河北省2021届高三上学期第一次月考数学试题 Word版含答案

合集下载

天津市第一中学2023届高三上学期第一次月考数学试题 Word版含答案

天津市第一中学2023届高三上学期第一次月考数学试题 Word版含答案
【13题答案】
【答案】
【14题答案】
【答案】
【15题答案】
【答案】
三、解答题(本大题共5小题,共75分)
【16题答案】
【答案】(1)
(2) , 或 ,
【17题答案】
【答案】(1)证明ቤተ መጻሕፍቲ ባይዱ解析
(2)
(3)正弦值为1
【18题答案】
【答案】(1)
(2)
(3)
【19题答案】
【答案】(1)答案见解析
(2)证明见解析(3)
C. D.
4.已知函数 是偶函数,则 的值是()
A. B. C.1D.2
5.已知函数 是 上的偶函数,且 ,当 时, ,则 的值为()
A.1B.2C. D.0
6 已知函数 ,则()
A. B.
C. D.
7.已知 且 ,则a的值为()
A. B. C. D.
8.设函数 ,不等式 对 恒成立,则实数a的最大值为()
【2题答案】
【答案】A
【3题答案】
【答案】B
【4题答案】
【答案】A
【5题答案】
【答案】A
【6题答案】
【答案】B
【7题答案】
【答案】C
【8题答案】
【答案】D
【9题答案】
【答案】B
二、填空题(本大题共6小题,每小题5分,共30分)
【10题答案】
【答案】
【11题答案】
【答案】
【12题答案】
【答案】 ##20立方米
每户每月用水量
水价
不超过 的部分
3元/
超过 但不超过 部分
6元/
超过 部分
9元/
若某户居民本月交纳的水费为90元,则此户居民本月用水量为___________.

河北省大名县第一中学2022届高三(实验班)上学期第一次月考数学(文)试题 Word版含答案

河北省大名县第一中学2022届高三(实验班)上学期第一次月考数学(文)试题 Word版含答案

高三文科数学月考试题学校:姓名:班级:考号:评卷人得分一、选择题1. [2021·吉大附中高三四模(文)]已知集合A={x|x2+x-2≤0},B={y|y=2x,x∈R},则A∩B等于()A. (0,1]B. [1,+∞)C.(0,2] D.2. [2021·哈三中一模(文)]已知f(x)是定义在R上的偶函数,周期为2,则“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”的()A. 既不充分也不必要条件B. 充分不必要条件C. 必要不充分条件D. 充要条件3. [2021·哈三中一模]下列结论中正确的个数是()①“x=”是“”的充分不必要条件;②若a>b,则am2>bm2;③命题“∀x∈R,sin x≤1”的否定是“∀x∈R,sin x>1”;④函数f(x )=-cos x在[0,+∞)内有且仅有两个零点.A. 1B. 2C. 3D. 44. [2021·吉林长春普高高三二模]下列函数中,既是奇函数又在(0,+∞)上单调递增的函数是() A. y=e x+e-x B. y=ln(|x|+1) C.y= D. y=x-5. [2021·吉大附中高三四模(文)]设函数f(x)=ln(1+x2)-,则使得f(x)>f(2x-1)成立的x的取值范围是()A. B. C.D.6. [2021·吉林市普高高三第三次调研]若直角坐标平面内的两点P,Q满足条件:①P,Q都在函数y=f(x)的图象上;②P,Q关于原点对称,则称点对(P,Q)是函数y=f(x)的一对“友好点对”(点对(P,Q)与(Q,P)看作同一对“友好点对”).已知函数f(x)=则此函数的“友好点对”有()A. 3对B. 2对C. 1对 D. 0对7. [2021·河北唐山高三摸底月考]设函数,“是偶函数”是“的图象关于原点对称”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件8. [2021·吉林长春高三二模(文)]关于函数y=2sin+1,下列叙述有误..的是()A. 其图象关于直线x=-对称B. 其图象可由y=2sin+1图象上全部点的横坐标变为原来的倍得到C. 其图象关于点对称D. 其值域为[-1,3]9. [2022·甘肃省高考诊断(二)(文)]已知△ABC的外接圆半径为1,圆心为O,且=0,则△ABC 的面积为()A. 1+B.C.1+ D.10. [2022·哈尔滨市第六中学高三一模(文)]已知向量a=(cosθ,-sinθ),b=(-cos2θ,sin2θ)(θ∈(π,2π)),若向量a,b的夹角为φ,则有()A. φ=θB. φ=π-θC.φ=θ-π D. φ=θ-2π11. [2021·河北武邑中学高二入学考试]已知数列,都是公差为1的等差数列,是正整数,若,则( )A. 81B. 99C. 108D. 11712. [2021·河南南阳一中高三第三次月考]已知函数,关于的方程R)有四个相异的实数根,则的取值范围是( )A. B. C.D.评卷人得分二、填空题13. [2021·河北五个一名校联盟高三一模(文)]设△的内角,,所对的边长分别为,若,则的值为.14. [2021·河南南阳方城一中高二开学考试]设△ABC的内角A,B,C所对边的长分别为a,b,c,若b+c=2a,3sin A=5sin B,则角C= . 15. [2021·河南许昌五校高二第一次联考]已知在中,,,,,,则的值为.16. [2010·高考辽宁卷,16]已知数列{a n}满足a1=33,a n+1-a n=2n,则的最小值为.评卷人得分三、解答题17. [2021·吉林市普高高三第三次调研]已知函数f(x)=cos 2x+2sin2x+2sin x.(1)将函数f(2x)的图象向右平移个单位得到函数g(x)的图象,若x∈,求函数g(x)的值域;(2)已知a,b,c分别为△ABC中角A,B,C的对边,且满足f(A)=+1,A∈,a=2,b=2,求△ABC的面积.18. [2021·吉林长春高三二模(文)]已知数列{a n}满足a1=,a n+1=3a n-1(n∈N*).(1)若数列{b n}满足b n=a n-,求证:{b n}是等比数列;(2)求数列{a n}的前n项和S n.19. [2021·河南八市重点高中高二第一次月考(文)]正项数列满足.(1)求数列的通项公式;(2)令,求数列的前项和为.20. [2021·吉林长春高三二模(文)]已知三棱锥A-BCD中,△ABC是等腰直角三角形,且AC⊥BC,BC=2,AD⊥平面BCD,AD=1.(1)求证:平面ABC⊥平面ACD;(2)若E为AB中点,求点A到平面CED的距离.21. [2021·湖南长沙长郡中学高三入学考试]已知椭圆的两个焦点分别为,以椭圆短轴为直径的圆经过点.(1)求椭圆的方程;(2)过点的直线与椭圆相交于两点,设点,直线的斜率分别为,问是否为定值?并证明你的结论.22. [2021·广东省仲元中学、中山一中等七校高三联考(一)]在中,角所对的边分别为,且.(1)求的大小;(2)设的平分线交于,求的值.参考答案1. 【答案】A【解析】本题考查集合的基本运算、解一元二次不等式及求指数函数的值域,属于基础题.由于x2+x-2≤0,所以-2≤x≤1,依据指数函数的性质知y=2x>0,所以集合A =,B =,则A∩B =,故选A.2. 【答案】D【解析】本题考查充分条件与必要条件,函数的奇偶性与周期性,属于中档题.函数在上递增,利用偶函数得函数在上递减,利用周期得函数在上递减,故充分性成立;函数在上递减,利用周期得函数在上递减,利用偶函数得函数在上递增,必要性成立,综上,充分性与必要性均成立,故选D.3. 【答案】A【解析】本题考查充分必要条件、不等式性质、命题的否定及命题真假的判定,属于中档题.对于①,当x=时,sin ,充分性成立;当sin 时,x ++2kπ或x ++2kπ,k∈Z,得x=-+2kπ或x=+2kπ,k∈Z,故必要性不成立,故①正确;对于②,当m=0时,若a>b,am2>bm2不成立,故②不正确;对于③,命题“∀x∈R,sin x≤1”的否定是“∃x0∈R,sin x0>1”,故③不正确;对于④,函数y =与y=cos x的图象有且只有一个交点,故函数f(x )=-cos x 在内有且仅有一个零点,故④不正确.综上,正确的只有一个,故选A.4. 【答案】D【解析】本题考查函数的单调性与奇偶性学问,属于基础题.A,B选项中的函数为偶函数,排解,C选项中的函数是奇函数,但在(0,+∞)上不是单调递增函数.故选D.5. 【答案】A【解析】本题考查函数的奇偶性及导数在争辩函数中的应用,解一元二次不等式、确定值不等式,属于难题.∵f(-x )= ln =ln =f(x),∴函数f(x)为偶函数.当x≥0时,f(x)=ln (1+x2),求导得f'(x )=恒为正,即函数f(x)在单调递增,∵f(x)是偶函数,∴f(x)在(-∞,0)上单调递减,则f(x)>f(2x-1)等价于f(|x|)>f(|2x-1|),即|x|>|2x-1|,平方得3x2-4x+1<0,解得<x<1,故选A.6. 【答案】C【解析】本题考查新概念和函数的图象与性质,考查了数形结合的数学思想,属于中档题.设f(x )=(x>0)图象上任一点为A(x,y)(x>0,y>0),点A关于原点的对称点A'(-x,-y)在y=x+1上,所以-y=-x+1,即y=x-1,得“友好点对”的个数就是方程组的根的个数,而y=x-1(x>0)的图象与y的图象有且只有一个交点,∴“友好点对”共1对,故选C.7. 【答案】B【解析】本题考查函数的奇偶性,考查图象的对称性.若是偶函数,而不肯定是奇函数,故的图象不肯定关于原点对称;当的图象关于原点对称时,函数是奇函数,则是偶函数,因此“是偶函数”是“的图象关于原点对称”的必要不充分条件.故选B.8. 【答案】C【解析】本题考查三角函数的性质、图象变换,属于中档题.关于函数y =2sin+1,令x=-,求得y=-1,为函数的最小值,故A正确;由y =2sin+1图象上全部点的横坐标变为原来的倍,可得y =2sin+1的图象,故B正确;令x =π,求得y=1,可得函数的图象关于点对称,故C错误;函数的值域为[-1,3],故D正确.故选C.9. 【答案】D【解析】本题考查向量的运算.由=0得=-,两边平方可得·=0,则∠AOB =90°;由=0得=-,两边平方可得·=,则∠AOC=135°;同理可得∠BOC=135°,则△ABC的面积为S△AOB+S△BOC+S△AOC =,故选D.10. 【答案】C【解析】本题考查向量的夹角、向量的坐标运算、二倍角、同角三角函数的基本关系、诱导公式.由题意知cosφ==- () =-cosθ=cos(θ-π).由于θ∈(π,2π),所以θ-π∈(0,π),而φ∈[0,π],所以φ=θ-π,故选C.11. 【答案】D【解析】本题考查等差数列的通项公式与数列求和,考查计算力量.,.故选D. 12. 【答案】A【解析】本题考查分段函数导函数的应用,函数与方程的关系.=,当时时,单调递减,时,单调递增,且当,当, 当时,恒成立,时,单调递增且,方程R)有四个相异的实数根.令=则,,即.13. 【答案】4【解析】本题考查正弦定理与余弦定理、两角和与差公式,考查计算力量.由正弦定理可得=,又由于==,所以=,即, 所以.14. 【答案】【解析】本题考查正弦定理及余弦定理.由正弦定理得, 5b=3a,又b+c=2a,则,由余弦定理得,,又,所以.15. 【答案】【解析】本题主要考查平面对量的线性运算及平面对量数量积.在中,,建立直角坐标系,,,,依题意有D,E(2,0)得,得,故填. 16. 【答案】【解析】由已知可得a n-a n-1=2(n-1),a n-1-a n-2=2(n-2),…,a3-a2=2×2,a2-a1=2×1,左右两边分别相加可得a n-a1=2(1+2+3+…+(n-1)]=n(n-1),∴a n=n2-n+33.=n+-1,令F(n)=n+-1,n≤5时为减函数,n≥6时为增函数且F(5)>F(6),∴F(n)≥F(6)=,故的最小值为.17.(1) 【答案】f(x)=cos 2x+2sin2x+2sin x=cos2x-sin2x+2sin2x+2sin x=cos2x+sin2x+2sin x=1+2sin x,所以f(2x)=1+2sin2x.由于函数f(2x)的图象向右平移个单位得到函数g(x)的图象,所以g(x )=2sin+1,即g(x )=2sin+1.由于x ∈,所以2x ∈所以sin ∈,所以g(x)∈[0,3],所以函数g(x)的值域为[0,3].(2) 【答案】由于f(A )=+1,所以sin A =,由于A ∈,所以cos A=.又cos A =,a =2,b=2,所以c=4.所以△ABC面积S△ABC=bc sin A =2.18.(1) 【答案】由题可知a n+1=3(n∈N*),从而有b n+1=3b n,b1=a1-=1,所以{b n}是以1为首项,3为公比的等比数列.(2) 【答案】由第1问知b n=3n-1,从而a n=3n-1+,有S n=30++3++…+3n-1+=30+31+32+…+3n-1+×n =.19.(1) 【答案】由,得,由于数列是正项数列,所以.(2) 【答案】由第1问得,,所以.20.(1) 【答案】由于AD⊥平面BCD,BC⊂平面BCD,所以AD⊥BC,又由于AC⊥BC,AC∩AD=A, 所以BC⊥平面ACD,BC⊂平面ABC,所以平面ABC⊥平面ACD.(2) 【答案】由已知可得CD =,取CD中点为F,连接EF,由于ED=EC=AB =,所以△ECD为等腰三角形,从而EF =,S△ECD =,由第1问知BC⊥平面ACD,所以E到平面ACD的距离为1,S△ACD =,令A到平面CED的距离为d,由V A-ECD=·S△ECD·d=V E-ACD=·S△ACD·1,解得d =.所以点A到平面CED 的距离为21.(1) 【答案】由题意得,,, 解得,所以椭圆的方程为.(2) 【答案】①当直线的斜率不存在时,由, 解得,设,则.②当直线的斜率存在时,设直线的方程为,代入整理化简,得,依题意,直线与椭圆必相交于两点,设,则, 又,所以====.综上所述,为定值2.(说明:若假设直线为,按相应步骤给分)22.(1) 【答案】,,,,.(2) 【答案】在中,由正弦定理:,得,,.。

河北省衡水中学2022届高三下学期同步月考卷数学(理)试题 Word版含答案

河北省衡水中学2022届高三下学期同步月考卷数学(理)试题 Word版含答案

2021-2022年河北衡水中学同步原创月考卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟. 第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)i 1A i ∈11iA i -∈+5i A ∈i A -∈U R =(){}(){}2|21,|ln 1,x x A x B x y x -=<==- {}|1x x ≥{}|1x x ≤{}|01x x <≤{}|12x x ≤<()()()13222,1log 2,1x e x f x x x +⎧<⎪=⎨≥⎪-⎩()2f f =⎡⎤⎣⎦2e22e 2e ˆˆˆy bx a =+ˆb ˆb ˆb 0.87-222p q +=2p q +≤2p q +>222p q +≠,,a b c a b a c =b c =():01x p y a a a =>≠且:sin q y x =p q ∧2000:,310p x R x x ∃∈-+≥2:,310p x R x x ⌝∀∈-+<.O ABC -120AOB ∠=AOC BOCO ABC -3233 23 13 03233{}n a 1241,6a a a =+=n N *∈()()1212cos sin n n n n n f x a a a x a x a x ++++=-++-02f π⎛⎫'= ⎪⎝⎭12n n n a c a =+{}n c n n S 2122n n n +-214122n n n -++-22122n n n ++-24122n n n ++-()y f x =x ()()2f x f x +=11x -≤<()sin 2f x xπ=()()()log 0,1a g x f x x a a =->≠且 ()10,5,5⎛⎤+∞ ⎥⎝⎦()10,5,5⎛⎫+∞ ⎪⎝⎭ ()11,5,775⎛⎤⎥⎝⎦[)11,5,775⎛⎫⎪⎝⎭第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分. 3n a x ⎛⎫+ ⎪⎝⎭{}n a ()11,0n a a n N *=>∈n n S {}n S 12n n S a +,x y 0,50,30,x y x y y -≤⎧⎪+-≥⎨⎪-≤⎩()()222m x y x y +≤+()()221,x x e x e x f x g x x e +==()12,0,x x ∀∈+∞()()121g x f x k k ≤+ 三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明,证明过程或演算步骤. 17.(本小题满分12分) 32BA BC ⋅=a c +18.(本小题满分12分)19.(本小题满分12分) 已知是边长为3的等边三角形,点D,E 分别是边AB,AC 上的点,且满足将DE 折起到的位置,并使得平面(1)求证: (2)设P 为线段BC 上的一点,试求直线与平面所成角的正切值的最大值. 20.(本小题满分12分)OAB S OAB ODE S ODE .(本小题满分12分)()()()()213121ln 0.2f x x a x a a x a =-+++>()f x 1x =320x y -+=()f x []()21,,6x e f x k k ∀∈≥+ 请考生在22~24三题中任选一题作答,假如多做,则按所做的第一题记分. 22.(本小题满分10分)选修4—1,几何证明选讲 O O AE CD ⊥BDE ∠.O 3AB =3AE =xoy 3sin ,:3cos ,x C y αααα⎧=+⎪⎨=-⎪⎩αx :sin 16l πρθ⎛⎫+= ⎪⎝⎭.l l ()32.f x x x k =-+-+()3f x ≥1k =()3.f x x <。

辽宁省铁岭市开原市第二高级中学2021届高三第一次模拟考试数学试题 Word版含答案

辽宁省铁岭市开原市第二高级中学2021届高三第一次模拟考试数学试题 Word版含答案

2020-2021学年度(上)高三第一次模拟考试数学试卷(满分150分 时间120分钟)一、单选题:每小题5分,共40分.1.已知集合{}0,1,2,3A =,{}13B x x =<<,则A B =( )A .{}1,2B .{}0,1,2C .{}2D .{}2,32.设A 是奇数集,B 是偶数集,则命题“x A ∀∈,2x B ∉”的否定是 ( ) A . x A ∃∈,2x B ∈ B .x A ∃∉,2x B ∈ C . x A ∀∉,2x B ∉D .x A ∀∉,2x B ∈3.已知()f x 是定义在R 上的函数,且满足(1)(1)f x f x +=-,当[)0,2x ∈时,1()12xf x ⎛⎫=- ⎪⎝⎭,则(3)f -的值为( ) A .7B .1C .1-D .12-4.函数21()f x x x=+,(0,)x ∈+∞的零点个数是( ). A .0B .1C .2D .35.已知0.130.2log 0.2,log 0.3,10,a b c ===则( ) A .a b c <<B .a c b <<C .c a b <<D .b c a <<6.已知0x >,0y >,且191x y+=,则xy 的最小值为( ) A .100B .81C .36D .97.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rt I t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0,T =6.据此,在新冠肺炎疫情初始阶段,累计感 染病例数增加1倍需要的时间约为( ) A .天 B .天 C .天D .天8.设()f x 为定义在R 上的奇函数,当0x ≥时,23()log (1)1f x x ax a =++-+(a 为常数),则不等式(34)5f x +>-的解集为( ) A .(,1)-∞-B .(1,)-+∞C .(,2)-∞-D .(2,)-+∞二、多选题: 每小题5分,共40分.全部选对得5分,部分选对得3分,有选错的得0分. 9.对任意实数a ,b ,c ,给出下列命题,其中真命题是( ) A .“5a <”是“3a <”的必要条件 B .“a b >”是“22a b >”的充分条件C .“a b =”是“ac bc =”的充要条件D .“5a +是无理数”是“a 是无理数”的充要条件10.已知不等式20ax bx c ++>的解集为1,22⎛⎫- ⎪⎝⎭,则下列结论正确的是( ) A .0a > B .0c > C .0a b c ++>D . 0a b c -+>11.若函数()f x 同时满足:①对于定义域上的任意x ,恒有()()0f x f x +-=; ②对于定义域上的任意12,x x ,当12x x >时,恒有1212()()0f x f x x x ->-,则称函数()f x 为“理想函数”。

河南省信阳市2021届高三上学期第一次教学质量检测试题数学(理)Word版含答案

河南省信阳市2021届高三上学期第一次教学质量检测试题数学(理)Word版含答案

★2021年10月15日2021-2021学年普通高中高三第一次教学质量检测.数学(理科)本试卷分第I卷(选择题)和第II卷(非选择题)两局部。

考生作答时,将答案答在答题卡上,在本试卷上答题无效。

考试结束后,将本试卷和答题卡一并交回..................。

考前须知:1.答题前,考生务必将本人的姓名、准考证号等考生信息填写在答题卡上,并用2B铅笔将准考证号填涂在相应位置。

2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色墨水签字笔书写,字体工整、笔迹清楚。

3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。

4.保持卡面清洁,不折叠,不破损。

第I卷一、选择题:本大题共12个小题,每题5分,共60分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的。

