02-课件:3.1 机器人位置运动学
第三章机器人运动学PPT课件
单位主矢量相对于坐标系{A}的方向余弦组成:
xB
yB
zB
xA
yA
zA
其中:cos cos(xB , xA )
既表示了刚体F在{A}系中的方位,也描述了{B}系在{A}系中的 姿态。
3.1.2.2 坐标变换
一、坐标平移
如图3-5,坐标系{B}与{A} 方向相同,但原点不重合。
图3-5 坐标平移
此式称为平移方程。其中 是B系中的原点在A系中的表示。
xA
OB
30o xB
yA yB 30o
所以有:
cos 300 sin 300 0 0.866 0.5 0
A B
R
R(
z,300
)
sin
300
cos 300
0
0.5
0.866 0
0
0
1 0
0 1
10
A PBO
5
0
最后得: APBAR BP APBO
9.098 12.562
第三章 机器人的运动学
3.1 工业机器人运动学
3.1.1 相关知识回顾
一、行列式和矩阵 1. 行列式按照行(或列)展开法则:行列式等于它的任意一行 (或列)各元素与其对应的代数余子式乘积之和。
2.行矩阵 3.列矩阵 4.矩阵相等:两同型矩阵(行数和列数都相等)对应元素相等。
5.单位矩阵:主对角线元素为1,其它所 有的元素都为0的方阵。 6.矩阵的运算 (1)矩阵的加法:两同型矩阵的对应元素相加。
,它的齐
次坐标就是
,即满足Px=ωPx/ω,Py=ωPy/ω,
Pz=ωPz/ω(ω是非零整数)。可以看出,在三维直角坐标系中,
由于ω取值的不同,一个点的齐次坐标的表达不唯一。
机器人运动学课件
轨迹规划实现
坐标系选择
在进行轨迹规划时,需要选择合适的坐标系,如笛卡尔坐 标系和关节坐标系等,以便于描述机器人的运动轨迹和关 节角度。
插值函数选择
选择合适的插值函数能够保证机器人的运动轨迹的光滑性 和连续性,需要根据实际需求和约束条件来确定插值函数 的形式和参数。
插值点选择
选择合适的插值点是实现精确轨迹的关键,需要根据实际 需求和约束条件来确定插值点的数量和位置。
根据不同的分类标准,轨迹规划可以分为多种类型,如基于时间的轨迹 规划、基于空间的轨迹规划、笛卡尔空间的轨迹规划和关节空间的轨迹 规划等。
轨迹规划方法
基于多项式的轨迹规划方法
基于样条曲线的轨迹规划方法
该方法通过使用多项式函数来描述机器人 的运动轨迹,具有简单、易实现的特点, 但可能会产生较大的轨迹误差。
描述机器人末端执行器的 方向变化。
齐次变换矩阵
用于描述平移和旋转的复 合变换,包括旋转和平移 矩阵的组合。
03
机器人运动学方程
齐次变换
齐次变换定义
齐次变换描述了刚体在空间中的位置和姿态,由平移和旋转组成 。
齐次变换矩阵
齐次变换可以用一个4x4的矩阵来表示,该矩阵包含了刚体的位置 信息和姿态信息。
绝对位置
相对于参考坐标系的机器 人位置。
相对位置
相对于机器人上某固定参 考点的位置。
姿态描述
方向描述
描述机器人的朝向,通常使用欧拉角 (俯仰角、偏航角、滚动角)或四元 数表示。
姿态矩阵
通过旋转和平移矩阵描述机器人末端 执行器的姿态。
坐标系转换
平移变换
描述机器人末端执行器在 空间中的位置变化。
旋转变换
根据机器人的关节类型和连接方式, 通过几何关系和运动约束建立机器人 末端执行器的位置和姿态的运动学方 程。
第二章 机器人运动学PPT课件
系的位置矢量 AP、BP具有如下变换关系
APB ARBPAPBO
(2-1-12)
15
ZA {A}
OA XA
ZB
ZC {C}
{B}
AP
BP YB
OB(OC)
YC
P A
BO XC YA
XB
图2.1.4 平移加旋转变换 注:坐标系{C}为过渡坐标系
16
2.齐次变换
一般情况下,刚体的运动是转动和平移的复合运 动,为了用同一矩阵既表示转动又表示平移,因此引 入齐次坐标变换矩阵。
28
X
偏转
Z
横滚
O船
Y
俯仰
偏转
X
Z
