如何突破函数难点
初中数学难点突破方法(含示范课课程设计、学科学习情况总结)
初中数学难点突破方法第一篇范文:初中数学难点突破方法在初中数学教学中,我们经常会遇到一些难点,这些难点不仅让学生感到困惑,也让教师面临着教学挑战。
为了帮助学生更好地理解和掌握这些难点知识,本文将结合初中数学教学实际,探讨一些有效的难点突破方法。
一、初中数学难点分析在初中数学教学中,我们可以将难点分为以下几类:1.概念理解类:如实数、代数式、函数等基本概念。
2.运算技能类:如分数、小数、整数的四则运算,解方程等。
3.空间想象类:如几何图形的性质、位置关系、变换等。
4.逻辑思维类:如归纳推理、分类讨论、证明等。
5.应用题解类:如何将数学知识应用到实际问题中。
二、难点突破方法探讨针对以上难点,我们可以采取以下方法进行突破:1. 概念理解类难点的突破对于概念理解类难点,如实数、代数式、函数等基本概念,我们可以采用以下方法:•实例教学:通过具体例子,让学生感知和理解概念的本质。
•对比教学:对比相近概念,区分它们之间的差异。
•归纳总结:引导学生自主总结概念的内涵和外延。
2. 运算技能类难点的突破对于运算技能类难点,如分数、小数、整数的四则运算,解方程等,我们可以采用以下方法:•巩固基础:加强基本运算规则和运算顺序的训练。
•分散难点:将复杂的运算问题分解为几个小步骤,逐步引导学生解决。
•口算心算:鼓励学生进行口算和心算训练,提高运算速度和准确性。
3. 空间想象类难点的突破对于空间想象类难点,如几何图形的性质、位置关系、变换等,我们可以采用以下方法:•直观教具:使用立体模型、幻灯片等直观教具,帮助学生建立空间观念。
•画图练习:引导学生通过画图,分析图形之间的位置关系和性质。
•动手操作:让学生亲自动手,进行几何模型的拼接和变换。
4. 逻辑思维类难点的突破对于逻辑思维类难点,如归纳推理、分类讨论、证明等,我们可以采用以下方法:•问题驱动:设计具有挑战性的问题,激发学生的思考。
•引导探究:引导学生通过实验、观察、归纳等方法,自主发现规律。
小学数学教学中如何突破难点的解决方法
小学数学教学中如何突破难点的解决方法关于小学数学教学中如何突破难点的解决方法大家在学习数学科目的过程中,还在苦苦寻找数学教学中解答难题的方法吗?下面是店铺为大家整理的小学数学教学中如何突破难点的解决方法,希望能够帮助到大家。
小学数学教学中如何突破难点的解决方法篇1一、抓住强化感知参与,运用直观的方法突出重点、突破难点。
直观教学在小学数学教学中具有重要的地位。
鉴于小学生的思维一般地还处在具体形象思维阶段,而在小学数学教学中,他们要接触并必须掌握的数学知识却是抽象的,这就需要在具体与抽象之间架设一座桥梁。
直观正是解决从具体到抽象这个矛盾的有效手段。
在教学中,教师应多给学生用学具摆一摆、拼一拼、分一分等动手操作的机会,使学生在动手操作中感知新知、获得表象,理解和掌握有关概念的本质特征。
如在教学中,可让学生通过动手画、量、折叠、剪拼几何图形,做一些立方体模型,使学生感知几何形体的形成过程、特征和数量关系。
如学生在用圆规画圆时,通过固定一点、确定不变距离、旋转一周等操作,对圆心、圆的半径、圆的特征和怎样画圆就会有较深刻的感性认识。
二、抓住数学来源于生活,运用联系生活的方法突出重点、突破难点。
现代教育观指出:“数学教学,应从学生已有的知识经验出发,让学生亲身经历参与特定的教学活动,使学生感受数学与日常生活的密切联系,从中获得一些体验,并且通过自主探索、合作交流,将实际问题抽象成数学模型,并对此进行理解和应用。
”所以,我们数学应从小学生已有的生活体验出发,从生活中“找”数学素材并多让学生到生活中去“找”数学、“想”数学,使学生真切感受到“生活中处处有数学”。
如我们都知道“利息”知识源于生活,在日常生活中应用广泛。
我在教学“利息”时,让学生通过5000元存入银行,计算整存整取三年期、整存整取五年期,体会到期后会取得多少利息等。
这样从学生的实际出发,在课堂中充分让学生“做主”,引导学生从生活实际中理解了有关利息、利率、本金的含义,体会了数学的真实。
2022年初升高暑期数学精品讲义专题10 函数的三要素重难点突破(原卷版)
专题10 函数的三要素一、考情分析二、经验分享【重难点1.函数的定义域】当函数是由解析式给出时,求函数的定义域就是求使解析式有意义的自变量的取值集合,求函数定义域的一般方法有:①分式的分母不为0;②偶次根式的被开方数非负;③要求;y x =0x ≠④当一个函数由两个或两个以上代数式的和、差、积、商的形式构成时,定义域是使得各式子都有意义的公共部分的集合;⑤已知的定义域,求的定义域,其实质是由的取值范围,求出的取值范围;()f x [()]f g x ()g x x ⑥已知的定义域,求的定义域,其实质是由的取值范围,求的取值范围;[()]f g x ()f x x ()g x ⑦由实际问题建立的函数,还要符合实际问题的要求.名师提醒:(1)定义域是一个集合,要用集合或区间表示,若用区间表示数集,不能用“或”连接,而应该用并集符号“∪”连接.(2)已知函数的定义域,逆向求解函数中参数的取值或取值范围,需运用分类讨论以及转化与化归的方法,转化为方程或不等式的解集问题,根据方程或不等式的解集情况来确定参数的值或取值范围.这种思想方法即通过某种转化过程,将一个难以解决的问题转化为一个已经解决或者比较容易解决的问题,从而获解.【重难点2.求函数值或函数的值域】(1)函数求值即用数值或字母代替表达式中的x ,而计算出对应的函数值的过程.注意所代入的数值或字母应满足函数的定义域要求.求函数值应遵循的原则:①已知的表达式求时,只需用a 替换表达式中的x .()f x ()f a ②求的值应遵循由里往外的原则.()f f a ⎡⎤⎣⎦③用来替换表达式中x 的数a 必须是函数定义域内的值.(2)求函数的值域,应根据各个式子的不同结构特点,选择不同的方法:①观察法:对于一些比较简单的函数,其值域可通过观察得到;②配方法:此方法是求“二次函数类”值域的基本方法,即通过配方把函数转化为能直接看出其值域的方法.求值域时一定要注意定义域的影响.如函数的值域与函数223y x x =-+223,{|0y x x x x =-+∈≤的值域是不同的;3}x <③分离常数法:此方法主要是针对有理分式,即将有理分式转化为“反比例函数类”的形式,便于求值域.分离常数的目的是为了减少“变量”,变换后x 仅出现在分母上,这样x 对函数的影响就比较清晰了;利用有理函数求值域的方法,间接地求解原函数的值域.在利用换元法求解函数的值域时,一定要注意换元后新元的取值范围,否则会产生错解.求新元的范围,要根据已知函数的定义域.【重难点3.函数解析式的求法】(1)已知函数的模型求函数解析式,常采用待定系数法,由题设条件求待定系数.(2)已知f (g (x ))=h (x ),求f (x ),常用的有两种方法:①换元法,即令t =g (x ),解出x ,代入h (x )中,得到一个含t 的解析式,即为所求解析式;②配凑法,即从f (g (x ))的解析式中配凑出“g (x )”,即用g (x )来表示h (x ),然后将解析式中的g (x )用x 代替即可.利用这两种方法求解时一定要注意g (x )的取值范围的限定.(3)已知f (x )与f (g (x ))满足的关系式,要求f (x )时,可用g (x )代替两边所有的x ,得到关于f (x )与f (g (x ))的方程组,消去f (g (x ))解出f (x )即可.常见的有f (x )与f (−x ),f (x )与.1()f x (4)所给函数方程含有两个变量时,可对这两个变量交替使用特殊值代入,或使这两个变量相等代入,再利用已知条件,可求出未知的函数,至于取什么特殊值,根据题目特征而定.三、题型分析(一).函数的定义域考点1.具体函数的定义域例1.(1)、(2022·四川·成都七中高二阶段练习(文))设集合,,则{A x y =={}1,0,1,2B =-( )A B = A .B .C .D .{}1,0-{}0,1,2{}1,2{}1,0,1-(2)、(2022·广西·平桂高中高二阶段练习(理))函数的定义域为___________.()f x =【变式训练1-1】、(2021·广西崇左市·崇左高中高一开学考试(文))函数的定义域()11f x x =+-为( )A .[)2,-+∞B .[)()2,11,-⋃+∞C .R D .(],2-∞-【变式训练1-2】、(2022·全国·高三专题练习)函数__________.()f x =考点2.抽象函数的定义域例2、(1)、(2022·江苏·高一)已知函数的定义域为,则函数的定义域为(21)y f x =+[]1,2-(1)=-y f x _________.(2)、(2022·黑龙江·双鸭山一中高二阶段练习)已知函数的定义域为,则函数()22f x -{}|1x x <的定义域为( )()211f x x --A .B .C .D .(,1)-∞(,1)-∞-()(),11,0-∞-- ()(),11,1-∞-- 【变式训练2-1】、(2021·上海市徐汇中学高一阶段练习)若函数的定义域为,则函数()f x []22-,的定义域是___________(21)f x -【变式训练2-2】、(2021·黑龙江大庆市·大庆中学高一开学考试)若函数的定义域为,则()y f x =[0,2]函数的定义域是__________.(2)()1f x g x x =-(二).求函数值或函数的值域考点3.一次函数、二次函数的值域的问题例3、(2022·浙江·金华市曙光学校高二阶段练习)已知函数f (x ),,则函数的值域2263x x =-+[]12x ∈-,是( )A .B .C .D .3[112-3[ 112,)[]111-,3112⎡⎤-⎢⎥⎣⎦【变式训练3-1】、(2021·浙江湖州市·湖州中学高一开学考试)若函数的定义域和值213()22f x x x =-+域都是,则( )[1,]b b =A .1B .3C .D .1或33-例4、(2022·江西省定南中学高二阶段练习(文))函数的值域为2y x = ( )A .B .C .D .15,8⎛⎤-∞- ⎥⎝⎦15,8⎛⎫-∞- ⎪⎝⎭15,8⎛⎫+∞ ⎪⎝⎭15,8⎡⎫+∞⎪⎢⎣⎭【变式训练4-1】、(2020·舒城育才学校高一月考)函数的值域是( )()f x x =+A .B .C .D .9,4⎡⎫+∞⎪⎢⎣⎭9,4⎛⎤-∞⎥⎝⎦[)2,+∞(],2-∞考点4.类“反比例”函数的值域的问题例5.(1)、(2021·新疆维吾尔自治区喀什第二中学高三阶段练习(理))函数值域是( )()211f x x =+A .B .C .D .(],1-∞[)1,+∞[)0,∞+(]0,1(2)、(2021·四川自贡·高一期中)函数的值域是( )2()1xf x x =+A .B .(),1-∞- ()1,+∞(),2-∞C .D .(),2-∞ ()2,+∞[)1,-+∞【变式训练5-1】、(2021·河南南阳·高一阶段练习)函数的值域为___________.21(),(2,1)(1,2)1x f x x x -=∈-- 【变式训练5-2】、(2021·浙江高二期末)已知函数,则函数的值域为( )2(),[2,6]1x f x x x +=∈-A .B .C .D .8,45⎡⎤⎢⎥⎣⎦8,[4,)5⎛⎤-∞⋃+∞ ⎥⎝⎦8,[4,)5⎛⎫-∞⋃+∞ ⎪⎝⎭8,45⎛⎫⎪⎝⎭考点5.“双勾”函数的值域问题例6、(2022·湖南娄底·高二学业考试)下列函数中,最小值为2的函数是( )A .B .()10y x x x=+<222y x x -=+C .D .()301y x x =+<<y =【变式训练6-1】.(2021·上海虹口区·高一期末)函数,的值域为__________.4()f x x x =+1,42x ⎡⎤∈⎢⎥⎣⎦(三).函数解析式的求法考点6.用换元法求函数的解析式例7.(1)、(2022·河南·临颍县第一高级中学高二阶段练习(文))已知,则()22143f x x +=+( ).()f x =A .B .C .D .224x x -+22x x+221x x --223x x ++(2)、(2022·山西运城·高二阶段练习)已知函数满足,则( )()f x 2(1)71f x x x -=--(2)f =A .1B .9C .D .1-13-【变式训练7-1】.(2020·广西南宁市东盟中学高一期中)已知是一次函数,满足()f x ,则( ).()3164f x x +=+()f x =A .B .C .D .64x +24x +223x -263x -【变式训练7-2】、(2022·江苏·高一)已知,则( )()14f x x +=-()0f f ⎡⎤=⎣⎦A .B .C .D .9-10-11-12-考点7.求一次、二次函数的的解析式例8、(1)、(2021·山东威海·高一期中)已知函数是一次函数,满足,则()f x (())1630f f x x =-__________.()f x =(2)、(2021·广东·珠海市华中师范大学(珠海)附属中学高一阶段练习)已知是一次函数,且()f x ,则解析式为___________.(1)32f x x +=+()f x ()f x =【变式训练8-1】、(2020·黑龙江·哈尔滨市第一二二中学校高一期中)若二次函数满足()f x ,.()()12f x f x x +-=()01f =(1)求的解析式;()f x (2)求在上的值域;()f x []0,2(3)若在上恒成立,求m 的取值范围.()2f x x m>+[]1,1-考点8.用消去法求函数的解析式(方程思想)例9.(2021·湖北·黄冈中学新兴分校高一期中)已知函数满足,则()f x ()2()23f x f x x +-=+___________.()f x =【变式训练9-1】、(2021·全国·高一课时练习)若,则______.()1324f x f xx ⎛⎫+= ⎪⎝⎭()f x =(四).函数的综合应用例10、(2020·四川·广安二中高一期中)已知函数满足:()f x )13f x =+(1)求的解析式;()f x (2)判断函数在区间上的单调性,并证明.()()2f x x g x x +=[)2,+∞【变式训练10-1】、(2022·江苏·高一)已知函数.()f x =(1)若函数定义域为,求的取值范围;R a (2)若函数值域为,求的取值范围.[0,)+∞a。