={x||x-2|≤1},B={x|y,那么A∩B等于A.[-1,2]B.(2,3]C.[1,2)D.[1,3)2.假设函数f(x)=(m2-2m-2)x m-1是幂函数,那么m等于A.-13.[x]表示不超过实数x的最大整数,g(x)=[x]为取整函数,x0是函数f(x)=lnx+x-4的零点,那么g(x0)等于4.近年来,随着“一带一路〞建议的推进,中国与沿线国家旅游合作越来越密切,中国到“一带一路〞沿线国家的游客人数也越来越多,如图是2021-2021年中国到“一带一路〞沿线国家的游客人次情况,那么以下说法正确的选项是①2021-2021年中国到“一带一路〞沿线国家的游客人次逐年增加②2021-2021年这6年中,2021年中国到“一带一路〞沿线国家的游客人次增幅最小③2021-2021年这3年中,中国到“一带一路〞沿线国家的游客人次每年的增幅根本持平A.①②③B.②③C.①②D.③5.命题p :对任意x ∈R ,总有2x >x 2;q :“ab>4〞是“a>2,b>2〞的充分不必要条件,那么以下命题为真命题的是∧qB.⌝p ∧q ∧⌝q D.⌝p ∧⌝q△ABC 中,∠ABC =4π,AB ,BC =3,那么sin ∠BAC 等于A.10B.5C.10D.5 7.我国著名数学家华罗庚先生曾说图像数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休。

安徽省黄山市田家炳实验中学2021届高三上学期第一次月考数学(理)试卷 Word版含解析

安徽省黄山市田家炳实验中学2021届高三上学期第一次月考数学(理)试卷 Word版含解析

2022-2021学年安徽省黄山市田家炳试验中学高三(上)第一次月考数学试卷(理科)一、选择题(共10小题,每小题5分)1.设i为虚数单位,复数z满足zi=2+i,则z等于()A. 2﹣i B.﹣2﹣i C. 1+2i D. 1﹣2i2.设集合A={x|1<x<4},集合B={x|x2﹣2x﹣3≤0},则A∩(∁R B)=() A.(1,4) B.(3,4) C.(1,3) D.(1,2)∪(3,4)3.各项为正的等比数列{a n}中,a4与a14的等比中项为2,则log2a7+log2a11=() A. 4 B. 3 C. 2 D. 14.某程序框图如图所示,该程序运行后输出的结果是()A. B. C. D.5.已知a,b是实数,则“|a+b|=|a|+|b|”是“ab>0”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件6.一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为()A. B.(4+π) C. D.7.设变量x,y 满足约束条件.目标函数z=ax+2y仅在(1,0)处取得最小值,则a的取值范围为()A.(﹣1,2) B.(﹣2,4) C.(﹣4,0] D.(﹣4,2)8.在航天员进行的一项太空试验中,要先后实施6个程序,其中程序A只能消灭在第一步或最终一步,程序B和C实施时必需相邻,请问试验挨次的编排方法共有()A. 24种 B. 48种 C. 96种 D. 144种9.如图,F1,F2是双曲线C :(a>0,b>0)的左、右焦点,过F1的直线l与C的左、右两支分别交于A,B两点.若|AB|:|BF2|:|AF2|=3:4:5,则双曲线的离心率为()A. B. C. 2 D.10.定义域为[a,b]的函数y=f(x)图象的两个端点为A、B,M(x,y)是f(x)图象上任意一点,其中x=λa+(1﹣λ)b∈[a,b],已知向量,若不等式恒成立,则称函数f(x)在[a,b]上“k 阶线性近似”.若函数在[1,2]上“k阶线性近似”,则实数k的取值范围为() A. [0,+∞) B. C. D.二、填空题(共5小题,每小题5分)11.若在的开放式中,第4项是常数项,则n= .12.随机变量X~N(1,б2),若P(|X﹣1|<1)=,则P(X≥0)= .13.已知||=1,||≤1,且S△OAB=,则与夹角的取值范围是.14.在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知点M的极坐标为(4,π),曲线C的参数方程为(α为参数),则过点M与曲线C相切的直线方程为.15.设函数f(x)=x|x|+bx+c,给出以下四个命题:①当c=0时,有f(﹣x)=﹣f(x)成立;②当b=0,c>0时,方程f (x)=0,只有一个实数根;③函数y=f(x)的图象关于点(0,c)对称④当x>0时,函数f(x)=x|x|+bx+c,f(x)有最小值是c﹣.其中正确的命题的序号是.三、解答题(共6小题,共75分,解答时需要写出必要的文字说明、证明过程或演算步骤.)16.已知函数f(x)=sin2x+cos2x+3(Ⅰ)求f(x)的最小正周期与单调递减区间;(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,若a=,f(A)=4,求b+c的最大值.17.乒乓球赛规定:一局竞赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分.设在甲、乙的竞赛中,每次发球,发球方得1分的概率为,各次发球的胜败结果相互独立,甲、乙的一局竞赛中,甲先发球.(Ⅰ)求开头第4次发球时,甲、乙的比分为1比2的概率;(Ⅱ)ξ表示开头第4次发球时乙的得分,求ξ的分布列与数学期望.18.如图,ABCD 是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.(Ⅰ)求二面角F﹣BE﹣D的余弦值;(Ⅱ)设M是线段BD上的一个动点,问当的值为多少时,可使得AM∥平面BEF,并证明你的结论.19.已知P为抛物线C:y2=2px(p>0)的图象上位于第一象限内的一点,F为抛物线C的焦点,O为坐标原点,过O、F、P三点的圆的圆心为Q,点Q到抛物线的准线的距离为.(Ⅰ)求抛物线C的方程;(Ⅱ)过点N(﹣4,0)作x轴的垂线l,S、T为l上的两点,满足OS⊥OT,过S及T分别作l的垂线与抛物线C分别相交于A与B,直线AB与x轴的交点为M,求证:M是定点,并求出该点的坐标.20.已知函数f(x)=x(x﹣a)2+b在x=2处有极大值.(Ⅰ)求a的值;(Ⅱ)若过原点有三条直线与曲线y=f(x)相切,求b的取值范围;(Ⅲ)当x∈[﹣2,4]时,函数y=f(x)的图象在抛物线y=1+45x﹣9x2的下方,求b的取值范围21.已知数列{a n}满足a1=1,a n+1=2a n+1(n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}滿足,证明:数列{b n}是等差数列;(Ⅲ)证明:.2022-2021学年安徽省黄山市田家炳试验中学高三(上)第一次月考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分)1.设i为虚数单位,复数z满足zi=2+i,则z等于()A. 2﹣i B.﹣2﹣i C. 1+2i D. 1﹣2i考点:复数代数形式的乘除运算.专题:计算题.分析:将zi=2+i变形,可求得z,再将其分母实数化即可.解答:解:∵zi=2+i,∴z====1﹣2i,故选D.点评:本题考查复数代数形式的乘除运算,将其分母实数化是关键,属于基础题.2.设集合A={x|1<x<4},集合B={x|x2﹣2x﹣3≤0},则A∩(∁R B)=()A.(1,4) B.(3,4) C.(1,3) D.(1,2)∪(3,4)考点:交、并、补集的混合运算.专题:集合.分析:由题意,可先解一元二次不等式,化简集合B,再求出B的补集,再由交的运算规章解出A∩(∁R B)即可得出正确选项解答:解:由题意B={x|x2﹣2x﹣3≤0}={x|﹣1≤x≤3},故∁R B={x|x<﹣1或x>3},又集合A={x|1<x<4},∴A∩(∁R B)=(3,4)故选B点评:本题考查交、并、补的混合运算,属于集合中的基本计算题,娴熟把握运算规章是解解题的关键3.各项为正的等比数列{a n}中,a4与a14的等比中项为2,则log2a7+log2a11=() A. 4 B. 3 C. 2 D. 1考点:等比数列的性质.专题:计算题;等差数列与等比数列.分析:利用a4•a14=(a9)2,各项为正,可得a9=2,然后利用对数的运算性质,即可得出结论.解答:解:∵各项为正的等比数列{a n}中,a4与a14的等比中项为2,∴a4•a14=(2)2=8,∵a4•a14=(a9)2,∴a9=2,∴log2a7+log2a11=log2a7a11=log2(a9)2=3,故答案为:3.点评:本题考查等比数列的通项公式和性质,涉及对数的运算性质,属基础题.4.某程序框图如图所示,该程序运行后输出的结果是()A. B. C. D.考点:程序框图.专题:图表型.分析:由题意可知,该程序的作用是求解n=的值,然后利用裂项求和即可求解解答:解:由题意可知,该程序的作用是求解n=的值,而.故选C.点评:本题考查了程序框图中的循环结构的应用,解题的关键是由框图的结构推断出框图的计算功能5.已知a,b是实数,则“|a+b|=|a|+|b|”是“ab>0”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的推断.专题:计算题.分析:由于“|a+b|=|a|+|b|”,说明ab同号,但是有时a=b=0也可以,从而进行推断;解答:解:若ab>0,说明a与b全大于0或者全部小于0,∴可得“|a+b|=|a|+|b|”,若“|a+b|=|a|+|b|”,可以取a=b=0,此时也满足“|a+b|=|a|+|b|”,∴“ab>0”⇒“|a+b|=|a|+|b|”;∴“|a+b|=|a|+|b|”是“ab>0”必要不充分条件,故选B;点评:此题主要考查充分条件和必要条件的定义,是一道基础题;6.一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为()A. B.(4+π) C. D.考点:由三视图求面积、体积.专题:计算题.分析:几何体是一个组合体,是由半个圆锥和一个四棱锥组合成的几何体,圆柱的底面直径和母线长都是2,四棱锥的底面是一个边长是2的正方形,做出圆锥的高,依据圆锥和圆柱的体积公式得到结果.解答:解:由三视图知,几何体是一个组合体,是由半个圆锥和一个四棱锥组合成的几何体,圆柱的底面直径和母线长都是2,四棱锥的底面是一个边长是2的正方形,四棱锥的高与圆锥的高相同,高是=,∴几何体的体积是=,故选D.点评:本题考查由三视图求组合体的体积,考查由三视图还原直观图,本题的三视图比较特殊,不简洁看出直观图,需要认真观看.7.设变量x,y 满足约束条件.目标函数z=ax+2y仅在(1,0)处取得最小值,则a的取值范围为()A.(﹣1,2) B.(﹣2,4) C.(﹣4,0] D.(﹣4,2)考点:简洁线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用z的几何意义求最值,只需利用直线之间的斜率间的关系,求出何时直线z=ax+2y过可行域内的点(1,0)处取得最小值,从而得到a的取值范围即可.解答:解:作出不等式组对应的平面区域如图:当a=0时,明显成立.当a>0时,直线ax+2y﹣z=0的斜率k=﹣>k AC=﹣1,解得a<2.当a<0时,k=﹣<k AB=2解得a>﹣4.综合得﹣4<a<2,故选:D.点评:本题主要考查线性规划的应用,体现了数形结合思想、化归思想.线性规划中的最优解,通常是利用平移直线法确定.8.在航天员进行的一项太空试验中,要先后实施6个程序,其中程序A只能消灭在第一步或最终一步,程序B和C实施时必需相邻,请问试验挨次的编排方法共有()A. 24种 B. 48种 C. 96种 D. 144种考点:计数原理的应用.专题:计算题.分析:本题是一个分步计数问题,A只能消灭在第一步或最终一步,从第一个位置和最终一个位置选一个位置把A排列,程序B和C实施时必需相邻,把B和C看做一个元素,同除A外的3个元素排列,留意B和C之间还有一个排列.解答:解:本题是一个分步计数问题,∵由题意知程序A只能消灭在第一步或最终一步,∴从第一个位置和最终一个位置选一个位置把A排列,有A21=2种结果∵程序B和C实施时必需相邻,∴把B和C看做一个元素,同除A外的3个元素排列,留意B和C之间还有一个排列,共有A44A22=48种结果依据分步计数原理知共有2×48=96种结果,故选C.点评:本题考查分步计数原理,考查两个元素相邻的问题,是一个基础题,留意排列过程中的相邻问题,利用捆绑法来解,不要忽视被捆绑的元素之间还有一个排列.9.如图,F1,F2是双曲线C :(a>0,b>0)的左、右焦点,过F1的直线l与C的左、右两支分别交于A,B两点.若|AB|:|BF2|:|AF2|=3:4:5,则双曲线的离心率为()A. B. C. 2 D.考点:双曲线的简洁性质.专题:计算题.分析:依据双曲线的定义可求得a=1,∠ABF2=90°,再利用勾股定理可求得2c=|F1F2|,从而可求得双曲线的离心率.解答:解:∵|AB|:|BF2|:|AF2|=3:4:5,不妨令|AB|=3,|BF2|=4,|AF2|=5,∵|AB|2+=,∴∠ABF2=90°,又由双曲线的定义得:|BF1|﹣|BF2|=2a,|AF2|﹣|AF1|=2a,∴|AF1|+3﹣4=5﹣|AF1|,∴|AF1|=3.∴|BF1|﹣|BF2|=3+3﹣4=2a,∴a=1.在Rt△BF1F2中,=+=62+42=52,又=4c2,∴4c2=52,∴c=.∴双曲线的离心率e==.故选A.点评:本题考查双曲线的简洁性质,求得a与c的值是关键,考查转化思想与运算力量,属于中档题.10.定义域为[a,b]的函数y=f(x)图象的两个端点为A、B,M(x,y)是f(x)图象上任意一点,其中x=λa+(1﹣λ)b∈[a,b],已知向量,若不等式恒成立,则称函数f(x)在[a,b]上“k 阶线性近似”.若函数在[1,2]上“k阶线性近似”,则实数k的取值范围为() A. [0,+∞) B. C. D.考点:函数与方程的综合运用.专题:压轴题;新定义.分析:本题求解的关键是得出M、N横坐标相等,将恒成立问题转化为求函数的最值问题.解答:解:由题意,M、N 横坐标相等,恒成马上k 恒大于等于,则k ≥的最大值,所以本题即求的最大值.由N在AB线段上,得A(1,0),B(2,)AB方程y=(x﹣1)由图象可知,MN=y1﹣y2=x ﹣﹣(x﹣1)=﹣(+)≤(均值不等式)故选D.点评:解答的关键是将已知条件进行转化,同时应留意恒成立问题的处理策略.二、填空题(共5小题,每小题5分)11.若在的开放式中,第4项是常数项,则n= 18 .考点:二项式系数的性质.专题:计算题.分析:利用的开放式的通项公式T r+1=•(﹣1)r••x﹣r,由第4项是常数项即可求得n的值.解答:解:设的开放式的通项公式为T r+1,则T r+1=•(﹣1)r••x﹣r=(﹣1)r••,∵第4项是常数项,∴(n﹣3)﹣3=0,∴n=18.故答案为:18.点评:本题考查二项式系数的性质,着重考查二项开放式的通项公式,属于中档题.12.随机变量X~N(1,б2),若P(|X﹣1|<1)=,则P(X≥0)= .考点:正态分布曲线的特点及曲线所表示的意义.专题:计算题;概率与统计.分析:依据X~N(1,σ2),可得图象关于x=1对称,利用P(|X﹣1|<1)=,即可求得结论.解答:解:∵P(|X﹣1|<1)=,∴P(0<X<2)=,∵X~N(1,σ2),∴图象关于x=1对称,∴P(X<0)=∴P(X≥0)=1﹣=,故答案为:点评:本题考查正态分布的特点,是一个基础题,解题时留意正态曲线的对称性和概率之和等于1的性质.13.已知||=1,||≤1,且S△OAB =,则与夹角的取值范围是.考点:数量积表示两个向量的夹角;三角形的面积公式;平面对量数量积的运算.专题:平面对量及应用.分析:设与夹角为θ,(θ∈[0,π]),由于,且,可得=,化为=,再利用,可得.进而解出.解答:解:设与夹角为θ,(θ∈[0,π]),∵,且,∴=,∴=,∵,∴.∴,∴θ.故答案为:点评:本题考查了三角形的面积公式、向量的数量积和夹角公式和计算力量,属于中档题.14.在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知点M的极坐标为(4,π),曲线C的参数方程为(α为参数),则过点M与曲线C相切的直线方程为7x ﹣24y+68=0和x=4 .考点:参数方程化成一般方程.专题:坐标系和参数方程.分析:把参数方程化为直角坐标方程,求出圆心和半径,分切线的斜率不存在、存在两种状况,分别求得切线的方程.解答:解:依据点M的极坐标为(4,π),可得点M的直角坐标为(4,4),把曲线C的参数方程为(α为参数),消去参数化为直角坐标方程为(x﹣1)2+y2=9,表示以(1,0)为圆心、半径等于3的圆.当切线的斜率不存在时,切线的方程为x=4,当切线的斜率存在时,设切线的方程为y﹣4=k(x﹣4),即 kx﹣y+4﹣4k=0,由圆心到切线的距离等于半径,可得 6k2﹣24k﹣13=0,求得k=,故切线的方程为 7x﹣24y+68=0,综上可得,圆的切线方程为:7x﹣24y+68=0和x=4,故答案为:7x﹣24y+68=0和x=4.点评:本题主要考查把参数方程化为直角坐标方程的方法,直线和圆相切的性质,点到直线的距离公式的应用,体现了分类争辩的数学思想,属于基础题.15.设函数f(x)=x|x|+bx+c,给出以下四个命题:①当c=0时,有f(﹣x)=﹣f(x)成立;②当b=0,c>0时,方程f(x)=0,只有一个实数根;③函数y=f(x)的图象关于点(0,c)对称④当x>0时,函数f(x)=x|x|+bx+c,f(x)有最小值是c﹣.其中正确的命题的序号是①②③.考点:命题的真假推断与应用.专题:探究型;函数的性质及应用.分析:①c=0,f(﹣x)=﹣x|﹣x|﹣bx=﹣x|x|﹣bx=﹣f(x),由奇函数的定义推断②b=0,c>0,f(x)=x|x|+c=,依据函数的图象可得结论;③由于f(x)=|x|x+bx为奇函数,所以图象关于(0,0)对称,而f(x)=|x|x+bx+c是把f(x)=|x|x+bx 向上或向下平移了|c|各单位,故可得结论;④当x>0时,函数f(x)=x|x|+bx+c=x2+bx+c,若b≤0,则f(x)有最小值.解答:解:①c=0,f(x)=x|x|+bx,f(﹣x)=﹣x|﹣x|+b(﹣x)=﹣f(x),故①正确;②b=0,c>0,f(x)=x|x|+c=,由于c>0,所以当x>0时,函数顶点在x轴上方且开口向上,图象与x轴无交点,当x<0时,图象顶点在x轴上方且开口向下,图象与x轴只有一个交点,故方程f(x)=0只有一个实数根,命题②正确;③由于f(x)=|x|x+bx为奇函数,所以图象关于(0,0)对称,而f(x)=|x|x+bx+c是把f(x)=|x|x+bx向上或向下平移了|c|各单位,所以y=f(x)的图象关于点(0,c)对称,故命题③正确;④当x>0时,函数f(x)=x|x|+bx+c=x2+bx+c,若b≤0,则f(x )有最小值,故④不正确综上,正确的命题的序号是①②③故答案为:①②③点评:本题综合考查了函数的奇偶性、对称性及函数图象在解题中的运用,要求考生娴熟把握函数的性质,并能机敏运用性质求解.三、解答题(共6小题,共75分,解答时需要写出必要的文字说明、证明过程或演算步骤.)16.已知函数f(x)=sin2x+cos2x+3(Ⅰ)求f(x)的最小正周期与单调递减区间;(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,若a=,f(A)=4,求b+c的最大值.考点:三角函数中的恒等变换应用;三角函数的周期性及其求法;正弦定理.专题:三角函数的图像与性质;解三角形.分析:(Ⅰ)利用两角和公式对函数解析式整理后,利用三角函数周期公式求得最小周期,然后利用三角函数性质求得函数的单调增区间.(Ⅱ)利用f(A)的值,求得A,进而利用正弦定理分别表示出b和c,然后利用两角和公式整理后,利用三角函数的性质求得b+c的最大值.解答:解:(Ⅰ)=2sin(2x+)+3 ∴f(x)的最小正周期T==π由得∴f(x )的单调递减区间为,(Ⅱ)由f(A)=4得2sin(2A+)+3=4,sin(2A+)=∵0<A<π,∴<2A+<,∴2A+=,A=,∴又∵===2,∴=∴当时,b+c最大为2点评:本题主要考查两角和公式的运用,正弦定理的应用,三角函数的性质等学问点.考查了同学对三角函数基础学问的综合运用.17.乒乓球赛规定:一局竞赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分.设在甲、乙的竞赛中,每次发球,发球方得1分的概率为,各次发球的胜败结果相互独立,甲、乙的一局竞赛中,甲先发球.(Ⅰ)求开头第4次发球时,甲、乙的比分为1比2的概率;(Ⅱ)ξ表示开头第4次发球时乙的得分,求ξ的分布列与数学期望.考点:离散型随机变量及其分布列;离散型随机变量的期望与方差.专题:概率与统计.分析:(1)记A i为大事“第i次发球,甲胜”,i=1,2,3,则P(A1)=P(A2)=,P(A3)=.“开头第4次发球时,甲、乙的比分为1比2”为大事+A 2+,由此能求出开头第4次发球时,甲、乙的比分为1比2的概率.(2)由题意ξ=0,1,2,3.分别求出P(ξ=0),P(ξ=1),P(ξ=2),P(ξ=3),由此能求出Eξ.解答:解:(1)记A i为大事“第i次发球,甲胜”,i=1,2,3,则P(A1)=P(A2)=,P(A3)=.“开头第4次发球时,甲、乙的比分为1比2”为大事+A 2+,其概率为P (+A 2+)=2×××+××=,即开头第4次发球时,甲、乙的比分为1比2的概率为.…(6分)(2)由题意ξ=0,1,2,3.P(ξ=0)=××=,P(ξ=1)=2×××+()3=,P(ξ=2)=2×××+××=,P(ξ=3)==,∴ξ的分布列为:ξ 0 1 2 3P所以Eξ=0×+1×+2×+3×=.…(12分)点评:本题考查离散型随机变量的分布列和数学期望,是历年高考的必考题型.解题时要认真审题,认真解答,留意概率学问的合理运用.18.如图,ABCD 是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.(Ⅰ)求二面角F﹣BE﹣D的余弦值;(Ⅱ)设M是线段BD 上的一个动点,问当的值为多少时,可使得AM∥平面BEF,并证明你的结论.考点:用空间向量求平面间的夹角;直线与平面平行的判定.专题:计算题;综合题.分析:(Ⅰ)说明DA,DC,DE两两垂直,以D为原点,DA,DC,DE分别为x,y,z轴建立空间直角坐标系D﹣xyz如图所示.求出A,F,E,B,C的坐标,设平面BEF 的法向量为=(x,y,z),利用,求出,说明为平面BDE 的法向量,通过,求出二面角F﹣BE﹣D的余弦值.(Ⅱ)设M(t,t,0).通过AM∥平面BEF ,通过,求出点M坐标为(2,2,0),即可得到的值.解答:解:(Ⅰ)由于DE⊥平面ABCD,所以DE⊥AC.由于ABCD是正方形,所以AC⊥BD,从而AC⊥平面BDE.所以DA,DC,DE两两垂直,以D为原点,DA,DC,DE分别为x,y,z轴建立空间直角坐标系D﹣xyz如图所示.由于BE与平面ABCD所成角为60°,即∠DBE=60°,所以.由AD=2可知DE=,AF=.则A(3,0,0),F(3,0.),E(0,0,3),B(3,3,0),C(0,3,0),所以,,(8分)设平面BEF 的法向量为=(x,y,z ),则,即,令z=,则=(4,2,).由于AC⊥平面BDE ,所以为平面BDE 的法向量,=(3,﹣3,0),所以==.由于二面角为锐角,所以二面角F﹣BE﹣D 的余弦值为.(8分)(Ⅱ)解:点M是线段BD上一个动点,设M(t,t,0).则,由于AM∥平面BEF ,所以,即4(t﹣3)+2t=0,解得t=2.此时,点M坐标为(2,2,0),符合题意.(12分)点评:本题考查用空间向量求平面间的夹角,直线与平面平行的判定,空间向量与空间直角坐标系的应用,考查计算力量.19.已知P为抛物线C:y2=2px(p>0)的图象上位于第一象限内的一点,F为抛物线C的焦点,O为坐标原点,过O、F、P三点的圆的圆心为Q,点Q 到抛物线的准线的距离为.(Ⅰ)求抛物线C的方程;(Ⅱ)过点N(﹣4,0)作x轴的垂线l,S、T为l上的两点,满足OS⊥OT,过S及T分别作l的垂线与抛物线C分别相交于A与B,直线AB与x轴的交点为M,求证:M是定点,并求出该点的坐标.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与范围问题.分析:(Ⅰ)由题意得,由此能示出抛物线C的方程.(Ⅱ)设,由题意推导出A (4,4),B(4,﹣4),直线AB过定点(4,0),由此能证明M为定点(4,0).解答:(Ⅰ)解:由题意得:点Q 的横坐标为,则所以抛物线C的方程为y2=4x.(Ⅱ)证明:设,所以由题意,,当y1+y2=0时,y1=﹣y2,则y1=4,y2=﹣4,A(4,4),B(4,﹣4),直线AB过定点(4,0),当直线AB方程为y﹣y1=.即M(4,0),综上过定点M(4,0).点评:本题考查抛物线方程的求法,考查直线与x轴的交点为定点的证明,解题时要认真审题,留意函数与方程思想的合理运用.20.已知函数f(x)=x(x﹣a)2+b在x=2处有极大值.(Ⅰ)求a的值;(Ⅱ)若过原点有三条直线与曲线y=f(x)相切,求b的取值范围;(Ⅲ)当x∈[﹣2,4]时,函数y=f(x)的图象在抛物线y=1+45x﹣9x2的下方,求b的取值范围考点:等比关系的确定;利用导数争辩函数的极值.专题:计算题.分析:(Ⅰ)通过对函数f(x)求导,依据函数在x=2处有极值,可知f'(2)=0,解得a的值.(Ⅱ)把(1)求得的a代入函数关系式,设切点坐标,进而依据导函数可知切线斜率,则切线方程可得,整理可求得b的表达式,令g'(x)=0解得x1和x2.进而可列出函数g(x)的单调性进而可知﹣64<b<0时,方程b=g(x)有三个不同的解,结论可得.(Ⅲ)当x∈[﹣2,4]时,函数y=f(x)的图象在抛物线y=1+45x﹣9x2的下方,进而可知x3﹣12x2+36x+b<1+45x﹣9x2在x∈[﹣2,4]时恒成立,整理可得关于b的不等式,令h(x)=﹣x3+3x2+9x+1,对h(x)进行求导由h'(x)=0得x1和x2.分别求得h,h(﹣1),h(3),h(4),进而可知h(x)在[﹣2,4]上的最小值是,进而求得b的范围.解答:解:(Ⅰ)f(x)=x(x﹣a)2+b=x3﹣2ax+a2x+b,f'(x)=3x2﹣4ax+a2,f'(2)=12﹣8a+a2=0,解得a=2,a=6,当a=2时,函数在x=2处取得微小值,舍去;当a=6时,f'(x)=3x2﹣24x+36=3(x﹣2)(x﹣6),函数在x=2处取得极大值,符合题意,∴a=6.(Ⅱ)f(x)=x3﹣12x2+36x+b,设切点为(x0,x03﹣12x02+36x0+b),则切线斜率为f'(x)=3x02﹣24x0+36,切线方程为y﹣x03+12x02﹣36x0﹣b=(3x02﹣24x0+36)(x﹣x0),即y=(3x02﹣24x0+36)x﹣2x03+12x02+b,∴﹣2x03+12x02+b=0∴b=2x03﹣12x02.令g(x)=2x3﹣12x2,则g'(x)=6x2﹣24x=6x(x﹣4),由g'(x)=0得,x1=0,x2=4.函数g(x )的单调性如下:∴当﹣64<b<0时,方程b=g(x)有三个不同的解,过原点有三条直线与曲线y=f(x)相切.(Ⅲ)∵当x∈[﹣2,4]时,函数y=f(x)的图象在抛物线y=1+45x﹣9x2的下方,∴x3﹣12x2+36x+b<1+45x﹣9x2在x∈[﹣2,4]时恒成立,即b<﹣x3+3x2+9x+1在x∈[﹣2,4]时恒成立.令h(x)=﹣x3+3x2+9x+1,则h'(x)=﹣3x2+6x+9=﹣3(x﹣3)(x+1),由h'(x)=0得,x1=﹣1,x2=3.∵h(﹣2)=3,h(﹣1)=﹣4,h(3)=28,h(4)=21,∴h(x)在[﹣2,4]上的最小值是﹣4,b<﹣4.点评:本题主要考查了用导函数求函数的单调性和极值问题.综合性强,难度大,属中档题.21.已知数列{a n}满足a1=1,a n+1=2a n+1(n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}滿足,证明:数列{b n}是等差数列;(Ⅲ)证明:.点评:本小题主要考查数列、不等式等基本学问,考查化归的数学思想方法,考查综合解题力量.考点:等差关系的确定;数列递推式.专题:计算题;综合题;压轴题.分析:(Ⅰ)整理题设递推式得a n+1+1=2(a n+1),推断出{a n+1}是等比数列,进而求得a n+1,则a n可求.(Ⅱ)依据题设等式可推断出2[(b1+b2+…+b n)﹣n]=nb n和2[(b1+b2+…+b n+b n+1)﹣(n+1)]=(n+1)b n+1.两式相减后整理求得b n+2﹣b n+1=b n+1﹣b n进而推断出{b n}是等差数列.(Ⅲ)利用(Ⅰ)中数列{a n}的通项公式,利用不等式的传递性,推断出,进而推断出;同时利用不等式的性质推断出,进而代入证明原式.解答:解:(Ⅰ)∵a n+1=2a n+1(n∈N*),∴a n+1+1=2(a n+1),∴{a n+1}是以a1+1=2为首项,2为公比的等比数列.∴a n+1=2n.即a n=2n﹣1∈N*).(Ⅱ)证明:∵∴.∴2[(b1+b2+…+b n)﹣n]=nb n,①2[(b1+b2+…+b n+b n+1)﹣(n+1)]=(n+1)b n+1.②②﹣①,得2(b n+1﹣1)=(n+1)b n+1﹣nb n,即(n﹣1)b n+1﹣nb n+2=0,nb n+2﹣(n+1)b n+1+2=0.③﹣④,得nb n+2﹣2nb n+1+nb n=0,即b n+2﹣2b n+1+b n=0,∴b n+2﹣b n+1=b n+1﹣b n(n∈N*),∴{b n}是等差数列.(Ⅲ)证明:∵,k=1,2,n,∴.∵,k=1,2,…,n,∴,∴.。