横滚
O
夹手
Y
俯仰
(a)
(b)
图2.1.11 RPY角的定义
29
§2.2 操作臂运动学
一、机械手位置和姿态的表示
图2.2.1所示为机器人的一个机械手。 描述机械手方位的坐标系置于手指尖的 中 位心置,可其以用原矢点量由矢p在量固p表定示坐。标机系械的手坐的标 表示为
H
0
1
0
b
称为平移的齐次变换矩阵,又可表示为
0 0 1 c
0
0
0
1
HTraa,b n,c)s。(矩阵中的第四列为平移参考矢量的齐次坐标。
19
Z
V
U
P
O
Y
X 图2.1.5 平移的齐次变换
20
例平2移.1,求向平量移U 后i得3到j的5k向沿量向V量 。P 3i7jk
解:
1 0 0 3 1 4
系,首先需要用两个参数对每个连杆进行描述。 如图2.2.2所示,对于任意一个两端带有关节i和
机器人运动学(培训教材)
第2章机器人位置运动学2.1 引言本章将研究机器人正逆运动学。
当已知所有的关节变量时,可用正运动学来确定机器人末端手的位姿。
如果要使机器人末端手放在特定的点上并且具有特定的姿态,可用逆运动学来计算出每一关节变量的值。
首先利用矩阵建立物体、位置、姿态以及运动的表示方法,然后研究直角坐标型、圆柱坐标型以及球坐标型等不同构型机器人的正逆运动学,最后利用Denavit-Hartenberg(D-H)表示法来推导机器人所有可能构型的正逆运动学方程。
实际上,机器手型的机器人没有末端执行器,多数情况下,机器人上附有一个抓持器。
根据实际应用,用户可为机器人附加不同的末端执行器。
显然,末端执行器的大小和长度决定了机器人的末端位置,即如果末端执行器的长短不同,那么机器人的末端位置也不同。
在这一章中,假设机器人的末端是一个平板面,如有必要可在其上附加末端执行器,以后便称该平板面为机器人的“手”或“端面”。
如有必要,还可以将末端执行器的长度加到机器人的末端来确定末端执行器的位姿。
2.2 机器人机构机器手型的机器人具有多个自由度(DOF),并有三维开环链式机构。
在具有单自由度的系统中,当变量设定为特定值时,机器人机构就完全确定了,所有其他变量也就随之而定。
如图2.1所示的四杆机构,当曲柄转角设定为120°时,则连杆与摇杆的角度也就确定了。
然而在一个多自由度机构中,必须独立设定所有的输入变量才能知道其余的参数。
机器人就是这样的多自由度机构,必须知道每一关节变量才能知道机器人的手处在什么位置。
图2.1 具有单自由度闭环的四杆机构如果机器人要在空间运动,那么机器人就需要具有三维的结构。
虽然也可能有二维多自由度的机器人,但它们并不常见。
机器人是开环机构,它与闭环机构不同(例如四杆机构),即使设定所有的关节变量,也不能确保机器人的手准确地处于给定的位置。
这是因为如果关节或连杆有丝毫的偏差,该关节之后的所有关节的位置都会改变且没有反馈。
机器人技术基础课件第三章 机器人运动学
30
3.2.1 机器人正运动学方程
如图所示是个三自由度的机器人, 三个关节皆为旋 转关节,第3关节轴线垂直于1、2关节轴线所在的平 面,各个关节的旋转方向如图所示,用D-H方法建立 各连杆坐标系,求出该机器人的运动学方程。
刚体的姿态可由动坐标系的坐
标的轴刚 位方置体向可Q在来用固表齐定示次坐。坐标令标系n形、O式oX、的YZa一中分
别为X′、y ′、z ′坐标轴的 个(4×1)列阵表示为: 单位方向矢量,每个单位方向 矢量在固定坐标系上的分量为 动坐标系各坐标轴的方向余弦, 用齐次坐标形式的(4×1)列阵 分别表示为:
y L1 sin1 L2 sin(1 2 )
通常的矢量形式:
r f ( )
29
3.2.1 机器人正运动学方程
机器人正运动学将关节变量作为自变量,研究机器人末 端执行器位姿与基座之间的函数关系。总体思想是:
(1)给每个连杆指定坐标系; (2)确定从一个连杆到下一连杆变换(即相邻参考系 之间的变化); (3)结合所有变换,确定末端连杆与基座间的总变换 ; (4)建立运动学方程求解。 机器人运动学的一般模型为:
03T 01T12T 23T
如此类推,对于六连杆机器人,有下列矩阵:
06T 01T12T 23T 34T 45T 56T
3.2 3.2 机械手运动学方程
26
0 6
T
3.1.4 连杆变换矩阵及其乘积
06T 01T12T23T34T 45T56T
机器人运动学方程
此式右边表示了从固定参考系到手部坐标系的各连杆
机器人运动学教学课件
工业机器人在物流仓储领域的应用包 括自动化分拣、搬运、装卸等作业, 提高仓储物流效率,降低人工成本。
服务机器人应用
家庭服务
服务机器人可以承担家庭 保洁、照料老人和儿童等 任务,提高家庭生活的便 利性和舒适度。
餐饮服务
服务机器人在餐厅中可以 协助送餐、点餐等工作, 提升餐饮服务效率,减少 人工成本。
机器人运动学教学课 件
目 录
• 机器人运动学概述 • 机器人运动学基础知识 • 机器人运动学实例分析 • 机器人运动学在实践中的应用 • 机器人运动学面临的挑战与展望 • 机器人运动学教学建议与资源
01
机器人运动学概述
定义与概念
定义
机器人运动学是研究机器人关节运动 和末端执行器位姿的一门科学。
新型机器人的运动学研究展望
总结词
随着技术的不断发展,新型机器人不断涌现,对运动 学研究提出了新的挑战和机遇。
详细描述
随着机器人技术的不断进步和应用领域的拓展,新型 机器人如柔性机器人、可穿戴机器人、微型机器人等 不断涌现。这些新型机器人的运动学特性与传统机器 人有很大的不同,需要针对其特点进行深入研究。同 时,随着机器学习和人工智能技术的快速发展,基于 数据驱动的运动学学习方法也成为了研究热点,有望 为新型机器人的运动学研究提供新的思路和方法。
THANKS
感谢观看
详细描述
三关节机器人是一个更接近实际应用的模型,其运动学分析能够帮助学生理解更复杂的运动。通过分 析三关节机器人的运动学方程,学生可以进一步了解如何处理多个关节的协同运动,以及如何实现复 杂的轨迹规划。
多关节机器人的运动学分析
总结词
高级模型,需要综合运用知识。
详细描述
多关节机器人是一个高级模型,其运动学分析需要学生综合运用所学的知识。通过分析 多关节机器人的运动学方程,学生可以进一步提高解决复杂问题的能力,为将来在实际
第四讲 机器人的位姿描述 ppt课件
19
3.2 齐次变换及运算
• 绕任意轴的转动 设绕k轴转动θ 角,则旋转矩阵为:
其中:
ppt课件
20
3.2 齐次变换及运算
• 若给定一旋转矩阵:
r11 r12 r13
R K ( ) r21
r22
r23
r31 r32 r22
• 则可计算出:
ppt课件
21
3.2 齐次变换及运算
例如,点p在{A}坐标系中表示为:
px
A
P
py
z
p(x,y,z)
pz
o
{A}
y
其中px,py,pz为P点的
坐标pp分t课件量。
x
5
• 位置矢量不同于一般矢量,它的大小与坐 标原点的选择有关。
ppt课件
6
3.1 机器人的位姿描述
2、姿态(或称方向)的表示 我们知道:两个刚体的相对姿态可
16
2019年12月19日星期四
3.2 齐次变换及运算
②、绕x轴旋转α角的旋转变换矩阵为:
zi zj α
oi oj
yj
α
yi
xj
ppt课件
xi
17
3.2 齐次变换及运算
③绕y轴旋转β角的旋转变换矩阵为:
zi zj β
ppt课件
oi oj
β
xi
xj
yj yi
18
3.2 齐次变换及运算
复合转动:
ppt课件
9
3.1 机器人的位姿描述
•
A B
R
称为坐标系{B}相对{A}的旋转矩阵。
旋转矩阵的性质:
课件:第三章机器人运动学
• 3.1 机器人运动方程的表示
• 3.1.2 运动位置和坐标
• 一旦机械手的运动姿态由某个姿态变换规定之后,它在基坐标系中的 位置就能够由左乘一个对应于矢量p的平移变换来确定。
