.则下列结论正确的个数有()①∠AOB+∠BOC=45°;②BC=2AB;③OB2=10AB2;④OC2=OB2.A.1个B.2个C.3个D.4个二、填空题(本题共4小题,每小题3分,共12分)13.的算术平方根为.14.对顶角相等的逆命题是命题(填写“真”或“假”).15.一副三角板如图所示叠放在一起,则图中∠ABC=.16.如图,直线l1的表达式为y=﹣3x+3,且直线l1与x轴交与点D,直线l2经过点A、B,且与直线l1交于点C,则△BDC的面积为.三、解答题:(本题共7小题,其中第17小题8分,第18小题5分,第19小题6分,第20小题7分,第21小题8分,第22小题8分,第23小题10分共52分)17.计算:(1)(2)(﹣)×﹣.18.解方程组:.19.如图所示,现有下列4个亊项:(1)∠1=∠2,(2)∠3=∠B,(3)FG⊥AB于G,(4)CD⊥AB于D.以上述4个事项中的(1)、(2)、(3)三个作为一个命题的己知条件,(4)作为该命题的结论,可以组成一个真命题.请你证明这个真命题.20.我市某中学七、2015~2016学年度八年级各选派10名选手参加学校举办的环保知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀,这次竞赛后,七、2015~2016学年度八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表(不完整)如下所示:队别平均分中位数方差合格率优秀率2015~2016学年度七年级m 3.41 90% 20%2015~2016学年度八年级7.1 n 80% 10%(1)观察条形统计图,可以发现:2015~2016学年度八年级成绩的标准差,2015~2016学年度七年级成绩的标准差(填“>”、“<”或“=”),表格中m= ,n= ;(2)计算2015~2016学年度七年级的平均分;(3)有人说2015~2016学年度七年级的合格率、优秀率均高于2015~2016学年度八年级,所以2015~2016学年度七年级队成绩比2015~2016学年度八年级队好,但也有人说2015~2016学年度八年级队成绩比2015~2016学年度七年级队好.请你给出两条支持2015~2016学年度八年级队成绩好的理由.21.某服装店用7000元购进A、B两种新式服装,按标价售出后获得毛利润4000元(毛利润=售价﹣进价),这两种服装的进价,标价如表所示:A型B型类型价格进价(元/件)60 100标价(元/件)100 150求这两种服装各购进的件数?22.如图,是一个圆柱形的饼干盒,在盒子外侧下底面的点A处有甲、乙两只蚂蚁,它们都想要吃到上底面外侧B′处的食物:甲蚂蚁沿A→A′→B′的折线爬行,乙蚂蚁沿圆柱的侧面爬行:若∠AOB=∠A′O′B′=90°(AA′、BB′都与圆柱的中轴线OO′平行),圆柱的底面半径是12cm,高为1cm,则:(1)A′B′=cm,甲蚂蚁要吃到食物需爬行的路程长l1= cm;(2)乙蚂蚁要吃到食物需爬行的最短路程长l2= cm(π取3);(3)若两只蚂蚁同时出发,且爬行速度相同,在乙蚂蚁采取最佳策略的前提下,哪只蚂蚁先到达食物处?请你通过计算或合理的估算说明理由.(参考数据:π取3,≈1.4)23.二轮自行车的后轮磨损比前轮要大,当轮胎的磨损度(%)达到100时,轮胎就报废了,当两个轮的中的一个报废后,自行车就不可以继续骑行了.过去的资料表明:把甲、乙两个同质、同型号的新轮胎分别安装在一个自行车的前、后轮上后,甲、乙轮胎的磨损度(%)y1、y2与自行车的骑行路程x (百万米)都成正比例关系,如图(1)所示:(1)线段OB表示的是(填“甲”或“乙”),它的表达式是(不必写出自变量的取值范围);(2)求直线OA的表达式,根据过去的资料,这辆自行车最多可骑行多少百万米?(3)爱动脑筋的小聪,想了一个增大自行车骑行路程的方案:如图(2),当自行车骑行a百万米后,我们可以交换自行车的前、后轮胎,使得甲、乙两个轮胎在b百万米处,同时报废,请你确定方案中a、b的值.广东省深圳市福田区2015~2016学年度八年级上学期期末数学试卷参考答案与试题解析一、选择题:(本题共12小题,每小题3分,共36分.)1.下列各数是无理数的是()A.B.C.3.14159 D.【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、是有理数,故A错误;B、是有理数,故B错误;C、3.14159是有理数,故C错误;D、是无理数,故D正确;故选:D.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.在平面直角坐标系中,点P(﹣3,4)关于x轴的对称点的坐标是()A.(﹣4,﹣3)B.(﹣3,﹣4)C.(3,4)D.(3,﹣4)【考点】关于x轴、y轴对称的点的坐标.【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),即关于横轴的对称点,横坐标不变,纵坐标变成相反数,这样就可以求出对称点的坐标.【解答】解:点A(﹣3,4)关于x轴的对称点的坐标是(﹣3,﹣4),故选:B.【点评】本题主要考查了平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,是需要识记的内容,比较简单.3.点A(1,y1)、B(2,y2)在直线y=2x+2上,y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2 D.不能确定【考点】一次函数图象上点的坐标特征.【分析】根据k=2>0,y将随x的增大而增大,得出y1与y2的大小关系.【解答】解:∵k=2>0,∴y将随x的增大而增大,∵1<2,∴y1<y2.故选B.【点评】本题考查一次函数的图象性质:当k>0,y随x增大而增大;当k<0时,y将随x的增大而减小.4.若直角三角形的三边长分别为6、10、m,则m2的值为()A.8 B.64 C.136 D.136或64【考点】勾股定理.【专题】分类讨论.【分析】分10是直角边和斜边两种情况,利用勾股定理列式计算即可得解.【解答】解:10是直角边时,m2=62+102=136,10是斜边时,m2=102﹣62=64,所以m2的值为136或64.故选D.【点评】本题考查了勾股定理解直角三角形,当已知条件中没有明确哪是斜边时,要注意分类讨论.5.方程组的解是()A.B.C.D.【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:3x=3,即x=1,把x=1代入①得:y=﹣1,则方程组的解为,故选A【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.6.一组数据1,1,2,3,4,4,5,6的众数是()A.1 B.4 C.1和4 D.3.5【考点】众数.【分析】根据众数的定义:一组数据中出现次数最多的数据即可得出答案.【解答】解:在这组数据中,1和4都出现了2次,出现次数最多,所以这组数据的众数为:1和4.故选C.【点评】本题考查了众数的知识,属于基础题,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.7.如图,对于图中标记的各角,下列条件能够推理得到a∥b的是()A.∠1=∠4B.∠2=∠4C.∠3+∠2=∠4D.∠2+∠3+∠4=180°【考点】平行线的判定.【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:A、∠1=∠4,因为它们不是a、b被截得的同位角或内错角,不符合题意;B、∠2=∠4,因为它们不是a、b被截得的同位角或内错角,不符合题意;C、∠3+∠2=∠4,因为它们是a、b被截得的同位角或内错角,符合题意;D、∠2+∠3+∠4=180°,因为∠2+∠3与∠4是a、b被截得的同位角,不符合题意.故选:C.【点评】本题考查了平行线的判定方法;正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.8.如图,动点P从(1,2)出发,沿图中箭头所示方向运动,每当碰到长方形的边时反弹(反弹时反射角等于入射角),假设反弹可以无限进行下去,则在点P运动路径上的点是()A.(0,5)B.(5,0)C.(3,3)D.(7,3)【考点】规律型:点的坐标.【分析】根据反射角与入射角的定义作出图形,即可解答.【解答】解:如图,只有(5,0)在点P运动路径上,故选:B.【点评】本题考查了对点的坐标的规律变化的认识,利用反射角与入射角的定义作出图形是解题的关键.9.在坐标平面内有下列三条直线:①经过点(0,2)且平行于x轴的直线;②直线y=2x﹣8;③经过点(0,12)且平行于直线y=﹣2x的直线,其中经过点(5,2)但不经过第三象限的直线共有()A.0条B.1条C.2条D.3条【考点】一次函数的性质.【分析】根据①经过点(0,2)且平行于x轴的直线是y=2,画图可得此直线经过点(5,2)经过第一、二象限;②把(5,2)代入y=2x﹣8,左右相等,因此y=2x﹣8过(5,2),此直线经过一、三、四象限;③经过点(0,12)且平行于直线y=﹣2x的直线是y=﹣2x+12,此直线经过点(5,2),经过第一、二、四象限进行分析即可.【解答】解:①如图,经过点(0,2)且平行于x轴的直线经过点(5,2),但不经过第三象限的直线;②直线y=2x﹣8经过点(5,2),也经过第三象限的直线;③经过点(0,12)且平行于直线y=﹣2x的直线经过点(5,2),但不经过第三象限的直线,共2条,故选:C.【点评】此题主要考查了一次函数的性质,关键是正确判断出一次函数经过的象限,掌握凡是函数图象经过的点必能满足解析式.10.若+=n(n为整数),则m的值可以是()A.B.18 C.24 D.75【考点】二次根式的加减法.【分析】根据二次根式的性质正确化简求出答案.【解答】解:∵+=n(n为整数),∴2+=n,∴化简后被开方数为3,故只有=5符合题意.故选:D.【点评】此题主要考查了二次根式的加减,正确化简二次根式是解题关键.11.甘老师将一摞笔记本分给若干同学,每个同学5本,则剩下8本;每个同学8本,又差了7本,若设有x个同学,y本笔记本,则可得方程组()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】设有x个同学,有y个笔记本,根据若每个同学5本,则剩下8本;每个同学8本,又差了7本,可列出方程组.【解答】解:设有x个同学,有y个笔记本,可得:.故选A【点评】本题考查二元一次方程组的应用,关键是理解题意的能力,设出人数和本数,可以本数的数量作为等量关系列出方程组.12.如图,平行于x轴的直线l与y轴、直线y=3x、直线y=x分别交于点A、B、C.则下列结论正确的个数有()①∠AOB+∠BOC=45°;②BC=2AB;③OB2=10AB2;④OC2=OB2.A.1个B.2个C.3个D.4个【考点】两条直线相交或平行问题.【分析】由直线y=x得出∠AOC=45°,得出①正确;由直线y=3x和y=x得出OA=3AB,OA=AC,因此AC=3AB,BC=2AB,得出②正确;由勾股定理得出③正确,④不正确;即可得出结论.【解答】解:∵直线y=x,∴∠AOC=45°,即∠AOB+∠BOC=45°,∴①正确;∵平行于x轴的直线l与直线y=3x、直线y=x分别交于点B、C,∴OA=3AB,OA=AC,∴AC=3AB,∴BC=2AB,∴②正确;∵OB2=AB2+OA2=AB2+(3AB)2=10AB2,∴③正确;∵OC2=OA2+AC2=(3AB)2+(3AB2)=18AB2=OB2=OB2,∴④不正确;结论正确的有3个,故选:C.