宁夏银川一中2022届高三上学期第一次月考数学试题(理科) Word版含解析

宁夏银川一中2022届高三上学期第一次月考数学试题(理科) Word版含解析

2021-2022学年宁夏银川一中高三(上)第一次月考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x>1},B={0,1,2,4},则(C R A)∩B=()A.{0,1} B.{0} C.{2,4} D.∅2.下列命题中是假命题的是()A.∀x∈R,2x﹣1>0 B.∀x∈N﹡,(x﹣1)2>0 C.∃x∈R,lgx<1 D.∃x∈R,tanx=23.,则m等于()A.﹣1 B.0 C.1 D.24.下列函数中,既是偶函数,又在区间(1,2)内是增函数的为()A.y=cos2x B.y=log2|x| C . D.y=x3+15.若tanθ+=4,则sin2θ=()A .B .C .D .6.若x∈(0,1),则下列结论正确的是()A .B .C .D .7.已知P、Q是圆心在坐标原点O的单位圆上的两点,分别位于第一象限和第四象限,且P 点的纵坐标为,Q 点的横坐标为.则cos∠POQ=()A .B .C .﹣D .﹣8.现有四个函数:①y=x•sinx;②y=x•cosx;③y=x•|cosx|;④y=x•2x的图象(部分)如下:则依据从左到右图象对应的函数序号支配正确的一组是()A.①④③②B.③④②①C.④①②③D.①④②③9.设函数,其中,则导数f′(﹣1)的取值范围()A.[3,6]B .C .D .10.函数的图象与x 轴的交点的横坐标构成一个公差为的等差数列,要得到函数g(x)=Acosωx的图象,只需将f(x)的图象()A .向左平移个单位B .向右平移个单位C .向左平移个单位D .向右平移个单位11.若函数f(x )满足,当x∈[0,1]时,f(x)=x,若在区间(﹣1,1]上,g(x)=f (x)﹣mx﹣m有两个零点,则实数m的取值范围是()A .B .C.(0,1)D .12.设函数,且αsinα﹣βsinβ>0,则下列不等式必定成立的是()A.α>β B.α<β C.α+β>0 D.α2>β2二、填空题:本大题共4小题,每小题5分,共20分.13.如图,某港口一天6时到18时的水渠变化曲线近似满足函数y=3sin (x+φ)+k.据此函数可知,这段时间水深(单位:m )的最大值为.14.已知,,则=.15.已知点P在曲线y=上,a为曲线在点P处的切线的倾斜角,则a的取值范围是.16.给出下列四个命题:①半径为2,圆心角的弧度数为的扇形面积为②若α,β为锐角,,则③是函数y=sin(2x+φ)为偶函数的一个充分不必要条件④函数的一条对称轴是其中正确的命题是.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)(2021秋•乌拉特前旗校级月考)某同学用五点法画函数f(x)=Asin(ωx+ϕ),(ω>0,|ϕ|<)在某一个周期内的图象时,列表并填入了部分数据,如下表:ωx+ϕ0 π2πxAsin(ωx+ϕ)0 5 ﹣5 0(1)请将上表数据补充完整,并直接写出函数f(x)的解析式;(2)若函数f(x)的图象向左平移个单位后对应的函数为g(x),求g(x)的图象离原点最近的对称中心.18.(12分)(2022•江西)已知函数f(x )=(a+2cos2x)cos(2x+θ)为奇函数,且f ()=0,其中a∈R,θ∈(0,π).(1)求a,θ的值;(2)若f ()=﹣,α∈(,π),求sin(α+)的值.19.(12分)(2022•佛山二模)某种产品每件成本为6元,每件售价为x元(x>6),年销量为u万件,若已知与成正比,且售价为10元时,年销量为28万件.(1)求年销售利润y关于x的函数关系式.(2)求售价为多少时,年利润最大,并求出最大年利润.20.(12分)(2022•天津模拟)已知函数f(x)=x3﹣3ax2+b(x∈R),其中a≠0,b∈R.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)设a∈[,],函数f(x)在区间[1,2]上的最大值为M,最小值为m,求M﹣m的取值范围.21.(12分)(2021•大观区校级四模)已知函数f(x)=ax+xlnx(a∈R)(1)若函数f(x)在区间[e,+∞)上为增函数,求a的取值范围;(2)当a=1且k∈z时,不等式k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,求k的最大值.请考生在第22、23、24三题中任选一题作答,假如多做,则按所做的第一题记分.答时用2B铅笔在答题卡上把所选题目的题号涂黑.选修4-1:几何证明选讲22.(10分)(2021•金昌校级模拟)如图,AB是⊙O的一条切线,切点为B,ADE、CFD都是⊙O的割线,AC=AB,CE交⊙O于点G.(Ⅰ)证明:AC2=AD•AE;(Ⅱ)证明:FG∥AC.选修4-4:坐标系与参数方程23.(2021•鹰潭一模)选修4﹣4:坐标系与参数方程.极坐标系与直角坐标系xoy有相同的长度单位,以原点为极点,以x轴正半轴为极轴,已知曲线C1的极坐标方程为ρ=4cosθ,曲线C2的参数方程为(t为参数,0≤α<π),射线θ=φ,θ=φ+,θ=φ﹣与曲线C1交于(不包括极点O)三点A、B、C.(I)求证:|OB|+|OC|=|OA|;(Ⅱ)当φ=时,B,C两点在曲线C2上,求m与α的值.选修4-5:不等式选讲24.(2021•鹰潭一模)已知函数f(x)=|x+2|﹣2|x﹣1|(1)解不等式f(x)≥﹣2;(2)对任意x∈[a,+∞),都有f(x)≤x﹣a成立,求实数a的取值范围.2021-2022学年宁夏银川一中高三(上)第一次月考数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x>1},B={0,1,2,4},则(C R A)∩B=()A.{0,1} B.{0} C.{2,4} D.∅考点:交、并、补集的混合运算.专题:计算题.分析:由集合A={x|x>1},B={0,1,2,4},知C R A={x≤1},由此能求出(C R A)∩B.解答:解:∵集合A={x|x>1},B={0,1,2,4},∴C R A={x≤1},∴(C R A)∩B={0,1}.故选A.点评:本题考查集合的交、并、补集的混合运算,是基础题.解题时要认真审题,认真解答.2.下列命题中是假命题的是()A.∀x∈R,2x﹣1>0 B.∀x∈N﹡,(x﹣1)2>0 C.∃x∈R,lgx<1 D.∃x∈R,tanx=2考点:四种命题的真假关系.专题:简易规律.分析:本题考查全称命题和特称命题真假的推断,逐一推断即可.解答:解:B中,x=1时不成立,故选B.答案:B.点评:本题考查规律语言与指数函数、二次函数、对数函数、正切函数的值域,属简洁题.3.,则m等于()A.﹣1 B.0 C.1 D.2考点:定积分.专题:导数的概念及应用.分析:利用定积分的几何意义计算定积分.解答:解:y=,即(x+1)2+y2=1,表示以(﹣1,0)为圆心,以1为半径的圆,圆的面积为π,∵,∴表示为圆的面积的二分之一,∴m=0,故选:B点评:本题主要考查定积分、定积分的几何意义、圆的面积等基础学问,考查考查数形结合思想.属于基础题.4.下列函数中,既是偶函数,又在区间(1,2)内是增函数的为()A.y=cos2x B.y=log2|x| C . D.y=x3+1考点:奇偶性与单调性的综合.专题:函数的性质及应用.分析:利用函数奇偶性的定义及基本函数的单调性可作出推断.解答:解:函数y=log2|x|的定义域为(﹣∞,0)∪(0,+∞),关于原点对称,且log2|﹣x|=log2|x|,∴函数y=log2|x|为偶函数,当x>0时,函数y=log2|x|=log2x为R上的增函数,所以在(1,2)上也为增函数,故选B.点评:本题考查函数的奇偶性、单调性,属基础题,定义是解决该类题目的基本方法.5.若tanθ+=4,则sin2θ=()A .B .C .D .考点:二倍角的正弦;同角三角函数间的基本关系.专题:三角函数的求值.分析:先利用正弦的二倍角公式变形,然后除以1,将1用同角三角函数关系代换,利用齐次式的方法化简,可求出所求.解答:解:sin2θ=2sinθcosθ=====故选D.点评:本题主要考查了二倍角公式,以及齐次式的应用,同时考查了计算力量,属于基础题.6.若x∈(0,1),则下列结论正确的是()A .B .C .D .考点:不等式比较大小.专题:不等式.分析:依据指数函数幂函数对数函数的图象与性质,得到不等式与0,1的关系,即可比较大小.解答:解:x∈(0,1),∴lgx<0,2x>1,0<<1,∴2x >>lgx,故选:C.点评:本题考查了不等式的大小比较,以及指数函数幂函数对数函数的图象与性质,属于基础题.7.已知P、Q是圆心在坐标原点O的单位圆上的两点,分别位于第一象限和第四象限,且P 点的纵坐标为,Q 点的横坐标为.则cos∠POQ=()A .B .C .﹣D .﹣考点:两角和与差的余弦函数;任意角的三角函数的定义.专题:三角函数的求值.分析:由条件利用直角三角形中的边角关系求得sin∠xOP和cos∠xOQ的值,利用同角三角函数的基本关系求得cos∠xOP 和sin∠xOQ,再利用两角和的余弦公式求得cos∠POQ=cos(∠xOP+∠xOQ )的值.解答:解:由题意可得,sin∠xOP=,∴cos∠xOP=;再依据cos∠xOQ=,可得sin∠xOQ=.∴cos∠POQ=cos(∠xOP+∠xOQ )=cos∠xOP•cos∠xOQ﹣sin∠xOP•sin∠xOQ=﹣=﹣,故选:D.点评:本题主要考查直角三角形中的边角关系,同角三角函数的基本关系,两角和的余弦公式的应用,属于基础题.8.现有四个函数:①y=x•sinx;②y=x•cosx;③y=x•|cosx|;④y=x•2x的图象(部分)如下:则依据从左到右图象对应的函数序号支配正确的一组是()A.①④③②B.③④②①C.④①②③D.①④②③考点:函数的图象.专题:函数的性质及应用.分析:从左到右依次分析四个图象可知,第一个图象关于Y轴对称,是一个偶函数,其次个图象不关于原点对称,也不关于Y轴对称,是一个非奇非偶函数;第三、四个图象关于原点对称,是奇函数,但第四个图象在Y轴左侧,图象都在x轴的下方,再结合函数的解析式,进而得到答案.解答:解:分析函数的解析式,可得:①y=x•sinx为偶函数;②y=x•cosx为奇函数;③y=x•|cosx|为奇函数,④y=x•2x为非奇非偶函数且当x<0时,③y=x•|cosx|≤0恒成立;则从左到右图象对应的函数序号应为:①④②③故选:D.点评:本题考点是考查了函数图象及函数图象变化的特点,解决此类问题有借助两个方面的学问进行争辩,一是函数的性质,二是函数图象要过的特殊点.9.设函数,其中,则导数f′(﹣1)的取值范围()A.[3,6]B .C .D .考点:三角函数中的恒等变换应用;函数的值域.分析:先对原函数进行求导可得到f′(x)的解析式,将x=﹣1代入可求取值范围.解答:解:∵∴∴=2sin ()+4∵∴∴sin∴f′(﹣1)∈[3,6]故选A.点评:本题主要考查函数求导和三角函数求值域的问题.这两个方面都是高考中必考内容,难度不大.10.函数的图象与x 轴的交点的横坐标构成一个公差为的等差数列,要得到函数g(x)=Acosωx的图象,只需将f(x)的图象()A .向左平移个单位B .向右平移个单位C .向左平移个单位D .向右平移个单位考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:由题意可得,函数的周期为π,由此求得ω=2,由g(x)=Acosωx=sin[2(x+)+],依据y=Asin (ωx+∅)的图象变换规律得出结论.解答:解:由题意可得,函数的周期为π,故=π,∴ω=2.要得到函数g(x)=Acosωx=sin[2(x+)+]的图象,只需将f(x)=的图象向左平移个单位即可,故选A.点评:本题主要考查y=Asin(ωx+∅)的图象变换规律,y=Asin(ωx+∅)的周期性,属于中档题.11.若函数f(x )满足,当x∈[0,1]时,f(x)=x,若在区间(﹣1,1]上,g(x)=f (x)﹣mx﹣m有两个零点,则实数m的取值范围是()A .B .C.(0,1)D .考点:函数零点的判定定理.专题:函数的性质及应用.分析:依据函数f(x )满足,当x∈[0,1]时,f(x)=x,求出x∈(﹣1,0)时,f(x)的解析式,由在区间(﹣1,1]上,g(x)=f(x)﹣mx﹣m有两个零点,转化为两函数图象的交点,利用图象直接的结论.解答:解:函数f(x )满足,当x∈[0,1]时,f(x)=x,∴x∈(﹣1,0)时,f(x)+1==,f(x)=.由于g(x)=f(x)﹣mx﹣m有两个零点,所以y=f(x)与y=mx+m的图象有两个交点,函数图象如图所示,由图象可得,当0<m ≤时,两函数有两个交点,故选D.点评:此题是个中档题.本题考查了利用函数零点的存在性求变量的取值范围和代入法求函数解析式,体现了转化的思想,以及利用函数图象解决问题的力量,体现了数形结合的思想.也考查了同学制造性分析解决问题的力量,属于中档题.12.设函数,且αsinα﹣βsinβ>0,则下列不等式必定成立的是()A.α>β B.α<β C.α+β>0 D.α2>β2考点:正弦函数的单调性.专题:综合题.分析:构造函数f(x)=xsinx,x ∈,利用奇偶函数的定义可推断其奇偶性,利用f′(x)=sinx+xcosx 可推断f(x)=xsinx,x∈[0,]与x∈[﹣,0]上的单调性,从而可选出正确答案.解答:解:令f(x)=xsinx,x ∈,∵f(﹣x)=﹣x•sin(﹣x)=x•sinx=f(x),∴f(x)=xsinx,x ∈为偶函数.又f′(x)=sinx+xcosx,∴当x∈[0,],f′(x)>0,即f(x)=xsinx在x∈[0,]单调递增;同理可证偶函数f(x)=xsinx在x∈[﹣,0]单调递减;∴当0≤|β|<|α|≤时,f(α)>f(β),即αsinα﹣βsinβ>0,反之也成立;故选D.点评:本题考查正弦函数的单调性,难点在于构造函数f(x)=xsinx,x ∈,通过争辩函数f (x)=xsinx,的奇偶性与单调性解决问题,属于难题.二、填空题:本大题共4小题,每小题5分,共20分.13.如图,某港口一天6时到18时的水渠变化曲线近似满足函数y=3sin (x+φ)+k.据此函数可知,这段时间水深(单位:m )的最大值为8.考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:三角函数的图像与性质.分析:由图象观看可得:y min=﹣3+k=2,从而可求k的值,从而可求y max=3+k=3+5=8.解答:解:∵由题意可得:y min =﹣3+k=2,∴可解得:k=5,∴y max=3+k=3+5=8,故答案为:8.