1 0 0 px
T6
0 0
1 0
0 1
p
y
某姿态变换
pz
0 0
0
1
Robotics运动学
3.1 机器人运动方程的表示
3.1.3 连杆变换矩阵 1.广义连杆(D-H坐标)
所有关节全为转动关节时: Zi坐标轴; Xi坐标轴; Yi坐标轴;
连杆长度ai;连杆两端关节公共法线距离 连杆扭角αi;垂直于ai所在平面内两轴的夹角 两连杆距离di;两连杆的相对位置di 两杆夹角θ 两连杆法线的夹角
Robotics运动学
3.1 机器人运动方程的表示
s c 0 0ny
oy
ay
p
y
s
c
0 0
0
0
0 0
1 0
0 1
nz 1
oz 1
az 1
pz 1
sc
0
ss
0
c 0
0 1
(3-39)
Robotics运动学
3.2 机械手运动方程的求解
3.2.1欧拉变换解
重写为
f11(n) f11(o) f11(a) f11( p) cc cs s 0
保持姿态,执行器要绕其自身Y和Z轴反向旋转.
Sph( , , r) Rot(z, )Rot( y, )Trans(0,0, r)Rot( yA, )Rot(zA, )
1 0 0 rcs
0
1
0
rss
《机器人运动学》课件
机器人正向运动学建模
正向运动学
根据机器人关节参数,计算机器人末端执行器在笛卡尔坐标 系中的位置和姿态的过程。
正向运动学模型
描述机器人末端执行器位置和姿态与关节参数之间关系的数 学模型。
机器人逆向运动学建模
逆向运动学
已知机器人末端执行器在笛卡尔坐标系中的位置和姿态,求解机器人关节参数 的过程。
逆向运动学模型
02
它主要关注机器人在三维空间中 的位置和姿态,以及如何通过关 节运动来实现这些位置和姿态的 变化。
机器人运动学的研究内容
机器人位姿表示
研究如何用数学表达式表示机 器人在三维空间中的位置和姿
态。
运动学方程
建立机器人末端执行器位姿与 关节状态之间的数学关系,即 运动学方程。
运动学逆解与正解
研究如何通过给定的位姿求解 关节状态(逆解),以及如何 通过给定的关节状态求解位姿 (正解)。
关节坐标系
基于机器人关节建立的坐标系,常用于描述机器 人的关节运动状态。
工作坐标系
基于机器人工作需求建立的坐标系,常用于描述 机器人末端执行器的位置和姿态。
CHAPTER 03
机器人运动学建模
齐次变换与坐标变换
齐次变换
描述空间中物体位置和方向变化的数 学工具,包括平移和旋转。
坐标变换
将一个坐标系中的位置和方向信息转 换到另一个坐标系中的过程,涉及到 齐次变换的应用。
关节空间的轨迹规划
定义
关节空间是指机器人的各个关节角度 构成的坐标系,关节空间的轨迹规划 是指通过控制机器人的关节角度来实 现机器人的运动。
方法
常用的方法包括多项式插值、样条曲 线插值等,通过设定起始和目标位置 的关节角度,计算出一条平滑的关节 角度路径。
机器人位置运动学(上课用)110页PPT
我们可以这样来表示
P= ax ∧i+ by ∧j+ cz k∧
其中ax,by,cz是参考坐标系中表示 该点的坐标。显然,也可以用其他 坐标来表示空间点的位置。
9
§2.3.2 空间向量的表示
向量可用三个起始和终止的坐标来表示。如果一 个向量起始于A,终止于B,那么它可以表示为
PAB=(Bx-Ax)∧i+(By-Ay)∧j+(Bz-Az)∧k
Fobject
ny
nz
oy oz
ay az
p
y
pz
0 0 0 1
16
在上式中,前三个向量是w=0的方向向量,表示该坐标系三 个单位向量n, o, a的方向,而第四个w=1的向量表示该坐标 系原点相对于参考坐标系的位置。与单位向量不同,向量P 的长度十分重要,因而使用比例因子为1。 想一想,右图中的F坐标系该怎样 表示呢?(它位于参考坐标系的3, 6,7的位置。n轴与x轴平行,o 轴相对于y轴角度45°,a轴相对于 z轴角度45 ° )
7
该怎样弥补开环机器人的缺陷呢?