【点评】本题考查了两条直线相交或平行问题、直线的特征、勾股定理;熟练掌握两条直线相交或平行特征,得出OA=3AB,OA=AC,AC=3AB是解决问题的关键.二、填空题(本题共4小题,每小题3分,共12分)13.的算术平方根为.【考点】算术平方根.【专题】计算题.【分析】首先根据算术平方根的定义计算先=2,再求2的算术平方根即可.【解答】解:∵=2,∴的算术平方根为.故答案为:.【点评】此题考查了算术平方根的定义,解题的关键是知道=2,实际上这个题是求2的算术平方根.注意这里的双重概念.14.对顶角相等的逆命题是假命题(填写“真”或“假”).【考点】命题与定理.【分析】先根据互逆命题的定义写出对顶角相等的逆命题,再判断真假.【解答】解:“对顶角相等”的逆命题是:相等的角是对顶角,它是假命题.故答案为:假.【点评】本题考查了互逆命题及真假命题的定义.两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题;正确的命题叫做真命题,错误的命题叫做假命题.15.一副三角板如图所示叠放在一起,则图中∠ABC=75°.【考点】三角形内角和定理.【分析】因为三角板的度数为45°,60°,所以根据三角形内角和定理即可求解.【解答】解:如图,∵∠BAC=45°,∠ACB=60°,∴∠ABC=180°﹣45°﹣60°=75°.故答案为:75°.【点评】本题考查了三角板度数的常识和三角形内角和定理,熟练掌握定理是解题的关键.16.如图,直线l1的表达式为y=﹣3x+3,且直线l1与x轴交与点D,直线l2经过点A、B,且与直线l1交于点C,则△BDC的面积为.【考点】两条直线相交或平行问题.【分析】利用待定系数法确定直线l2的解析式;解由两条直线解析式所组成的方程组,确定C点坐标,根据直线l1的表达式求D点坐标;然后根据三角形面积公式计算即可.【解答】解:把y=0代入y=﹣3x+3得﹣3x+3=0,解得x=1,所以D点坐标为(1,0);设直线l2的解析式为y=kx+b,把A(4,0)、B(3,﹣)代入得,解得,所以直线l2的解析式为y=x﹣6;解得,所以C点坐标为(2,﹣3),所以S△BDC=S△ADC﹣S△ADB=×(4﹣1)×(3﹣)=.故答案为.【点评】本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.例如:若直线y1=k1x+b1与直线y2=k2x+b2平行,那么k1=k2.三、解答题:(本题共7小题,其中第17小题8分,第18小题5分,第19小题6分,第20小题7分,第21小题8分,第22小题8分,第23小题10分共52分)17.计算:(1)(2)(﹣)×﹣.【考点】二次根式的混合运算.【分析】(1)首先化简二次根式,进而得出答案;(2)利用二次根式乘法运算法则化简求出答案.【解答】解:(1)===1;(2)(﹣)×﹣=﹣﹣=3﹣2=.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.18.解方程组:.【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】方程组利用代入消元法求出解即可.【解答】解:,把① 代入②得:5x+2x﹣8=6,即x=2,把x=2代入①得:y=﹣2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.如图所示,现有下列4个亊项:(1)∠1=∠2,(2)∠3=∠B,(3)FG⊥AB于G,(4)CD⊥AB于D.以上述4个事项中的(1)、(2)、(3)三个作为一个命题的己知条件,(4)作为该命题的结论,可以组成一个真命题.请你证明这个真命题.【考点】命题与定理;平行线的判定与性质.【分析】先由平行线的判定定理得出DE∥BC,GF∥CD,再由FG⊥AB于G得出∠BGF=90°,进而可得出结论.【解答】证明:∵∠3=∠B,∴DE∥BC,∴∠1=∠BCD.∵∠1=∠2,∴∠2=∠BCD,∴GF∥CD,∴∠CDB=∠BGF.∵FG⊥AB,∴∠BGF=90°,∴∠CDB=90°,∴CD⊥AB.【点评】本题考查的是命题与定理,熟知平行线的判定与性质是解答此题的关键.20.我市某中学七、2015~2016学年度八年级各选派10名选手参加学校举办的环保知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀,这次竞赛后,七、2015~2016学年度八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表(不完整)如下所示:队别平均分中位数方差合格率优秀率2015~2016学年度七年级m 3.41 90% 20%2015~2016学年度八年级7.1 n 80% 10%(1)观察条形统计图,可以发现:2015~2016学年度八年级成绩的标准差<,2015~2016学年度七年级成绩的标准差(填“>”、“<”或“=”),表格中m= 6 ,n= 7.5 ;(2)计算2015~2016学年度七年级的平均分;(3)有人说2015~2016学年度七年级的合格率、优秀率均高于2015~2016学年度八年级,所以2015~2016学年度七年级队成绩比2015~2016学年度八年级队好,但也有人说2015~2016学年度八年级队成绩比2015~2016学年度七年级队好.请你给出两条支持2015~2016学年度八年级队成绩好的理由.【考点】标准差;加权平均数;中位数;方差.【分析】(1)求出2015~2016学年度八年级成绩的方差<2015~2016学年度七年级成绩的方差,得出2015~2016学年度八年级成绩的标准差<年级成绩的标准差;求出2015~2016学年度七年级成绩和2015~2016学年度八年级成绩的中位数即可得出m和n;(2)由平均数公式即可得出结果;(3)从方差,平均分角度考虑,给出两条支持2015~2016学年度八年级队成绩好的理由即可.【解答】解:(1)∵2015~2016学年度八年级成绩的方差=[2(5﹣7.1)2+(6﹣7.1)2+2(7﹣7.1)2+4(8﹣7.1)2+(9﹣7.1)2]=1.69<3.41,∴2015~2016学年度八年级成绩的标准差<年级成绩的标准差;2015~2016学年度七年级成绩为3,6,6,6,6,6,7,8,9,10,∴中位数为6,即m=6;2015~2016学年度八年级成绩为5,5,6,7,7,8,8,8,8,9,∴中位数为7.5,即n=7.5;故答案为:<,6,7.5;(2)2015~2016学年度七年级成绩的平均分=(3×1+5×6+7×1+8×1+9×1+10×1)÷10=6.7;(3)①2015~2016学年度八年级队平均分高于2015~2016学年度七年级队;②2015~2016学年度八年级队的成绩比2015~2016学年度七年级队稳定;③2015~2016学年度八年级队的成绩集中在中上游;所以支持2015~2016学年度八年级队成绩好.【点评】此题考查了条形统计图,扇形统计图,以及中位数,平均数,以及方差,弄清题意是解本题的关键.21.某服装店用7000元购进A、B两种新式服装,按标价售出后获得毛利润4000元(毛利润=售价﹣进价),这两种服装的进价,标价如表所示:A型B型类型价格进价(元/件)60 100标价(元/件)100 150求这两种服装各购进的件数?【考点】二元一次方程组的应用.【分析】设A种服装购进x件,B种服装购进y件,根据用7000元购进A、B两种新式服装,按标价售出后获得毛利润4000元,列方程组求解.【解答】解:设A种服装购进x件,B种服装购进y件,由题意,得,解得:.答:A种服装购进50件,B种服装购进40件.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.22.如图,是一个圆柱形的饼干盒,在盒子外侧下底面的点A处有甲、乙两只蚂蚁,它们都想要吃到上底面外侧B′处的食物:甲蚂蚁沿A→A′→B′的折线爬行,乙蚂蚁沿圆柱的侧面爬行:若∠AOB=∠A′O′B′=90°(AA′、BB′都与圆柱的中轴线OO′平行),圆柱的底面半径是12cm,高为1cm,则:(1)A′B′=12cm,甲蚂蚁要吃到食物需爬行的路程长l1= 12+1 cm;(2)乙蚂蚁要吃到食物需爬行的最短路程长l2= 5 cm(π取3);(3)若两只蚂蚁同时出发,且爬行速度相同,在乙蚂蚁采取最佳策略的前提下,哪只蚂蚁先到达食物处?请你通过计算或合理的估算说明理由.(参考数据:π取3,≈1.4)【考点】平面展开-最短路径问题.【分析】(1)由∠A′O′B′=90°,可知△B′A′O′为等腰直角三角形,故此A′B′=A′O′,然后根据l1=A′B′+AA′求解即可;(2)先求得弧A′B′的长,然后根据勾股定理求得矩形AA′B′B的对角线的长度即可;(3)将≈1.4代入从而可求得l1、l2的近似值,从而可作出判断.【解答】解:(1)∵∠A′O′B′=90°,O′A′=O′B′,∴A′B′=A′B′=A′O′=12.∴l1=A′B′+AA′=12+1.故答案为:12;12+1.(2)==6π=18.将圆柱体的侧面展开得到如图1所示矩形AA′B′B.∵=18,∴A′B′=18.在Rt△ABB′中,AB′===5.故答案为:5.(3)∵l1=12+1≈12×1.2+1=15.4∴=237.16.∵==324,∴.∴l1<l2.∴甲蚂蚁先到达食物处.【点评】本题主要考查的是平面展开路径最短、勾股定理的应用、扇形的弧长公式的应用,将圆柱体的侧面展开求得l2的长度是解题的关键.23.二轮自行车的后轮磨损比前轮要大,当轮胎的磨损度(%)达到100时,轮胎就报废了,当两个轮的中的一个报废后,自行车就不可以继续骑行了.过去的资料表明:把甲、乙两个同质、同型号的新轮胎分别安装在一个自行车的前、后轮上后,甲、乙轮胎的磨损度(%)y1、y2与自行车的骑行路程x (百万米)都成正比例关系,如图(1)所示:(1)线段OB表示的是甲(填“甲”或“乙”),它的表达式是y=20x (不必写出自变量的取值范围);(2)求直线OA的表达式,根据过去的资料,这辆自行车最多可骑行多少百万米?(3)爱动脑筋的小聪,想了一个增大自行车骑行路程的方案:如图(2),当自行车骑行a百万米后,我们可以交换自行车的前、后轮胎,使得甲、乙两个轮胎在b百万米处,同时报废,请你确定方案中a、b的值.【考点】一次函数的应用.【分析】(1)根据图象可得OB表示的轮胎比OA表示的轮胎磨损慢,据此即可确定是甲或乙,利用待定系数法即可求得函数解析式;(2)利用待定系数法求得OA的函数解析式,然后求得当y=100时对应的x的值即可;(3)根据两个轮胎的磨损度都是100,即可列出方程组求解.【解答】解:(1)线段OB表示的是甲,设OB的解析式是y=kx,则1.5k=30,解得:k=20,则OB的表达式是y=20x.故答案是:甲,y=20x;(2)设直线OA的表达式为y=mx,根据题意得:1.5m=50,解得:m=,则OA的解析式是y=x.当y=100时,100=x,解得:x=3.答:这辆自行车最多可骑行3百万米.(3)根据题意,得,解这个方程组,得.【点评】本题考查了二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出两个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.。