点评:本题主要考查了正弦函数的图象和性质,属于基本学问的考查.14.已知,,则=.考点:两角和与差的正切函数.专题:计算题;三角函数的求值.分析:利用帮助角公式sinα+cosα=sin(α+),可求得sin(α+),结合α的范围,可α+∈(,),利用同角的三角函数关系可求cos(α+),tan(α+)的值.解答:解:∵sinα+cosα=sin(α+)=﹣,∴sin(α+)=﹣,∵α∈(,π),∴α+∈(,),∴cos(α+)=﹣=﹣.∴tan(α+)==.故答案为:.点评:本题考查同角三角函数间的基本关系,考查了计算力量,属于基础题.15.已知点P在曲线y=上,a为曲线在点P处的切线的倾斜角,则a 的取值范围是.考点:导数的几何意义.专题:计算题;数形结合.分析:由导函数的几何意义可知函数图象在切点处的切线的斜率值即为其点的导函数值,结合函数的值域的求法利用基本不等式求出k的范围,再依据k=tanα,结合正切函数的图象求出角α的范围.解答:解:依据题意得f′(x)=﹣,∵,且k<0则曲线y=f(x)上切点处的切线的斜率k≥﹣1,又∵k=tanα,结合正切函数的图象由图可得α∈,故答案为:.点评:本题考查了导数的几何意义,以及利用正切函数的图象求倾斜角等基础学问,考查运算求解力量,考查数形结合思想、化归与转化思想.16.给出下列四个命题:①半径为2,圆心角的弧度数为的扇形面积为②若α,β为锐角,,则③是函数y=sin(2x+φ)为偶函数的一个充分不必要条件④函数的一条对称轴是其中正确的命题是②③④.考点:命题的真假推断与应用;两角和与差的正切函数.专题:三角函数的图像与性质.分析:①利用弧度制的定义可得公式:s扇形=Lr,L=αr,求解即可;②tan(α+2β)=tan(α+β+β)==1,再推断α+2β<180°,得出答案;③考查了周期函数,+2kπ都能使函数y=sin(2x+φ)为偶函数,④考查三角函数对称轴的特征:过余弦函数的最值点都是对称轴,把代入得:y=cosπ=﹣1,是对称轴,解答:解:①s扇形=Lr,L=αr∴s=1,故错误;②tan(α+2β)=tan(α+β+β)==1∵α,β为锐角,,∴α+2β<180°∴,故②正确;③+2kπ都能使函数y=sin(2x+φ)为偶函数,故③正确;④把代入得:y=cosπ=﹣1,是对称轴,故正确;故答案为:②③④.点评:考查了弧度制的定义和三角函数的周期性,对称轴和和角公式,属于基础题型,应娴熟把握.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)(2021秋•乌拉特前旗校级月考)某同学用五点法画函数f(x)=Asin(ωx+ϕ),(ω>0,|ϕ|<)在某一个周期内的图象时,列表并填入了部分数据,如下表:ωx+ϕ0 π2πxAsin(ωx+ϕ)0 5 ﹣5 0(1)请将上表数据补充完整,并直接写出函数f(x)的解析式;(2)若函数f(x)的图象向左平移个单位后对应的函数为g(x),求g(x)的图象离原点最近的对称中心.考点:由y=Asin(ωx+φ)的部分图象确定其解析式;函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:(1)由表中已知数据易得,可得表格和解析式;(2)由函数图象变换可得g(x)的解析式,可得对称中心.解答:解:(1)依据表中已知数据,解得数据补全如下表:ωx+ϕ0 π2πxAsin(ωx+ϕ)0 5 0 ﹣5 0∴函数的解析式为;(2)函数f(x )图象向左平移个单位后对应的函数是g(x)=5sin[2(x+)﹣]=5sin(2x+),其对称中心的横坐标满足2x+=kπ,即x=﹣,k∈Z,∴离原点最近的对称中心是点评:本题考查三角函数解析式的确定和函数图象变换,涉及三角函数的对称性,属基础题.18.(12分)(2022•江西)已知函数f(x)=(a+2cos2x)cos(2x+θ)为奇函数,且f ()=0,其中a∈R,θ∈(0,π).(1)求a,θ的值;(2)若f ()=﹣,α∈(,π),求sin(α+)的值.考点:三角函数中的恒等变换应用;函数奇偶性的性质.专题:三角函数的求值.分析:(1)把x=代入函数解析式可求得a的值,进而依据函数为奇函数推断出f(0)=0,进而求得cosθ,则θ的值可得.(2)利用f ()=﹣和函数的解析式可求得sin,进而求得cos,进而利用二倍角公式分别求得sinα,cosα,最终利用两角和与差的正弦公式求得答案.解答:解:(1)f ()=﹣(a+1)sinθ=0,∵θ∈(0,π).∴sinθ≠0,∴a+1=0,即a=﹣1∵f(x)为奇函数,∴f(0)=(a+2)cosθ=0,∴cosθ=0,θ=.(2)由(1)知f(x)=(﹣1+2cos2x)cos(2x+)=cos2x•(﹣sin2x)=﹣,∴f ()=﹣sinα=﹣,∴sinα=,∵α∈(,π),∴cosα==﹣,∴sin(α+)=sinαcos+cosαsin =.点评:本题主要考查了同角三角函数关系,三角函数恒等变换的应用,函数奇偶性问题.综合运用了所学学问解决问题的力量.19.(12分)(2022•佛山二模)某种产品每件成本为6元,每件售价为x元(x>6),年销量为u万件,若已知与成正比,且售价为10元时,年销量为28万件.(1)求年销售利润y关于x的函数关系式.(2)求售价为多少时,年利润最大,并求出最大年利润.考点:函数模型的选择与应用.专题:应用题.分析:(1)依据题中条件:“若已知与成正比”可设,再依据售价为10元时,年销量为28万件求得k值,从而得出年销售利润y关于x的函数关系式.(2)利用导数争辩函数的最值,先求出y的导数,依据y′>0求得的区间是单调增区间,y′<0求得的区间是单调减区间,从而求出极值进而得出最值即可.解答:解:(1)设,∵售价为10元时,年销量为28万件;∴,解得k=2.∴=﹣2x2+21x+18.∴y=(﹣2x2+21x+18)(x﹣6)=﹣2x3+33x2﹣108x﹣108.(2)y'=﹣6x2+66x﹣108=﹣6(x2﹣11x+18)=﹣6(x﹣2)(x﹣9)令y'=0得x=2(∵x>6,舍去)或x=9明显,当x∈(6,9)时,y'>0当x∈(9,+∞)时,y'<0∴函数y=﹣2x3+33x2﹣108x﹣108在(6,9)上是关于x的增函数;在(9,+∞)上是关于x的减函数.∴当x=9时,y取最大值,且y max=135.∴售价为9元时,年利润最大,最大年利润为135万元.点评:本小题主要考查依据实际问题建立数学模型,以及运用函数、导数的学问解决实际问题的力量.属于基础题.20.(12分)(2022•天津模拟)已知函数f(x)=x3﹣3ax2+b(x∈R),其中a≠0,b∈R.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)设a∈[,],函数f(x)在区间[1,2]上的最大值为M,最小值为m,求M﹣m的取值范围.考点:利用导数争辩函数的单调性;利用导数求闭区间上函数的最值.专题:导数的综合应用.分析:(Ⅰ)对于含参数的函数f(x)的单调区间的求法,需要进行分类争辩,然后利用导数求出函数的单调性;(Ⅱ)求出f(x)在[1,2a]内是减函数,在[2a,2]内是增函数,设g(a)=4a3﹣12a+8,求出g(a)在[]内是减函数,问题得以解决.解答:解:(Ⅰ)f'(x)=3x2﹣6ax=3x(x﹣2a),令f'(x)=0,则x1=0,x2=2a,(1)当a>0时,0<2a,当x变化时,f'(x),f(x)的变化状况如下表:x (﹣∞,0)0 (0,2a)2a (2a,+∞)f'(x)+ 0 ﹣0 +f(x)↗极大值↘微小值↗∴函数f(x)在区间(﹣∞,0)和(2a,+∞)内是增函数,在区间(0,2a)内是减函数.(2)当a<0时,2a<0,当x变化时,f'(x),f(x)的变化状况如下表:x (﹣∞,2a)2a (2a,0)0 (0,+∞)f'(x)+ 0 ﹣0 +f(x)↗极大值↘微小值↗∴函数f(x)在区间(﹣∞,2a)和(0,+∞)内是增函数,在区间(2a,0)内是减函数.(Ⅱ)由及(Ⅰ),f(x)在[1,2a]内是减函数,在[2a,2]内是增函数,又f(2)﹣f(1)=(8﹣12a+b)﹣(1﹣3a+b)=7﹣9a>0,∴M=f(2),m=f(2a)=8a3﹣12a3+b=b﹣4a3,∴M﹣m=(8﹣12a+b)﹣(b﹣4a3)=4a3﹣12a+8,设g(a)=4a3﹣12a+8,∴g'(a)=12a2﹣12=12(a+1)(a﹣1)<0(a∈[]),∴g(a)在[]内是减函数,故g(a)max=g ()=2+=,g(a)min=g ()=﹣1+4×=.∴≤M﹣m ≤.点评:本题考查利用导数争辩函数的极值和单调性,涉及构造函数的方法,属中档题.21.(12分)(2021•大观区校级四模)已知函数f(x)=ax+xlnx(a∈R)(1)若函数f(x)在区间[e,+∞)上为增函数,求a的取值范围;(2)当a=1且k∈z时,不等式k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,求k的最大值.考点:利用导数争辩函数的单调性;利用导数求闭区间上函数的最值.专题:综合题;导数的概念及应用.分析:(1)易求f′(x)=a+1+lnx,依题意知,当x≥e时,a+1+lnx≥0恒成立,即x≥e时,a≥(﹣1﹣lnx)max,从而可得a的取值范围;(2)依题意,对任意x>1恒成立,令则,再令h(x)=x﹣lnx﹣2(x>1),易知h(x)在(1,+∞)上单增,从而可求得g(x)min=x0∈(3,4),而k∈z,从而可得k的最大值.解答:解:(1)∵f(x)=ax+xlnx,∴f′(x)=a+1+lnx,又函数f(x)在区间[e,+∞)上为增函数,∴当x≥e时,a+1+lnx≥0恒成立,∴a≥(﹣1﹣lnx)max=﹣1﹣lne=﹣2,即a的取值范围为[﹣2,+∞);(2)当x>1时,x﹣1>0,故不等式k(x﹣1)<f(x)⇔k <,即对任意x>1恒成立.令则,令h(x)=x﹣lnx﹣2(x>1),则在(1,+∞)上单增.∵h(3)=1﹣ln3<0,h(4)=2﹣ln4>0,∴存在x0∈(3,4)使h(x0)=0,即当1<x<x0时,h(x)<0,即g′(x)<0,当x>x0时,h(x)>0,即g′(x)>0,∴g(x)在(1,x0)上单减,在(x0,+∞)上单增.令h(x0)=x0﹣lnx0﹣2=0,即lnx0=x0﹣2,=x0∈(3,4),∴k<g(x)min=x0且k∈Z,即k max=3.点评:本题考查利用导数争辩函数的单调性及利用导数求闭区间上函数的最值,着重考查等价转化思想与函数恒成立问题,属于难题.请考生在第22、23、24三题中任选一题作答,假如多做,则按所做的第一题记分.答时用2B铅笔在答题卡上把所选题目的题号涂黑.选修4-1:几何证明选讲22.(10分)(2021•金昌校级模拟)如图,AB是⊙O的一条切线,切点为B,ADE、CFD都是⊙O的割线,AC=AB,CE交⊙O于点G.(Ⅰ)证明:AC2=AD•AE;(Ⅱ)证明:FG∥AC.考点:与圆有关的比例线段;圆內接多边形的性质与判定.专题:选作题;立体几何.分析:(Ⅰ)利用切线长与割线长的关系及AB=AC进行证明.(Ⅱ)利用成比例的线段证明角相等、三角形相像,得到同位角角相等,从而两直线平行.解答:证明:(Ⅱ)∵AB是⊙O的一条切线,切点为B,ADE,CFD,CGE都是⊙O的割线,∴AB2=AD•AE,∵AB=AC,∴AD•AE=AC2.(Ⅱ)由(Ⅱ)有,∵∠EAC=∠DAC,∴△ADC∽△ACE,∴∠ADC=∠ACE,∵圆的内接四边形对角互补,∴∠ADC=∠EGF,∴∠EGF=∠ACE,∴FG∥AC.点评:本题考查圆的切线、割线长的关系,平面的基本性质.解决这类问题的常用方法是利用成比例的线段证明角相等、三角形相像等学问.选修4-4:坐标系与参数方程23.(2021•鹰潭一模)选修4﹣4:坐标系与参数方程.极坐标系与直角坐标系xoy有相同的长度单位,以原点为极点,以x轴正半轴为极轴,已知曲线C1的极坐标方程为ρ=4cosθ,曲线C2的参数方程为(t为参数,0≤α<π),射线θ=φ,θ=φ+,θ=φ﹣与曲线C1交于(不包括极点O)三点A、B、C.(I)求证:|OB|+|OC|=|OA|;(Ⅱ)当φ=时,B,C两点在曲线C2上,求m与α的值.考点:简洁曲线的极坐标方程;圆的参数方程.专题:直线与圆.分析:(Ⅰ)依题意,|OA|=4cosφ,|OB|=4cos(φ+),|OC|=4cos(φ﹣),利用三角恒等变换化简|OB|+|OC|为4cosφ,=|OA|,命题得证.(Ⅱ)当φ=时,B,C两点的极坐标分别为(2,),(2,﹣).再把它们化为直角坐标,依据C2是经过点(m,0),倾斜角为α的直线,又经过点B,C的直线方程为y=﹣(x﹣2),由此可得m及直线的斜率,从而求得α的值.解答:解:(Ⅰ)依题意,|OA|=4cosφ,|OB|=4cos(φ+),|OC|=4cos(φ﹣),…(2分)则|OB|+|OC|=4cos(φ+)+4cos(φ﹣)=2(cosφ﹣sinφ)+2(cosφ+sinφ)=4cosφ,=|OA|.…(5分)(Ⅱ)当φ=时,B,C两点的极坐标分别为(2,),(2,﹣).化为直角坐标为B(1,),C(3,﹣).…(7分)C2是经过点(m,0),倾斜角为α的直线,又经过点B,C的直线方程为y=﹣(x﹣2),故直线的斜率为﹣,…(9分)所以m=2,α=.…(10分)点评:本题主要考查把参数方程化为直角坐标方程,把点的极坐标化为直角坐标,直线的倾斜角和斜率,属于基础题.选修4-5:不等式选讲24.(2021•鹰潭一模)已知函数f(x)=|x+2|﹣2|x﹣1|(1)解不等式f(x)≥﹣2;(2)对任意x∈[a,+∞),都有f(x)≤x﹣a成立,求实数a的取值范围.考点:函数恒成立问题;确定值不等式的解法.专题:函数的性质及应用;不等式的解法及应用;直线与圆.分析:(1)通过对x≤﹣2,﹣2<x<1与x≥1三类争辩,去掉确定值符号,解相应的一次不等式,最终取其并集即可;(2)在坐标系中,作出的图象,对任意x∈[a,+∞),都有f(x)≤x﹣a成立,分﹣a≥2与﹣a<2争辩,即可求得实数a的取值范围.解答:解:(1)f(x)=|x+2|﹣2|x﹣1|≥﹣2,当x≤﹣2时,x﹣4≥﹣2,即x≥2,∴x∈∅;当﹣2<x<1时,3x≥﹣2,即x≥﹣,∴﹣≤x≤1;当x≥1时,﹣x+4≥﹣2,即x≤6,∴1≤x≤6;综上,不等式f(x)≥﹣2的解集为:{x|﹣≤x≤6} …(5分)(2),函数f(x)的图象如图所示:令y=x﹣a,﹣a表示直线的纵截距,当直线过(1,3)点时,﹣a=2;∴当﹣a≥2,即a≤﹣2时成立;…(8分)当﹣a<2,即a>﹣2时,令﹣x+4=x﹣a,得x=2+,∴a≥2+,即a≥4时成立,综上a≤﹣2或a≥4.…(10分)点评:本题考查确定值不等式的解法,考查分段函数的性质及应用,考查等价转化思想与作图分析力量,突出恒成立问题的考查,属于难题.。