突破10 函数的单调性与最值(重难点突破)(解析版)
突破10 函数的单调性与最值重难点突破一、考情分析二、经验分享【知识点一、函数的单调性】 1.函数单调性的定义一般地,设函数f (x )的定义域为I :①如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2,当x 1<x 2时,都有___________,那么就说函数f (x )在区间D 上是增函数;②如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2,当x 1<x 2时,都有___________,那么就说函数f (x )在区间D 上是减函数. 名师解读:对函数单调性的理解:(1)定义中的x 1,x 2有三个特征:①任意性,即不能用特殊值代替;②属于同一个区间;③有大小,一般令x 1<x 2.(2)增、减函数的定义实现自变量的大小关系与函数值的大小关系的直接转化:若()f x 是增函数,则()()1212f x f x x x ⇔<<;若()f x 是减函数,则()()1212f x f x x x ⇔<>.2.函数的单调区间如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)___________,区间D 叫做y =f (x )的___________. 名师解读:对函数单调区间的理解(1)一个函数出现两个或者两个以上的单调区间时,不能用“∪”连接,而应该用“和”连接.(2)函数的单调性是函数的局部性质,体现在函数的定义域或其子区间上,所以函数的单调区间是其定义域的子集.(3)函数的单调性是对某个区间而言的,在某一点上不存在单调性. (4)并非所有的函数都具有单调性.如函数()1,0,x x f x ⎧=⎨⎩是有理数是无理数就不具有单调性.名师解读:常见函数的单调性【知识点二、函数的最大值与最小值】 1.最大值一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有___________;(2)存在0x I ∈,使得___________. 那么,我们称M 是函数()y f x =的最大值.函数的最大值对应图象最高点的纵坐标. 2.最小值一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有___________;(2)存在0x I ∈,使得___________. 那么,我们称m 是函数()y f x =的最小值.函数的最小值对应图象最低点的纵坐标. 名师解读:函数的最值与单调性的关系如果函数()y f x =在区间(],a b 上是增函数,在区间[),b c 上是减函数,则函数()y f x =,,()x a c ∈在x b =处有最大值()f b .如果函数()y f x =在区间(],a b 上是减函数,在区间[),b c 上是增函数,则函数()y f x =,,()x a c ∈在x b =处有最小值()f b .如果函数()y f x =在区间[],a b 上是增(减)函数,则在区间[],a b 的左、右端点处分别取得最小(大)值和最大(小)值.三、题型分析(一) 证明或判断函数的单调性 例1、证明:函数21()f x x x=-在区间(0,+∞)上是增函数. 【答案】证明详见解析.【变式训练1】.用单调性定义证明:函数在(﹣∞,1)上为增函数.【思路分析】利用单调性的定义进行证明,设x 1<x 2<1,再作差、变形、判断符号,证f (x 2)>f (x 1),把x 1和x 2分别代入函数f (x )进行证明.【答案】解:设x 1<x 2<1, 则f (x 1)﹣f (x 2)∵x 1<x 2<1,∴x 2﹣x 1>0,x 1+x 2<2,x 1+x 2﹣2<0 ∴f (x 1)﹣f (x 2)<0,即f (x 1)<f (x 2),∴函数f (x )在(﹣∞,1)上是增函数.【变式训练2】.用定义法证明函数f (x )在(,+∞)上是增函数;【思路分析】利用函数单调性的定义即可证明函数f (x )在(,+∞)上是增函数;【答案】解:f (x )1任意设x 1<x 2,则f (x 1)﹣f (x 2)()[]=(),∵x 1<x 2,∴x 1﹣x 2<0,x 1,x 20,∴f (x 1)﹣f (x 2)<0,即f (x 1)<f (x 2), ∴函数f (x )在(,+∞)上是增函数;【名师点睛】函数单调性判断的等价变形:()f x 是增函数⇔对任意12x x <,都有12()()f x f x <,或1212()()0f x f x x x ->-,或1212(()())()0f x f x x x -->;()f x 是减函数⇔对任意12x x <,都有12()()f x f x >,或1212()()0f x f x x x -<-,或1212(()())()0f x f x x x --<.(二) 函数单调性的应用例2、若函数()223()1f x ax a x a -+=-在[1,+∞)上是增函数,求实数a 的取值范围.【答案】0≤a ≤1【变式训练1】.已知函数f (x )的定义域为R ,且对任意的x 1,x 2且x 1≠x 2都有[f (x 1)﹣f (x 2)](x 1﹣x 2)>0成立,若f (x 2+1)>f (m 2﹣m ﹣1)对x ∈R 恒成立,则实数m 的取值范围是( ) A .(﹣1,2)B .[﹣1,2]C.(﹣∞,﹣1)∪(2,+∞)D.(﹣∞,﹣1]∪[2,+∞)【思路分析】本题可根据题干判断出函数f(x)在定义域R上为增函数,然后根据f(x2+1)>f(m2﹣m﹣1)对x∈R恒成立,得出x2+1>m2﹣m﹣1,则m2﹣m﹣1<1,可得实数m的取值范围.【答案】解:由题意,可知:∵对任意的x1,x2且x1≠x2都有[f(x1)﹣f(x2)](x1﹣x2)>0成立,∴函数f(x)在定义域R上为增函数.又∵f(x2+1)>f(m2﹣m﹣1)对x∈R恒成立,∴x2+1>m2﹣m﹣1,∴m2﹣m﹣1<1,即:m2﹣m﹣2<0.解得﹣1<m<2.故选:A.【变式训练2】.若函数f(x)是R上的减函数,则下列各式成立的是()A.f(a)>f(2a)B.f(a2)<f(a)C.f(a2+2)<f(2a)D.f(a2+1)>f(a)【思路分析】由a和2a,a2和a无法确定大小关系,结合函数的单调性判断出A、B错误;由a2+2﹣2a平方后判断出a2+2>2a,结合函数的单调性判断出C正确;与判断C一样的方法判断出D错误.【答案】解:因为a和2a,a2和a无法确定大小关系,所以不能确定相应函数值的大小关系,故A、B错误;因为a2+2﹣2a=(a﹣1)2+1>0,所以a2+2>2a,又因函数f(x)是R上的减函数,所以f(a2+2)<f(2a),故C正确;因为a2+1﹣a0,所以a2+1>a,又因函数f(x)是R上的减函数,所以f(a2+1)<f(a),故D错误.故选:C.【变式训练3】.设f(x)=|x﹣a|a,x∈[1,6],若a∈(1,2],求f(x)的单调区间;【思路分析】运用绝对值的定义,将f(x)转化,讨论a∈(1,2],函数f(x)在[1,a]上,在[a,6]上的单调性即可得到;【答案】解:首先f (x ),因为当1<a ≤2时,f (x )在[1,a ]上是增函数,在[a ,6]上也是增函数. 所以当1<a ≤2时,y =f (x )在[1,6]上是增函数;【名师点睛】本题中()223()1f x ax a x a -+=-不一定是二次函数,所以要对a 进行讨论.另外,需熟练掌握一次函数、反比例函数和二次函数的单调性,并能灵活应用. (三) 求函数的最大值与最小值例3、已知函数()223f x x x =--,若x ∈[t ,t +2],求函数f (x )的最值.【答案】答案详见解析.【解析】易知函数()223f x x x =--的图象的对称轴为直线x =1,(1)当1≥t +2,即t ≤-1时,f (x )max =f (t )=t 2-2t -3,f (x )min =f (t +2)=t 2+2t -3.(2)当22t t ++≤1<t +2,即-1<t ≤0时,f (x )max =f (t )=t 2-2t -3,f (x )min =f (1)=-4. (3)当t ≤1<22t t ++,即0<t ≤1时,f (x )max =f (t +2)=t 2+2t -3,f (x )min =f (1)=-4.(4)当1<t ,即t >1时,f (x )max =f (t +2)=t 2+2t -3,f (x )min =f (t )=t 2-2t -3.设函数f (x )的最大值为g (t ),最小值为φ(t ),则有2223,0()23,0t t t g t t t t ⎧--≤⎪=⎨+->⎪⎩ ,2223,1()4,1123,1t t t t t t t t ϕ⎧+-≤-⎪=--<≤⎨⎪-->⎩. 【变式训练1】.对a ,b ∈R ,记max {a ,b },函数f (x )=max {|x +1|,|x ﹣2|}(x ∈R )的最小值是( ) A .0B .C .D .3【思路分析】根据题中所给条件通过比较|x +1|、|x ﹣2|哪一个更大先求出f (x )的解析式,再求出f (x )的最小值.【答案】解:当x <﹣1时,|x +1|=﹣x ﹣1,|x ﹣2|=2﹣x ,因为(﹣x ﹣1)﹣(2﹣x )=﹣3<0,所以2﹣x >﹣x ﹣1; 当﹣1≤x 时,|x +1|=x +1,|x ﹣2|=2﹣x ,因为(x +1)﹣(2﹣x )=2x ﹣1<0,x +1<2﹣x ;当x <2时,x +1>2﹣x ;当x≥2时,|x+1|=x+1,|x﹣2|=x﹣2,显然x+1>x﹣2;故f(x)据此求得最小值为.故选:C.【变式训练2】.已知函数f(x),x∈[1,+∞),(1)当a时,求函数f(x)的最小值;(2)若对任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范围.【思路分析】(1)a时,函数为,f在[1,+∞)上为增函数,故可求得函数f(x)的最小值(2)问题等价于f(x)=x2+2x+a>0,在[1,+∞)上恒成立,利用分类参数法,通过求函数的最值,从而可确定a的取值范围【答案】解:(1)因为,f(x)在[1,+∞)上为增函数,所以f(x)在[1,+∞)上的最小值为f(1).…(6分)(2)问题等价于f(x)=x2+2x+a>0,在[1,+∞)上恒成立.即a>﹣(x+1)2+1在[1,+∞)上恒成立.令g(x)=﹣(x+1)2+1,则g(x)在[1,+∞)上递减,当x=1时,g(x)max=﹣3,所以a>﹣3,即实数a的取值范围是(﹣3,+∞).