广东省深圳市福田区八年级上学期数学期末试卷附答案

广东省深圳市福田区八年级上学期数学期末试卷附答案

八年级上学期数学期末试卷一、单选题(共12题;共24分)1.下列实数中最大的是()A. 1B.C. 3D.2.下列实数是无理数的是()A. B. C. 2π D. 0.10100100013.袁隆平海水稻科研团队为考察最近选育的水稻生长情况,在同一时期,分别从甲、乙、丙三种稻苗中随机抽取部分稻苗测量苗高(单位:cm),算得它们的方差分别为,,,则下列对苗高的整齐程度描述正确的是()A. 甲最整齐B. 乙最整齐C. 丙最整齐D. 一样整齐4.下列各组数中,不能作为直角三角形的三边长的是()A. 1,,2B. 7,12,15C. 3,4,5D. 5,12,135.在平面直角坐标系中,点A的坐标为(1,-3),则点A关于轴对称点的坐标是()A. (-1,-3)B. (-3,1 )C. (1,3)D. (-1,3 )6.如图,将三角板的直角顶点放在直尺的一边上(∥),若∠1=25°,则∠2的度数为()A. 55°B. 25°C. 60°D. 65°7.如图,一次函数的图象经过点(2,0),则下列结论正确的是()A. B. 关于方程的解是 C. D. y随x的增大而增大8.若,则化简的结果是()A. B. C. D.9.下列命题是真命题的是()A.如果,那么 B. 0的平方根是0C. 如果与是内错角,那么D. 三角形的一个外角等于它的两个内角之和10.如图,在△中,为边上一点,以点为圆心,为半径画弧,交的延长线于点,连接.若,,则的度数为()A. B. C. D.11.我国明代数学家程大位所著的《算法统宗》中记载了一道有趣的题目:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”题目大意是:100个和尚分100个馒头,刚好分完,大和尚1人分3个馒头,小和尚3人分一个馒头,问大、小和尚各有多少人?若大和尚有人,小和尚有人,则下列方程或方程组中:①②③④正确的是()A. ①③B. ①④C. ②③D. ②④12.如图,在长方形中,=4,=8,点是边上一点,且,点是边上一动点,连接,,则下列结论:①;②当时,平分;③△周长的最小值为15 ;④当时,平分.其中正确的个数有()A. 4个B. 3个C. 2个D. 1个二、填空题(共4题;共5分)13.36的算术平方根是________14.深圳市某中学对该校八年级学生进行了体育测试,下表是某学习小组10名学生的测试成绩,则这组学生体育平均成绩是________分.成绩(分)454850人数25315.我们规定:当,为常数(, )时,称与互为倒数函数.例如:的倒数函数是.则在平面直角坐标系中,函数与它倒数函数两者图象的交点坐标为________.16.如图,在Rt△中,,,点在上,且,连接,,且,连接,则的长为________.三、解答题(共7题;共63分)17.计算: .18.解二元一次方程组:19.某校在“垃圾分类”宣传培训后,对学生知晓情况进行了一次测试,其测试成绩按照标准划分为四个等级:A优秀,B良好,C合格,D不合格.为了了解该校学生的成绩状况,对在校学生进行随机抽样调查,调查结果绘制成了以下两幅不完整的统计图:请结合统计图回答下列问题:(1)该校抽样调查的学生人数为________人;(2)请补全条形统计图;(3)样本中,学生成绩的中位数所在等级是________;(填“A”、“B”、“C”或“D”)(4)该校共有学生3000人,估计全校测试成绩为优秀和良好的学生共有________人.20.深圳市某小区为了以崭新的面貌迎接“创文”工作,决定请甲、乙两个装饰公司对小区外墙进行装饰维护.若由甲、乙两个公司合作,需8天完成,小区需支付费用12.8万元;若由甲公司单独做4天后,剩下的由乙公司来做,还需10天才能完成,小区需支付费用12.4万元.问:甲、乙两个装饰公司平均每天收取的费用分别是多少万元?21.在△ABC中,AD平分∠BAC交BC于点D,在AB上取一点E,使得EA=ED.(1)求证:DE∥AC;(2)若ED=EB,BD=2,EA=3,求AD的长.22.甲、乙两车先后从“深圳书城”出发,沿相同的路线到距书城240km的某市.因路况原因,甲车行驶的路程y(km)与甲车行驶的时间x(h)的函数关系图象为折线O-A-B,乙车行驶的路程y(km)与甲车行驶的时间x(h)的函数关系图象为线段CD.(1)求线段AB所在直线的函数表达式;(2)①乙车比甲车晚出发多少小时;②乙车出发多少小时后追上甲车?(3)乙车出发多少小时后甲、乙两车相距10千米?23.如下图,已知直线分别与轴,轴交于,两点,直线:交于点.(1)求,两点的坐标;(2)如图1,点E是线段OB的中点,连结AE,点F是射线OG上一点,当,且时,求的长;(3)如图2,若,过点作∥,交轴于点,此时在轴上是否存在点,使,若存在,求出点的坐标;若不存在,请说明理由.答案解析部分一、单选题1.【解析】【解答】∵<<1<3,∴最大的数是3,故答案为:C.【分析】根据实数的大小比较法则先进行比较,即可得出选项.2.【解析】【解答】A、=2是有理数,故A不符合题意;B、是有理数,故B不符合题意;C、是无理数,故C符合题意;D、0.1010010001是有理数,故D不符合题意;故答案为:C.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.3.【解析】【解答】因为>>,方差最小的为甲,所以苗高最整齐的是甲.故答案为:A.【分析】根据方差的定义,方差越小数据越稳定.4.【解析】【解答】A、12+()2=22,符合勾股定理的逆定理,故本选项不符合题意;B、72+122≠152,不符合勾股定理的逆定理,故本选项符合题意;C、32+42=52,符合勾股定理的逆定理,故本选项不符合题意;D、52+122=132,符合勾股定理的逆定理,故本选项不符合题意.故答案为:B.【分析】根据勾股定理的逆定理进行分析,从而得到答案.5.【解析】【解答】点A(1,-3)关于y轴的对称点A'的坐标是(-1,-3),故答案为:A.【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.6.【解析】【解答】如图,∵∠1=25°,∠3与∠1互余,∴∠3=90°−25°=65°,又∥∴∠2=∠3=65°.故答案为:D.【分析】先根据平行线的性质求出∠3的度数,再由余角的定义即可得出结论.7.【解析】【解答】∵一次函数y=kx+b(k≠0)的图象过一、二、四象限,∴k<0,b>0,∴y随x的增大而减小,故A、C、D均不符合题意;∵直线y=kx+b(k≠0)与x轴的交点为(2,0),∴关于方程的解是,故B符合题意.故答案为:B.【分析】根据图象可得,该一次函数的图象过一、二、四象限,进而可得k、b的值与函数的增减性,即可判断A、C、D;直线y=kx+b(k≠0)与x轴交点的横坐标的值是方程kx+b=0的解,即可判断B.8.【解析】【解答】∵∴b-3=0,a-4=0∴a=4,b=3,∴=故答案为:A.【分析】根据二次根式与绝对值的非负性求出a,b的值,代入即可求解.9.【解析】【解答】A. 如果,那么,故不符合题意;B. 0的平方根是0,符合题意;C. 如果与是内错角,那么不一定相等,故不符合题意;D. 三角形的一个外角等于它的不相邻的两个内角之和,故不符合题意故答案为:B.【分析】根据命题的真假即可依次判断.10.【解析】【解答】∵,,∴∠EAC= + ,∵以点为圆心,为半径画弧,交的延长线于点,连接.∴AE=AD∴∠ADE= (180°-∠EAC)=35°,∴=180°-∠ADE=故答案为:D.【分析】先根据三角形外角定理求出∠EAC,再利用等腰三角形的性质得到∠ADE的度数,即可求出∠CDE的度数.11.【解析】【解答】设大和尚有人,小和尚有人,100个和尚分100个馒头∵大和尚1人分3个馒头,小和尚3人分一个馒头,∴可得和故②③符合题意故答案为:C.【分析】若大和尚有人,小和尚有人,根据列出二元一次方程组或一元一次方程即可判断.12.【解析】【解答】∵,设BE=x,则AE=8-x,在Rt△ABE中AE2=AB2+BE2,即(8-x)2=42+x2,解得x=3,故①符合题意;当时,∵EC=5∴AP∥EC,AP=CE,∴四边形APCE为平行四边形。

2015-2016学年度上学期期末考试八年级数学试卷(含答案)

2015-2016学年度上学期期末考试八年级数学试卷(含答案)