安徽省黄山市田家炳实验中学2021届高三上学期第一次月考数学(文)试卷 Word版含解析

安徽省黄山市田家炳实验中学2021届高三上学期第一次月考数学(文)试卷 Word版含解析

2022-2021学年安徽省黄山市田家炳试验中学高三(上)第一次月考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分1.设集合A={x|1<x<4},集合B={x|x2﹣2x﹣3≤0},则A∩(∁R B)=()A.(1,4) B.(3,4) C.(1,3) D.(1,2)∪(3,4)2.若a、b为实数,则“0<ab<1”是“a <”或“b >”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件3.下列函数中既是奇函数,又在区间(﹣1,1)上是增函数的为()A. y=|x| B. y=sinx C. y=e x+e﹣x D. y=﹣x34.若函数f(x)=log a(2﹣ax)(a>0a≠1)在区间(1,3)内单调递增,则a的取值范围是() A. [,1) B.(0,] C.(1,) D. [)5.奇函数f(x)在(0,+∞)上的解析式是f(x)=x(1﹣x),则在(﹣∞,0)上f(x)的函数解析式是()A. f(x)=﹣x(1﹣x) B. f(x)=x(1+x) C. f(x)=﹣x(1+x) D. f(x)=x(x﹣1)6.函数f(x)的定义域为R,且满足:f(x)是偶函数,f(x﹣1)是奇函数,若f(0.5)=9,则f(8.5)等于()A.﹣9 B. 9 C.﹣3 D. 07.定义两种运算:a⊕b=,a⊗b=,则f(x)=是()函数. A.奇函数 B.偶函数 C.既奇又偶函数 D.非奇非偶函数8.已知函数f(x)=(x﹣a)(x﹣b)(其中a>b)的图象如图所示,则函数g(x)=a x+b的图象是()A. B. C . D.9.若log a(a2+1)<log a2a<0,则a的取值范围是()A.(0,1) B.(0,) C.(,1) D.(0,1)∪(1,+∞)10.设f(x)是定义在R上的偶函数,对x∈R,都有f(x﹣2)=f(x+2),且当x∈[﹣2,0]时,f(x)=()x﹣1,若在区间(﹣2,6]内关于x的方程f(x)﹣log a(x+2)=0(a>1)恰有3个不同的实根,则a 的取值范围是()A.(1,2) B.(2,+∞) C.(1,) D.(,2)二、填空题:本大题共5小题,每小题5分,共25分.11.命题“∃x∈(1,2)时,满足不等式x2+mx+4≥0”是假命题,则m 的取值范围是.12.函数f(x)=lg|x+m|关于直线x=1对称,则m= .13.已知函数f(x)=的值域是[0,+∞),则实数m的取值范围是.14.定义在R上的偶函数y=f(x),当x>0时,y=f(x)是单调递增的,f(1)•f(2)<0.则函数y=f (x)的图象与x轴的交点个数是.15.已知函数f(x)=(a∈R),若对于任意的X∈N*,f(x)≥3恒成立,则a的取值范围是.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.16.设集合,B={x|x2﹣3mx+2m2﹣m﹣1<0}.(1)当x∈Z时,求A的非空真子集的个数;(2)若A⊇B,求m的取值范围.17.已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x.(Ⅰ)求函数g(x)的解析式;(Ⅱ)解不等式g(x)≥f(x)﹣|x﹣1|.18.某单位用2160万元购得一块空地,方案在该地块上建筑一栋至少10层、每层2000平方米的楼房.经测算,假如将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=)19.已知函数(a为常数).(1)若常数a<2且a≠0,求f(x)的定义域;(2)若f(x)在区间(2,4)上是减函数,求a的取值范围.20.定义在R上的单调函数f(x)满足f(3)=log23且对任意x,y∈R都有f(x+y)=f(x)+f(y).(1)求证f(x)为奇函数;(2)若f(k•3x)+f(3x﹣9x﹣2)<0对任意x∈R恒成立,求实数k的取值范围.21.设D是函数y=f(x)定义域内的一个区间,若存在x0∈D,使f(x0)=x0,则称x0是f(x)的一个不动点,也称f(x)在区间D上有不动点.(1)证明f(x)=2x﹣2x﹣3在区间(1,4)上有不动点;(2)若函数在区间[1,4]上有不动点,求常数a的取值范围.2022-2021学年安徽省黄山市田家炳试验中学高三(上)第一次月考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分1.设集合A={x|1<x<4},集合B={x|x2﹣2x﹣3≤0},则A∩(∁R B)=()A.(1,4) B.(3,4) C.(1,3) D.(1,2)∪(3,4)考点:交、并、补集的混合运算.专题:集合.分析:由题意,可先解一元二次不等式,化简集合B,再求出B的补集,再由交的运算规章解出A∩(∁R B)即可得出正确选项解答:解:由题意B={x|x2﹣2x﹣3≤0}={x|﹣1≤x≤3},故∁R B={x|x<﹣1或x>3},又集合A={x|1<x<4},∴A∩(∁R B)=(3,4)故选B点评:本题考查交、并、补的混合运算,属于集合中的基本计算题,娴熟把握运算规章是解解题的关键2.若a、b为实数,则“0<ab<1”是“a <”或“b >”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的推断;不等关系与不等式.专题:简易规律.分析:由于“0<ab<1”⇒“a <”或“b >”.“a <”或“b >”不能推出“0<ab<1”,所以“0<ab<1”是“a <”或“b >”的充分而不必要条件.解答:解:∵a、b为实数,0<ab<1,∴“0<a <”或“0>b >”∴“0<ab<1”⇒“a <”或“b >”.“a <”或“b >”不能推出“0<ab<1”,所以“0<ab<1”是“a <”或“b >”的充分而不必要条件.故选A.点评:本题考查充分分条件、必要条件和充要条件,解题时要留意基本不等式的合理运用.3.下列函数中既是奇函数,又在区间(﹣1,1)上是增函数的为()A. y=|x| B. y=sinx C. y=e x+e﹣x D. y=﹣x3考点:奇偶性与单调性的综合.专题:探究型;函数的性质及应用.分析:对于A,C均是偶函数;对于B,C均是减函数,B在区间(﹣1,1)上是增函数,D在区间(﹣1,1)上是减函数.解答:解:对于A,C均是偶函数,故不满足题意对于B,C均是减函数,B在区间(﹣1,1)上是增函数,D在区间(﹣1,1)上是减函数所以B满足题意故选B.点评:本题考查函数的奇偶性与函数的单调性,考查同学分析解决问题的力量,属于中档题.4.若函数f(x)=log a(2﹣ax)(a>0a≠1)在区间(1,3)内单调递增,则a的取值范围是() A. [,1) B.(0,] C.(1,) D. [)考点:对数函数的单调性与特殊点.专题:计算题.分析:先将函数f(x)=log a(2﹣ax)转化为y=log a t,t=2﹣ax,两个基本函数,再利用复合函数求解.解答:解:令y=log a t,t=2﹣ax,∵a>0∴t=2﹣ax在(1,3)上单调递减∵f(x)=log a(2﹣ax)(a>0,a≠1)在区间(1,3)内单调递增∴函数y=log a t是减函数,且t(x)>0在(1,3)上成立∴∴0<a ≤故选B.点评:本题主要考查复合函数,关键是分解为两个基本函数,利用同增异减的结论争辩其单调性,再求参数的范围.本题简洁忽视t=2﹣ax>0的状况导致出错.5.奇函数f(x)在(0,+∞)上的解析式是f(x)=x(1﹣x),则在(﹣∞,0)上f(x)的函数解析式是()A. f(x)=﹣x(1﹣x) B. f(x)=x(1+x) C. f(x)=﹣x(1+x) D. f(x)=x(x﹣1)考点:函数奇偶性的性质.专题:计算题.分析:把x∈(﹣∞,0)的函数解析式通过函数是奇函数的性质转化求出函数f(x)在(0,+∞)上的解析式.解答:解:当x∈(﹣∞,0)时,﹣x∈(0,+∞),由于函数f(x)是奇函数,故f(x)=﹣f(﹣x)=x(1+x).故选B点评:已知函数的奇偶性和函数在一个区间上的解析式求这个函数在其关于坐标原点对称的区间上的函数解析式,就是依据函数的奇偶性进行转化的,这类试题重点考查化归转化思想是运用.6.函数f(x)的定义域为R,且满足:f(x)是偶函数,f(x﹣1)是奇函数,若f(0.5)=9,则f(8.5)等于()A.﹣9 B. 9 C.﹣3 D. 0考点:函数奇偶性的性质.专题:函数的性质及应用.分析:由f(x﹣1)是奇函数、f(x)是偶函数,可得f(x)=f(x﹣4),从而求得f(8.5)=f(0.5),即可得到答案.解答:解:∵f(x﹣1)是奇函数,故有f(﹣x﹣1)=﹣f(x﹣1),即f(﹣x)=﹣f(x﹣2).又∵f(x)是偶函数,得f(x)=﹣f(x﹣2),f(x﹣4)=f(x)对任意x∈R恒成立,可得f(x)的最小正周期为4,∴f(0.5)=f(8.5)=9.故选:B.点评:本题综合考查抽象的函数奇偶性、周期性的应用,属于基础题.7.定义两种运算:a⊕b=,a⊗b=,则f(x)=是()函数. A.奇函数 B.偶函数 C.既奇又偶函数 D.非奇非偶函数考点:函数奇偶性的推断;进行简洁的合情推理.专题:新定义;函数的性质及应用.分析:先利用新定义把f(x)的表达式找出来,在利用函数的定义域把函数化简,最终看f(x)与f(﹣x)的关系得结论.解答:解:由定义知f(x)==,由4﹣x2≥0且|x﹣2|﹣2≠0,得﹣2≤x<0或0<x≤2,所以f(x)==,则f(﹣x)==﹣()=﹣f(x),故f(﹣x)=﹣f(x),即f(x)是奇函数.故选 A.点评:本题是对函数新定义与奇偶性的综合考查,关于新定义的题,关键在于理解新定义,并会用新定义解题,属于易错题题.8.已知函数f(x)=(x﹣a)(x﹣b)(其中a>b)的图象如图所示,则函数g(x)=a x+b的图象是()A. B. C. D.考点:指数函数的图像变换.专题:数形结合.分析:由已知中函数f(x)=(x﹣a)(x﹣b)(其中a>b)的图象,我们易推断出a,b与0,±1的关系,依据指数函数的图象的性质及指数函数图象的平移变换,我们分析四个答案中函数的图象,即可得到结论.解答:解:由已知中函数f(x)=(x﹣a)(x﹣b)(其中a>b)的图象可得b<﹣1<0<a<1则函数g(x)=a x+b为减函数,即函数的图象从左到右是下降的且与Y轴的交点在X轴下方分析四个答案只有A符合故选A点评:本题考查的学问点是指数函数的图象变换,其中依据已知推断出a,b与0,±1的关系,进而分析出函数图象的单调性及特殊点是解答本题的关键.9.若log a(a2+1)<log a2a<0,则a的取值范围是()A.(0,1) B.(0,) C.(,1) D.(0,1)∪(1,+∞)考点:对数函数的单调性与特殊点.专题:计算题;转化思想;对应思想.分析:由题意,可得出a2+1>1,结合log a(a2+1)<0,可得出a∈(0,1),再由log a2a<0得出2a>1,即可解出a的取值范围,选出正确选项解答:解:∵log a(a2+1)<log a2a<0,a2+1>1∴a∈(0,1),且2a>1∴a ∈(,1)故选C点评:本题考查对数函数的单调性,考察了对数数符合与真数及底数取值范围的关系,解题的关键是确定出a2+1>1,由此打开解题的突破口,本题考察了观看推理的力量,题目虽简,考查学问的方式很奇妙.10.设f(x)是定义在R上的偶函数,对x∈R,都有f(x﹣2)=f(x+2),且当x∈[﹣2,0]时,f(x)=()x﹣1,若在区间(﹣2,6]内关于x的方程f(x)﹣log a(x+2)=0(a>1)恰有3个不同的实根,则a 的取值范围是()A.(1,2) B.(2,+∞) C.(1,) D.(,2)考点:函数的零点与方程根的关系.专题:作图题;函数的性质及应用.分析:作出在区间(﹣2,6]内函数f(x)的图象,将方程的根的个数化为函数图象交点的个数.解答:解:∵f(x)是定义在R上的偶函数,∴f(x)的图象关于y轴对称,∵对x∈R,都有f(x﹣2)=f(x+2),∴f(x)是周期函数,且周期为4;∵当x∈[﹣2,0]时,f(x)=()x﹣1,∴其在区间(﹣2,6]内的图象如右图,∴在区间(﹣2,6]内关于x的方程f(x)﹣log a(x+2)=0(a>1)恰有3个不同的实根可转化为,函数f (x)的图象与y=log a(x+2)的图象有且只有三个不同的交点,则log a(2+2)<3,且log a(6+2)>3解得,a ∈(,2).故选D.点评:本题通过分析可得函数f(x)的性质,并由这些性质依据图象变换作出其图象,将方程问题化为图象交点问题,属于中档题.二、填空题:本大题共5小题,每小题5分,共25分.11.命题“∃x∈(1,2)时,满足不等式x2+mx+4≥0”是假命题,则m 的取值范围是(﹣∞,﹣5] .考点:命题的真假推断与应用.专题:综合题;转化思想.分析:写出命题的否命题,据已知命题为假命题,得到否命题为真命题;分别出﹣m;通过导函数求出不等式右边对应函数的在范围,求出m的范围.解答:解:∵命题“∃x∈(1,2)时,满足不等式x2+mx+4≥0”是假命题,∴命题“∀x∈(1,2)时,满足不等式x2+mx+4<0”是真命题,∴在(1,2)上恒成立令x∈(1,2)∵∴f(x)<f(1)=5,∴﹣m≥5,∴m≤﹣5.故答案为:(﹣∞,﹣5]点评:将问题等价转化为否命题为真命题即不等式恒成立,进一步将不等式恒成立转化为函数的最值.12.函数f(x)=lg|x+m|关于直线x=1对称,则m= ﹣1 .考点:奇偶函数图象的对称性.专题:计算题;转化思想.分析:本题争辩的是一个对数型的函数,其可以看作是由函数g(x)=lg|x|图象向右平移了一个单位而得到,由同一性的思想方法就可以求出m的值.解答:解:由于函数g(x)=lg|x|图象关于直线x=0对称,函数g(x)=lg|x|图象向右平移一个单位后所得函数为r(x)=lg|x﹣1|,其对称轴方程为x=1由题设条件知f(x)=r(x)=lg|x﹣1|,故m=﹣1故答案为﹣1点评:本题考点是函数图象的对称性,考查函数图象本身的对称性及图象变换后所得函数图象的对称性,及利用变换规章求参数,本题旧考点新考法,较好.13.已知函数f(x)=的值域是[0,+∞),则实数m的取值范围是[0,1]∪[9,+∞).考点:函数的值域;一元二次不等式的应用.专题:计算题.分析:当m=0时,检验合适; m<0时,不满足条件; m>0时,由△≥0,求出实数m的取值范围,然后把m的取值范围取并集.解答:解:当m=0时,f(x)=,值域是[0,+∞),满足条件;当m<0时,f(x)的值域不会是[0,+∞),不满足条件;当m>0时,f(x)的被开方数是二次函数,△≥0,即(m﹣3)2﹣4m≥0,∴m≤1或 m≥9,综上,0≤m≤1或 m≥9,∴实数m的取值范围是:[0,1]∪[9,+∞);故答案为[0,1]∪[9,+∞).点评:本题考查函数的值域及一元二次不等式的应用.14.定义在R上的偶函数y=f(x),当x>0时,y=f(x)是单调递增的,f(1)•f(2)<0.则函数y=f (x)的图象与x 轴的交点个数是 2 .考点:函数零点的判定定理;奇偶性与单调性的综合.专题:函数的性质及应用.分析:函数的单调性和奇偶性、函数零点的判定定理,可得函数y=f(x)在(0,+∞)上有唯一零点,在(﹣∞,0)上有唯一零点,可得函数f(x)在R上有2个零点,从而得出结论.解答:解:依据当x>0时,y=f(x )是单调递增的,f(1)•f(2)<0,∴函数y=f(x)在(0,+∞)上有唯一零点.又∵函数f(x)时R 上的偶函数,图象关于y轴对称,∴函数y=f(x)在(﹣∞,0)上有唯一零点.综上可得,函数f(x)在R上有2个零点,即函数y=f(x)的图象与x轴的交点个数是2.故答案为:2.点评:本题主要考查函数的单调性和奇偶性的应用,函数零点的判定定理、函数的零点与方程的根的关系,属于中档题.15.已知函数f(x)=(a∈R ),若对于任意的X∈N*,f(x)≥3恒成立,则a的取值范围是a ≥﹣.考点:函数恒成立问题.专题:计算题;综合题.分析:由于x∈N *,可将f(x)=≥3转化为a≥﹣﹣x+3,再令g(x)=﹣﹣x+3(x∈N*),利用其单调性可求得g(x)max,从而可得答案.解答:解:∵x∈N *,∴f(x)=≥3恒成立⇔x2+ax+11≥3x+3恒成立,∴ax≥﹣x2﹣8+3x,又x∈N*,∴a≥﹣﹣x+3恒成立,∴a≥g(x)max,令g(x)=﹣﹣x+3(x∈N*),再令h(x)=x+(x∈N*),∵h(x)=x+在(0,2]上单调递减,在[2,+∞)上单调递增,而x∈N*,∴h(x)在x取距离2较近的整数值时达到最小,而距离2较近的整数为2和3,∵h(2)=6,h(3)=,h(2)>h(3),∴当x∈N*时,h(x)min=.又g (x)=﹣﹣x+3=﹣h(x)+3,∴g(x)max=﹣+3=﹣.∴a≥﹣.点评:本题考查函数恒成立问题,依题意得到a≥﹣﹣x+3是关键,考查转化思想,构造函数的思想,考查函数的单调性的应用,综合性强,思维度深,属于难题.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.16.设集合,B={x|x2﹣3mx+2m2﹣m﹣1<0}.(1)当x∈Z时,求A的非空真子集的个数;(2)若A⊇B,求m的取值范围.考点:子集与真子集;集合的包含关系推断及应用.专题:计算题;函数的性质及应用.分析:(1)由x∈Z,知={﹣2,﹣1,0,1,2,3,4,5}.由此能求出A的非空真子集的个数.(2)由A={x|﹣2<x<5},B={x|x2﹣3mx+2m2﹣m﹣1<0}={x|(x﹣2m﹣1)(x﹣m+1)=0}.A⊇B,知,或,由此能求出m的取值范围.解答:解:(1)∵={x|﹣2≤x≤5},∵x∈Z,∴A={﹣2,﹣1,0,1,2,3,4,5}.∴A的非空真子集的个数为28﹣2=254.(2)∵A={x|﹣2<x<5},B={x|x2﹣3mx+2m2﹣m﹣1<0}={x|(x﹣2m﹣1)(x﹣m+1)=0}.A⊇B,∴,或,解得﹣1≤m≤2,或m不存在.故m的取值范围{m|﹣1≤m≤2}.点评:本题考查集合的真子集个数的求数,考查满足条件的实数的取值范围的求法,是基础题.解题时要认真审题,认真解答.17.已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x.(Ⅰ)求函数g(x)的解析式;(Ⅱ)解不等式g(x)≥f(x)﹣|x﹣1|.考点:确定值不等式的解法;函数解析式的求解及常用方法.专题:计算题;分类争辩.分析:(Ⅰ)设函数y=f(x)的图象上任意一点Q(x0,y0)关于原点的对称点为P(x,y),则P在g(x)的图象上,由线段的中点公式解出 x0和y0 的解析式,代入函数y=f(x)可得g(x)的解析式.(Ⅱ)不等式可化为 2x2﹣|x﹣1|≤0,分类争辩,去掉确定值,求出不等式的解集.解答:解:(Ⅰ)设函数y=f(x)的图象上任意一点Q(x0,y0)关于原点的对称点为P(x,y),则P在g (x)的图象上,且,即∵点Q(x0,y0)在函数y=f(x)的图象上,∴﹣y=x2﹣2x,即y=﹣x2+2x,故,g(x)=﹣x2+2x.(Ⅱ)由g(x)≥f(x)﹣|x﹣1|,可得2x2﹣|x﹣1|≤0当x≥1时,2x2﹣x+1≤0,此时不等式无解.当x<1时,2x2+x﹣1≤0,解得﹣1≤x ≤.因此,原不等式的解集为[﹣1,].点评:本题考查求函数的解析式的方法以及解确定值不等式的方法,体现了分类争辩的数学思想,属于基础题.18.某单位用2160万元购得一块空地,方案在该地块上建筑一栋至少10层、每层2000平方米的楼房.经测算,假如将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=)考点:导数在最大值、最小值问题中的应用;实际问题中导数的意义.专题:计算题;应用题.分析:先设楼房每平方米的平均综合费为f(x)元,依据题意写出综合费f(x)关于x的函数解析式,再利用导数争辩此函数的单调性,进而得出它的最小值即可.解答:解:方法1:导数法设楼房每平方米的平均综合费为f(x)元,则(x≥10,x∈Z+),令f'(x)=0得x=15当x>15时,f'(x)>0;当0<x<15时,f'(x)<0因此当x=15时,f(x)取最小值f(15)=2000;答:为了楼房每平方米的平均综合费最少,该楼房应建为15层.方法2:(本题也可以使用基本不等式求解)设楼房每平方米的平均综合费为f(x)元,则,当且进行,即x=15时取等号.答:为了楼房每平方米的平均综合费最少,该楼房应建为15层.点评:本小题主要考查应用所学导数的学问、思想和方法解决实际问题的力量,建立函数式、解方程、不等式、最大值等基础学问.19.已知函数(a为常数).(1)若常数a<2且a≠0,求f(x)的定义域;(2)若f(x)在区间(2,4)上是减函数,求a的取值范围.考点:对数函数的定义域;函数单调性的性质.专题:计算题;综合题.分析:(1)由对数函数的性质知其真数必需大于0,对字母a进行分类争辩:当0<a<2时,当a<0时,即可求得求f(x)的定义域;(2)由题意知函数f(x)是由y=和复合而来,由复合函数单调性结论,只要u(x)在区间在(2,4)上为增且为正即可.解答:解:(1)由,当0<a<2时,解得x<1或,当a<0时,解得.故当0<a<2时,f(x)的定义域为{x|x<1或}当a<0时,f(x)的定义域为{x|}.(2)令,由于为减函数,故要使f(x)在(2,4)上是减函数,则在(2,4)上为增且为正.故有.故a∈[1,2).点评:本题主要考查对数函数的定义域、复合函数的单调性和一元二次方程根的分布,整体思想是解决本类问题的根本.20.定义在R上的单调函数f(x)满足f(3)=log23且对任意x,y∈R都有f(x+y)=f(x)+f(y).(1)求证f(x)为奇函数;(2)若f(k•3x)+f(3x﹣9x﹣2)<0对任意x∈R恒成立,求实数k的取值范围.考点:抽象函数及其应用;函数单调性的性质;函数奇偶性的推断.专题:计算题;证明题.分析:(1)欲证f(x)为奇函数即要证对任意x都有f(﹣x)=﹣f(x)成立.在式子f(x+y)=f(x)+f(y)中,令y=﹣x可得f(0)=f(x)+f(﹣x)于是又提出新的问题,求f(0)的值.令x=y=0可得f (0)=f(0)+f(0)即f(0)=0,f(x)是奇函数得到证明.(2)先将不等关系f(k•3x)+f(3x﹣9x﹣2)<0转化成f(k•3x)<f(﹣3x+9x+2),再结合函数的单调性去掉“f”符号,转化为整式不等关系,最终利用分别系数法即可求实数k的取值范围.解答:解:(1)证明:f(x+y)=f(x)+f(y)(x,y∈R),①令x=y=0,代入①式,得f(0+0)=f(0)+f(0),即f(0)=0.令y=﹣x,代入①式,得f(x﹣x)=f(x)+f(﹣x),又f(0)=0,则有0=f(x)+f(﹣x).即f(﹣x)=﹣f(x)对任意x∈R成立,所以f(x)是奇函数.(2)解:f(3)=log23>0,即f(3)>f(0),又f(x)在R上是单调函数,所以f(x)在R上是增函数,又由(1)f(x)是奇函数.f(k•3x)<﹣f(3x﹣9x﹣2)=f(﹣3x+9x+2),k•3x<﹣3x+9x+2,令t=3x>0,分别系数得:,问题等价于,对任意t>0恒成立.∵,∴.点评:本题主要考查了抽象函数及其应用,考查分析问题和解决问题的力量,属于中档题.说明:问题(2)本题解法:是依据函数的性质.f(x)是奇函数且在x∈R上是增函数,把问题转化成二次函数f(t)=t2﹣(1+k)t+2对于任意t>0恒成立.对二次函数f(t)进行争辩求解.21.设D是函数y=f(x)定义域内的一个区间,若存在x0∈D,使f(x0)=x0,则称x0是f(x)的一个不动点,也称f(x)在区间D上有不动点.(1)证明f(x)=2x﹣2x﹣3在区间(1,4)上有不动点;(2)若函数在区间[1,4]上有不动点,求常数a的取值范围.考点:函数与方程的综合运用;函数零点的判定定理;导数在最大值、最小值问题中的应用.专题:计算题;证明题;压轴题.分析:(1)依据“f(x)在区间D上有不动点”当且仅当“F(x)=f(x)﹣x在区间D上有零点”,令F (x)=f(x)﹣x=2x﹣3x﹣3在区间[1,4]上是一条连续不断的曲线,利用F(1)•F(4)<0可确定函数F (x)=f(x)﹣x在区间(1,4)内有零点,从而得到结论;(2)依题意,存在x∈[1,4],使,争辩将a分别出来,利用导数争辩出等式另一侧函数的取值范围即可求出a的范围.解答:解:(1)依题意,“f(x)在区间D上有不动点”当且仅当“F(x)=f(x)﹣x在区间D上有零点”(2分),F(x)=f(x)﹣x=2x﹣3x﹣3在区间[1,4]上是一条连续不断的曲线(3分),F(1)•F(4)=﹣4×1<0(4分),所以函数F(x)=f(x)﹣x在区间(1,4)内有零点,f(x)=2x﹣2x﹣3在区间(1,4)上有不动点(5分).(2)依题意,存在x∈[1,4],使当x=1时,使(6分);当x≠1时,解得(8分),由(9分),得x=2或(,舍去)(10分),x (1,2) 2 (2,4)a′ + 0 ﹣a ↗最大值↘(12分),当x=2时,(13分),所以常数a 的取值范围是(14分).点评:本题主要考查了函数与方程的综合运用,以及函数零点和利用导数争辩最值等有关学问,属于中档题.。