…(6分)【名师点睛】求二次函数的最大(小)值有两种类型:一是函数定义域为实数集R,这时只要根据抛物线的开口方向,应用配方法即可求出最大(小)值;二是函数定义域为某一区间,这时二次函数的最大(小)值由它的单调性确定,而它的单调性又由抛物线的开口方向和对称轴的位置(在区间上,在区间左侧,还是在区间右侧)来决定,若含有参数,则要根据对称轴与x轴的交点与区间的位置关系对参数进行分类讨论,解题时要注意数形结合.四、迁移应用1.集合{x|x≥2}表示成区间是A.(2,+∞)B.[2,+∞)C.(–∞,2)D.(–∞,2]【答案】B【解析】集合{x|x≥2}表示成区间是[2,+∞),故选B.2.集合{x|x>0且x≠2}用区间表示出来A.(0,2)B.(0,+∞)C.(0,2)∪(2,+∞)D.(2,+∞)【答案】C【解析】集合{x|x>0且x≠2}用区间表示为:(0,2)∪(2,+∞).故选C.3.函数f(x)=(x–1)2的单调递增区间是A.[0,+∞)B.[1,+∞)C.(–∞,0] D.(–∞,1]4.已知函数f(x)=–1+11x(x≠1),则f(x)A.在(–1,+∞)上是增函数B.在(1,+∞)上是增函数C.在(–1,+∞)上是减函数D.在(1,+∞)上是减函数5.函数y=f(x),x∈[–4,4]的图象如图所示,则函数f(x)的所有单调递减区间为A.[–4,–2] B.[1,4]C.[–4,–2]和[1,4] D.[–4,–2]∪[1,4]【答案】C【解析】由如图可得,f(x)在[–4,–2]递减,在[–2,1]递增,在[1,4]递减,可得f(x)的减区间为[–4,–2],[1,4].故选C .6.函数g (x )=|x |的单调递增区间是A .[0,+∞)B .(–∞,0]C .(–∞,–2]D .[–2,+∞)【答案】A【解析】x ≥0,时,g (x )=x ,x <0时,g (x )=–x ,故函数在[0,+∞)递增,故选A .7.已知f (x )是定义在[0,+∞)上单调递增的函数,则满足()1213f x f ⎛⎫-< ⎪⎝⎭的x 取值范围是A .1223⎛⎫ ⎪⎝⎭,B .23⎛⎫-∞ ⎪⎝⎭,C .1223⎡⎫⎪⎢⎣⎭,D .23⎛⎤-∞ ⎥⎝⎦,【答案】C【解析】∵f (x )是定义在[0,+∞)上单调递增的函数,∴不等式()1213f x f ⎛⎫-< ⎪⎝⎭等价为0≤2x –1<13,即12≤x <23,即不等式的解集为1223⎡⎫⎪⎢⎣⎭,,故选C . 8.函数f (x )=–|x –2|的单调递减区间为A .(–∞,2]B .[2,+∞)C .[0,2]D .[0,+∞)【答案】B【解析】∵y =|x –2|=2222x x x x -≥⎧⎨-+<⎩,,,∴函数y =|x –2|的单调递减区间是(–∞,2],∴f (x )=–|x –2|的单调递减区间是[2,+∞),故选B . 9.函数f (x )=x +2x(x >0)的单调减区间是A .(2,+∞)B .(0,2)C +∞)D .(0)【答案】D【解析】函数f (x )=x +2x (x >0),根据对勾函数图象及性质可知,函数f (x )=x +2x(x >0),+∞)单调递增,函数f (x )在(0)单调递减.故选D . 10.函数f (x )=x +bx(b >0)的单调减区间为A .()B .(–∞,,+∞)C .(–∞,)D .(,0),(0)【答案】D【解析】函数f (x )=x +b x (b >0),的导数为f ′(x )=1–2bx,由f ′(x )<0,即为x 2<b ,解得<x <0或0<x ,则f (x )的单调减区间为(,0),(0).故选D . 11.函数f (x )=x +3|x –1|的单调递增区间是A .(–∞,+∞)B .(1,+∞)C .(–∞,1)D .(0,+∞)【答案】B【解析】函数f (x )=x +3|x –1|,当x ≥1时,f (x )=x +3x –3=4x –3,可得f (x )在(1,+∞)递增;当x <1时,f (x )=x +3–3x =3–2x ,可得f (x )在(–∞,1)递减.故选B .。
函数重点难点突破
函数中恒成立,存在性问题主干知识整合1.在代数综合问题中常遇到恒成立问题.恒成立问题涉及常见函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,恒成立问题的解题的基本思路是:根据已知条件将恒成立问题向基本类型转化,正确选用函数法、最小值法、数形结合法等解题方法求解.2.恒成立问题在解题过程中大致可分为以下几种类型:1x∈D,fx>C;2x∈D,fx>gx;3x1,x2∈D,|fx1-fx2|≤C;4x1,x2∈D,|fx1-fx2|≤a|x1-x2|.3.不等式恒成立问题的处理方法1转换求函数的最值①若不等式A<fx在区间D上恒成立,则等价于在区间D上A<fx min fx的下界大于A.②若不等式B>fx在区间D上恒成立,则等价于在区间D上B>fx max fx的上界小于B.2分离参数法①将参数与变量分离,即化为gλ≥fx或gλ≤fx恒成立的形式;②求fx在x∈D上的最大或最小值;③解不等式gλ≥fx max或gλ≤fx min,得λ的取值范围.3转换成函数图象问题①若不等式fx>gx在区间D上恒成立,则等价于在区间D上函数y=fx和图象在函数y=gx图象上方;②若不等式fx<gx在区间D上恒成立,则等价于在区间D上函数y=fx和图象在函数y=gx图象下方.探究点一x∈D,fx>gx的研究对于形如x∈D,fx>gx的问题,需要先设函数y=fx-gx,再转化为x ∈D,y min>0.例1 已知函数fx=x|x-a|+2x.1若函数fx在R上是增函数,求实数a的取值范围;2求所有的实数a,使得对任意x∈1,2时,函数fx的图象恒在函数gx =2x+1图象的下方.点评在处理fx>c的恒成立问题时,如果函数fx含有参数,一般有两种处理方法:一是参数分离,将含参数函数转化为不含参数的函数,再求出最值即可;二是如果不能参数分离,可以用分类讨论处理函数fx的最值.变式训练:已知fx=x3-6ax2+9a2xa∈R,当a>0时,若对x∈0,3有fx≤4恒成立,求实数a的取值范围.探究点二x1,x2∈D,|fx1-fx2|≤C的研究对于形如x1,x2∈D,|fx1-fx2|≤C的问题,因为|fx1-fx2|≤fx max-fx min,所以原命题等价为fx max-fx min≤C.例2 已知函数fx=ax3+bx2-3xa,b∈R,在点1,f1处的切线方程为y+2=0.1求函数fx的解析式;2若对于区间-2,2上任意两个自变量的值x1,x2,都有|fx1-fx2|≤c,求实数c的最小值.点评在处理这类问题时,因为x1,x2是两个不相关的变量,所以可以等价为函数fx在区间D上的函数差的最大值小于c,如果x1,x2是两个相关变量,则需要代入x1,x2之间的关系式转化为一元问题.探究点三x1,x2∈D,|fx1-fx2|≤a|x1-x2|的研究形如x1,x2∈D,|fx1-fx2|≤a|x1-x2|这样的问题,首先需要根据函数fx的单调性去掉|fx1-fx2|≤a|x1-x2|中的绝对值符号,再构造函数gx=fx-ax,从而将问题转化为新函数gx的单调性.例3 已知函数fx=x-1-a ln xa∈R.1求证:fx≥0恒成立的充要条件是a=1;2若a<0,且对任意x1,x2∈0,1,都有|fx1-fx2|≤4错误!,求实数a的取值范围.点评x1,x2∈D,|fx1-fx2|≤a|x1-x2|等价为k=错误!≤a,再进一步等价为f′x≤a的做法由于缺乏理论支持,解题时不可以直接使用.况且本题的第2问不能把|fx1-fx2|≤4错误!转化为错误!≤4,所以这类问题还是需要按照本题第2问的处理手段来处理.规律技巧提炼在处理恒成立问题时,首先应该分辨所属问题的类型,如果是关于单一变量的恒成立问题,首先考虑参数分离,如果不能参数分离或者参数分离后所形成函数不能够处理,那么可以选择分类讨论来处理;如果是关于两个独立变量的恒成立问题处理,只需要按照上探究点中所讲类型的处理方法来处理即可.存在性问题1.在代数综合问题中常遇到存在性问题.与恒成立问题类似,存在性问题涉及常见函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法.2.存在性问题在解题过程中大致可分为以下几种类型:1x∈D,fx>C;2x∈D,fx>gx;3x1∈D,x2∈D,fx1=gx2;4x1∈D,x2∈D,fx1>gx2.3.存在性问题处理方法1转换求函数的最值;2分离参数法;3转换成函数图象问题;4转化为恒成立问题探究点一x∈D,fx>gx的研究对于x∈D,fx>gx的研究,先设hx=fx-gx,再等价为x∈D,hx max>0,其中若gx=c,则等价为x∈D,fx max>c.例1 已知函数fx=x3-ax2+10.1当a=1时,求曲线y=fx在点2,f2处的切线方程;2在区间1,2内至少存在一个实数x,使得fx<0成立,求实数a的取值范围点评解法一在处理时,需要用分类讨论的方法,讨论的关键是极值点与区间1,2的关系;解法二是用的参数分离,由于ax2>x3+10中x2∈1,4,所以可以进行参数分离,而无需要分类讨论.变式训练:已知函数fx=xx-a2,gx=-x2+a-1x+a其中a为常数.1如果函数y=fx和y=gx有相同的极值点,求a的值;2设a>0,问是否存在x0∈错误!,使得fx0>gx0,若存在,请求出实数a的取值范围;若不存在,请说明理由探究点二x1∈D,x2∈D,fx1=gx2的研究对于x1∈D,x2∈D,fx1=gx2的研究,若函数fx的值域为C1,函数gx的值域为C2,则该问题等价为C1C2.例2 设函数fx=-错误!x3-错误!x2+错误!x-4.1求fx的单调区间;2设a≥1,函数gx=x3-3a2x-2a.若对于任意x1∈0,1,总存在x0∈0,1,使得fx1=gx0成立,求a的取值范围.点评对于x∈D,fx=c要成立,c的取值集合就是函数fx的值域,对于x∈D,使得c=gx,c应该属于gx的取值集合,所以函数fx的值域为gx的值域的子集.探究点三x1∈D,x2∈D,fx1>gx2的研究对于x1∈D,x2∈D,fx1>gx2的研究,第一步先转化为x2∈D,fx1min>gx2,再将该问题按照探究点一转化为fx1min>gx2min.例3 已知函数fx=2|x-m|和函数gx=x|x-m|+2m-8.1若方程fx=2|m|在-4,+∞上恒有惟一解,求实数m的取值范围;2若对任意x1∈-∞,4,均存在x2∈4,+∞,使得fx1>gx2成立,求实数m的取值范围.点评对于x∈D,fx>c,可以转化为fx min>c;x∈D,c>gx,可以转化为c>gx min,所以本问题类型可以分两步处理,转化为fx min>gx min.1.对于恒成立问题或存在性问题常见基本类型为x∈D,fx>c,可以转化为fx min>c;x∈D,c>gx,可以转化为c>gx min,x∈D,c=gx,可以转化为c∈{y|y=gx},对于由这些含有量词的命题组合而成的含有两个量词命题的问题,可以采取分步转化的方法来处理.2.对于含有参数的恒成立问题或存在性问题,常用的处理方法有分类讨论或参数分离,并借助于函数图象来解决问题.高考链接。
代数教学的难点与突破
代数教学的难点与突破代数是数学的一个重要分支,它研究的是变量、方程、函数等概念,以及这些概念之间的关系和运算。
在中学阶段,代数是重要的学科之一,对学生未来的数学学习和职业发展有着重要的影响。
然而,代数教学也存在一些难点,需要教师和学生共同努力才能突破。
一、难点分析1.概念抽象。
代数中的概念较为抽象,如变量、方程、函数等,需要学生具有较强的抽象思维能力和理解能力。
对于一些初中生来说,这些概念比较陌生,难以理解。
2.运算复杂。
代数中的运算较为复杂,如方程求解、根式运算、对数运算等,需要学生具备较强的运算能力和技巧。
如果学生没有掌握正确的运算方法,就会导致错误率较高。
3.思维定式。
在代数学习中,学生容易受到思维定式的影响,导致思路狭窄、解题方法单一。
例如,看到方程式就只想到一般方程求解方法,而忽略了其他解题方法。
二、突破方法1.结合实际。
在教学过程中,教师可以将代数知识与实际生活相联系,让学生从日常生活中感受到代数知识的应用。
例如,可以让学生通过测量身高、体重等数据来学习变量和函数的概念;也可以通过求解方程式来解答实际问题。
2.培养良好的运算习惯。
教师在教学过程中应该注重培养学生的良好运算习惯,包括仔细审题、认真书写、仔细检查等。
同时,应该注重向学生传授正确的运算方法和技巧,如方程求解的步骤和方法、根式运算的方法等。
3.拓展思维。