➢通过运动学分析,调高控制准确度; ➢借助摄像机等装置来构成闭环系统; ➢增加连杆和关节强度来减少偏移。
8
§2.3 机器人运动学的矩阵表示
矩阵表示的范围:点、向量、坐标系、平移、旋转以及其他变换, 还可以表示坐标系中的物体和其他运动元件。
§2.3.1 空间点的表示
当空间的一个坐标系(一个向量、一个物体或一个运动坐标 系)相对于固定的参考坐标系运动时,这一运动可以用类似于表 示坐标系的方式来表示。这是因为变换本身就是坐标系状态的变 化(表示坐标系位姿的变化),因此变换可以用坐标系来表示。
变换常为如下几种形式中的一种: 1.纯平移 2.绕一个轴的纯旋转 3.平移与旋转的结合
机器人的位姿描述 PPT
即:
ip
i j
R
j
p
zi zj
oi xi oj
xj
p
yj yi
3、2 齐次变换及运算
3、另一种解释 对同一个数学表达式能够给出多种不
同的解释,前面介绍的是同一个向量在不同 的坐标系的表示之间的关系。
上述数学关系也能够在同一个坐标系 中解释为向量的“向前”移动或旋转,或则, 坐标系“向后”的移动或旋转。
坐标分量用(x, y, z) 表示,若有四个不同时为 零的数 (x, y, z, k)与三个直角坐标分量之间存 在以下关系:
x x , y y , z z
k
k
k
则称 ( x, y, z, k)是空间该点的齐次坐标。
以后用到齐次坐标时,一律默认k=1 。
3、2 齐次变换及运算
2、齐次坐标变换
为何使用齐次坐标?
M ij
ny
nz 0
oy oz 0
ay az 0
py
0
1
0
pz 1
0 0
0 0
1 0
p
y
ny
pz 1
n0z
oy oz 0
ay az 0
0 0 1
t rans( px , py , pz ) Rot(k0 , )
注意:1、这个地方的平移和旋转都是相对{i} 坐标系的,即绝对变换。
2、矩阵相乘的次序是不可交换的。
3、2 齐次变换及运算
结论:左乘和右乘原则: 绝对运动变换矩阵左乘,即先做的在右边, 后做的在左边。 相对运动变换矩阵右乘,即先做的在左边, 后做的在右边。
3、2 齐次变换及运算
例3(3-2):已知坐标系{B}先绕坐标系{A}的z轴 旋转90°,再绕坐标系{A}的x轴旋转90°,最后沿 矢量P=3i-5j+9k平移得到,求:坐标系{A}与{B} 之间的齐次坐标变换矩阵MAB。 解:绝对运动,左乘原则。
《机器人运动学》PPT课件 (2)
i
ai
杆件参数的意义-di和 i
确定杆件相对位置关系,由另外2个参数决定,一个是杆
件的距离:di,一个是杆件的回转角:i
Ai+1
di 是从第i-1坐标
系的原点到Zi-1轴 和Xi轴的交点沿Z
Ai-
i-1轴测量的距离
1
i 绕 Zi-1轴由Xi-1
轴转向Xi轴的关节
角
Ai
1.广义连杆(D-H坐标)
全为转动关节: Zi坐标轴; Xi坐标轴; Yi坐标轴;
连杆长度ai; 连杆扭角αi; 两连杆距离di; 两杆夹角θi
全为转动关节: Zi坐标轴:沿着i+1关节的运动轴; Xi坐标轴:沿着Zi和Zi-1的公法线,指向离开Zi-1轴
的方向; Yi坐标轴:按右手直角坐标系法那么制定; 连杆长度ai; Zi和Zi-1两轴心线的公法线长度; 连杆扭角αi: Zi和Zi-1两轴心线的夹角; 两连杆距离di:相邻两杆三轴心线的两条公法线间