2015—2016学年度上学期期末考试八年级数学试题注意事项:1.本卷满分120分,考试时间120分钟。

2.本卷是试题卷,不能答题。

答题必须写在答题卡上。

解题中的辅助线和需标注的角、字母、符号等务必添在答题卡的图形上。

3.在答题卡上答题,选择题必须用2B铅笔填涂,非选择题必须用0.5毫米黑色签字笔或黑色墨水钢笔作答。

★祝考试顺利★一、选择题(每小题3分,共30分)1.下列图形中轴对称图形是()ABCD2,.已知三角形的三边长分别是3,8,x,若x的值为偶数,则x的值有( )A.6个B.5个C.4个D.3个3.一个多边形截去一个角后,形成的多边形的内角和是2520°,则原多边形的边数是( )A.15或16B.16或17C.15或17D.15.16或174.如图,△ACB≌△A'CB',∠BCB'=30°,则∠ACA'的度数为( )A.20°B.30°C.35°D.40°5, 等腰三角形的两边长分别为5cm 和10cm,则此三角形的周长是()A.15cmB. 20cmC. 25cmD.20cm或25cm6.如图,已知∠CAB=∠DAB,则添加下列一个条件不能使△ABC≌△ABD的是( )A.AC=ADB.BC=BDC.∠C=∠DD.∠ABC=∠ABD7.如图,已知在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,BC=5,DE =2,则△BCE的面积等于( )A.10B.7C.5D.4第9题图 8.若()22316m x x+-+是完全平方式,则m 的值等于( )A. 3B. -5C.7D. 7或-19.如图,在△ABC 中,AB =AC ,BE=CD ,BD =CF ,则∠EDF 的度数为 ( ) A .1452A ︒-∠ B .1902A ︒-∠ C .90A ︒-∠ D .180A ︒-∠第10题 10.如上图,等腰Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,∠ABC 的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连接DM ,下列结论:① DF =DN ;② △DMN 为等腰三角形;③ DM 平分∠BMN ;④ AE =32EC ;⑤ AE =NC ,其中正确结论的个数是( )A .2个B .3个C .4个D .5个二、填空题(每小题3分,共24分)11.计算:()()312360.1250.2522⨯-⨯⨯- = 12,在实数范围内分解因式:3234a ab - = 13.若2,3,mn xx ==则2m nx+=14.若A (x ,3)关于y 轴的对称点是B (﹣2,y ),则x=__________,y=__________,点A 关于x 轴的对称点的坐标是__________.15,如图,△ABC 中,DE 是AC 的垂直平分线,AE =3 cm ,△ABD 的周长是13 cm ,则△ABC 的周长为 _________第15题图 第17题图16,已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为40°,求此等腰三角形的顶角为17.如图,∠AOB =30°,点P 为∠AOB 内一点,OP =8.点M 、N 分别在OA 、OB 上,则△PMN 周长的最小值为__________2第18题图18. 如图所示,在△ABC 中,∠A =80°,延长BC 到D ,∠ABC 与∠ACD 的平分线相交于A 1点,∠A 1BC 与∠A 1CD 的平分线相交于A 2点,依此类推,∠A 4BC 与∠A 4CD 的平分线相交于A 5点,则∠A 5的度数是 。

2015-2016学年深圳市福田区翰林学校八上第一次月考数学试卷

2015-2016学年深圳市福田区翰林学校八上第一次月考数学试卷

2015-2016学年深圳市福田区翰林学校八上第一次月考数学试卷一、选择题(共10小题;共50分)1. 在,,,,,,中,无理数有A. 个B. 个C. 个D. 个2. 下列说法不正确的是A. 的平方根是B. 是的算术平方根C. 的平方根是D.3. 下列各式中正确的是A. B.C. D.4. 三角形各边长度如下,其中不是直角三角形的是A. ,,B. ,,C. ,,D. ,,5. 下列说法中正确的是A. 已知,,是三角形的三边,则B. 在直角三角形中两边和的平方等于第三边的平方C. 在中,,所以D. 在中,,所以6. 下列各式中无意义的是A. B. C. D.7. 若,,且,则的值为A. B. 或 C. D.8. 如图,有一块直角三角形纸片,两直角边,,现将直角边沿直线折叠,使它落在斜边上且与重合,则等于A. B. C. D.9. 在中,,.高.则的周长是A. B. C. 或 D. 或10. 已知:,,是的三边,化简A. B. C. D.二、填空题(共5小题;共25分)11. 的平方根是,的立方根是,的绝对值是.12. 化简:,,.13. 比较大小,填“”或“”:,.14. 如图,由四个直角三角形拼成个正方形,则个直角三角形面积小正方形面积大正方形面积,即.化简得:.15. 如图,长方体的长为,宽为,高为,点到点的距离为,一只蚂蚁如果沿着长方体的表面从点爬到点,需要爬行的最短距离是.三、解答题(共3小题;共39分)16. 化简:(1)(2);(3);(4).17. “交通管理条例第三十五条”规定:小汽车在城街路上行驶速度不得超过千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方米处,过了秒后,测得小汽车与车速检测仪间距离为米,这辆小汽车超速了吗?18. 已知,,满足,求的值.答案第一部分1. B2. B3. D4. C5. D6. D7. B8. B9. C 10. C第二部分11. ;;12. ;;13. ;;14. ;;15.第三部分原式16. (1)原式(2)原式(3)原式(4)17. 由勾股定理得,(米),米/秒,而米/秒千米/小时,,这辆小汽车超速了.18. ,解得:.。

广东省深圳市2015-2016学年八年级(上)期中数学试卷(含解析)

广东省深圳市2015-2016学年八年级(上)期中数学试卷(含解析)