在教学过程中,教师应该注重培养学生的发散思维和创新能力,引导学生从多个角度思考问题,尝试使用不同的解题方法。
例如,可以让学生尝试使用代入法、分离法等方法求解方程式;也可以让学生尝试使用计算机软件进行数值计算和模拟实验等。
4.注重反馈和评价。
在教学过程中,教师应该注重反馈和评价学生的学习情况,及时发现学生的问题并给予指导。
同时,应该鼓励学生互相交流、互相学习,共同进步。
总之,代数教学的难点需要教师和学生共同努力才能突破。
在教学过程中,教师应该注重结合实际、培养良好的运算习惯、拓展学生的思维和注重反馈和评价等教学方法的运用;学生也应该积极配合教师的教学安排,认真学习、积极思考、勇于尝试不同的解题方法。
学习新课标后初中数学教学重难点及突破策略
学习新课标后初中数学教学重难点及突破
策略
一、新课标初中数学教学重难点:
1、函数概念的认识:函数的概念是新课标数学课程的重要组成部分,学生要掌握函数的概念,能够正确地理解函数的定义、性质和运算规律,掌握函数的分类、求解方法及其应用。
2、几何图形的认识:几何图形在新课标数学中占有重要的地位,学生要掌握平面几何图形的基本概念,能够正确地理解几何图形的定义、性质和运算规律,掌握图形的分类、求解方法及其应用。
3、数列的认识:数列是新课标数学课程的重要组成部分,学生要掌握数列的概念,能够正确地理解数列的定义、性质和运算规律,掌握数列的分类、求解方法及其应用。
4、概率论的认识:概率论是新课标数学课程的重要组成部分,学生要掌握概率论的概念,能够正确地理解概率论的定义、性质和运算规律,掌握概率论的分类、求解方法及其应用。
二、新课标初中数学教学突破策略:
1、充分调动学生学习积极性:新课标数学课程的内容较多,学生的学习积极性很容易降低,因此,教师要充分调动学生的学习积极性,采用多种激励措施,激发学生学习的热情,使学生在学习过程中保持较高的学习积极性。
2、多种教学方法的灵活运用:新课标数学课程的内容较多,学生的学习效果受多种因素的影响,因此,教师要灵活运用多种教学方法,提高学生的学习效率,使学生在学习过程中有效地掌握新课标数学课程的内容。
3、实践教学注重实践:新课标数学课程的内容较多,学生的学习效果受实践教学的影响,因此,教师要注重实践教学,采用案例教学、实验教学、讨论教学等多种形式,使学生在学习过程中有效地掌握新课标数学课程的内容。
函数单调性重、难点突破
函数单调性重、难点突破
重点:掌握证明函数的单调性的步骤
难点:函数单调性的理解
对函数单调性的理解
(1) 函数的单调性只能在函数的定义域内来讨论,所以求函数的单调区间,必须先求函数的定义域;
(2)函数单调性定义中的21,x x 有三个特征:一是任意性;二是大小,即21x x <;三是同属于一个单调区间,三者缺一不可;
(3)关于函数的单调性的证明,如果用定义证明()x f y =在某区间I 上的单调性,那么就要用严格的四个步骤,即①取值;②作差;③判号;④下结论。
但是要注意,不能用区间I 上的两个特殊值来代替。
而要证明()x f y =在某区间I 上不是单调递增的,只要举出反例就可以了,即只要找到区间I 上两个特殊的21,x x ,若21x x <,有()()21x f x f ≥。
(4)函数的单调性是对某个区间而言的,所以受到区间的限制,如函数x y 1=分别在()0,∞-和()+∞,0内都是单调递减的,但是不能说它在整个定义域即()()+∞⋃∞-,00,内是单调递减的,只能说函数x
y 1=的单调递减区间为()0,∞-和()+∞,0。
(5)一些单调性的判断规则:①若()x f 与()x g 在定义域内都是增函数(减函数),那么()()x g x f +在其公共定义域内是增函数(减函数),②复合函数的单调性规则是“异减同增”。
高一函数重难点突破(复习知识)
高一函数重难点突破一、 求复合函数的定义域的四种题型 1.已知f[x]的定义域,求f(g(x))的定义域例1设函数f(x)的定义域为(0,1),求函数f(lnx)的定义域2.已知f[g(x)]的定义域,求f(x)的定义域例2已知f(3-2x)的定义域为x ∈[-1,2], 求函数f(x)的定义域3.已知f[g(x)]的定义域,求f(h(x))的定义域例3若函数f(2x )的定义城为[-1,1], 求f(log 2x)的定义域4.已知()x f 的定义域,求四则运算型函数的定义域 例4 已知函数()x f 定义域为是],[b a ,且0>+b a 求函数()()()m x f m x f x h -++=()0>m 的定义域解 ⎩⎨⎧+≤≤+-≤≤-⇒⎩⎨⎧≤-≤≤+≤mb x m a mb x m a b m x a b m x a ,m a m a m +<-∴>,0 m b m b +<-,又m b m a +<-要使函数()x h 的定义域为非空集合,必须且只需m b m a -≤+,即20ab m -≤<, 此时函数()x h 的定义域为{x|a+m }*注* 定义域指的是自变量x 的取值范围;同一个对应关系f 作用下()的范围一样;定义域写成集合的形式,区间也是集合的一种表示方法二、 求函数解析式的六种题型1.待定系数法:在已知函数解析式的构造时,可用待定系数法。
例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f2.配凑法或换元法:已知复合函数[()]f g x 的表达式,求()f x 的解析式。
[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。
但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。
例2 (1) 已知221)1(xx x x f +=+ )0(>x ,求 ()f x 的解析式(2) 已知x x x f 2)1(+=+,求)1(+x f3.构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。
突破11 函数的奇偶性(重难点突破)(解析版)
突破11 函数的奇偶性重难点突破一、考情分析二、经验分享【知识点一、函数的奇偶性】一般地,如果对于函数f (x )的定义域内任意一个x ,都有___________,那么函数f (x )就叫做偶函数. 一般地,如果对于函数f (x )的定义域内任意一个x ,都有___________,那么函数f (x )就叫做奇函数. 名师解读:函数具有奇偶性的条件(1)①首先考虑定义域是否关于原点对称,如果定义域不关于原点对称,则函数是非奇非偶函数; ②在定义域关于原点对称的前提下,进一步判定()f x -是否等于()f x ±.(2)分段函数的奇偶性应分段说明()f x -与()f x 的关系,只有当对称区间上的对应关系满足同样的关系时,才能判定函数的奇偶性.(3)若奇函数的定义域包括0,则()00f =. 【知识点二、函数的奇偶性的图像特征】如果一个函数是奇函数,则这个函数的图象是以___________为对称中心的中心对称图形;反之,如果一个函数的图象是以___________为对称中心的中心对称图形,则这个函数是奇函数.如果一个函数是偶函数,则这个函数的图象是以___________为对称轴的轴对称图形;反之,如果一个函数的图象关于___________对称,则这个函数是偶函数. 名师解读:奇、偶函数的单调性根据奇、偶函数的图象特征,可以得到:(1)奇函数在关于原点对称的区间上有相同的单调性,偶函数在关于原点对称的区间上有相反的单调性.上述结论可简记为“奇同偶异”.(2)偶函数在关于原点对称的区间上有相同的最大(小)值,取最值时的自变量互为相反数;奇函数在关于原点对称的区间上的最值互为相反数,取最值时的自变量也互为相反数. 名师解读:性质法判断函数的奇偶性()f x ,()g x 在它们的公共定义域上有下面的结论:三、题型分析(一) 证明或判断函数的奇偶性 例1、下列判断正确的是( )A .函数22)(2--=x x x x f 是奇函数B .函数()f x x =C D .函数1)(=x f 既是奇函数又是偶函数【答案】B【解析】对于A ,22)(2--=x xx x f 的定义域为2x ≠,不关于原点对称,不是奇函数.对于B ,2()1f x x x =+-,2()1f x x x -=-+-,不满足奇偶性的定义,是非奇非偶函数.对于C ,函数的定义域为(,0)(0,)-∞+∞,关于原点对称.当0x >时,2211()()1(1)()22f x x x f x -=---=-+=-;当0x <时,2211()()11()22f x x x f x -=-+=+=-.综上可知,函数()f x 是奇函数.对于D ,1)(=x f 的图象为平行于x 轴的直线,不关于原点对称,不是奇函数.【名师点睛】对于C ,判断分段函数的奇偶性时,应分段说明()f x -与()f x 的关系,只有当对称的两段上都满足相同的关系时,才能判断其奇偶性.若D 项中的函数是()0f x =,且定义域关于原点对称,则函数既是奇函数又是偶函数.【变式训练1】.判断下列函数的奇偶性: (1)f (x )=|x ﹣2|+|x +2|(2)f (x )=x(3)f (x )(4)f (x )(5)f (x )(6)f (x )(7)f (x )(8)f (x )【思路分析】先判断函数的定义域是否关于原点对称,再判断f (﹣x )与f (x )的关系,可得结论. 【答案】解:(1)f (x )=|x ﹣2|+|x +2|,满足f (﹣x )=f (x )恒成立,为偶函数; (2)f (x )=x 的定义域为(﹣∞,0)∪(0,1)∪(1,+∞),不关于原点对称,故函数为非奇非偶函数; (3)f (x )的定义域为{1},不关于原点对称,故函数为非奇非偶函数;(4)f (x )的定义域为{﹣1,1},且f (x )=0 恒成立,故函数即是奇函数,又是偶函数; (5)f (x )的定义域为[﹣2,2],但f (﹣x )=﹣f (x )与f (﹣x )=f (x )均不恒成立,故为非奇非偶函数; (6)f (x )的定义域为[﹣2,2],满足f (﹣x )=﹣f (x )恒成立,为奇函数;(7)f (x )的定义域为[﹣2,2],满足f (﹣x )=f (x )恒成立,为偶函数;(8)f (x )的定义域为{﹣2,2},且f (x )=0 恒成立,故函数即是奇函数,又是偶函数.(二) 函数奇偶性的应用例2、设奇函数()f x 的定义域为[5,5]-.若当[0,5]x ∈时,()f x 的图象如图所示,则不等式()0f x <的解集是( )A .(2,0)(2,5)-B .(5,2)(2,5)--C .[2,0](2,5]-D .(2,0)(2,5]-【答案】D【名师点睛】利用数形结合思想解题时,要准确画出草图,并注意特殊点的位置,且求解时不要忽略定义域的限制.例3、设偶函数()f x 的定义域为R ,当x [0,)∈+∞时()f x 是增函数,则(2)f -,(π)f ,(3)f -的大小关系是( )A .(π)f >(3)f ->(2)f -B .(π)f >(2)f ->(3)f -C .(π)f <(3)f -<(2)f -D .(π)f <(2)f -<(3)f -【答案】A【解析】由函数为偶函数得()()()()22,33f f f f -=-=,当x [0,)∈+∞时()f x 是增函数,所以(π)f >()()32f f >,从而(π)f >(3)f ->(2)f -【名师点睛】由于偶函数在y 轴两侧的单调性相反,故不可直接由π>23->-得出(π)(2)(3)f f f>->-.【变式训练1】.函数y=f(x)在[1,3]上单调递减,且函数f(x+3)是偶函数,则下列结论成立的是()A.f(2)<f(π)<f(5)B.f(π)<f(2)<f(5)C.f(2)<f(5)<f(π)D.f(5)<f(π)<f(2)【思路分析】根据函数f(x+3)是偶函数,即函数图象关于直线x=3对称,将三个自变量转化到同一单调区间上,进而可得答案.【答案】解:∵函数y=f(x)在[1,3]上单调递减,且函数f(x+3)是偶函数,∴f(π)=f(6﹣π),f(5)=f(1),∵f(6﹣π)<f(2)<f(1),∴f(π)<f(2)<f(5)故选:B.【变式训练2】.已知f(x)是定义在R上的偶函数,且有f(3)>f(1).则下列各式中一定成立的是()A.f(﹣1)<f(3)B.f(0)<f(5)C.f(3)>f(2)D.f(2)>f(0)【思路分析】根据函数奇偶性的性质进行求解即可.【答案】∵函数f(x)是偶函数,∴由f(3)>f(1).得f(3)>f(﹣1).