特殊情况坐标系的建立原那么
z i zi-1
两个关节轴相交
xi
oi
yi
Oi— Ai与Ai+1关节轴线的交
点
Zi— Ai+1轴线
Xi— Zi和Zi-1构成的面的法
Ai+1
线
Yi— 右手定那么
Ai
两个关节轴线平行
先建立
Ai-1
∑0i-1
然后建立 ∑0i+1
最后建立 ∑0i
Ai
Ai+1
Ai+2
yi-1 zi-1
ai杆长—沿 xi 轴, zi-1 轴与 xi 轴交点到 0i 的距离
yi1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
——关节轴关i和节反轴一i+。1和一的的交交点点;; 0,
i-1和i节各坐标轴的定义
z一 轴——沿着关节i的轴线方向;
i-\ x
轴--沿着耳_1。"勺延长线方向;
入_1 轴--使。构成右手坐标系。
Zi 轴——沿着关节i+1的轴线方向;
d1 1
以移动副连接的两杆件的D-H参数的确定
若杆件以移动副相连接时,则连杆的坐标系的建立与参数的规定同 回转副连接的杆件的规定相类似,但是连杆的长度已经没有意义, 故可以令其为零。可得齐次矩阵为
cos。
一sin。cos
I
I
%
sin。sinf
a,
0
I
I
sinQ cos Q cos a, — cos Q sincr, 0
ix 轴--沿着的延长线方向;
乃 轴--使Qx/’z,构成右手坐标系。
q a 上述两个坐标系之间的关节变量是可变关节角 或可变杆长
% d a 另外还有三个参数
及 •(或Q)在机器人手的结构设计
时定为 常数,这四个参数即为D-H参数。具体定义如下:
q —— x和x_i的平行线绕轴z,_i的转角,称为关节角; d ——
系。! !对于旋转关节可以确定以下的齐次矩阵
:
I
'
Aj = Rot(z z,—Q1)Tr(ms(Zj_i,di)Trans{xi,a)Rot(Xj,%)
cosg sin Q
0 0பைடு நூலகம்
-sin0j cos%
cos。cos%
sin a1 0
sin 01 sin aj
— cos。
sinaj cos% 0
& cosg ai sin 0j
O-i和H之间的距离,称为横距;
名 • a ——公共法线的距离,称为杆件长度; ——4_1轴在0点处平行线与z 轴绕x轴按右手法则 定义的夹角,称扭转角;
变换矩阵的确立
q a/ a, 4 :若已知四个参数
•及 .就完全确定了连杆7 -1和连杆
i之\ 〔间的相对关系。对此,我们建立「1和坐标系之间的变换关
机器人位置运动学
一5
■ ■念
运动学处理运动的几何学以及与时间有关的量,而不考虑 引起运动的力。 位置运动学则只处理运动的几何学,而不考虑运动的时间。 机器人的位置运动学存在有两类问题:
--根据关节变量求手部位姿的位置运动学正问题; --根据手部位姿求关节变量的位置运动学逆问题,又称 为手臂解。
D-H参数的确定 具有n个关节自由度的机器人系 统,其齐次矩阵可表示为 力=辱2
为建立运动学方程,要讨论 相邻连杆运动关系, 为此引入机器人学中的重要 参数一Denavit-Hartenberg 参 数,简称为D-H参数。
以回转副连接的两杆件的D-H参数的确定 定义:在杆件i-1前端的坐标 一为基础坐标系B,在杆件i 前端的坐标系 视为运动坐标系H。
i-1和i节各坐标轴的定义