2015-2016学年广东省深圳市八年级(上)期中数学试卷一、单项选择题(每题3分,共30分)1.下列根式中不是最简二次根式的是( )A.B.C.D.2.下列各组图形,可以经过平移变换由一个图形得到另一个图形的是( )A.B.C.D.3.的立方根是( )A.4 B.±4 C.2 D.±24.下列运算正确的是( )A.+=B.×=C.(﹣1)2=3﹣1 D.=5﹣3 5.若线段a,b,c能构成直角三角形,则它们的比为( )A.2:3:4 B.3:4:6 C.5:12:13 D.4:6:76.和数轴上的点成一一对应关系的数是( )A.自然数B.有理数C.无理数D.实数7.下列说法错误的是( )A.1的平方根是±1 B.﹣1的立方根是﹣1C.是2的一个平方根D.﹣3是的一个平方根8.下列说法错误的是( )A.经过平移,对应点所连的线段平行且相等B.经过平移,对应线段平行C.平移中,图形上每个点移动的距离可以不同D.平移不改变图形的形状和大小9.一个直角三角形的两条直角边分别为5,12,则斜边上的高为( ) A.B.C.D.10.如图,一只蚂蚁从长宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是( )A.(3+8)cm B.10cm C.14cm D.无法确定二、填空题(每题3分,共18分)11.立方根等于它本身的数为__________.12.现有一长5米的梯子架靠在建筑物的墙上,它们的底部在地面的水平距离是3米,则梯子可以到达建筑物的高度是__________米.13.若一个正数的两个平方根分别为a+2与3a﹣1,则a的值为__________.14.若,则y=__________.15.若a、b为实数,且满足|a﹣2|+=0,则b﹣a的值为__________.16.我们把符合等式a2+b2=c2的a、b、c三个称为勾股数.现请你用计算器验证下列各组的数是否勾股数.你能发现其中规律吗?请完成下列空格.3,4,5;5,12,13;7,24,25;9,40,41;11,__________,__________;…三、解答题(共52分)17.(16分)计算题(1)(x﹣2)3=64,求x; (2)(﹣)×(3)+﹣()2(4)(3﹣2+)÷2.18.(1)图1,平移方格纸中的图形,使点A平移到点A′处,画出移后的图形.(2)在图2方格纸中画出三角形绕O点逆时针旋转90°后的图形.19.已知:一个正方体的棱长是5cm,要再做一个正方体,它的体积是原正方体积的8倍,求新的正方体的棱长.20.如图四边形ABCD是一块草坪,量得四边长AB=3m,BC=4m,DC=12m,AD=13m,∠B=90°,求这块草坪的面积.21.已知x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的平方根.22.一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米到A′,那么梯子的底端在水平方向滑动了几米?23.====﹣2===﹣请回答下列问题:(1)观察上面的解题过程.请直接写出结果.=__________(2)利用上面提供的信息请化简:+++…+的值.参考答案一、单项选择题(每题3分,共30分)1.下列根式中不是最简二次根式的是( )A.B.C.D.【考点】最简二次根式.【分析】找到被开方数中含有开得尽方的因数的式子即可.【解答】解:各选项中只有选项C、=2,不是最简二次根式,故选:C.【点评】最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2.下列各组图形,可以经过平移变换由一个图形得到另一个图形的是( )A.B.C.D.【考点】生活中的平移现象.【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案.【解答】解:A、图形的形状和大小没有变化,符合平移的性质,属于平移得到;B、图形的大小发生变化,不符合平移的性质,不属于平移得到;C、图形的方向发生变化,不符合平移的性质,不属于平移得到;D、图形由轴对称得到,不属于平移得到.故选A.【点评】本题考查平移的基本性质,平移不改变图形的形状、大小和方向.注意结合图形解题的思想.3.的立方根是( )A.4 B.±4 C.2 D.±2【考点】立方根;算术平方根.【专题】常规题型.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.根据算术平方根的定义可知64的算术平方根是8,而8的立方根是2,由此就求出了这个数的立方根.【解答】解:∵64的算术平方根是8,8的立方根是2,∴这个数的立方根是2.故选C.【点评】本题主要考查了立方根的概念的运用.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.4.下列运算正确的是( )A.+=B.×=C.(﹣1)2=3﹣1 D.=5﹣3【考点】实数的运算.【分析】A、B、C、D利用根式的运算顺序及运算法则、公式等计算即可求解.【解答】解:A、不是同类二次根式,不能合并,故选项错误;B、×=,故选项正确;C、是完全平方公式,应等于4﹣2,故选项错误;D、应该等于,故选项错误;故选B.【点评】本题考查的是二次根式的运算能力.注意:要正确掌握运算顺序及运算法则、公式等.5.若线段a,b,c能构成直角三角形,则它们的比为( )A.2:3:4 B.3:4:6 C.5:12:13 D.4:6:7【考点】勾股定理的逆定理.【分析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、22+32≠42,不能构成直角三角形,故错误;B、32+42≠62,不能构成直角三角形,故错误;C、52+122=132,能构成直角三角形,故正确;D、42+62≠72,不能构成直角三角形,故错误.故选C.【点评】解答此题要用到勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.6.和数轴上的点成一一对应关系的数是( )A.自然数B.有理数C.无理数D.实数【考点】实数与数轴.【分析】根据数轴特点,数轴上的点都表示一个实数,实数都可以用数轴上的点来表示.【解答】解:∵任何实数都可以用数轴上的点来表示,数轴上的任何一点都表示一个实数,∴和数轴上的点成一一对应关系的数是实数.故选:D.【点评】此题考查了实数和数轴上的点之间的关系:实数和数轴上的是一一对应关系.7.下列说法错误的是( )A.1的平方根是±1 B.﹣1的立方根是﹣1C.是2的一个平方根D.﹣3是的一个平方根【考点】平方根;立方根.【分析】根据平方根,立方根的定义,即可解答.【解答】解:A.1的平方根是±1,正确;B.﹣1的立方根是﹣1,正确;C.是2的一个平方根,正确;D.,3的平方根是±,故错误;故选:D.【点评】本题考查了平方根、立方根,解决本题的关键是熟记平方根,立方根的定义.8.下列说法错误的是( )A.经过平移,对应点所连的线段平行且相等B.经过平移,对应线段平行C.平移中,图形上每个点移动的距离可以不同D.平移不改变图形的形状和大小【考点】平移的性质.【分析】直接利用平移的性质分别分析得出答案.【解答】解:A、经过平移,对应点所连的线段平行且相等,正确,不合题意;B、经过平移,对应线段平行,正确,不合题意;C、平移中,图形上每个点移动的距离一定相同,故此选项错误,符合题意;D、平移不改变图形的形状和大小,正确,不合题意.故选:C.【点评】此题主要考查了平移的性质,正确掌握平移的性质是解题关键.9.一个直角三角形的两条直角边分别为5,12,则斜边上的高为( )A.B.C.D.【考点】勾股定理.【分析】先利用勾股定理求出斜边的长,根据直角三角形的两直角边的乘积等于斜边与斜边上高的乘积(即ab=ch)这一性质可求.【解答】解:斜边长是:=13,2S△=5×12=13h,h=,故选C.【点评】此题主要考查了直角三角形的性质及勾股定理.10.如图,一只蚂蚁从长宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是( )A.(3+8)cm B.10cm C.14cm D.无法确定【考点】平面展开-最短路径问题.【分析】根据”两点之间线段最短”,将点A和点B所在的两个面进行展开,展开为矩形,则AB为矩形的对角线,即蚂蚁所行的最短路线为A B.【解答】解:将点A和点B所在的两个面展开,则矩形的长和宽分别为6和8,故矩形对角线长AB==10,即蚂蚁所行的最短路线长是10.故选B.【点评】本题的关键是将点A和点B所在的面展开,运用勾股定理求出矩形的对角线.二、填空题(每题3分,共18分)11.立方根等于它本身的数为1,﹣1,0.【考点】立方根.【分析】根据立方根的意义得出即可.【解答】解:立方根等于它本身的本身的数为1,﹣1,0,故答案为:1,﹣1,0.【点评】本题考查了立方根的应用,主要考查学生的理解能力和计算能力.12.现有一长5米的梯子架靠在建筑物的墙上,它们的底部在地面的水平距离是3米,则梯子可以到达建筑物的高度是4米.【考点】勾股定理的应用.【分析】将梯子靠在墙上,就会构成一个直角三角形,然后利用勾股定理解答.【解答】解:根据勾股定理即可求得:=4.【点评】考查了勾股定理在实际生活中的应用.13.若一个正数的两个平方根分别为a+2与3a﹣1,则a的值为﹣.【考点】平方根.【专题】计算题.【分析】根据正数的平方根互为相反数,两平方根相加等于0求出a值,再求出一个平方根,平方就可以得到这个正数.【解答】解:根据题意,(a+2)+(3a﹣1)=0,解得a=﹣,故答案为﹣.【点评】本题考查了平方根的知识,属于基础题,注意利用正数的两个平方根互为相反数的性质求解.14.若,则y=﹣8.【考点】立方根.【分析】根据开立方运算即可.【解答】解:∵=﹣2,∴y=﹣8.故答案为:﹣8.【点评】本题考查了开立方运算,如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果x3=a,那么x叫做a的立方根.15.若a、b为实数,且满足|a﹣2|+=0,则b﹣a的值为﹣2.【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,a﹣2=0,﹣b2=0,解得a=2,b=0,所以,b﹣a=0﹣2=﹣2.故答案为:﹣2.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.我们把符合等式a2+b2=c2的a、b、c三个称为勾股数.现请你用计算器验证下列各组的数是否勾股数.你能发现其中规律吗?请完成下列空格.3,4,5;5,12,13;7,24,25;9,40,41;11,60,61;…【考点】勾股数.【专题】规律型.【分析】通过观察,得这组勾股数用n表示为:2n+1,2n2+2n,2n2+2n+1,据此求解.【解答】解:先用计算机验证是勾股数;通过观察得到:这组勾股数用n表示为:2n+1,2n2+2n,2n2+2n+1,11是第5组勾股数的第一个小数,所以其它2个数为:2×52+2×5=60,2×52+2×5+1=61,故答案为:60、61.【点评】此题考查的知识点是勾股数,关键是首先通过计算得是勾股数,再观察得出规律,据规律求解.三、解答题(共52分)17.(16分)计算题(1)(x﹣2)3=64(2)(﹣)×(3)+﹣()2(4)(3﹣2+)÷2.【考点】实数的运算;立方根.【专题】计算题.【分析】(1)方程开立方即可求出x的值;(2)原式利用乘法分配律计算即可得到结果;(3)原式利用二次根式的性质,立方根及平方根定义计算即可得到结果;(4)原式利用多项式除以单项式法则计算即可得到结果.【解答】解:(1)开立方得:x﹣2=4,解得:x=6;(2)原式=﹣=9﹣12=﹣3;(3)原式=6+3﹣5=4;(4)原式=×2﹣1+×4=3﹣1+2=4.【点评】此题考查了实数的运算,以及立方根,熟练掌握运算法则是解本题的关键.18.(1)图1,平移方格纸中的图形,使点A平移到点A′处,画出移后的图形.(2)在图2方格纸中画出三角形绕O点逆时针旋转90°后的图形.【考点】作图-旋转变换;利用平移设计图案.【专题】作图题.【分析】(1)利用网格特点和平移的性质画图;(2)利用网格特点和旋转的性质画图.【解答】解:(1)如图1:(2)如图2:【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.19.已知:一个正方体的棱长是5cm,要再做一个正方体,它的体积是原正方体积的8倍,求新的正方体的棱长.【考点】立方根.【专题】应用题.【分析】由于新正方体的体积等于原正方体积的8倍,设新正方形的棱长为xcm,根据体积公式列关系式求解即可.【解答】解:设新正方形的棱长为x cm,则新正方体体积为x3cm3,依题意得:x3=8×53=(2×5)3,∴x=10(cm).答:新正方体的棱长为10cm.【点评】本题考查正方体的体积公式求法和依题意列代数式求值的能力.20.如图四边形ABCD是一块草坪,量得四边长AB=3m,BC=4m,DC=12m,AD=13m,∠B=90°,求这块草坪的面积.【考点】勾股定理的应用;三角形的面积.【专题】应用题.【分析】连接AC,由∠B=90°,AB=3cm,BC=4cm可知AC=5cm;由AC、AD、CD的长可判断出△ACD是直角三角形,根据两三角形的面积可求出草坪的面积.【解答】解:在Rt△ABC中,AB=3m,BC=4m,∠B=90°由勾股定理得AB2+BC2=AC2∴AC=5m在△ADC中,AC=5m,DC=12m,AD=13m∴AC2+DC2=169,AD2=169∴AC2+DC2=AD2∠ACD=90°四边形的面积=S Rt△ABC+S Rt△ADC===36(m2)答:这块草坪的面积是36m2.【点评】本题是勾股定理在实际中的应用,比较简单.21.已知x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的平方根.【考点】立方根;平方根.【分析】先运用立方根和平方根的定义求出x与y的值,再求出x2+y2的平方根.【解答】解:∵x﹣2的平方根是±2,2x+y+7的立方根是3,∴x﹣2=22,2x+y+7=27,解得x=6,y=8,∴x2+y2=62+82=100,∴x2+y2的平方根是±10.【点评】本题主要考查了立方根和平方根,解题的关键是正确求出x与y的值.22.一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米到A′,那么梯子的底端在水平方向滑动了几米?【考点】勾股定理的应用.【专题】几何图形问题.【分析】(1)利用勾股定理直接得出AB的长即可;(2)利用勾股定理直接得出BC′的长,进而得出答案.【解答】解:(1)由题意得:AC=25米,BC=7米,AB==24(米),答:这个梯子的顶端距地面有24米;(2)由题意得:BA′=20米,BC′==15(米),则:CC′=15﹣7=8(米),答:梯子的底端在水平方向滑动了8米.【点评】此题主要考查了勾股定理的应用,熟练利用勾股定理是解题关键.23.====﹣2===﹣请回答下列问题:(1)观察上面的解题过程.请直接写出结果.=﹣(2)利用上面提供的信息请化简:+++…+的值.【考点】分母有理化.【分析】(1)利用已知数据变化规律直接得出答案;(2)利用分母有理化的规律将原式化简进而求出即可.【解答】解:(1)==﹣;故答案为:﹣;(2)+++…+=﹣1+﹣+﹣+…+﹣=﹣1=2﹣1.【点评】此题主要考查了分母有理化,正确化简二次根式是解题关键.。