故选:A.【变式训练3】.若函数f(x)=(x﹣2)(ax+b)为偶函数,且在(0,+∞)上单调递增,则f(2﹣x)>0的解集为()A.{x|x>4或x<0} B.{x|﹣2<x<2} C.{x|x>2或x<﹣2} D.{x|0<x<4}【思路分析】由题意利用函数的奇偶性和单调性、二次函数的性质,求得f(2﹣x)>0的解集.【答案】解:函数f(x)=(x﹣2)(ax+b)=ax2+(b﹣2a)x﹣2b为偶函数,∴b﹣2a=0,b=2a,f(x)=ax2﹣4a.再根据f(x)在(0,+∞)上单调递增,∴a>0.令ax2﹣4a=0,求得x=±2,则由f(2﹣x)>0,可得2﹣x>2,或2﹣x<﹣2,求得x<0,或x>4,故f(2﹣x)>0的解集为{x|x>4或x<0},故选:A.四、迁移应用1.函数f(x)=1x–x的图象关于( )A.坐标原点对称B.x轴对称C.y轴对称D.直线y=x对称【答案】A【解析】函数f(x)=1x–x,定义域为{x|x≠0}关于原点对称,f(–x)=–1x+x=–f(x),则f(x)为奇函数,图象关于原点对称.故选A.2.函数f(x)=x3+x的图象关于( )A.y轴对称B.直线y=–x对称C.坐标原点对称D.直线y=x对称【答案】C【解析】∵f(–x)=–x3–x=–f(x),∴函数f(x)=x3+x为奇函数,∵奇函数的图象关于原点对称,故选C.3.用区间表示数集{x|2<x≤4}=___________.【答案】(2,4]【解析】数集{x|2<x≤4}=(2,4],故答案为:(2,4].4.奇函数f(x)的图象关于点(1,0)对称,f(3)=2,则f(1)=___________.【答案】2【解析】奇函数f(x)的图象关于点(1,0)对称,f(3)=2,所以f(–1)=–2,所以f(1)=–f(–1)=2,故答案为:2.5.y=f(x)为奇函数,当x>0时f(x)=x(1–x),则当x<0时,f(x)=___________.【答案】x2+x【解析】∵f(x)为奇函数,x>0时,f(x)=x(1–x),∴当x<0时,–x>0,f(x)=–f(–x)=–(–x(1+x))=x(1+x),即x<0时,f(x)=x(1+x),故答案为:x2+x.6.已知函数y=f(x)在R上为奇函数,且当x≥0时,f(x)=x2–2x,则当x<0时,f(x)的解析式是( ) A.f(x)=–x(x+2)B.f(x)=x(x–2)C.f(x)=–x(x–2)D.f(x)=x(x+2)【答案】A7.已知函数y=f(x)是R上的偶函数,且f(x)在[0,+∞)上是减函数,若f(a)≥f(–2),则a的取值范围是( )A.a≤–2 B.a≥2C.a≤–2或a≥2D.–2≤a≤2【答案】D【解析】由题意可得|a|≤2,∴–2≤a≤2,故选D.8.已知一个奇函数的定义域为{–1,2,a,b},则a+b=( )A.–1 B.1 C.0 D.2【答案】A【解析】因为一个奇函数的定义域为{–1,2,a,b},根据奇函数的定义域关于原点对称,所以a与b有一个等于1,一个等于–2,所以a+b=1+–2=–1.故选A.9.已知函数f(x)=–x|x|+2x,则下列结论正确的是( )A.f(x)是偶函数,递增区间是(0,+∞)B.f(x)是偶函数,递减区间是(–∞,–1)C.f(x)是奇函数,递增区间是(–∞,–1)D.f(x)是奇函数,递增区间是(–1,1)【答案】D【解析】由题意可得函数定义域为R,∵函数f(x)=–x|x|+2x,∴f(–x)=x|–x|–2x=–f(x),∴f(x)为奇函数,当x≥0时,f(x)=–x2+2x=–(x–1)2+1,由二次函数可知,函数在(0,1)单调递增,在(1,+∞)单调递减;由奇函数的性质可得函数在(–1,0)单调递增,在(–∞,–1)单调递减;综合可得函数的递增区间为(–1,1),故选D.10.奇函数y=f(x)的局部图象如图所示,则( )A.f(2)>0>f(4)B.f(2)<0<f(4)C.f(2)>f(4)>0 D.f(2)<f(4)<0【答案】A【解析】∵函数f(x)为奇函数,∴其图象关于原点对称.由题图可知,f(–4)>0>f(–2),即–f(4)>0> –f(2),∴f(2)>0>f(4).故选A.。
专题3.2.1 重难点之导数与函数单调性(重难点突破)(解析版)
专题3.2.1 重难点之导数与函数单调性重难点突破一、考情分析1、结合实例,借助几何直观探索并了解函数的单调性与导数的关系;2、能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间.二、经验分享三、考点梳理知识点1. 利用导数研究函数的单调性在某个区间(a,b)内,如果f′(x)≥0且在(a,b)的任意子区间上不恒为0,那么函数y=f(x)在这个区间内单调递增;如果f′(x)≤0且在(a,b)的任意子区间上不恒为0,那么函数y=f(x)在这个区间内单调递减.知识点2. 判定函数单调性的一般步骤(1)确定函数y=f(x)的定义域;(2)求导数f′(x);(3)在函数f(x)的定义域内解不等式f′(x)>0或f′(x)<0;(4)根据(3)的结果确定函数的单调区间.知识点3. 已知函数单调性求参数的值或参数的范围(1)函数y=f(x)在区间(a,b)上单调递增,可转化为f′(x)≥0在(a,b)上恒成立,且在(a,b)的任意子区间上不恒为_0;也可转化为(a,b)⊆增区间.函数y=f(x)在区间(a,b)上单调递减,可转化为f′(x)≤0在(a,b)上恒成立,且在(a,b)的任意子区间上不恒为_0;也可转化为(a,b)⊆减区间.(2)函数y=f(x)的增区间是(a,b),可转化为(a,b)=增区间,也可转化为f′(x)>0的解集是(a,b);函数y=f(x)的减区间是(a,b),可转化为(a,b)=减区间,也可转化为a,b是f′(x)=0的两根.四、题型分析重难点题型突破1 求函数的单调区间 例1、求下列函数的单调区间: (1)f(x)=x 3-12x 2-2x +3;(2)g(x)=x 2-2ln x.(3)f (x )=x 3-6x 2的单调递减区间.【解析】 (1)∵f′(x)=3x 2-x -2=(3x +2)(x -1),定义域为R , ∴当f ′(x )>0时,x ∈⎝⎛⎭⎫-∞,-23∪(1,+∞);当f ′(x )<0时,x ∈⎝⎛⎭⎫-23,1. ∴函数的单调增区间为⎝⎛⎭⎫-∞,-23和(1,+∞),单调减区间为⎝⎛⎭⎫-23,1. (2)g ′(x )=2x -2x =2(x +1)(x -1)x,定义域为(0,+∞),令g ′(x )=0,解得:x =1或x =-1(舍去),列表:∴函数的单调增区间是(1,+∞),单调减区间是(0,1). (3)f ′(x )=3x 2-12x =3x (x -4),由f ′(x )<0,得0<x <4, ∴函数f (x )的单调递减区间为(0,4).【变式训练1】.(黑龙江省哈尔滨市第六中学2018-2019学年期中)已知函数23()4ln 2f x x x x =-+,则函数()f x 的单调递减区间是( )A .1(0,)3,(1,)+∞ B .(0,1),(3,)+∞ C .1(0,)3,(3,)+∞ D .1(1)3, 【答案】D【解析】函数()f x 的定义域为(0,)+∞,()()()()2311314ln 342x x f x x x x f x x x x--=-+⇒-'=+=, 当()0f x '<时,函数单调递减,即()()3110x x x--<而0x >,解不等式得:113x <<,故本题选D 。
专题3.2.2 重难点之导数与函数的极值最值(重难点突破)(解析版)
专题3.2.2 重难点之导数与函数极值、最值重难点突破一、考情分析1、结合函数的图象,了解函数在某点取得极值的必要条件和充分条件;2、会用导数求不超过三次的多项式函数的极大值、极小值,3、会用导数求给定区间上不超过三次的多项式函数的最大值、最小值.二、经验分享三、考点梳理知识点1、函数的极值(1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值.知识点2、函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.知识点3、常用结论1.若函数f(x)的图象连续不断,则f(x)在[a,b]上一定有最值.2.若函数f(x)在[a,b]上是单调函数,则f(x)一定在区间端点处取得最值.3.若函数f(x)在区间(a,b)内只有一个极值点,则相应的极值点一定是函数的最值点.三、题型分析重难点题型突破1 求函数的极大值与极小值例1、 (1)函数f(x)=13x 3-4x +13的极大值是____,极小值是____.【答案】173,-5【解析】 f′(x)=x 2-4,令f′(x)=0,解得x 1=-2,x 2=2.当x 变化时,f(x),f′(x)的变化情况如下表:因此,当x =-2时,f(x)有极大值f(-2)=173;当x =2时,f(x)有极小值f(2)=-5.(2)、f (x )=2x +1x 2+2的极小值为________.【答案】-12【解析】f ′(x )=2222(2)2(21)(2)x x x x +-++=222(2)(1)(2)x x x -+-+. 令f ′(x )<0,得x <-2或x >1;令f ′(x )>0,得-2<x <1.∴f (x )在(-∞,-2),(1,+∞)上是减函数,在(-2,1)上是增函数,∴f (x )极小值=f (-2)=-12.【变式训练1】、(一题两空)(2019·甘肃兰州一中期末改编)若x =-2是函数f (x )=(x 2+ax -1)e x 的极值点,则f ′(-2)=________,f (x )的极小值为________. 【答案】:0 -e【解析】由函数f (x )=(x 2+ax -1)e x 可得f ′(x )=(2x +a )e x +(x 2+ax -1)e x ,因为x =-2是函数f (x )的极值点,所以f ′(-2)=(-4+a )e -2+(4-2a -1)e -2=0,即-4+a +3-2a =0,解得a =-1.所以f ′(x )=(x 2+x -2)e x .令f ′(x )=0可得x =-2或x =1.当x <-2或x >1时,f ′(x )>0,此时函数f (x )为增函数,当-2<x <1时,f ′(x )<0,此时函数f (x )为减函数,所以当x =1时函数f (x )取得极小值,极小值为f (1)=(12-1-1)×e 1=-e. 【变式训练2】、已知函数f(x)=1x+ln x ,求函数f(x)的极值.【解析】 ∵f(x)=1x +ln x ,∴f′(x)=-1x 2+1x =x -1x2,令f(x)=0,得x =1,列表:∴x =1是f(x)的极小值点,f(x)的极小值为1,无极大值. 重难点题型突破2 已知函数的极(最)值求参数的取值范围例2、. 已知函数f(x)=x 3+mx 2+(m +6)x +1既存在极大值又存在极小值,则实数m 的取值范围是(B )A . (-1,2)B . (-∞,-3)∪(6,+∞)C . (-3,6)D . (-∞,-1)∪(2,+∞) 【答案】B【解析】 ∵f(x)=x 3+mx 2+()m +6x +1,∴f′(x)=3x 2+2mx +()m +6, 由于函数y =f(x)既有极大值,又有最小值,则导函数y =f′(x)有两个零点, ∴Δ=4m 2-12()m +6>0,即m 2-3m -18>0,解得m<-3或m>6. ∴实数m 的取值范围是()-∞,-3∪()6,+∞.故选B .【变式训练1】、(2020·湖南省五市十校联考)已知函数f (x )=ln x -12ax 2+x ,a ∈R .(1)当a =0时,求曲线y =f (x )在(1,f (1))处的切线方程; (2)令g (x )=f (x )-(ax -1),求函数g (x )的极值.【解析】 (1)当a =0时,f (x )=ln x +x ,则f (1)=1,所以切点为(1,1), 又f ′(x )=1x +1,所以切线斜率k =f ′(1)=2,故切线方程为y -1=2(x -1),即2x -y -1=0. (2)g (x )=f (x )-(ax -1)=ln x -12ax 2+(1-a )x +1,则g ′(x )=1x -ax +(1-a )=-ax 2+(1-a )x +1x ,当a ≤0时,因为x >0,所以g ′(x )>0.所以g (x )在(0,+∞)上是增函数,函数g (x )无极值点.