江西省上饶市广丰一中2022届高三上学期第一次月考试题 数学(理) Word版含答案

江西省上饶市广丰一中2022届高三上学期第一次月考试题 数学(理) Word版含答案

广丰一中2021—2022学年上学期第一次月考高三数学(理)试卷命题人:刘小伟 审题人:胡孝海一、选择题(12×5=60)1、若复数z 满足1zii =-,其中i 为虚数为单位,则22015()2z =( )(A )i (B )-i (C )1-i (D )1i -+2、设集合A={x|1<x <4},集合B={x|x 2﹣2x ﹣3≤0},则A ∩(∁R B )=( )A .(1,4)B .(3,4)C .(1,3)D .(1,2)∪(3,4) 3、下列说法错误的是( )A .若p :∃x ∈R ,x 2-x +1=0,则¬p :∀x ∈R ,x 2-x +1≠0B .“sin θ=12”是“θ=30°”的充分不必要条件C .命题“若a =0,则ab =0”的否命题是“若a ≠0,则ab ≠0”D .已知p :∃x ∈R ,cos x =1,q :∀x ∈R ,x 2-x +1>0,则“p ∧(¬q )”为假命题 4、已知0a >且1a ≠,若函数()()2log a f x ax x =-在[3,4]是增函数,则a 的取值范围是( )A .(1,)+∞B .),1()41,61[+∞C .),1()41,81[+∞ D .)41,61[5、执行下面的程序框图,则输出的m 的值为( ) A .5 B .7 C .9 D .116、已知函数()()21cos ,4f x x x f x '=+是函数()f x 的导函数,则()f x '的图象大致是( )A .B .C .D .7、某几何体的正(主)视图和侧(左)视图如图所示,则该几何体 的体积不行能是( )A .13B .6πC .1D . 238、已知函数f (x )=log a x (0<a <1)的导函数为f ′(x ),M =f ′(a ),N =f (a +1)-f (a ),P =f ′(a +1),Q =f (a +2)-f (a +1),则A ,B ,C ,D 中最大的数是( )A .MB .NC .PD .Q9、已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.若实数a 满足f (a 2log )+f (a21log )≤2f (2),则a 的取值范围是( )A .(-∞,4] B. (0,4] C.]41,0( D .]4,41[ 10、如图,已知双曲线﹣=1(a >0,b >0)的左右焦点分别为F 1,F 2,|F 1F 2|=4,P 是双曲线右支上的一点,F 2P 与y 轴交于点A ,△APF 1的内切圆在边PF 1上的切点为Q ,若|PQ|=1,则双曲线的离心率是( )A .3B .2C .D .11、已知函数⎩⎨⎧>+-≤+=0,1)1(0,2)(2x x f x x x x f ,当]10,0[∈x 时,关于x 的 方程51)(-=x x f 的全部解的和为( )A .55B .100C .110D .12012、已知函数y =f (x )为奇函数,且对定义域内的任意x 都有f (1+x )=-f (1-x ).当x ∈(2,3)时,f (x )=log 2(x-1).给出以下4个结论:其中全部正确结论的为 ( ) ①函数y =f (x )的图象关于点(k ,0)(k ∈Z )成中心对称; ②函数y =|f (x )|是以2为周期的周期函数; ③函数y =f (|x |)在(k ,k +1)(k ∈Z )上单调递增;④当x ∈(-1,0)时,f (x )=-log 2(1-x ). A .①②④B .②③C .①④D .①②③④二、填空题(本大题共4小题;每小题4分,共16分.把答案填写在答题卷相应位置上.)13、设函数122,1()1log ,1x x f x x x -⎧≤=⎨->⎩,则不等式f (x )≤2的解集为 . 14、已知点A (0,2),抛物线y 2=2px (p >0)的焦点为F ,准线为l ,线段F A 交抛物线于点B ,过B 作l 的垂线,垂足为M ,若AM ⊥MF ,则p =__________.15.函数f (x )=x +x 3x 4+2x 2+1的最大值与最小值之积等于________.16、设m ∈N ,若函数f (x )=2x -m 10-x -m +10存在整数零点,则m 的取值集合为______________. 三、解答题17、(本小题满分12分)已知集合A ={x |x 2-5x +4≤0},集合B ={x |2x 2-9x +k ≤0}.(1)求集合A .(2)若B ⊆A ,求实数k 的取值范围.18、(本题满分12分)如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC , 90ADC ∠=︒,平面PAD ⊥底面ABCD ,Q 为AD 的中点, 2,PA PD AD AB ====1BC = (Ⅰ)求证:平面PQB ⊥平面PBC ;(Ⅱ)求二面角Q PC B --的平面角的正弦值。

天津市经济技术开发区第一中学2021届高三上学期10月月考数学试题 Word版含解析

天津市经济技术开发区第一中学2021届高三上学期10月月考数学试题 Word版含解析
当 时, , 单调递增,无极值;
当 时, 时, ,当 时, , 是极大值点.
∴ 极大值 .
(3)由(2)知 时, 的极大值为 ,
∴ ,即 ,
设 ,易知函数 在 上是增函数,而 ,
∴由 得 .
【点睛】本题考查用导数研究函数的极值,掌握导数与极值的关系是解题关键.本题属于中档题.
2Hale Waihona Puke .已知函数(1)若 ,求函数 在 处的切线方程;
(2)讨论函数 的单调性;
(3)若关于 的不等式 恒成立,且 的最小值是 ,求证: .
【答案】(1) ;(2)答案见解析;(3)证明见解析.
【答案】
【解析】
【分析】
不等式变形为 ( ),然后求出函数 的最小值即可得.
【详解】∵ ,∴不等式 可化为 ,
设 , ,
当 时, , 递减, 时, , 递增,
∴ ,
不等式 在 上恒成立,则 .
故答案为: .
【点睛】本题考查不等式恒成立问题,解题方法是分离参数法,转化为求函数的最值.
16.函数 是定义在 上的奇函数,对任意的 ,满足 ,且当 时, ,则 __________.
故选:D.
【点睛】本题考查命题的真假判断,考查了充分不必要条件的定义,命题的否定,基本不等式,函数的奇偶性与对称性等知识,属于中档题.
8.将函数 的图象上所有点的纵坐标缩短为原来的 ,再把所得图象上的所有点向右平移 个单位长度后,得到函数 的图象,若函数 在 处取得最大值,则函数 的图象()
A 关于点 对称B. 关于点 对称
10.函数 ,若函数 恰有 个零点,则 的取值范围为()
A. 或 B. 或 C. D.
【答案】D
【解析】
【分析】

《红对勾》2021届高三数学第一轮复习北师大版 课时作业40 Word版含解析

《红对勾》2021届高三数学第一轮复习北师大版 课时作业40 Word版含解析

课时作业40平行关系一、选择题(每小题5分,共40分)1.过直线a外两点作与a平行的平面,这样的平面()A.不行作B.只能作一个C.可作很多个D.以上均可能解析:设过直线a外两点的直线为l.若l与a相交,则与a平行的平面不行作;若l与a异面,则与a平行的平面只能作一个;若l与a平行,则与a平行的平面可作很多个.答案:D2.如图,P为平行四边形ABCD所在平面外的一点,过BC的平面与平面P AD 交于EF,则四边形EFBC是()A.空间四边形B.平行四边形C.梯形D.以上都有可能解析:∵BC綊AD,由线面平行性质定理知BC∥EF,又EF<AD,∴四边形BCEF为梯形.答案:C3.(2022·汕头质检)若m、n为两条不重合的直线,α、β为两个不重合的平面,则下列命题中正确的是()A.若m、n都平行于平面α,则m、n确定不是相交直线B.若m、n都垂直于平面α,则m、n确定是平行直线C.已知α、β相互平行,m、n相互平行,若m∥α,则n∥βD.若m、n在平面α内的射影相互平行,则m、n相互平行解析:A中,m、n可为相交直线;B正确;C中,n可以平行β,也可以在β内;D中,m、n也可能异面.故正确的命题是B.答案:B4.一条直线l上有相异三个点A、B、C到平面α的距离相等,那么直线l与平面α的位置关系是()A.l∥αB.l⊥αC.l与α相交但不垂直D.l∥α或lα解析:l∥α时,直线l上任意点到α的距离都相等;lα时,直线l上全部的点到α的距离都是0;l⊥α时,直线l上有两个点到α距离相等;l与α斜交时,也只能有两个点到α距离相等.答案:D5.(2022·成都四中模拟)以下命题中真命题的个数是()①若直线l平行于平面α内的很多条直线,则直线l∥α;②若直线a在平面α外,则a∥α;③若直线a∥b,bα,则a∥α;④若直线a∥b,bα,则a平行于平面α内的很多条直线.A.1 B.2C.3 D.4解析:①中l可以在平面α内;②中直线a可以与平面α相交,故错误;③a 可以在平面α内;④正确.答案:A6.(2022·许昌联考)如图,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF =22,则下列结论中错误的是()A.AC⊥BEB.EF∥平面ABCDC.直线AB与平面BEF所成的角为定值D.异面直线AE,BF所成的角为定值解析:∵AC⊥平面BDD1B1,故AC⊥BE,∵EF∥BD ,∴EF∥平面ABCD;直线AB与平面BEF所成的角即直线AB与平面BDD1B1所成的角,故为定值,故D错误.答案:D7.如图,在四周体ABCD中,若截面PQMN是正方形,则在下列命题中,错误的为()A.AC⊥BDB.AC∥截面PQMNC.AC=BDD.异面直线PM与BD所成的角为45°解析:∵截面PQMN为正方形,∴PQ∥MN,PQ∥平面DAC.又∵平面ABC∩平面ADC=AC,PQ平面ABC,∴PQ∥AC,同理可证QM∥BD.故选项A、B、D正确,C错误.答案:C8.a、b、c为三条不重合的直线,α、β、γ为三个不重合的平面,现给出六个命题:①⎩⎪⎨⎪⎧a∥c,b∥c⇒a∥b;②⎩⎪⎨⎪⎧a∥γ,b∥γ⇒a∥b;③⎩⎪⎨⎪⎧α∥c,β∥c⇒α∥β;④⎩⎪⎨⎪⎧α∥γ,β∥γ⇒α∥β;⑤⎩⎪⎨⎪⎧α∥c,a∥c⇒α∥a;⑥⎩⎪⎨⎪⎧α∥γ,a∥γ⇒a∥α.。