2015-2016年广东省深圳市民治中学八年级(上)期末数学模拟试卷含答案

2015-2016年广东省深圳市民治中学八年级(上)期末数学模拟试卷含答案

2015-2016学年广东省深圳市民治中学八年级(上)期末数学模拟试卷一、选择题(每小题3分,共36分.)1.(3分)9的算术平方根是()A.±3B.3C.D.2.(3分)二元一次方程2x﹣y=1有无数多个解,下列四组值中不是该方程的解是()A.B.C.D.3.(3分)某班抽取期中考试中6名同学的数学成绩是80,90,50,70,60,80.则众数和中位数分别是()A.80,80B.80,75C.80,70D.70,754.(3分)已知是方程kx﹣y=3的一个解,那么k的值是()A.2B.﹣2C.1D.﹣15.(3分)将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是()A.2、3、4B.4、5、6C.5、11、12D.8、15、17 6.(3分)在直角坐标系中,若点P(a,b)在第二象限中,则点Q(﹣a,﹣b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限7.(3分)已知正比例函数y=kx的函数值y随x的增大而减小,则一次函数y=kx ﹣k的图象大致是()A.B.C.D.8.(3分)下列计算中正确的是()A.B.C.D.9.(3分)有甲、乙两种水稻,测得每种水稻各10穴的分孽数后,计算出样本方差分别为S甲2=11,S乙2=3.4,由此可以估计()A.甲比乙种水稻分蘖整齐B.乙种水稻分蘖比甲种水稻整齐C.分蘖整齐程度相同D.甲、乙两种水稻分孽整齐程度不能比10.(3分)下列说法中正确的个数是()①“对顶角相等”的逆命题是真命题.②数据3,5,4,2,﹣1的中位数是3.③正比例函数y=kx(k≠0)的图象经过点(0,0)和(1,k).④无限小数都是无理数.A.1个B.2个C.3个D.4个11.(3分)小强每天从家到学校上学行走的路程为900m,某天他从家去上学时以每分30m的速度行走了450m,为了不迟到他加快了速度,以每分45m的速度行走完剩下的路程,那么小强离学校的路程s(m)与他行走的时间t(min)之间的函数关系用图象表示正确的是()A.B.C.D.12.(3分)如图,四棱柱的高为9米,底面是边长为6米的正方形,一只蚂蚁从如图1的顶点A开始,爬向顶点B.那么它爬行的最短路程为()A.10米B.12米C.15米D.20米二、填空题(每小题3分,共12分.)13.(3分)点(﹣2,3)在正比例函数y=kx的直线上,则k=.14.(3分)如图是一盘中国象棋残局的一部分,以“帅”为原点建立坐标系,知道“兵”所在位置的坐标是(2,3),则“炮”所在位置的坐标是.15.(3分)某公司招聘广告策划人员一名,对前来应聘的两人进行了3项素质测试,右表记录了他们两人的测试成绩:如果公司根据实际需要,对创新、语言、综合知识三项测试成绩分别赋予权4,3,2,那么将录用素质测试成绩最高的人员是.16.(3分)如图,有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,AD平分∠CAB,DE⊥AB于点E,则CD=.三、解答题(本大题共七个小题,共计52分)17.(9分)化简:①②.18.(6分)解方程组:.19.(6分)如图所示,已知∠B=∠C,AD∥BC,试说明:AD平分∠CAE.20.(6分)为了进一步了解八年级学生的身体素质情况,体育老师对八年级(1)班50位学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图.如下所示:请结合图表完成下列问题:(1)表中的a=;(2)请把频数分布直方图补充完整;(3)这个样本数据的中位数落在第组;(4)若八年级学生一分钟跳绳次数(x)在x≥120时为达标,计算该班学生测试成绩达标率为多少.21.(7分)列方程组解应用题:打折前,买10件A商品和5件B商品共用了400元,买5件A商品和10件B商品共用了350元.(1)求打折前A商品、B商品每件分别多少钱?(2)打折后,买100件A商品和100件B商品共用了3800元.比不打折少花多少钱?22.(9分)已知一次函数y=kx+b的图象经过点(﹣1,1)和点(1,﹣5)(1)求一次函数的表达式;(2)此函数与x轴的交点是A,与y轴的交点是B,求△AOB的面积;(3)求此函数与直线y=2x+4的交点坐标.23.(9分)已知四边形OABC是边长为4的正方形,分别以OA、OC所在的直线为x轴、y轴,建立如图1所示的平面直角坐标系,直线l经过A、C两点.(1)求直线l的函数表达式;(2)若P是直线l上的一个动点,请直接写出当△OPA是等腰三角形时点P的坐标;(3)如图2,若点D是OC的中点,E是直线l上的一个动点,求使OE+DE取得最小值时点E的坐标.2015-2016学年广东省深圳市民治中学八年级(上)期末数学模拟试卷参考答案与试题解析一、选择题(每小题3分,共36分.)1.(3分)9的算术平方根是()A.±3B.3C.D.【解答】解:9的算术平方根是3,故选:B.2.(3分)二元一次方程2x﹣y=1有无数多个解,下列四组值中不是该方程的解是()A.B.C.D.【解答】解:A、把x=1,y=1代入方程,左边=2﹣1=1=右边,所以是方程的解;B、把x=2,y=3代入方程,左边=右边=1,所以是方程的解;C、把x=﹣1,y=﹣3代入方程,左边=1=右边,所以是方程的解;D、把x=﹣1,y=﹣2代入方程,左边=0≠右边,所以不是方程的解.故选:D.3.(3分)某班抽取期中考试中6名同学的数学成绩是80,90,50,70,60,80.则众数和中位数分别是()A.80,80B.80,75C.80,70D.70,75【解答】解:在这一组数据中80是出现次数最多的,故众数是80;将这组数据从小到大的顺序排列后,处于中间位置的数是70,80,它们的平均数是75,那么由中位数的定义可知,这组数据的中位数是75.故选:B.4.(3分)已知是方程kx﹣y=3的一个解,那么k的值是()A.2B.﹣2C.1D.﹣1【解答】解:把代入方程kx﹣y=3,得:2k﹣1=3,解得k=2.故选:A.5.(3分)将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是()A.2、3、4B.4、5、6C.5、11、12D.8、15、17【解答】解:A、22+32≠42,不能组成直角三角形,故此选项错误;B、42+52≠62,不能组成直角三角形,故此选项错误;C、52+112≠122,不能组成直角三角形,故此选项错误;D、82+152=172,能组成直角三角形,故此选项正确.故选:D.6.(3分)在直角坐标系中,若点P(a,b)在第二象限中,则点Q(﹣a,﹣b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵点P(a,b)在第二象限中,∴a<0,b>0,∴﹣a>0,﹣b<0,∴点Q(﹣a,﹣b)在第四象限,故选:D.7.(3分)已知正比例函数y=kx的函数值y随x的增大而减小,则一次函数y=kx ﹣k的图象大致是()A.B.C.D.【解答】解:∵正比例函数y=kx(k≠0)函数值随x的增大而减小,∴k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过一、二、四象限;故选:C.8.(3分)下列计算中正确的是()A.B.C.D.【解答】解:A、不是同类二次根式,不能合并,故A选项错误;B、没有意义,故B选项错误;C、正确;D、不是同类二次根式,不能合并,故D选项错误.故选:C.9.(3分)有甲、乙两种水稻,测得每种水稻各10穴的分孽数后,计算出样本方差分别为S甲2=11,S乙2=3.4,由此可以估计()A.甲比乙种水稻分蘖整齐B.乙种水稻分蘖比甲种水稻整齐C.分蘖整齐程度相同D.甲、乙两种水稻分孽整齐程度不能比【解答】解:∵S甲2>S乙2,∴乙种水稻分蘖比甲种水稻整齐.故选:B.10.(3分)下列说法中正确的个数是()①“对顶角相等”的逆命题是真命题.②数据3,5,4,2,﹣1的中位数是3.③正比例函数y=kx(k≠0)的图象经过点(0,0)和(1,k).④无限小数都是无理数.A.1个B.2个C.3个D.4个【解答】解:①“对顶角相等”的逆命题是真命题,错误.②数据3,5,4,2,﹣1的中位数是3,正确.③正比例函数y=kx(k≠0)的图象经过点(0,0)和(1,k),正确.④无限小数都是无理数,错误,故选:B.11.(3分)小强每天从家到学校上学行走的路程为900m,某天他从家去上学时以每分30m的速度行走了450m,为了不迟到他加快了速度,以每分45m的速度行走完剩下的路程,那么小强离学校的路程s(m)与他行走的时间t(min)之间的函数关系用图象表示正确的是()A.B.C.D.【解答】解:小强离学校的路程S(米)应随他行走的时间t(分)的增大而减小,因而选项A、B一定错误;他从家去上学时以每分30米的速度行走了450米,所用时间应是15分钟,因而选项C错误;行走了450米,为了不迟到,他加快了速度,后面一段图象陡一些,选项D正确.故选:D.12.(3分)如图,四棱柱的高为9米,底面是边长为6米的正方形,一只蚂蚁从如图1的顶点A开始,爬向顶点B.那么它爬行的最短路程为()A.10米B.12米C.15米D.20米【解答】解:如图,(1)AB==;(2)AB==15,由于15>,则蚂蚁爬行的最短路程为15米.故选C.二、填空题(每小题3分,共12分.)13.(3分)点(﹣2,3)在正比例函数y=kx的直线上,则k=﹣.【解答】解:∵点(﹣2,3)在正比例函数y=kx的直线上,∴3=﹣2k,解得k=﹣.故答案为:﹣.14.(3分)如图是一盘中国象棋残局的一部分,以“帅”为原点建立坐标系,知道“兵”所在位置的坐标是(2,3),则“炮”所在位置的坐标是(﹣3,2).【解答】解:由“兵”的位置向左平移两个单位的直线是y轴,向下平移三个单位的直线是x轴,得平面直角坐标系,“炮“的位置是(﹣3,2),故答案为:(﹣3,2).15.(3分)某公司招聘广告策划人员一名,对前来应聘的两人进行了3项素质测试,右表记录了他们两人的测试成绩:如果公司根据实际需要,对创新、语言、综合知识三项测试成绩分别赋予权4,3,2,那么将录用素质测试成绩最高的人员是小李.【解答】解:==66;==73.可见,小李分数高,故答案为:小李.16.(3分)如图,有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,AD平分∠CAB,DE⊥AB于点E,则CD=3cm.【解答】解:∵在Rt△ABC中,AC=6cm,BC=8cm,∴AB=10cm,∵AD平分∠CAB,DE⊥AB,∴DC=DE,在Rt△ADC和Rt△ADE中,∵,∴Rt△ADC≌Rt△ADE,∴AE=AC=6cm,∴BE=AB﹣AE=10﹣6=4cm,设CD=x,则DE=x,DB=8﹣x,在Rt△BDE中,BD2=DE2+BE2,即(8﹣x)2=x2+42,解得x=3,则CD的长为3cm.故答案为:3cm.三、解答题(本大题共七个小题,共计52分)17.(9分)化简:①②.【解答】解:(1)原式===6;(2)原式==.18.(6分)解方程组:.【解答】解:,①+②得:4x=2,即x=,把x=代入①得:y=,则方程组的解为.19.(6分)如图所示,已知∠B=∠C,AD∥BC,试说明:AD平分∠CAE.【解答】证明:∵AD∥BC(已知)∴∠B=∠EAD(两直线平行,同位角相等)∠DAC=∠C(两直线平行,内错角相等)又∵∠B=∠C(已知)∴∠EAD=∠DAC(等量代换)∴AD平分∠CAE(角平分线的定义).20.(6分)为了进一步了解八年级学生的身体素质情况,体育老师对八年级(1)班50位学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图.如下所示:请结合图表完成下列问题:(1)表中的a=12;(2)请把频数分布直方图补充完整;(3)这个样本数据的中位数落在第三组;(4)若八年级学生一分钟跳绳次数(x)在x≥120时为达标,计算该班学生测试成绩达标率为多少.【解答】解:(1)6+8+a+18+6=50,解得a=12;(2)补全频率分布直方图如下所示:(3)∵按照跳绳次数从少到多,第25、26两人都在第三组,∴中位数落在第三组;(4)∵×100%=72%,∴该班学生测试成绩达标率为72%.故答案为:(1)12;(3)三.21.(7分)列方程组解应用题:打折前,买10件A商品和5件B商品共用了400元,买5件A商品和10件B商品共用了350元.(1)求打折前A商品、B商品每件分别多少钱?(2)打折后,买100件A商品和100件B商品共用了3800元.比不打折少花多少钱?【解答】(1)解:设打折前A商品每件x元、B商品每件y元,根据题意,得…(1分)由题意得…(2分)解之得…(3分)答:打折前A商品每件30元、B商品每件20元.…(4分)(2)解:打折前,买100件A商品和100件B商品共用:100×30+100×20=5000 (元)…(5分)比不打折少花:5000﹣3800=1200 (元)…(6分)答:打折后,买100件A商品和100件B商品比不打折少花1200元.…(7分)22.(9分)已知一次函数y=kx+b的图象经过点(﹣1,1)和点(1,﹣5)(1)求一次函数的表达式;(2)此函数与x轴的交点是A,与y轴的交点是B,求△AOB的面积;(3)求此函数与直线y=2x+4的交点坐标.【解答】解:(1)∵一次函数y=kx+b的图象经过点(﹣1,1)和点(1,﹣5),∴,解得,∴一次函数的表达式为:y=﹣3x﹣2;(2)∵令y=0,则x=﹣;令x=0,则y=﹣2,∴A(﹣,0),B(0,﹣2),=××2=;∴S△AOB(3)∵解方程组得,,∴此函数与直线y=2x+4的交点坐标为(﹣,).23.(9分)已知四边形OABC是边长为4的正方形,分别以OA、OC所在的直线为x轴、y轴,建立如图1所示的平面直角坐标系,直线l经过A、C两点.(1)求直线l的函数表达式;(2)若P是直线l上的一个动点,请直接写出当△OPA是等腰三角形时点P的坐标;(3)如图2,若点D是OC的中点,E是直线l上的一个动点,求使OE+DE取得最小值时点E的坐标.【解答】解:(1)设直线l的函数表达式y=kx+b(k≠0),经过A(4,0)和C (0,4)得,解之得,∴直线l的函数表达式y=﹣x+4;(2)P1(0,4)、P2(2,2)、P3、P4;(3)∵O与B关于直线l对称,∴连接DB,交AC于点E,则点E为所求,此时OE+DE取得最小值,设DB所在直线为y=k1x+b1(k1≠0),经过点D(0,2)、B(4,4),解得∴直线DB为,解方程组:,得,∴点E的坐标为.。