当a >0时,g ′(x )=-ax 2+(1-a )x +1x=-a (x -1a)(x +1)x,令g ′(x )=0得x =1a .所以当x ∈⎪⎭⎫⎝⎛a1,0时,g ′(x )>0;当x ∈⎪⎭⎫⎝⎛+∞,1a 时,g ′(x )<0. 因为g (x )在⎪⎭⎫ ⎝⎛a 1,0上是增函数,在⎪⎭⎫⎝⎛+∞,1a 上是减函数.所以x =1a 时,g (x )有极大值⎪⎭⎫⎝⎛ag 1=ln 1a -a 2×1a 2+(1-a )·1a +1=12a -ln a .综上,当a ≤0时,函数g (x )无极值;当a >0时,函数g (x )有极大值12a -ln a ,无极小值.【变式训练2】、设函数f (x )=[ax 2-(3a +1)x +3a +2]e x .(1)若曲线y =f (x )在点(2,f (2))处的切线斜率为0,求实数a 的值; (2)若f (x )在x =1处取得极小值,求实数a 的取值范围. 【解析】 (1)因为f (x )=[ax 2-(3a +1)x +3a +2]e x , 所以f ′(x )=[ax 2-(a +1)x +1]e x .f ′(2)=(2a -1)e 2. 由题设知f ′(2)=0,即(2a -1)e 2=0,解得a =12.(2)由(1)得f ′(x )=[ax 2-(a +1)x +1]e x =(ax -1)(x -1)e x . 若a >1,则当x ∈⎪⎭⎫⎝⎛1,1a 时,f ′(x )<0; 当x ∈(1,+∞)时,f ′(x )>0. 所以f (x )在x =1处取得极小值.若a ≤1,则当x ∈(0,1)时,ax -1≤x -1<0,所以f ′(x )>0. 所以1不是f (x )的极小值点.综上可知,a 的取值范围是(1,+∞). 重难点题型突破3 利用导数研究函数的最值 例3、函数f (x )=x 2-ln x 的最小值为( )A .1+ln 2B .1-ln 2 C.1+ln 22D.1-ln 22【答案】C【解析】 因为f (x )=x 2-ln x (x >0),所以f ′(x )=2x -1x ,令2x -1x =0得x =22,令f ′(x )>0,则 x >22;令f ′(x )<0,则0<x <22.所以f (x )在⎝⎛⎭⎫0,22上单调递减,在⎝⎛⎭⎫22,+∞上单调递增,所以f (x )的极小值(也是最小值)为⎝⎛⎭⎫222-ln22=1+ln 22,故选C. 例4、已知函数f(x)=x -ax -ln x ,a>0.(1)求函数f(x)的单调区间和极值点;(2)若f(x)>x -x 2在(1,+∞)恒成立,求实数a 的取值范围.【解析】 (1)函数f(x)=x -a x -ln x ,a>0的定义域为(0,+∞),f′(x)=1+a x 2-1x =x 2-x +ax 2,①Δ=1-4a≤0,即a≥14时,f′(x)≥0恒成立,∴f(x)在(0,+∞)上单调递增,无极值点;②Δ=1-4a>0,即0<a<14时,令f′(x)=0,解得x 1=1-1-4a 2,x 2=1+1-4a 2,列表,x (0,x 1) x 1 (x 1,x 2) x 2 (x 2,+∞)f′(x) + 0 - 0 + f(x)单调递增极大值单调递减极小值单调递增∴函数f(x)的增区间是⎝ ⎛⎭⎪⎫0,1-1-4a 2,⎝ ⎛⎭⎪⎫1+1-4a 2,+∞,减区间是⎝ ⎛⎭⎪⎫1-1-4a 2,1+1-4a 2,极大值点是x 1=1-1-4a 2,极小值点是x 2=1+1-4a2.(2)f(x)>x -x 2,即x 2-ax -ln x>0,∵x ∈(1,+∞),∴a<x 3-x ln x ,令g(x)=x 3-x ln x ,则h(x)=g′(x)=3x 2-ln x -1,h′(x)=6x -1x =6x 2-1x>0在(1,+∞)上恒成立, ∴h(x)在(1,+∞)上递增,h(x)>h(1)=2,即g′(x)>0,故g(x)=x 3-x ln x 在(1,+∞)上为增函数,g(x)>g(1)=1,∴0<a≤1.【变式训练1】、已知函数f (x )=ax 2+bx +ce x(a >0)的导函数f ′(x )的两个零点为-3和0.(1)求f (x )的单调区间;(2)若f (x )的极小值为-e 3,求f (x )在区间[-5,+∞)上的最大值. 【解析】(1)f ′(x )=(2ax +b )e x -(ax 2+bx +c )e x (e x )2=-ax 2+(2a -b )x +b -ce x .令g (x )=-ax 2+(2a -b )x +b -c ,因为e x >0,所以f ′(x )的零点就是g (x )=-ax 2+(2a -b )x +b -c 的零点,且f ′(x )与g (x )符号相同. 又因为a >0,所以当-3<x <0时,g (x )>0,即f ′(x )>0,当x <-3或x >0时,g (x )<0,即f ′(x )<0, 所以f (x )的单调递增区间是(-3,0),单调递减区间是(-∞,-3),(0,+∞). (2)由(1)知,x =-3是f (x )的极小值点,所以有⎩⎪⎨⎪⎧f (-3)=9a -3b +ce -3=-e 3,g (0)=b -c =0,g (-3)=-9a -3(2a -b )+b -c =0,解得a =1,b =5,c =5,所以f (x )=x 2+5x +5e x .由(1)可知当x =0时f (x )取得极大值f (0)=5,故f (x )在区间[-5,+∞)上的最大值取f (-5)和f (0)中的最大者.而f (-5)=5e-5=5e 5>5=f (0),所以函数f (x )在区间[-5,+∞)上的最大值是5e 5. 重难点题型突破4 利用导数求解最优化问题 例5、(2020·贵阳市检测)已知函数f (x )=x -1x -ln x .(1)求f (x )的单调区间;(2)求函数f (x )在⎥⎦⎤⎢⎣⎡e e ,1上的最大值和最小值(其中e 是自然对数的底数).【解析】 (1)f (x )=x -1x -ln x =1-1x-ln x ,f (x )的定义域为(0,+∞). 因为f ′(x )=1x 2-1x =1-xx 2,所以f ′(x )>0⇒0<x <1,f ′(x )<0⇒x >1,所以f (x )在(0,1)上单调递增,在(1,+∞)上单调递减.(2)由(1)得f (x )在⎥⎦⎤⎢⎣⎡1,1e 上单调递增,在(1,e]上单调递减,所以f (x )在⎥⎦⎤⎢⎣⎡e e,1上的极大值为f (1)=1-11-ln 1=0.又⎪⎭⎫ ⎝⎛e f 1=1-e -ln 1e =2-e ,f (e)=1-1e -ln e =-1e,且⎪⎭⎫⎝⎛e f 1<f(e).所以f (x )在⎥⎦⎤⎢⎣⎡e e,1上的最大值为0,最小值为2-e.【变式训练1】、设直线x t = 与函数2()f x x =,()ln g x x = 的图像分别交于点,M N ,则当MN 达到 最小时t 的值为( )A .1B .12 C 5 D 2【答案】D【解析】由题2||ln MN x x =-,(0)x >不妨令2()ln h x x x =-,则1'()2h x x x=-,令'()0h x =解得2x =,因2x ∈时,'()0h x <,当2()x ∈+∞时,'()0h x >,所以当2x =即2t =||MN 达到最小.【变式训练2】、设函数())ln 2(2x xk x e x f x +-=(k 为常数, 2.71828e =是自然对数的底数).(Ⅰ)当0k ≤时,求函数()f x 的单调区间;(Ⅱ)若函数()f x 在()0,2内存在两个极值点,求k 的取值范围. 【解析】(Ⅰ)函数()y f x =的定义域为(0,)+∞242221()()x x e x xe f x k x x x ⋅-'=--+3(2)()(0)x x e kx x x --=>由0k ≤可得0x e kx ->所以当(0,2)x ∈时,()0f x '<,函数()y f x =单调递减, 所以当(2,)x ∈+∞时,()0f x '>,函数()y f x =单调递增, 所以 ()f x 的单调递减区间为(0,2),()f x 的单调递增区间为(2,)+∞ (Ⅱ)由(Ⅰ)知,0k ≤时,()f x 在(0,2)内单调递减, 故()f x 在(0,2)内不存在极值点;当0k >时,设函数()xg x e kx =-,[0,)x ∈+∞,因此ln ()x x k g x e k e e =-=-.当01k <≤时,(0,2)x ∈时()0x g x e k '=->,函数()y g x =单调递增 故()f x 在(0,2)内不存在两个极值点; 当1k >时,函数在(0,2)内存在两个极值点当且仅当(0)0(ln )0(2)00ln 2g g k g k >⎧⎪<⎪⎨>⎪⎪<<⎩,解得22e e k <<,综上函数()f x 在()0,2内存在两个极值点时,k 的取值范围为2(,)2e e .四、迁移应用1、若函数()f x =22(1)()x x ax b -++的图像关于直线x =-2对称,则()f x 的最大值是______. 【答案】16【解析】由()f x 图像关于直线x =-2对称,则0=(1)(3)f f -=-=22[1(3)][(3)3]a b ----+,0=(1)(5)f f =-=22[1(5)][(5)5]a b ----+,解得a =8,b =15, ∴()f x =22(1)(815)x x x -++,∴()f x '=222(815)(1)(28)x x x x x -+++-+=324(672)x x x -++- =4(2)(25)(25)x x x -++++-当x ∈(-∞,25--)∪(-2, 25-+)时,()f x '>0, 当x ∈(25--,-2)∪(25-+,+∞)时,()f x '<0,∴()f x 在(-∞,25--)单调递增,在(25-2)单调递减,在(-2,25-在(25-+∞)单调递减,故当x =25-x =25-+(25)f -=(25)f -=16. 2、(I)讨论函数2()e 2xx f x x -=+的单调性,并证明当0x >时,(2)e 20x x x -++>; (II)证明:当[0,1)a ∈ 时,函数()2e =(0)x ax ag x x x --> 有最小值.设()g x 的最小值为()h a ,求函数()h a 的值域.【解析】(I )证明:()2e 2x x f x x -=+()()()22224e e 222x xx x f x x x x ⎛⎫-'⎪=+= ⎪+++⎝⎭∵当x ∈()()22,-∞--+∞,时,()0f x '>∴()f x 在()()22,-∞--+∞,和上单调递增∴0x >时,()2e 0=12xx f x ->-+∴()2e 20x x x -++> (Ⅱ)33(2)(2)2()(())x x e a x x g x f x a x x-+++'==+, 由(Ⅰ)知,()f x a +单调递增,对任意的[)01a ∈,,(0)10f a a +=-<, (2)0f a a+=,因此,存在唯一(0,2]a x ∈,使得()0a f x a +=,即()0a g x '=当0a x x <<时,()0f x a +<,()0g x '<,()g x 单调递减; 当a x x >时,()0f x a +>,()0g x '>,()g x 单调递增. 因此()g x 在a x x =处取得最小值,最小值为22(1)()(1)()2a a ax x x a a a a a a a e a x e f x x e g x x x x -+-+===+. 于是()2ax a e h a x =+,由2(1)()02(2)x x e x e x x +'=>++,得2x e x +单调递增.所以,由(0,2]a x ∈,得0221()2022224ax a e e e e h a x =<==+++, 因为2x e x +单调递增,对任意的21(,]24e λ∈,存在唯一的(0,2]a x ∈,()[0,1)a a f x =-∈,使得()h a λ=,所以()h a 的值域为21e 24⎛⎤ ⎥⎝⎦,.综上,当[0,1)a ∈时,()g x 有最小值()h a ,()h a 的值域为21e 24⎛⎤⎥⎝⎦,.3. 设函数()cos 2(1)(cos 1)f x x x αα=+-+,其中0α>, 记|()|f x 的最大值为A . (Ⅰ)求()f x '; (Ⅱ)求A ;(Ⅲ)证明|()|2f x A '≤.