山东省邹平双语学校二区2022届高三上学期第一次月考数学(文)试题 Word版含答案

山东省邹平双语学校二区2022届高三上学期第一次月考数学(文)试题 Word版含答案

邹平双语学校2021—2022第一学期第一次月考试题(1、2区) 高三 班级 数学(文科)试题(时间:120分钟,分值:150分)一.选择题(每题5分,共12小题)1.设集合A={1,2,3},B={2,3,4},则A ∪B=( ) A .{1,2,3,4} B .{1,2,3} C .{2,3,4} D .{1,3,4} 2.已知cosα=﹣,α是第三象限的角,则sinα=( ) A .﹣B .C .﹣D .3.命题p :“∃x 0∈R“,x 02﹣1≤0的否定¬p 为( ) A .∀x ∈R ,x 2﹣1≤0 B .∀x ∈R ,x 2﹣1>0 C .∃x 0∈R ,x 02﹣1>0 D .∃x 0∈R ,x 02﹣1<0 4.函数y=sin2x +cos2x 的最小正周期为( )A .B .C .πD .2π5.已知函数f (x )=a x (a >0,a ≠1)在[1,2]上的最大值和最小值的和为6,则a=( ) A .2B .3C .4D .56.设非零向量,满足|+|=|﹣|则( ) A .⊥B .||=||C .∥D .||>||7.已知函数f (x )=3x ﹣()x ,则f (x )( )A .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数 8.设函数f (x )=cos (x +),则下列结论错误的是( )A .f (x )的一个周期为﹣2πB .y=f (x )的图象关于直线x=对称C .f (x +π)的一个零点为x=D .f (x )在(,π)单调递减9.已知函数f (x )=sinx ﹣cosx ,且f′(x )=2f (x ),则tan2x 的值是( ) A .﹣B .C .﹣D .10.已知曲线C 1:y=cosx ,C 2:y=sin (2x +),则下面结论正确的是( )A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C 211.函数y=f (x )的导函数y=f′(x )的图象如图所示,则函数y=f (x )的图象可能是( )A .B .C .D .12.函数y=的部分图象大致为( )A .B.C .D .二.填空题(每题5分,共4小题)13.已知集合A={1,2},B={a ,a 2+3}.若A ∩B={1},则实数a 的值为 . 14.设f (x )=xlnx ,若f′(x 0)=2,则x 0的值为 .15.函数f (x )=sin 2x +cosx ﹣(x ∈[0,])的最大值是 .班级:____________ 姓名:_____________ 考号:________________________16.A:x1,x2是方程ax2+bx+c=0(a≠0)的两实数根;B:x1+x2=﹣,则A是B的条件.三.解答题(共6小题,70分)17.(10分))已知命题p:x∈A,且A={x|a﹣1<x<a+1},命题q:x∈B,且B={x|x2﹣4x+3≥0}(Ⅰ)若A∩B=∅,A∪B=R,求实数a的值;(Ⅱ)若p是q的充分条件,求实数a的取值范围.18.(12分))已知函数f(x)=sin2x﹣cos2x﹣2sinx cosx(x∈R).(Ⅰ)求f()的值.(Ⅱ)求f(x)的最小正周期及单调递增区间.19.(12分)已知直线l是曲线y=x3在点(1,1)处的切线,(1)求l的方程;(2)求直线l与x轴、直线x=2所围成的三角形的面积.20.(12分).在△ABC中,角A,B,C的对边分别是a、b、c,已知,,且.(Ⅰ)求角A 的大小;(Ⅱ)若b=3,△ABC的面积,求a的值.21.(12分))某厂生产产品x件的总成本c(x)=1200+x3(万元),已知产品单价P(万元)与产品件数x满足:p2=,生产100件这样的产品单价为50万元.(1)设产量为x件时,总利润为L(x)(万元),求L(x)的解析式;(2)产量x定为多少件时总利润L(x)(万元)最大?并求最大值(精确到1万元).22.(12分))已知函数.(1)当a=1时,∃x0∈[1,e]使不等式f(x0)≤m,求实数m的取值范围;(2)若在区间(1,+∞)上,函数f(x)的图象恒在直线y=2ax的下方,求实数a的取值范围.邹平双语学校2021—2022第一学期第一次月考试题(1、2区) 高三班级数学(文科)试题答案一.选择题(共12小题)1.设集合A={1,2,3},B={2,3,4},则A∪B=()A.{1,2,3,4}B.{1,2,3}C.{2,3,4}D.{1,3,4}【分析】集合A={1,2,3},B={2,3,4},求A∪B,可并集的定义直接求出两集合的并集.【解答】解:∵A={1,2,3},B={2,3,4},∴A∪B={1,2,3,4}故选A.【点评】本题考查并集及其运算,解题的关系是正确理解并集的定义及求并集的运算规章,是集合中的基本概念型题.2.已知cosα=﹣,α是第三象限的角,则sinα=()A .﹣B .C .﹣D .【分析】利用同角三角函数的基本关系、以及三角函数在各个象限中的符号,求得sinα的值.【解答】解:∵cosα=﹣,α是第三象限的角,则sinα=﹣=﹣,故选:C.【点评】本题主要考查同角三角函数的基本关系、以及三角函数在各个象限中的符号,属于基础题.3.命题p:“∃x0∈R“,x02﹣1≤0的否定¬p为()A.∀x∈R,x2﹣1≤0 B.∀x∈R,x2﹣1>0C.∃x0∈R,x02﹣1>0 D.∃x0∈R,x02﹣1<0【分析】直接写出特称命题的否定得答案.【解答】解:命题p:“∃x0∈R“,x0﹣1≤0为特称命题,其否定为全称命题,∴¬p为∀x∈R,x2﹣1>0.故选:B.【点评】本题考查特称命题的否定,留意命题的否定的格式是关键,是基础题.4.函数y=sin2x+cos2x的最小正周期为()A .B .C.πD.2π【分析】利用帮助角公式,化简函数的解析式,进而依据ω值,可得函数的周期.【解答】解:∵函数y=sin2x+cos2x=2sin(2x +),∵ω=2,∴T=π,故选:C【点评】本题考查的学问点是三角函数的周期性及其求法,难度不大,属于基础题.5.已知函数f(x)=a x(a>0,a≠1)在[1,2]上的最大值和最小值的和为6,则a=()A.2 B.3 C.4 D.5【分析】依据指数函数的单调性在定义域是要么递增,要么递减,即看求解.【解答】解:依据指数函数的性质:当x=1时,f(x)取得最大值,那么x=2取得最小值,或者x=1时,f(x)取得最小值,那么x=2取得最大值.∴a+a2=6.∵a>0,a≠1,∴a=2.故选:A.【点评】本题考查了指数函数的性质的运用,属于基础题.6.设非零向量,满足|+|=|﹣|则()A .⊥B.||=||C .∥D.||>||【分析】由已知得,从而=0,由此得到.【解答】解:∵非零向量,满足|+|=|﹣|,∴,解得=0,∴.故选:A.【点评】本题考查两个向量的关系的推断,是基础题,解题时要认真审题,留意向量的模的性质的合理运用.【点评】本题考查对数的运算法则,解题时要认真审题,认真解答.7.已知函数f(x)=3x ﹣()x,则f(x)()A.是奇函数,且在R上是增函数B.是偶函数,且在R上是增函数C.是奇函数,且在R上是减函数D.是偶函数,且在R上是减函数【分析】由已知得f(﹣x)=﹣f (x),即函数f(x)为奇函数,由函数y=3x为增函数,y=()x为减函数,结合“增”﹣“减”=“增”可得答案.【解答】解:f(x)=3x ﹣()x=3x﹣3﹣x,∴f(﹣x)=3﹣x﹣3x=﹣f(x),即函数f(x)为奇函数,又由函数y=3x为增函数,y=()x为减函数,故函数f(x)=3x ﹣()x为增函数,故选:A.【点评】本题考查的学问点是函数的奇偶性,函数的单调性,是函数图象和性质的综合应用,难度不大,属于基础题.8.设函数f(x)=cos(x +),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x )在(,π)单调递减【分析】依据三角函数的图象和性质分别进行推断即可.【解答】解:A.函数的周期为2kπ,当k=﹣1时,周期T=﹣2π,故A正确,B.当x=时,cos(x +)=cos (+)=cos=cos3π=﹣1为最小值,此时y=f(x)的图象关于直线x=对称,故B正确,C当x=时,f (+π)=cos (+π+)=cos=0,则f(x+π)的一个零点为x=,故C 正确,D .当<x<π时,<x +<,此时函数f(x)不是单调函数,故D错误,故选:D【点评】本题主要考查与三角函数有关的命题的真假推断,依据三角函数的图象和性质是解决本题的关键.9.已知函数f(x)=sinx﹣cosx,且f′(x)=2f(x),则tan2x的值是()A .﹣B .C .﹣D .【分析】求出f(x)的导函数,依据f′(x)=2f(x)列出关系式,计算即可求出tan2x的值.【解答】解:求导得:f′(x)=cosx+sinx,∵f′(x)=2f(x),∴cosx+sinx=2(sinx﹣cosx),即3cosx=sinx,∴tanx=3,则tan2x===﹣.故选C【点评】此题考查了三角函数的化简求值,以及导数的运算,娴熟把握求导公式是解本题的关键.10.已知曲线C1:y=cosx,C2:y=sin(2x +),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【分析】利用三角函数的伸缩变换以及平移变换转化求解即可.【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x +)=cos(2x +)=sin(2x +)的图象,即曲线C2,故选:D.【点评】本题考查三角函数的图象变换,诱导公式的应用,考查计算力量.11.函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()A .B .C .D .【分析】依据导数与函数单调性的关系,当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f(x)单调递增,依据函数图象,即可推断函数的单调性,然后依据函数极值的推断,即可推断函数极值的位置,即可求得函数y=f(x)的图象可能【解答】解:由当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f(x)单调递增,则由导函数y=f′(x)的图象可知:f(x)先单调递减,再单调递增,然后单调递减,最终单调递增,排解A,C,且其次个拐点(即函数的极大值点)在x轴上的右侧,排解B,故选D【点评】本题考查导数的应用,考查导数与函数单调性的关系,考查函数极值的推断,考查数形结合思想,属于基础题.12.函数y=的部分图象大致为()A . B .C D .【分析】推断函数的奇偶性排解选项,利用特殊值推断即可.【解答】解:函数y=,可知函数是奇函数,排解选项B,当x=时,f ()==,排解A,x=π时,f(π)=0,排解D.故选:C.【点评】本题考查函数的图形的推断,三角函数化简,函数的奇偶性以及函数的特殊点是推断函数的图象的常用方法.二.填空题(共4小题)13.已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为1.【分析】利用交集定义直接求解.【解答】解:∵集合A={1,2},B={a,a2+3}.A∩B={1},∴a=1或a2+3=1,解得a=1.故答案为:1.【点评】本题考查实数值的求法,是基础题,解题时要认真审题,留意交集定义及性质的合理运用.14.设f(x)=xlnx,若f′(x0)=2,则x0的值为e.【分析】先依据乘积函数的导数公式求出函数f(x)的导数,然后将x0代入建立方程,解之即可.【解答】解:f(x)=xlnx∴f'(x)=lnx+1则f′(x0)=lnx0+1=2解得:x0=e故答案为:e【点评】本题主要考查了导数的运算,以及乘积函数的导数公式的运用,属于基础题之列.15.函数f(x)=sin2x +cosx ﹣(x∈[0,])的最大值是1.【分析】同角的三角函数的关系以及二次函数的性质即可求出.【解答】解:f(x)=sin2x+cosx﹣=1﹣cos2x+cosx﹣,令cosx=t且t∈[0,1],则y=﹣t2+t+=﹣(t﹣)2+1,当t=时,f(t)max=1,即f(x)的最大值为1,故答案为:1【点评】本题考查了同角的三角函数的关系以及二次函数的性质,属于基础题16.A:x1,x2是方程ax2+bx+c=0(a≠0)的两实数根;B:x1+x2=﹣,则A是B的充分条件.【分析】A⇒B验证充分性x1,x2是方程ax2+bx+c=0(a≠0)的两实数根,可推出x1+x2=﹣,而必要性不肯定成立,故得是充分条件【解答】解:由题意若x1,x2是方程ax2+bx+c=0(a≠0)的两实数根,由根与系数的关系肯定可以得出x1+x2=﹣,故A⇒B成立;若x1+x2=﹣,成立,不能得出x1,x2是方程ax2+bx+c=0(a≠0)的两实数根,由于此方程有根与否要用推断式进行推断,须考虑a,b,c三个字母,故B⇒A不肯定成立;故可得,A是B的充分条件故答案为充分【点评】本题考查必要条件充分条件充要条件的推断,求解的关键是正确理解充分条件与必要条件的定义,以及二次方程有根的条件.三.解答题(共6小题)17.已知命题p:x∈A,且A={x|a﹣1<x<a+1},命题q:x∈B,且B={x|x2﹣4x+3≥0}(Ⅰ)若A∩B=∅,A∪B=R,求实数a的值;(Ⅱ)若p是q的充分条件,求实数a的取值范围.【分析】(Ⅰ)把集合B化简后,由A∩B=∅,A∪B=R,借助于数轴列方程组可解a的值;(Ⅱ)把p 是q的充分条件转化为集合A和集合B之间的关系,运用两集合端点值之间的关系列不等式组求解a的取值范围.【解答】解:(Ⅰ)B={x|x2﹣4x+3≥0}={x|x≤1,或x≥3},A={x|a﹣1<x <a+1},由A∩B=∅,A∪B=R ,得,得a=2,所以满足A∩B=∅,A∪B=R的实数a的值为2;(Ⅱ)因p 是q的充分条件,所以A ⊆B,且A ≠∅,所以结合数轴可知,a+1≤1或a﹣1≥3,解得a≤0,或a≥4,所以p是q的充分条件的实数a的取值范围是(﹣∞,0]∪[4,+∞).【点评】本题考查了充分条件,考查了集合关系的参数取值问题,集合关系的参数取值问题要转化为两集合端点值的大小比较,是易错题.18.已知函数f(x)=sin2x﹣cos2x﹣2sinx cosx(x∈R).(Ⅰ)求f()的值.(Ⅱ)求f(x)的最小正周期及单调递增区间.【分析】利用二倍角公式及帮助角公式化简函数的解析式,(Ⅰ)代入可得:f()的值.(Ⅱ)依据正弦型函数的图象和性质,可得f(x)的最小正周期及单调递增区间【解答】解:∵函数f(x)=sin2x﹣cos2x﹣2sinx cosx=﹣sin2x﹣cos2x=2sin(2x+)(Ⅰ)f()=2sin(2×+)=2sin=2,(Ⅱ)∵ω=2,故T=π,即f(x)的最小正周期为π,由2x+∈[﹣+2kπ,+2kπ],k∈Z得:x∈[﹣+kπ,﹣+kπ],k∈Z,故f(x)的单调递增区间为[﹣+kπ,﹣+kπ]或写成[kπ+,kπ+],k∈Z.【点评】本题考查的学问点是三角函数的化简求值,三角函数的周期性,三角函数的单调区间,难度中档.19.已知直线l是曲线y=x3在点(1,1)处的切线,(1)求l的方程;(2)求直线l与x轴、直线x=2所围成的三角形的面积.【分析】(1)求出导数,求出切线的斜率,由点斜式方程,即可得到曲线在点P(1,1)处的切线方程;(2)y=0时,x=;x=2时,y=4,即可求直线l与x轴、直线x=2所围成的三角形的面积.【解答】解:(1)y=x3的导数为y′=3x2,则曲线在点P(1,1)处的切线斜率为3,即有曲线在点P(1,1)处的切线方程为y﹣1=3(x﹣1),即3x﹣y﹣2=0;(2)y=0时,x=;x=2时,y=4,∴直线l与x轴、直线x=2所围成的三角形的面积为=.【点评】本题考查导数的几何意义:曲线在该点处的切线的斜率,考查直线方程的求法,考查运算力量,属于基础题.20.在△ABC中,角A,B,C的对边分别是a、b、c ,已知,,且.(Ⅰ)求角A的大小;(Ⅱ)若b=3,△ABC 的面积,求a的值.【分析】(Ⅰ)利用向量平行,列出方程,通过两角和与差的三角函数,化简求解角A的大小;(Ⅱ)利用三角形的面积,求出c,然后利用余弦定理求解a即可.【解答】解:(Ⅰ)∵,∴(2c﹣b)•cosA﹣a•cosB=0,∴cosA•(2sinC﹣sinB)﹣sinA•cosB=0,即2cosAsinC﹣cosAsinB﹣sinA•cosB=0,∴2cosAsinC=cosAsinB+sinA•cosB,∴2cosAsinC=s in(A+B),即2cosAsinC=sinC,∵sinC≠0∴2cosA=1,即又0<A<π∴,(Ⅱ)∵b=3,由(Ⅰ)知∴,,∴c=4,由余弦定理有a2=b2+c2﹣2bccosA=,∴.【点评】本题考查向量与三角函数相结合求解三角形的几何量,考查余弦定理的应用,是基础题.21.某厂生产产品x件的总成本c(x)=1200+x3(万元),已知产品单价P(万元)与产品件数x满足:p2=,生产100件这样的产品单价为50万元.(1)设产量为x件时,总利润为L(x)(万元),求L(x)的解析式;(2)产量x定为多少件时总利润L(x)(万元)最大?并求最大值(精确到1万元).【分析】(1)由题可知生产100件这样的产品单价为50万元,所以把x=100,P=50代入到p2=中求出k的值确定出P的解析式,然后依据总利润=总销售额﹣总成本得出L(x)即可;(2)令L′(x)=0求出x的值,此时总利润最大,最大利润为L(25).【解答】解:(1)由题意有,解得k=25×104,∴,∴总利润=;(2)由(1)得,令,令,得,∴t=5,于是x=t2=25,则x=25,所以当产量定为25时,总利润最大.这时L(25)≈﹣416.7+2500﹣1200≈883.答:产量x定为25件时总利润L(x)最大,约为883万元.【点评】考查同学依据实际问题选择函数关系的力量,及利用导数求函数最值的方法的力量.22.已知函数.(1)当a=1时,∃x0∈[1,e]使不等式f(x0)≤m,求实数m的取值范围;(2)若在区间(1,+∞)上,函数f(x)的图象恒在直线y=2ax的下方,求实数a的取值范围.【分析】(I)将a的值代入f(x),求出f(x)的导函数;,将∃x0∈[1,e]使不等式f(x0)≤m 转化为f(x)的最小值小于等于m,利用[1,e]上的函数递增,求出f(x)的最小值,令最小值小于等于m即可.(II)将图象的位置关系转化为不等式恒成立;通过构造函数,对新函数求导,对导函数的根与区间的关系进行争辩,求出新函数的最值,求出a的范围.【解答】解:(I)当a=1时,,可知当x∈[1,e]时f(x)为增函数,最小值为,要使∃x0∈[1,e]使不等式f(x0)≤m,即f(x)的最小值小于等于m,故实数m 的取值范围是(2)已知函数.若在区间(1,+∞)上,函数f(x)的图象恒在直线y=2ax的下方,等价于对任意x∈(1,+∞),f(x)<2ax,即恒成立.设.即g(x)的最大值小于0.(1)当时,,∴为减函数.∴g(1)=﹣a ﹣≤0∴a ≥﹣∴(2)a≥1时,.为增函数,g(x)无最大值,即最大值可无穷大,故此时不满足条件.(3)当时,g(x )在上为减函数,在上为增函数,同样最大值可无穷大,不满足题意.综上.实数a 的取值范围是.【点评】解决不等式恒成立及不等式有解问题一般都转化为函数的最值问题,通过导数求函数的最值,进一步求出参数的范围.第页,共页第页,共页。

《红对勾》2021届高三数学第一轮复习北师大版 课时作业53 Word版含解析

《红对勾》2021届高三数学第一轮复习北师大版 课时作业53 Word版含解析

课时作业53 曲线与方程一、选择题(每小题5分,共40分)1.动点P (x ,y )满足5(x -1)2+(y -2)2=|3x +4y -11|,则点P 的轨迹是( ) A .椭圆 B .双曲线 C .抛物线D .直线解析:设定点F (1,2),定直线l :3x +4y -11=0,则|PF |=(x -1)2+(y -2)2,点P 到直线l 的距离d =|3x +4y -11|5.由已知得|PF |d =1,但留意到点F (1,2)恰在直线l 上,所以点P 的轨迹是直线.选D.答案:D2.(2022·榆林模拟)若点P 到直线x =-1的距离比它到点(2,0)的距离小1,则点P 的轨迹为( )A .圆B .椭圆C .双曲线D .抛物线解析:依题意,点P 到直线x =-2的距离等于它到点(2,0)的距离,故点P 的轨迹是抛物线.答案:D3.设圆(x +1)2+y 2=25的圆心为C ,A (1,0)是圆内确定点,Q 为圆周上任一点,线段AQ 的垂直平分线与CQ 的连线交于点M ,则M 的轨迹方程为( )A.4x 221-4y 225=1 B.4x 221+4y 225=1 C.4x 225-4y 221=1 D.4x 225+4y 221=1解析:M 为AQ 垂直平分线上一点,则|AM |=|MQ |,∴|MC |+|MA |=|MC |+|MQ |=|CQ |=5,故M 的轨迹为椭圆,∴a =52,c =1,则b 2=a 2-c 2=214,∴椭圆的标准方程为4x 225+4y 221=1.答案:D4.(2022·烟台月考)已知点P 是直线2x -y +3=0上的一个动点,定点M (-1,2),Q 是线段PM 延长线上的一点,且|PM |=|MQ |,则Q 点的轨迹方程是( )A .2x +y +1=0B .2x -y -5=0C .2x -y -1=0D .2x -y +5=0解析:由题意知,M 为PQ 中点,设Q (x ,y ),则P 为(-2-x,4-y ),代入2x -y +3=0,得2x -y +5=0.答案:D5.(2022·合肥模拟,6)如图所示,A是圆O内确定点,B是圆周上一个动点,AB的中垂线CD与OB 交于E,则点E的轨迹是()A.圆B.椭圆C.双曲线D.抛物线解析:由题意知,|EA|+|EO|=|EB|+|EO|=r(r为圆的半径)且r>|OA|,故E的轨迹为以O,A为焦点的椭圆,故选B.答案:B6.(2022·上海徐汇模拟,16)假如命题“曲线C上的点的坐标都是方程f(x,y)=0的解”是正确的,则下列命题中正确的是()A.曲线C是方程f(x,y)=0的曲线B.方程f(x,y)=0的每一组解对应的点都在曲线C上C.不满足方程f(x,y)=0的点(x,y)不在曲线C上D.方程f(x,y)=0是曲线C的方程解析:由曲线与方程的对应关系可知,由于不能推断以方程f(x,y)=0的解为坐标的点是否都在曲线C上,故方程f(x,y)=0的曲线不愿定是C,所以曲线C 是方程f(x,y)=0的曲线不正确;方程f(x,y)=0的每一组解对应的点都在曲线C 上也不正确;不能推出曲线C是方程f(x,y)=0的轨迹.举特例,曲线C为y=x,而方程x2-y2=0,即y=±x,则只有C正确.答案:C7.方程x2-y2=0对应的图像是()解析:由x2-y2=0得y=x或y=-x.答案:C8.有一动圆P恒过定点F(a,0)(a>0)且与y轴相交于点A、B,若△ABP为正三角形,则点P的轨迹为()A.直线B.圆C.椭圆D.双曲线解析:设P(x,y),动圆P的半径为R,由于△ABP为正三角形,∴P到y轴的距离d=32R,即|x|=32R.。

河北省衡水中学2022届高三上学期七调考试数学(理)试题 Word版含答案

河北省衡水中学2022届高三上学期七调考试数学(理)试题 Word版含答案

2021〜2022学年度上学期高三班级七调考试 理数试卷 命题人:李桂省本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟。

第I 卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分。

在下列四个选项中,只有一个是符合题目要求的)1.已知全集 U=R ,集合 A={X y=log 2 (-x 2+2x)},B={ Y y=1+3 },那么A ∩C U B = ( )A. {X 0< x <1}B. {X X < 0 }C. {x x > 2 }D. {x 1<x <2}2.在复平面内,复数Z 满足Z (1 + I )= |1+√3I |,则z 的共轭数对应的点 ( ) A .第一象限B .其次象限C .第三象限D .第四象限3.在各项均为正数的等比数列{A N }中,若a m+1 • a m-1 = 2a m (m(m ≥2),数列{A N }的前N 项积为T N ,若T 2m-1—1=512,则M 的值为( ) A.4 B. 5C. 6D.74.已知函数f(x) = sin ωx+ 3sin(ωx +2π)(ω>0) 的最小正周期为π,则f(x)在区间[0, 32π]上的值域为 ( )A. [0, 23] B. [-21,23] C. [-21,1] D. [-23,21]5.执行如图的程序框图,那么输出S 的值是A. 2B. 21C. -1D. 16.在二项式(√x + 423x• )n的开放式中,前三项的系数成等差数列,把开放式中全部的项重新排成一列,有理项都互不相邻的概率为( )A.61 B. 41 C. 31 D. 125 7.在△ ABC 中,A ,B , C 分别是角A ,B ,C 所对边的边长,若cos A + sin A- B A sin cos 2+=0,则cba +的值是A. 1B. 2√2C. 3√3D. 28.一个长方体被一个平面截去一部分后所剩几何体的三视图如右图所示 (单位:cm),则该几何体的体积为( )A. 120 cm 3B. 80 cm 3C. 100 cm 3D. 60 cm3 9.在△ ABC 中,BC=5,G ,O 分别为AABC 的重心和外心,且OG → •BC→=5,则△ABC 的外形是A.锐角三角形B.钝角三角形C.直角三角形D.上述三种状况都有可能10.平行四边形ABCD 中,AB ·BD = 0,沿BD 将四边形折起成直二面角A — BD — C ,且 2AB 2+|BD |2=4,则三棱锥A —BCD 的外接球的表面积为( )A .2π B . 4πC .4πD .2π11.已知双曲线C 的方程为42x 一42y= 1 , 其左、右焦点分别是F 1、F 2 ,已知点M 坐标为(2,1),双曲线C 上点 P(x 0,y 0 ) (x 0 >0,y 0>0)满足 111PF MF PF ⋅=FF MF F F 22111•12112F F MF F F ⋅,则S △PMF 1 - S △PMF 2 =( )A -1 B. 1 C. 2 D. 412.定义在 R 上的函数 f (X )满足 f (x + 2) =21f (X ),当 x ∈ [0,2)时,f (x )= ⎪⎩⎪⎨⎧≤≤-≤---21,210,221|23|12x x x x , 函数G (x)=x 2+3x 2+m , 若∀s ∈ [ - 4,-2),∃t ∈ [ - 4,-2),不等式F (S )—G (T )≥0成立,则实数M 的取值范围是 ( ) A. (∞-,-12] B. (∞- ,-4] C. (∞- ,8] D .( ∞- ,231] 第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.设a = x0 (sin x —1 + 2cos 22π)dx ,则(a-x 1)6• (x 2+2 )的开放式中常数项是( )14.以下四个命题中:①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检 测,这样的抽样是分层抽样,②两个随机变量的线性相关性越强,相关系数的确定值越接近于1,③某项测量结果ξ听从正态分布N (1,a 2),P(ξ≤5)=0.81,则P ξ ≤ 3) =0.19,④对于两个分类变量X 与Y 的随机变量K 2的观测值k 来说,k 越小,推断“X 与Y 有关系” 的把握程度越大。

吉林省桦甸市第四中学2021届高三上学期第一次调研考试数学(文)试卷 Word版含答案

吉林省桦甸市第四中学2021届高三上学期第一次调研考试数学(文)试卷 Word版含答案

文科数学本试卷共22小题,共150分,共6页,考试时间120分钟,考试结束后,将答题卡和试题卷一并交回。

注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条 形码、姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。

2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案 的标号;非选择题答案必须字迹的签字笔书写,字体工整、 笔迹清楚。

3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案 无效。

4. 作图可先用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5. 保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮 纸刀。