八年级数学第一学期期末统考试卷(深圳福田区期末统考)

八年级数学第一学期期末统考试卷(深圳福田区期末统考)

2014-2015 学年第一学期教学质量检测八年级数学试卷(福田区期末统考)说明:本试卷考试时间90 分钟,满分100 分,答题必须在答题卷上作答,在试题卷上作答无效.第一部分选择题一、选择题(本题共12 小题,每小题3 分,共36 分,每小题给出4 个选项,其中只有一个是正确的)1.16 的算术平方根是()A.-4 B.4 C. 4 D.±42.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是()A.1,2,3 B.2,3,4 C.3,4,5 D.4,5,63.下列实数中是无理数的是()A. 4 B.πC.0.141414 D.-10 34.如图,将三角板的直角顶点放在直尺的一边上,∠1 = 30︒,∠2 = 50︒,则∠3 的度数是()A.50°B.30°132 C.20°D.15°5.下列各点不在直线y =-x +2上的是()A.(3,-1)B.(2, 0)C.(-1, 1)D.(-3, 5)6.在直角坐标系中,点M (1,2) 关于x 轴对称的点的坐标为()A.(-1, 2)B.(2,-1)C.(-1,-2)D.(1,-2)7.下列函数中,y 随x 增大而减小的是()A.y =x +1B.y =0.5x C.y = 3x -2D.y =-2x +18.班长调查了三班近10 天的数学课堂小测验,在这10 天,小测验的不及格人数为(单位:个)0,2,0,3,1,1,0,2,5,1 在这10 天,小测验不及格的人数的()A.平均数为1.5 B.方差为1.5 C.极差为1.5 D.标准差为1.59.下列各式中,一定正确的是()A.(-5)2 =-5B.9 =±3C.a2 =a D=-1210.下列四个命题中,真命题有( )①两条直线被第三条直线所截,内错角相等②如果∠1 和∠2 是对顶角,那么∠1 = ∠2③三角形的一个外角大于任何一个内角④如果 x 2 > 0 ,那么 x > 0A .1 个B .2 个C .3 个D .4 个11.如图,是某蓄水池的横断面示意图,分为深水池和浅水池,如果这个蓄水池以固定的量注水,下面能 大致表示水的最大深度 h 与时间 t 之间的关系的图象是()A .B .C .D .12.如图,OA 和 BA 分别表示甲、乙两名学生运动的一次函数的图象,图中 s 和 t 分别表示路程和时间, 根据图象判断快者比慢者的速度每秒快()A .2.5 米B .2 米C .1.5 米D .1 米第二部分 非选择题二、填空题(本题共 4 小题,每小题 3 分,共 12 分)13.如果数据 1,4,x ,5 的平均数是 3,那么 x =.14.若 y = (a +1)x a + (b - 2) 是正比例函数,则 (a - b )2015 的值是.x15.如图,已知一次函数 y = kx + b 的图象如图所示,则当 y > 0 时,x 的取值范围为 .16.如图,在平面直角坐标系中,O 为坐标原点,四边形 OABC 是长方形,BC //OA ,点 A 、C 的坐标分别 为 A (10, 0) , C (0, 4) ,M 是 OA 的中点,点 P 在 BC 边上运动,当△OPM 是腰为 5 的等腰三角形时,则点 P 的坐标为.x2 ⎪ 1 三、解答题(本题共 7 小题,其中第 17 题 10 分,第 18 题 6 分,第 19 题 7 分,第 20 题 6 分,第 21 题 6分,第 22 题 7 分,第 23 题 10 分,共 52 分)17.(第小题 5 分,共 10 分)计算:-1(1) (2015 - π )0 + ⎛ ⎫ ⎝⎭-1)(2) 8 + 2 + 212 ⨯ 3⎧2x - y = 118.(本题 6 分)解方程组: ⎨. ⎩3x + 2 y = 519.(本题 7 分)为了提高节能意识,深圳某中学对全校的耗电情况进行了统计,他们抽查了 10 天中全校每天的耗电量,数据如下表(单位:度):(1)写出学校这 10 天耗电量的众数和平均数;(2)若每度电的定价是 0.8 元,由上题获得的数据,估计该校每月应付电费是多少?(每月按 30 天计算); (3)如果做到人走电关,学校每天就可节省电量 1%,按照每度电 0.8 元计算,写出该校节省电费 y (元) 与天数 x (x 取正整数,单位:天)之间的函数关系式.20.(本题 6 分)如图,已知 ∠1 = ∠2 , ∠A = ∠D ,求证: ∠C = ∠F .F E D2 MN 1 ABC21.(本题6 分)某校科技节,购买A、B 两种笔记本作为奖品,这两种笔记本的单份分别是12 元和8 元,根据比赛设奖情况,需要购买两种笔记本共30 本,共用资金280 元,求购买A、B 两种笔记本各多少本?22.(本题7 分)直线AB:y =-x +b 分别与x、y 轴交于A(6,于C,且OB : OC = 3 : 1.(1)求点B 的坐标;0) 、B 两点,过点B 的直线交x 轴负半轴(2)求直线BC 的解析式;(3)直线EF 的解析式为y = x,直线EF 交AB 于点E,交BC 于点F,求证:S∆EBO=S∆FBO23.(本题10 分)如图,在平面直角坐标系中,O 是坐标原点,长方形OACB 的顶点A、B 分别在x 轴与y 轴上,已知OA = 3,点D 为y 轴上一点,其坐标为(0,1),CD = 5,点P 从点A 出发以每秒1 个单位的速度沿线段A-C-B 的方向运动,当点P 与点B 重合时停止运动,运动时间为t 秒.(1)求B、C 两点坐标;(2)①求△OPD 的面积S 关于t 的函数解析式;②当点D 关于OP 的对称点E 落在x 轴上时,求点E 的坐标;(3)在(2)②情况下,在直线OP 上求一点F,使FE + F A 最小.。

2015--2016学年八年级上册期末考试数学试题及答案【新课标人教版】

2015--2016学年八年级上册期末考试数学试题及答案【新课标人教版】

2015-2016 学年度第一学期末测试一、选择题:1. 如下书写的四个汉字,是轴对称图形的有()个。

A.1 B2 C.3 D.42. 与3-2 相等的是()A. 19B.19C.9D.-913. 当分式有意义时,x 的取值范围是()x 2A.x <2B.x >2C.x ≠2D.x ≥ 24. 下列长度的各种线段,可以组成三角形的是()A.1 ,2,3B.1 ,5,5C.3 ,3,6D.4 ,5,65. 下列式子一定成立的是()A. 2 33a 2a a B.2 a a3 6a C.23 a6a D.a6 a2 a36. 一个多边形的内角和是900°,则这个多边形的边数为()A.6B.7C.8D.97. 空气质量检测数据p m2.5 是值环境空气中,直径小于等于 2.5 微米的颗粒物,已知1 微米=0.000001 米,2.5 微米用科学记数法可表示为()米。