【解析】(Ⅰ)()2sin 2(1)sin f x a x a x '=---. (Ⅱ)当1a时,|()||sin2(1)(cos 1)|f x a x a x '=+-+2(1)a a +-32a =-(0)f =因此,32A a =-.当01a <<时,将()f x 变形为2()2cos (1)cos 1f x a x a x =+--. 令2()2(1)1g t at a t =+--,则A 是|()|g t 在[1,1]-上的最大值,(1)g a -=,(1)32g a =-,且当14at a-=时,()g t 取得极小值, 极小值为221(1)61()1488a a a a g a a a--++=--=-. 令1114a a --<<,解得13a <-(舍去),15a >. (ⅰ)当105a<时,()g t 在[1,1]-内无极值点,|(1)|g a -=,|(1)|23g a =-,|(1)||(1)|g g -<,所以23A a =-.(ⅱ)当115a <<时,由(1)(1)2(1)0g g a --=->,知1(1)(1)()4a g g g a-->>. 又1(1)(17)|()||(1)|048a a a g g a a --+--=>,所以2161|()|48a a a A g a a-++==.综上,2123,05611,18532,1a a a a A a a a a ⎧-<⎪⎪++⎪=<<⎨⎪-⎪⎪⎩. (Ⅲ)由(Ⅰ)得|()||2sin 2(1)sin |2|1|f x a x a x a a '=---+-.当105a<时,|()|1242(23)2f x a a a A '+-<-=. 当115a <<时,131884a A a =++,所以|()|12f x a A '+<.当1a 时,|()|31642f x a a A '--=,所以|()|2f x A '.4、已知函数f (x )=ax +ln x ,其中a 为常数.(1)当a =-1时,求f (x )的最大值;(2)若f (x )在区间(0,e]上的最大值为-3,求a 的值.【解析】(1)易知f (x )的定义域为(0,+∞),当a =-1时,f (x )=-x +ln x ,f ′(x )=-1+1x =1-x x, 令f ′(x )=0,得x =1.当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0.∴f (x )在(0,1)上是增函数,在(1,+∞)上是减函数.∴f (x )max =f (1)=-1.∴当a =-1时,函数f (x )在(0,+∞)上的最大值为-1.(2)f ′(x )=a +1x ,x ∈(0,e],1x ∈⎣⎡⎭⎫1e ,+∞. ①若a ≥-1e,则f ′(x )≥0,从而f (x )在(0,e]上是增函数, ∴f (x )max =f (e)=a e +1≥0,不合题意.②若a <-1e ,令f ′(x )>0得a +1x >0,结合x ∈(0,e],解得0<x <-1a ; 令f ′(x )<0得a +1x <0,结合x ∈(0,e],解得-1a<x ≤e. 从而f (x )在⎝⎛⎭⎫0,-1a 上为增函数,在⎝⎛⎦⎤-1a ,e 上为减函数, ∴f (x )max =f ⎝⎛⎭⎫-1a =-1+ln ⎝⎛⎭⎫-1a . 令-1+ln ⎝⎛⎭⎫-1a =-3,得ln ⎝⎛⎭⎫-1a =-2,即a =-e 2.∵-e 2<-1e,∴a =-e 2为所求. 故实数a 的值为-e 2.5、已知函数f (x )=ln x +12x 2-ax +a (a ∈R ). (1)若函数f (x )在(0,+∞)上为单调递增函数,求实数a 的取值范围;(2)若函数f (x )在x =x 1和x =x 2处取得极值,且x 2≥ e x 1(e 为自然对数的底数),求f (x 2)-f (x 1)的最大值.【解析】(1)∵f ′(x )=1x+x -a (x >0), 又f (x )在(0,+∞)上单调递增,∴恒有f ′(x )≥0,即1x+x -a ≥0恒成立,∴a ≤⎝⎛⎭⎫x +1x min , 而x +1x≥2 x ·1x=2,当且仅当x =1时取“=”, ∴a ≤2.即函数f (x )在(0,+∞)上为单调递增函数时,a 的取值范围是(-∞,2].(2)∵f (x )在x =x 1和x =x 2处取得极值,且f ′(x )=1x +x -a =x 2-ax +1x(x >0), ∴x 1,x 2是方程x 2-ax +1=0的两个实根,由根与系数的关系得x 1+x 2=a ,x 1x 2=1,∴f (x 2)-f (x 1)=ln x 2x 1+12(x 22-x 21)-a (x 2-x 1)=ln x 2x 1-12(x 22-x 21)=ln x 2x 1-12(x 22-x 21)1x 1x 2=ln x 2x 1-12⎝⎛⎭⎫x 2x 1-x 1x 2, 设t =x 2x 1(t ≥ e),令h (t )=ln t -12⎝⎛⎭⎫t -1t (t ≥ e), 则h ′(t )=1t -12⎝⎛⎭⎫1+1t 2=-(t -1)22t 2<0, ∴h (t )在[e ,+∞)上是减函数,∴h (t )≤h (e)=12⎝⎛⎭⎫1- e +e e , 故f (x 2)-f (x 1) 的最大值为12⎝⎛⎭⎫1- e +e e .。
高考数学二轮复习之函数与导数难点突破方法
高考数学二轮复习之函数与导数难点突破方法
1.导数日益成为解决问题必不可少的工具,利用导数研究函数的单调性与极值(最值)是高考的常见题型,而导数与函数、不等式、方程、数列等的交汇命题,是高考的热点和难点。
2.热点题型有:①利用导数研究函数的单调性、极值、最值;②利用导数证明不等式或探讨方程根;③利用导数求解参数的范围或值。
3.解决本节问题要熟练掌握利用导数研究函数单调性、极值、最值的方法,熟练掌握基本的数学思想,特别是函数与方程思想、数形结合思想和分类讨论思想。
高考数学二轮复习方法
三步解决方程解(或曲线公共点)的个数问题第一步:将问题转化为函数的零点问题,进而转化为函数的图象与x轴(或直线y=k)在该区间上的交点问题;
第二步:利用导数研究该函数在该区间上单调性、极值(最值)、端点值等性质,进而画出其图象;
第三步:结合图象求解。
谈复合函数求导教学难点突破
谈复合函数求导教学难点的突破摘要:复合函数的求导法运用如何,是求导方法灵活应用的重要标志。
本文从分清函数,确认复合函数求导法则,分步施教等三个方面对复合函数求导法难点如何突破进行了说明,使学生更加明确复合函数求导法.关键词:复合函数难点导数中图分类号:g623.3 文献标识码:a 文章编号:1674-098x(2011)12(b)-0139-01导数是微积分中重要概念之一,是学习微积分的纽带。
复合函数的导数的计算是求导数的关键,它是检验导数计算基本训练能否过关的重要标志。
另外,在教学过程中,也深感学生在学习中十分困难,为了突出教学重点,突破教学难点,笔者采用了如下的教学方法,与读者交流。
1 观察函数,掌握基础用已掌握的计算方法解决新的计算问题,从实际背景中抽象出新的数学概念,认准所解决问题的本质特征,是数学教学常规的教学方法,对复合函数求导法的教学,也同样可以用这种方法进行教学。
1.1 复合函数求导法则的引入我们在前面已掌握了以下求导公式和求导的四则运算法则, 试问成立吗?我们可以用另外的办法来求的导数由上可以知道的导数是2,出现这个错误的原因是在那里呢?原来是由,复合而成的,是函数对中间变量的导数,用对的导数去代替对的导数,显然就错了。
我们还可以知道,,由此我们可以引入复合函数求导法则。
1.2 正确判断函数,选择适当求导法则(1)凡是由基本初等函数之间的四则运算按所组成的函数(称为简单函数),不管其简单还是繁杂,在求导时只需用导数基本公式和四则运算法则,不需要用复合函数求导法则。
例如,求函数的导数,只用导数的基本公式和四则运算法则即可求出。
(2)对于基本初等函数来说,如果位于自变量的位置不是,而是的函数,那么,就要将此函数称的复合函数,因而,必须用复合函数的求导法则。
例如,,,是三角函数形式的复合函数;,是反三角函数的复合函数;,,是幂函数形式的复合函数;,,是指数函数形式的复合函数。
求以上形式的函数的导数,都必须要用复合函数的求导法则。
高考数学难点突破_难点06__函数值域及求法
高考数学难点突破_难点06__函数值域及求法函数值域及求法是高考数学中的一个重要难点。
本文将介绍函数的值域的概念、求法及一些常见的解题思路。
一、函数值域的概念函数的值域是指函数在定义域内取到的所有可能的函数值的集合。
简单来说,就是函数所有可能的输出值构成的集合。
二、值域的求法1.函数图像法:根据函数的图像来判断函数的值域。
当函数的图像是一个区间时,值域就是这个区间。
当函数的图像是一个集合时,值域就是这个集合。
2.分析法:根据函数的定义和性质来进行分析。
a.奇偶性:如果函数是奇函数,即对于任意的x,有f(-x)=-f(x),那么函数的值域关于y轴对称。
如果函数是偶函数,即对于任意的x,有f(-x)=f(x),那么函数的值域关于x轴对称。
b.函数的单调性:如果函数在定义域上是单调递增或单调递减的,那么可以通过求出函数的最值来确定值域。
c.函数的周期性:如果函数是周期性的,那么可以根据周期性来确定值域。
比如正弦函数的值域是[-1,1],余弦函数的值域也是[-1,1]。
d.函数的极限:如果函数在定义域的一些点处的极限存在,那么该点处的极限就是函数的值域。
三、一些解题思路1.利用函数的性质进行求解:利用函数的奇偶性、单调性、周期性、极限等性质进行求解。
2.利用导数进行求解:如果函数存在可导性质,可以通过求导数来分析函数的变化趋势,从而确定值域。
3.利用反函数进行求解:如果函数存在反函数,可以通过求反函数的定义域和值域来确定原函数的值域。
4.利用函数的定义进行求解:通过函数的定义式,对函数进行变形、化简,从而求出函数的值域。
四、例题解析考虑函数f(x)=1/(x-1),我们来求函数的值域。
首先,由函数的定义可知,函数的定义域是x≠1然后,我们可以通过分析函数的性质来确定它的值域。
对于函数f(x)=1/(x-1),我们可以看出它是一个单调递增函数。
当x逼近无穷大时,函数的值也会无限接近于0。
所以,当x→∞时,f(x)≈0。
高考数学难点突破_难点34__导数的运算法则及基本公式应用
高考数学难点突破_难点34__导数的运算法则及基本公式应用导数的运算法则是研究导数的基本运算规则和规律,包括加法、减法、乘法、除法、复合函数等运算法则。
基于这些运算法则,我们可以快速准确地求出导数。
一、加法法则(1)导数的加法法则:设函数f(x)和g(x)都在点x处可导,则它们的和函数(f+g)(x)在点x处的导数等于f(x)在点x处的导数与g(x)在点x处的导数的和。
即:(f+g)'(x)=f'(x)+g'(x)(2)减法法则:设函数f(x)和g(x)都在点x处可导,则它们的差函数(f-g)(x)在点x处的导数等于f(x)在点x处的导数减去g(x)在点x处的导数。
即:(f-g)'(x)=f'(x)-g'(x)二、乘法法则(1)导数的乘法法则:设函数f(x)和g(x)都在点x处可导,则它们的积函数(f·g)(x)在点x处的导数等于f(x)在点x处的导数乘以g(x),再加上f(x)乘以g(x)在点x处的导数。
即:(f·g)'(x)=f'(x)·g(x)+f(x)·g'(x)三、除法法则(1)导数的除法法则:设函数f(x)和g(x)都在点x处可导,且g(x)≠0,则它们的商函数(f/g)(x)在点x处的导数等于[f'(x)·g(x)-f(x)·g'(x)]/(g(x))^2即:(f/g)'(x)=[f'(x)·g(x)-f(x)·g'(x)]/(g(x))^2四、复合函数的求导法则记y=f(u),u=g(x),即y=f(g(x)),其中f(u)和g(x)都是可导函数,则复合函数y的导数可以通过链式法则求得。
链式法则:若y = f(u),u = g(x),则dy/dx = dy/du · du/dx,即d y/dx = f'(u) · g'(x)以上是导数的基本运算法则及其应用。
初中函数概念学习的困惑及突破方法
、