6 B.2.5 ×105 C.2.5 ×10-5 D.2.5 ×10A.2.5 ×10-68. 已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为()。

A.50 °B.80 °C.50 °或80°D.40 °或65°3 2 2 分解因式结果正确的是()9. 把多项式x x xA. 2x( x 1) B. 2 2 xx(x 1) C. x(x 2 ) D. x(x 1)( x 1)10. 多项式2x( x 2) 2 x 中,一定含下列哪个因式()。

A.2x+1B.x (x+1)2C.x (x2-2x )D.x (x-1 )11. 如图,在△ABC中,∠BAC=110°,MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是()A.20 °B.40 °C.50 °D.60 °12. 如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D 点,AD=2.5cm,DE=1.7cm,则BE的长为()A.0.8B.1 C .1.5 D.4.213. 如图,折叠直角三角形纸片的直角,使点C落在AB上的点E处,已知BC=24,∠B=30°,则DE的长是()A.12B.10C.8D.614. 如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则拼成的矩形的面积是()cm2.2 B.3a+15 C .(6a+9)D.(6a+15)A.2a 5a15. 艳焕集团生产某种精密仪器,原计划20 天完成全部任务,若每天多生产 4 个,则15 天完成全部的生产任务还多生产10 个。

广东省深圳市福田区第一学期初二数学期末试卷

广东省深圳市福田区第一学期初二数学期末试卷

广东省深圳市福田区第一学期初二数学期末试卷一、选择题1. (4分)已知函数f(x) = 2x - 5,求f(3)的值。

答:f(3) = 2 * 3 - 5 = 12. (4分)某个正整数的个位是3,十位和百位数字的和是8,求这个正整数。

答:设该正整数为100a + 10b + 3,题目所给条件可以表示为 a + b = 8。

为了个位数字为3,需要 a 和 b 中至少有一个等于5。

而 a 和 b 只能取 5 和 3 这两个数,因此这个正整数为 100 * 5 + 10 * 3 + 3 = 563。

3. (4分)求 (1 + 2 + 3 + ... + 10) ÷ 5 的值。

答:根据等差数列求和公式,1 + 2 + 3 + ... + 10 = (10 * (10 + 1)) / 2 = 55。

所以,(1 + 2 + 3 + ... + 10) ÷ 5 = 55 ÷ 5 = 11。

4. (4分)在平行四边形中,对角线相交于点O,如图所示,求∠ADC的度数。

(此处插入图示,请参考试卷实际内容)答:对角线互相等分,所以∠ADC=∠AOD=90°。

二、填空题1. (4分)A:在立方体中,每个面的平方和是________。

答:每个面的平方和是6。

2. (4分)A:三角形ABC中,已知∠A=30°,∠B=40°,则∠C=________。

答:由三角形内角和公式可知,∠C=180° - ∠A - ∠B = 110°。

3. (4分)A:已知y = 4x + 3,若x取值为5,则y的值为________。

答:当x取值为5时,代入y = 4x + 3中计算得到y = 4 * 5 + 3 = 23。

4. (4分)A:52÷(12-6)= ________。

答:52÷(12-6)= 52 ÷ 6 = 8。

三、计算题1. (8分)已知一个长方形的长是8cm,宽是5cm,求其周长和面积。

福田区八上期末数学试卷

福田区八上期末数学试卷

一、选择题(每题4分,共40分)1. 下列各数中,绝对值最小的是()A. -2B. 3C. -1/2D. 02. 已知等腰三角形底边长为6,腰长为8,则该等腰三角形的面积为()A. 24B. 28C. 32D. 363. 若方程x^2 - 5x + 6 = 0的两个根分别为a和b,则a+b的值为()A. 5B. 6C. 10D. 114. 在直角坐标系中,点A(2,3)关于原点的对称点为()A. (2,-3)B. (-2,3)C. (-2,-3)D. (2,-3)5. 若等比数列的首项为2,公比为3,则该数列的前5项和为()A. 157B. 189C. 289D. 3286. 下列函数中,是奇函数的是()A. y = x^2B. y = |x|C. y = x^3D. y = x^47. 已知二次函数y = ax^2 + bx + c(a≠0)的图像开口向上,且顶点坐标为(-1,2),则a的值为()A. 1B. 2C. -1D. -28. 在等差数列中,第1项为2,公差为3,则第10项与第15项之和为()A. 44B. 48C. 52D. 569. 若a,b,c是等差数列的三项,且a+b+c=0,则b的值为()A. 0B. 1C. -1D. -210. 在直角坐标系中,直线y = kx + b与y轴的交点坐标为(0,b),则k的取值范围是()A. k > 0B. k < 0C. k ≠ 0D. k = 0二、填空题(每题4分,共40分)11. 若方程2x^2 - 4x + 3 = 0的两个根分别为x1和x2,则x1x2的值为______。

12. 在等腰三角形ABC中,底边AB=AC=6,腰BC=8,则三角形ABC的周长为______。

13. 若等比数列的首项为3,公比为1/2,则该数列的第5项为______。

14. 在直角坐标系中,点P(-3,2)关于y轴的对称点坐标为______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016八年级上学期期末统考试卷
选择题
1. 下列各数是无理数的是()
A、B、C、3.14159 D、
2. 在平面直角坐标系中,点P(-3,4)关于x轴的对称点的坐标为()
A、(4,-3)
B、(3,4)
C、(3,-4)
D、(-3,-4)
3. 点A(1,)、B(2,)在直线上,与的大小关系是()
A、B、C、D、不能确定
4.若直角三角形的三边长分别为6,10,,则的值为()
A. 8
B. 64
C. 136
D. 136或64
5.方程组的解是()
A. B. C. D.
6.一组数据1,1,2,3,4,4,5,6的众数为()
A. 1
B. 4
C. 1和4
D. 3.5
6.如图1,对于图中标记的各角,下列条件能够推理得到∥的是()
A. B.
C. D.
8.如图2,动点P从(1,2)出发,沿图中的箭头方向运动,每当碰到长方形的边时反弹(反弹时反射角等于入射角),假设反弹可以无限进行下去,则在点P运动路径上的点是()
A. (0,5)
B. (5,0)
C. (3,3)
D. (7,3)
9.在平面内有下列三条直线:①经过点(0,2)且平行于x轴的直线,②直线
③经过点(0,12)且平行与直线的直线,期中经过点(5,2)但不经过第三象限的直线共有()
A. 0条
B.1条
C.2条
D.3条
10. 若(n为整数),则m的值可以是()
A. B.18 C.24 D.75
11. 将一摞笔记本分组若干同学,每个同学5本,则剩下8本;每个同学8本,又差7本,若设有x个同学,y本笔记本,则可得方程组()
A. B. C. D.
12. 如图3,平行于x轴的直线l与y轴、直线y=3x、直线y=x分别交于点A 、B、C,则下列结论正确的个数有()
①∠AOB+∠BOC=45°;②BC=2AB;③OB2=10AB2;④OC2=OB2
A.1个
B.2个
C.3个
D.4个
二、填空题:(本题共4个小题,每小题3分,共12分)
13、的算术平方根是
14、“对顶角相等”的逆命题是命题(填“真”或“假”)
15、一副三角板如图4所示叠放在一起,则图中∠ABC=
16. 如图5:直线的表达式为,且直线与轴的交点为点,直线l2经过点A,B,直线l1,l2交于点C.则△ADC的面积为_________________。

三.解答题(本题共7小题,其中第17小题8分,第18小题5分,第19小题6分,第20小题7分,第21小题8分,第22小题8分,第23小题10分,共52分)
17(本题8分,期中第(1)小题3分,第(2)小题5分)计算:
(1)(2)
19(本题6分)如图所示,现有下列4个事项:(1)∠1=∠2,(2)∠3=∠B,(3)FG⊥AB于G,(4)CD⊥AB于D。

以上述4个事项中的(1)、(2)、(3)三个作为一个命题的已知条件,
(4)作为该命题的结论,可以组成一个真命题,请你证明这个真命题。

20.我市某中学七、八年级各选派10名选手参加学校举办的“爱我荆门”知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀.这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下,其中七年级代表队得6分、10分的选手人数分别为a,b.
(2)直接写出表中的m,n的值;
(3)有人说七年级的合格率、优秀率均高于八年级,所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.
21. 某服装店用7000元购进A,B两种新式服装,按标价售出后可获得毛利润4000元(毛利润=售价-进价),这两种服装的进价、标价如下表所示:
A型B型
进价(元/件)60100
标价(元/件)100150
求:这两种服装各购进的件数;
22.如右图,是一个圆柱形的饼干盒,在盒子外侧的下底面的处有甲乙两只蚂蚁,它们都想要吃到上底面外侧的食物,甲蚂蚁沿A→A’→B的折线爬行,乙蚂蚁沿圆柱的侧面爬行,若∠A’OB’=,(AA’、BB’、都与圆柱中的中轴线OO’平行),圆柱的底面半径是12,高为1,则
1)A’B’=_______cm,甲蚂蚁要吃到食物需要爬行的路程=_________cm。

2)乙蚂蚁要吃到食物需要爬行的最短路程=_________cm。

(取3)
3)若两只蚂蚁同时出发,且爬行速度相同,在乙蚂蚁采取最佳策略的前提下,哪只蚂蚁先到达食物处,请你通过计算
或者合理的估算说明理由。

(参考数据:取3,)
23.(本题10分)二轮自行车的后轮磨损比前轮磨损要大,当轮胎的磨损度(% )达到100时,轮胎就报废了,当两个轮胎中的一个报废后,自行车就不能继续骑行了。

过去的资料表明:把甲乙两个同质、同型号的新轮胎分别安装在一个自行车的前、后轮上后,甲乙轮胎的磨损度(% )
与自行车的骑行路程(百万米)都成正比例关系,如图1所示:
1)填空:线段表示的是________________轮(填甲或乙),它的表达式为_________________.(不必写出自变量的取值范围)
2)求出直线的表达式。

根据过去的资料,这辆自行车最多可骑行多少百万米?
3)爱动脑筋的小聪,想了一个增大自行车骑行路程的方案:如图(2),当自行车骑行百万米后,我们可以交换自行车的前后轮,使得甲乙两个轮胎在百米处同时报废,请你确定方案中的值.。

相关文档
最新文档