2 . 着重整合教学流程 为了进行函数教学 , 需要设计 良好的教学流 程。 教师需要首先引入教学的问题 , 学习基本常量与变量 的概念 , 通过对几 个问题的研究 , 引入常量与变量 , 为函数概念的学习做准备 。 接下来进行 函 数本质的探讨 , 教师与学生开展互动环节, 对上述问题进行归纳 与总结 , 归 纳 出函数 的概念。 之后对函数 的模型进行探讨 , 学生进行观察思考与讨论 , 了解函数模型在生活中的运用情况 , 教师结合生活实例, 展开分 析。 最后进 行课程小结, 布置课 程作业 , 回归教学 的重点 内容 , 进行巩 固练 习, 让学生 尝试独立解决 问题。 教师可 以从学生 生活处展开 , 例 如车速为 3 0 k ml h , 那 么行 驶 时 间 t 与行 驶 里程 Y 之 间 的 关 系足 什 么 ? 通 过 这 样 的教 学 问题 , 让学 生对 其 进 行探 究 , 了解 函数 一 一对 应 关 系 , 分 析 常 量 与变 量 。 3 . 教 学过 程设计 教学过程是 函数概念教学的重点 内容 , 在这个过 程中 , 需要设计 良好 的问题情 境 , 教 师提 出问题 , 引发 学生思 考 , 最后进 行 师 生讨 论 , 得 出结 论 。 教学 案例 如: 在 概念教学之初 , 教师提 出问题 , 时间t , 里程 s , 单 价 , 总收入Y …, 这些量有什么特点 , 教师提问 : 如果一辆车的速度是 6 0 k m/ h, 那么 t 小 时所 行 的 里程 s 是多少 , 这 时候 , 学 生就 会 用含 有 t 的表 达 式 表 示 s , 通过 表达式 , 就可 以引入 常量 与变量的概念 , 这种关系式 与对应关 系为 学习函数的概念奠定 了基础 。 接 下来 教师进一步引发学生思 考 , 当 t=1 时, :6 0 , t=2, s=1 2 0, t=3 , s=1 8 0 …, 当t 取某 一个 特定的值 时 , s 都 有唯一的值与其对应 , 函数概念 比较抽 象 , 学 生不 能通过 一个 问题就 能 理解 , 需要不断地思考 , 利用 心电图 、 人 口统计表之 类的问题让学 生对 这 种一一对应关系更加强化 。 教师 带领 学生绘制 函数 图像 , 例如 : 爸 爸的年 龄与小 明年龄相差 2 4岁 , 为当小明为 岁时 , 爸爸多少岁? 由此可得 出函 数表达式 Y : +2 4, 教师可以让学生 自行绘 制函数 图像 , 观察函数图像 的特点 , 每找到一个 点 , 是不是 有唯一 的y A与之相对应 。 通过对 图像的 分析 , 以及各种数量关 系以及 规律的探索 , 能够 激起学生的学 习兴趣 , 从 而提升学生解决问题的能力与信心 , 培养学生的发现能力与创新意识。 初 中函数概念是一种较 为抽 象 的概念 , 是学 生接触 变量 的开始 。 由 于函数概念存在数 量关系之间的变化 , 同时具有 自变量 、 因变 量 、 数量 关 系等相关概念 , 学生理解起来可能 比较 困难 。 在实际教学过程 中 , 需要 不 断结合学生 的学 习特点 , 分析教学 的重难点 , 进行教学过程 的设计 , 教 学 过程 中也需要设置 问题情境 , 根据 学生 的学 习情 况给 予相应 的指 导 , 不 断提 升学生 的学 习效率与水平 。
锐角三角形函数重点难点突破
《锐角三角形函数》重点难点突破本章是在直角三角形的概念、性质、判定以及作图的基础上,继续深入研究几何图形,前后在直角三角形中两锐角互余,三边关系有勾股定理,那么边与角之间有什么样的关系呢?通过锐角三角形函数的学习,从而实现这部分知识与实际生活的紧密结合.锐角三角函数不仅是初中数学学习的重点内容,也是高中数学后继学习内容的基础.一、准确理解概念,掌握本章知识的重点1.明确锐角是在什么样三角形中,在哪个直角三角形中;正弦、余弦、正切的定义.2.三角函数值是比值,与三边大小无关.3.必须熟记所有特殊角的三角函数值,并做到准确运算(既能知角求值,又能知值求角).4.掌握三角函数基本关系式以及余角的三角函数关系式,例:22sin cos 1+=S αα;sin tan cos =S αααsin(90)cos ︒-=αα,cos(90)sin ︒-=αα5.锐角三角函数的增减性.6.解直角三角形的基本类型(已知一边一角,已知两边).7.弄清仰角、俯角、坡度、坡角、垂直距离、水平距离等常用的概念的意义.8.能把实际问题中的已知条件和未知元素归结到某个直角三角形中(这是两年中考命题常见的一类题型).二、本章重点是以上几个方面,也是学好本章知识的关键.那么难点是什么呢?本章难点是把几何图形和实际生活,生产中的计算问题添辅助线转化为解直角三角形问题.三、例1,如图ABC △中,⊥AD BC 于D ,74=BD DC ∶∶,2tan 3=B ,求:tan C . “遇此可设辅助未知数”,这是解数学问题的重要方法之一:分析:∵74=BD DC ∶∶,设7=BD x ,4=DC x在Rt ABC △中,2tan 3==AD B BD D CA设2=AD y ,3=BD y 由7=BD x ,3=BD y ,得37=y x ∴312477=⋅=y DC y ∴27tan 1267===AD y C DC y例2,如图在ABC △中,5=AC ,3=AB ,7=BC ,求:∠A .解:过C 作⊥CD AB 垂足为D ,设=AD x , 则有22227(3)5-+=-x x 22496925---=-x x x 52=x 512cos 52∠===AD DAC AC ∴60∠=︒DAC 则120∠=︒BAC C B A 73D A B C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何突破函数难点
大邑南街中学张军
《中学数学教育》(2005年第6期)刊登白洪智、姜溯佩两位老师的《从学生中考解答失误谈新课程理念的实践》一文谈函数概念的处理(以下简称《实践》),笔者深受启发,但具体怎样进行函数概念教学,未明。
实际教学中,绝大多数老师或按照教材举三个类型(表格、图象、解析式)的例子,或自编例子,归纳出函数概念,板书概念,然后举例,学生练习,但笔者在多年实际教学中发现,学生对函数概念依然模糊,觉得深奥难懂,为后面学习正比例函数、一次函数、反比例函数埋下隐患。
《实践》一文认为,第一阶段会举例说明(了解)第二阶段通过具体函数类型“理解函数的概念”,我认为,犯了逻辑错误,属概念(函数)尚未理解,如何理解种概念(正比例函数、一次函数等具体函数类型),反而是学生的问题越积越多,畏惧函数。
笔者认为这是不遵循认识规律,不尊重学生大脑自然的思考习惯所致,笔者对函数概念的思考如下:(先把《实践》一文中的函数概念摘要如下)
如函数概念是初中数学的一个难点。
对相当一部分学生来说很难在一节课内达到深刻理解,为此又分为以下几个阶段进行教学。
第一,初识阶段(新课学习)
第二,熟识阶段(后续学习)
在学习正比例函数、反比例函数、一次函数等后续知识的过程中,让
学生再次体会函数的意义,大部分学生会针对学习的具体函数类型来理解
函数的概念。
第三,全面理解阶段(应用分析)
学习了各种函数类型后,特别是从实际生活背景中抽象构建函数模型后,学生已能全面理解函数概念。
初识阶段,第一印象很关键,“好的开始是成功的一半”。
教科书(北师大版八年级上P179)写到“一般地,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数(fuction)”,这就是函数的定义,它作为定义来讲是非常正确的,但是就定义的易懂性来说却不是这样。
对普通人来说,这个定义非常绕口,理解起来也相当困难,好像是咒语一样。
太脱离日常世界。
教科书P177,摩天轮在0分——5分的时间段内,摩天轮高度(填表)“对于给定的时间t,相应的高度h确定吗?”教科书P178页,圆柱形物体的堆放,随着层数的增加,物体的总数是如何变化的,刹车距离s(m)与刹车前汽车的速度v(km/h),
v(1)计算v分别为50,60,100时,相应的滑行距离s是多少?s=2
300
(2)给定一个v值,你都能求出相应的s值吗?三个例子巧妙渗透暗示了函数的三种表示形式,学生也能做,教师也简单地解释了一下,归纳出某一个值随着一个值的给定而确定,于是立马板书概念,但请等一下,我们
既没有思考过“在某个
..变化过程中有两个变量x和y,如果给定一个x值,相应地就确定了一个y值”,也不可能想要去思考“某个变化过程,……两个变量x和y……”,于是教师马上说我们开始练习一下。
这时候学生头脑里一片混沌,不顾学生思考实际,强拉学生练习,或练习前强调一下关键词,全班读一两遍,教学方式生硬无情,由此埋下了阴影,学生不理解、茫然。
完全不顾及学生感受。
“某个变化中,给定一个什么会确定另一个什么数”这种思考方法和引入平方根时“相乘2次后会得什么的某个数”的方法很相似。
我们也可以把它称为反证法(假设什么后会得到什么矛盾结果),类似于证明“是什么”、“不是什么”,数学中经常有像“从城池的薄弱处开始进攻”(逆向思考)之类的思考方法,而堂堂正正、坦率耿直的人应该不适合使用这种方法。
怎么教学生呢?借助逻辑推理帮助理解。
这种逆向思考在考试答题非常有效。
这和走迷宫很像,老、实、地从入口进去的话岔路很多,但是从出口进去的话,就可以一路走到底。
教科书没有说明,一般的教辅资料也未见答案,而学生又不懂,教师应创造地使用教材,开动脑筋。
回顾一下函数概念的发展我,对于刚接触函数的初中学生来说,虽然不可能有较深的理解,但无疑对加深理解课堂知识,激发学生兴趣是有益的。
笛卡尔引入变量的“什么”作者注后,最早提出函数(fuction)概念的,是17世纪的莱布尼兹,他把x,x2,x3叫函数,1718年,贝努利把函数定义为“由某个变量及任意一个常数结合而成的数量”,强调用公式表示;后来数学突破公式局限,1755年,欧拉把函数定义为“如果某些变量以某一种方式依赖于另一些变量,即当后面这些变量变化时,前面的这些量也随着变化,我们把前面的变量称为后面变量的函数”,欧拉不强调公式了,欧拉曾坐认为“函数是随意画出的一条曲线”。
注意,从贝努利开始,已经开始从反方向思考问题,类似三角形证明中的“是什么”“不是什么”。
当时有些数学家对于不用公式来表示函数感到很不习惯,有的数学家甚至抱怀疑态度,他们把能用公式表示的函数叫“真函数”,把不能用公式表示的函数叫“假函数”。
1812年,柯西给出了类似现在中学课本的函数定义,柯西定义首先出现了自变量一词。
1834年,罗巴契夫斯基进一步提出函数的定义:“x的函数是这样的一个数,它对于每一个x都有确定的值,并且随着x一起变化,函数值可以由解析式给出,也可以由一个条件给出,这个条件提供了一种寻求全部对应值的方法,函数的这种依赖关系可以存在,但仍然是未知的”,这个定义指出了对应关系(条件)的必要性。
1837年,狄里克雷认为怎样去建立x和y之间的对应关系无关紧要,所以他的定义是:“如果对于x的每一个值,y总有一个完全确定的值与之对应,则y是x的函数”这个定义抓住了概念的本质属性,变量y称为x的函数,只须有一个法则存在,使得这个函数取值范围中的每一个值;有一个确定的y值和它对应行了,不管这个法则是公式或图象或表格或其他形式,这个定义比前面的定义带有普遍性。
中国古代“函”字与“含”字通用,都有着“包含”的意思,李善兰译《代数学》(1895年)一书时,把“fuction”译为“函数”,所以“函数”是指公式里含有变量的意思。
我曾试读函数史,仅用3分钟,课堂上可能用4分钟,花这3-4分钟是值得的,否则,生硬灌输函数定义,随即展开练习,忽略学生不懂的事实,漠视学生听不懂的难受感,最终会让学生抛弃教师。
尽管回顾了函数史,但学生仍然似懂非懂,继续遵循自然的思考方向,首先,告诉学生我们用“?”表示一个“不知道是什么的数(变量)”,用“??”表示另一个“不知道是什么的数(函数)”,不妨用字母x表示?字母y表示??于是x—→y,x取定一个值,y相应地就确定一个值。
变量、函数人们最初不理解,数学家在觉得有必要研究一下“在某个变化过程中,给定一个什么的数会确定(得到)另一个什么的数”时,他们才会开始思考,刚开始的时候,他们是不会把这个问题放在眼里的,如前面提到的逻辑顺序。
A C D
出发点A是“在某个变化过程中,给定一个什么的数”,终点D是“会得到另一个数”(函数),但是如果以A→B→C→D的顺序按照顺向逻辑去理解的话,那不行,要逆向思考,以D→C→B→A的顺序,这时候学生头脑里仍然没有函数的影子,能否像贝努利一样用我们学过的公式表示呢?不行,教科书P179北京某日温度变化图就不行,能否像欧拉那样,只用一条曲线表示呢?也不行,最终只能用教科书上的文字描述才行。
以上的长篇大论(课堂用7-8分钟)如果用数学语言来描述的话,就是教科书P179的定义,很简单,的确是这样,不过我觉得这不能称为概念。
每个概念都包含了无数人“这也不是,那也不是”曲折迂回的思考过程。
如果不加点想象力用心地去追寻这个曲折迂回的过程,就不能说明这个概念。
追溯概念产生的源头,挖掘概念中更深层次的上位概念,这才是至关重要的。
教会学生“数学地思考”这才是数学教学的本质。