一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求。

1. 已知集合}06|{2≤--=x x x A ,}|{N x x B ∈=,则=⋂B AA. }2,1{B. }2,1,0{C. }3,2,1{D. }3,2,1,0{2. 下列函数中最小正周期为π的函数的个数是①|sin |x y =; ②)32cos(π+=x y ; ③x y 2tan =A. 0B. 1C. 2D. 33. 下列向量中不是单位向量的是A. )0,1(B.)1,1(C. )sin ,(cos ααD.)0|(|||≠a a a4. 为了得到函数)421cos(π+=x y 的图象,可将函数x y 21cos=的图象 A. 向左平移4π个单位 B. 向右平移4π个单位 C. 向左平移2π个单位 D. 向右平移2π个单位5. 设角α的始边为x 轴非负半轴,则“角α的终边在第二、三象限”是“0cos <α”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 6. 等差数列{}n a 中,5101530a a a ++=,则22162a a -的值为A .10-B .20-C .10D .207. 已知定义在实数集R 上的偶函数)(x f 在区间),0[+∞是单调增函数,若)2()1(f a f <-,则实数a 的取值范围是A. 31<<-aB. 1-<a 或3>aC. 13<<-aD. 3-<a 或1>a8. 已知21,e e 是两个夹角为︒60的单位向量,若212132,e e b e e a -=+=λ,且b a ⊥,则=λA. 23-B.32 C.41D.87 9. 已知某函数的图象如右图所示,则该函数的解析式可能是B. 222||--=x y xC. 2||2||+-=x y xD. x x y cos )1(2-=10. 某兴趣小组对函数)(x f 的性质进行研究,发现函数)(x f 是偶函数,在定义域R 上满足)1()1()1(f x f x f +-=+,且在区间]0,1[-为减函数.则)3(-f 与)25(-f 的关系为A .)25()3(-≥-f fB .)25()3(->-f fC .)25()3(-≤-f fD .)25()3(-<-f f11. 《周髀算经》中给出了弦图,所谓弦图(如图)是由四个全等的直角三角形和中间一个小正方形拼成一个大的正方形,若图中直角三角形两锐角分别为α,β,且小正方形与大正方形面积之比为25:1,则)cos(βα-的值为A.2524 B .1 C .257D .012. 已知函数)2()(,1,1,ln )(f kx x g x xe x x x f x '+=⎩⎨⎧<≥=,对]3,3[,21-∈∃∈∀x R x ,使得)()(21x g x f ≥成立,则k 的取值范围是A. ]6131,(---∞eB. )6131[∞++,e C. ]6131,6131[+--e eD. ]6131,(---∞e ⋃)6131[∞++,e 二、填空题:本大题共4个小题,每小题5分,共20分。

天津市第一中学2022届高三上学期第一次月考数学(理)试题 Word版含答案

天津市第一中学2022届高三上学期第一次月考数学(理)试题 Word版含答案

天津一中2021-2022高三班级一月考本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分,共150分,考试用时120分钟同学务必讲答案涂写在规定的位置上,答在试卷上的无效。

一、选择题:1.=+2)21(i ( )i A 223.+ i B 223.- i C 221.-- iD 221.+-2.对任意的实数x ,若][x 表示不超过x 的最大整数,则11<-<-y x 是][][y x =的( ).A 充分不必要条件 .B 必要不充分条件 .C 充要条件 .D 既不充分也不必要条件3. 把函数)(sin R x x y ∈=的图象上全部的点向左平移3π个单位长度,再把全部图象上全部点的横坐标缩短到原来的21倍(纵坐标不变),得到的图象所表示的函数是 ( )R x x y A ∈-=),32sin(.πRx x y B ∈+=),62sin(.πR x x y C ∈+=),32sin(.π Rx x y D ∈+=),322sin(.π4. 已知双曲线)0,0(12222>>=-b a b y a x 的左焦点为F ,离心率为2,若经过F 和)40(,P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为 ( )144.22=-y x A 188.22=-y x B 184.22=-y x C148.22=-y x D5. 已知函数)(x f 是),(+∞-∞上的奇函数,且)(x f 的图象关于1=x 对称,当]1,0[∈x 时,12)(-=xx f ,则)2018()2017(f f +的值为 ( )2.-A 1.-B 0.C 1.D6. 若函数)cos (sin )(x a x e x f x+=在)2,4(ππ上单调递增,则实数a 的取值范围是 ( ) ]1,.(-∞A )1,.(-∞B )1.[∞+,C )1.(∞+,D7. 已知函数1)(2+++=x x ae x f x 经过点)2,0(,且与)(x g 的图象关于直线032=--y x 对称,Q P ,分别是函数)(x f ,)(x g 上的动点,则PQ的最小值是( )55.A 5.B 552.C 52.D8. 已知函数x e ax x f ln )(+=与x e x x x g ln )(2-=的图象有三个不同的公共点,其中e 为自然对数的底数,则实数a 的取值范围为( )e a A -<. 1.>a B e a C >. 13.>-<a a D 或二、填空题:9. 某几何体的三视图如图所示(单位:cm ),则该几何体的体积是 .10. 已知nx )31(+的开放式中含有2x 项的系数是54,则=n . 11. 在极坐标系中,点A 在圆04sin 4cos 22=+--θρθρρ上,则点P的坐标为)10(,,则AP的最小值为 .12. 曲线2x y =与直线x y =所围成的封闭图形的面积为 .13. 已知函数)(x f 是定义在R 上的奇函数,在区间)0,(-∞上单调递减,且0)1(=f ,若实数a 满足)(log )(log 515a f a f ≥,则实数a 的取值范围为 .14. 若关于x 的不等式0<+-a ax xe x的解集为)0)(,(<n n m ,且),(n m 中只有两个整数,则实数a 的取值范围为 .15.已知函数1cos 2cos sin 6)42sin(2)(2+-++-=x x x x x f π,R x ∈(I )求)(x f 的最小正周期;(II )求)(x f 在区间⎥⎦⎤⎢⎣⎡2,0π上的最大值和最小值.16.在锐角ABC ∆中,C B A ,,的对边分别为c b a ,,,且A c B b C a cos ,cos ,cos 成等差数列. (I )求角B 的值; (II )若3=a 且b a ≤,求b 的取值范围.17.一对父子参与一个亲子摸奖玩耍,其规章如下:父亲在装有红色、白色球各两个的甲袋子里随机取两个球,儿子在装有红色、白色、黑色球各一个的乙袋子里随机取一个球,父子俩取球相互独立,两人各摸球一次合在一起称为一次摸奖,他们取出的三个球的颜色状况与他们获得的积分对应如下表: 所取球的状况 三个球均为红色 三个球均不同色 恰有两球为红色 其他状况所获得的积分1809060(I )求一次摸奖中,所猎取的三个球中恰有两个是红球的概率;(II )设一次摸奖中,他们所获得的积分为X ,求X 的分布列及均值(数学期望))(X E . (III )依据以上规章重复摸奖三次,求至少有两次获得积分为60的概率.18. 已知()ax x x x f -+=2ln 2 (I )当5=a 时,求曲线()x f y =在点()()1,1f 处的切线方程及()x f 的单调区间(II )设()()2211,,,y x B y x A 是曲线()x f y =图象上的两个相异的点,若直线AB 的斜率1>k 恒成立,求实数a 的取值范围19. 已知数列{}n a 的前n 项和为n S ,21,43111++==--n n n a S S a (*∈N n 且2≥n ),数列{}n b 满足:4371-=b 且131+=--n b b n n (*∈N n 且2≥n )(I )求数列{}n a 的通项公式(II )求证:数列{}n n a b -为等比数列(III )求数列{}n b 的前n 项和的最小值20. 已知函数()()()021ln >+++=a a x ax x f(I )争辩函数()x f 在()∞+,0上的单调性 (I I )设函数()x f 存在两个极值点,并记作21,x x ,若()()421>+x f x f ,求正数a 的取值范围(III )求证:当1=a 时,()1111++>+x e x f x (其中e 为自然对数的底数)参考答案: 一. 选择题1. D2.B3.C4.B5.D6.A7.D8.B 二.填空题9. 12+π 10.4 11.1 12.61 13.[]5,1510 ⎥⎦⎤ ⎝⎛, 14.⎪⎭⎫⎢⎣⎡2332,43e e三.解答题15.(I )()xx x x x f 2cos 2sin 34sin2cos 24cos2sin 2-+⋅-⋅-=ππ⎪⎭⎫ ⎝⎛-=42sin 22πx 所以()x f 的最小正周期为π=T(II )由于()x f 在区间⎥⎦⎤⎢⎣⎡830π,上是增函数,在区间⎥⎦⎤⎢⎣⎡283ππ,上是减函数,又()20-=f , 22,2283=⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛ππf f故函数()x f 在区间⎥⎦⎤⎢⎣⎡20π,上的最大值为22,最小值为2-16. (I )由于A c B b C a cos ,cos ,cos 成等差数列,所以B b A c C a cos 2cos cos =+ 由正弦定理得B B A C C A cos sin 2cos sin cos sin =+ 即()B B B C A cos sin 2sin sin ==+由于21cos ,0sin =∴≠B B又π<<B 0,所以3π=B(II )3sin sin πbA a =,A b sin 23=∴ 30,π≤<∴≤A b a32π=+C A ,又ABC ∆是锐角三角形,6π>∴A36ππ≤<∴A ,23sin 21≤<∴A 33<≤∴b17. (I )解:设所取三个球恰有两个是红球为大事A ,则大事A 包含两类基本大事:父亲取出两个红球,儿子取出一个不是红球,其概率为9113122422=⋅C C C C 父亲取出两球为一红一白,儿子取出一球为红球其概率为921311241212=⋅C C C C C故()319291=+=A P(II )解:X 可以取0,60,90,180,取各个值得概率分别为:()1811180132422=⋅==C C C X P , ()9219013241212=⋅==C C C C X P()313132602412122422=⋅+⋅==C C C C C X P , ()187319218110=---==X P故X 的分布为:X 1809060P1819231187X 的均值为:()50187031609290181180=⨯+⨯+⨯+⨯=X E(III )由二项分布的定义知,三次摸奖中恰好获得60个积分的次数⎪⎭⎫⎝⎛313~,B Y 则()()()2773131322333223=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛==+==≥C C Y P Y P Y P18. (I )当5=a 时,()()()()0212522,>--=-+=x x x x x x x f分别解不等式()0,>x f 与()0,<x f ,可得函数()x f 的单调递增区间为()∞+⎪⎭⎫⎝⎛,,,2210, 单调递减区间为⎪⎭⎫ ⎝⎛221,(II )()()()[]()[]()()x x f x g x x x x f x x f x x x f x f -=⇒>----⇒>--011211221212在()∞+,0上单调递增 由()0,≥x g 在()∞+,0上恒成立,可得3≤a19. (I )由2111++=--n n n a S S 得2111+=---n n n a S S ,即211=--n n a a (2≥n 且*∈N n )则数列{}n a 为以21为公差的等差数列,所以()412121143+=⨯-+=n n a n (II )由于()2131≥+=--n n b b n n ,所以()()2131311≥++=--n n b a b n n n ,所以()()24121311216131412113131111≥⎪⎭⎫⎝⎛+-=+-=--++=----n n b n b n n b a b n n n n n ()()24121411211111≥+-=---=-----n n b n b a b n n n n所以()()23111≥-=---n a b a b n n n n01011≠-=-a b所以(III )所以数列{}n na b -是以10-为首项,31为公比的等比数列(III )由(II )得13110-⎪⎭⎫⎝⎛⨯-=-n n n a b所以11311041213110--⎪⎭⎫ ⎝⎛⨯-+=⎪⎭⎫⎝⎛⨯-=n n n n n a b()21131104112131104121---⎪⎭⎫⎝⎛⨯+---⎪⎭⎫⎝⎛⨯-+=-n n n n n n b b ()203120211≥>⎪⎭⎫⎝⎛⨯+=-n n当1=n 时,010431<-=b 当2=n 时,0310452<-=b 当3=n 时,0910473>-=b所以数列{}n b 从第3项起的各项均大于0,故数列{}n b 的前2项之和最小记数列{}n b 的前n 项和为n T ,则334-10-4510-432=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=T20. (I )()()()()()222,121211a x x a a x a x a x x f ++-+=⎥⎦⎤⎢⎣⎡+-⨯++= ()⨯当2≥a 时,()()()()012,022,>++-+=∴>a x x a a x x f x ,函数()x f 在()∞+,0上是增函数 当20<<a 时,由()0,=x f 得()022=-+a a x ,计算得出()a a x --=21(负值舍去) ()a a x -=22所以当()2,0x x ∈时,()022<-+a a x ,从而()0,<x f ,函数()x f 在()2,0x 上是减函数;当()+∞∈,2x x 时,()022>-+a a x ,从而()0,>x f ,函数()x f 在()+∞,2x 上是增函数综上,当2≥a 时,函数()x f 在()∞+,0上是增函数;当20<<a 时,函数()x f 在()()a a -20,上是减函数,在()()+∞-,2a a 上是增函数(II )由(I )知,当2≥a 时,()0,>x f ,函数()x f 无极值点 要使函数()x f 存在两个极值点,必有20<<a ,切极值点必为()a a x --=21,()a a x -=22又由函数定义域知1->x ,则有()12->--a a 即()12<-a a 化为()012>-a ,所以1≠a所以,函数()x f 存在两个极值点时,正数a 的取值范围是()()2,11,0由()⨯式可以知道,()⎩⎨⎧-=⋅=+202121a a x x x x()()()()a x ax a x a x x f x f +++++++=+22112121ln 21ln()()()22121212121221ln a x x a x x a x x a x x x x +++++++++=()[]()222241ln a a a a a +-+-= ()[]2121ln 2--+-=a a不等式()()421>+x f x f 化为()[]02121ln 2>--+-a a令()()()2,11,01 ∈=-a t a 所以()()1,00,1 -∈t当()0,1-∈t 时,()()()02,0ln ,22ln 2<<--+-=t t t t t g ,所以()0<t g ,不合题意当()1,0∈t 时,()22ln 2-+=t t t g()()012121222,<-=⎪⎭⎫ ⎝⎛-⨯+⨯=t t t t t g所以()t g 在()1,0上是减函数,所以()()02121ln 21=-+=>g t g ,适合题意,即()2,1∈a综上,若()()421>+x f x f ,此时正数a 的取值范围是()2,1(III )当1=a 时,()()121ln +++=x x x f不等式()1111++>+x e x f x 可化为()11111ln +>+++x e x x所以要证不等式()1111++>+x e x f x ,即证()11111ln +>+++x e x x ,即证xe x x 11ln >+设()x x x h 1ln +=,则()22,111x x x x x h -=-=在()1,0上,()0,<x h ,()x h 是减函数;在()∞+,1上,()0,>x h ,()x h 是增函数,所以()()11=≥h x h设()x e x 1=ϕ,则()x ϕ是减函数,所以()()10=<ϕϕx所以()()x h x <ϕ,即x e x x 11ln >+所以当1=a 时,不等式()1111++>+x e x f x。

《红对勾》2021届高三数学第一轮复习北师大版 课时作业16 Word版含解析

《红对勾》2021届高三数学第一轮复习北师大版 课时作业16 Word版含解析
又 f(x)dx= (ax2+2-a)dx
=[ ax3+(2-a)x]| =2- a=-2,
∴a=6,从而f(x)=6x2-4.
(2)∵f(x)=6x2-4,x∈[-1,1].
∴当x=0时,f(x)min=-4;当x=±1时,f(x)max=2.
14.在区间[0,1]上给定曲线y=x2.试在此区间内确定点t的值,使图中的阴影部分的面积S1与S2之和最小,并求最小值.
∴ ,解得a=1.∴ (1- )dx= (1- )dx=(x-3ln(x+1))| =2-3ln3.
答案:2-3ln3
三、解答题(共3小题,每小题15分,共45分.解答写出必要的文字说明,证明过程或演算步骤)
12.如图所示,直线y=kx分抛物线y=x-x2与x轴所围图形为面积相等的两部分,求k的值.
则S=2[ (x2- )dx+ (1- )dx]
=2( x3| +x| - x3| )= .
答案:
11.(2022·玉溪一中月考)已知不等式1- <_.
解析:由1- <0得 <0,即(x+a)(x+a-3)<0,即-a<x<3-a,∵不等式的解集为(-1,2),
A.-1B.1
C.- D.
解析: (sinx-acosx)dx=(-cosx-asinx) =-a+1=2,a=-1.
答案:A
3.函数f(x)= 的图像与x轴所围成的封闭图形的面积为( )
A. B.1
C.2D.
解析:
答案:A
4.(2022·大连模拟)已知f(x)为偶函数且 f(x)dx=8,则 f(x)dx等于( )
A.πB.2
C.π-2D.π+2
解析:
答案:D
8.(2022·黄冈检测)如图所示,图中曲线方程为y=x2-1,用定积分表达围成封闭图形(阴影部分)的面积是( )
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河北省2021届高三上学期第一次月考数学一、项选择题:本大题共12小题,每小题5分,共600分.1.已知集合M={x|-4<x<2},N={x|-x-6<0},则M∩N=()A.{x|-4<x<3}B.{x|-4<x<-2}C.{x|-2<x<2}D.{x|2<x<3}2.已知复数z=(i是虚数单位),则z的实部为( )A.-B.C.-D.3.设向量a=(1,1),b=(-1,3),c=(2,1),且(a-λb)⊥c,则λ=()A.3B.2C.-2D.-34.在△ABC中,若AB=, BC=3, ∠C=120°,则AC=( )A.4B.3C.2D.15.已知双曲线-=1 (a>0,b>0)的左焦点为F,离心率为.若经过F和P(0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为( )A.-=1B.-=1C.-=1D.-=16.中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种,现有十二生肖的吉祥物各一个,甲、乙、丙三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、兔、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学选取礼物都满意,那么不同的选法有()A.50种B.60种C.70种D.90种7.为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y与x之间有线性相关关系,设其回归直线方程为=x+.已知x i=225,y i=1600,=4.该班某学生的脚长为24,据此估计其身高为( )A.160B.163C.166D.1708.要得到函数y=sin2x+cos2x(x∈R)的图象,可将y=2sin2x的图象向左平移( )A.个单位.B. 个单位.C.个单位D.个单位9.已知数列{a n}的前n项和为S n,且S n=2a n-1,则=( )A. B. C. D.10.给出下列四个函数:①y=x·sinx;②y=x·cosx;③y=x·|cosx|;④y=x·2x.这四个函数的部分图象如下,但顺序被打乱了,则按照从左到右的顺序将图象对应的函数序号安排正确的一组是( )A.①④②③B.①④③②C.④①②③D.③④②①11.设函数f(x)=若互不相等的实数a,b,c满足f(a)=f(b)=f(c),则2a+2b+2c的取值范围是( )A. (6,7)B. (16,32)C.(17,35)D. (18,34)12.已知a为常数,函数有两个极值点x1,x2(x1<x2),则( )A.f(x1)>0,f(x2)>-B.f(x1)<0,f(x2)<-C. f(x1)<0,f(x2)>-D. f(x1)>0,f(x2)<-二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.二项式的展开式中x5的系数是.(用数字填写答案)14.函数f(x)满足f(x+4)=f(x)(x∈R),且在区间(-2,2]上,f(x)=则f(f(15))的值为.15.已知f(x)为偶函数,当x<0时,f(x)=ln(-x)+3x,则曲线y=f(x)在点(1,-3)处的切线方程是.16.已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y轴于点N.若M为FN 的中点,则|FN|= .三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.已知等差数列{a n}满足:a3=7,a5+a7=26,{a n}的前n项和为S n.(1)求a n及S n;(2)令b n=(n∈N*),求数列{b n}的前n项和T n.18.在△ABC中,a,b,c分别是角A,B,C的对边,已知cos2A-3cos(B+C)=1.(1)求角A的大小;(2)若a=,b+c=9,求△ABC的面积.19.某市一所高中为备战即将举行的全市羽毛球比赛,学校决定组织甲、乙两队进行羽毛球对抗赛实战训练.每队四名运动员,并统计了以往多次比赛成绩,按由高到低进行排序分别为第一名、第二名、第三名、第四名.比赛规则为甲、乙两队同名次的运动员进行对抗,每场对抗赛都互不影响,当甲、乙两队的四名队员都进行一次对抗赛后称为一个轮次.按以往多次比赛统计的结果,甲、乙两队同名次进行对抗时,甲队队员获胜的概率分别为,,,.(1)进行一个轮次对抗赛后一共有多少种对抗结果?(2)计分规则为每次对抗赛获胜一方所在的队得1分,失败一方所在的队得0分.设进行一个轮次对抗赛后甲队所得分数为X,求X的分布列及数学期望.20.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB∥CD,AD=DC=AP=2,AB=1,BC=.(1)证明:AB⊥平面PAD;(2)若E为棱PC上一点,满足BE⊥AC,求二面角E-AB-P的余弦值.21.已知离心率为的椭圆+y2=1(a>1)与直线l交于P,Q两点,记直线OP的斜率为k1,直线OQ的斜率为k2.(1)求椭圆的方程;(2)若k1·k2=-,则三角形POQ的面积是不是定值?若是,求出这个定值;若不是,请说明理由.21.已知函数f(x)=-x+alnx.(1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1,x2,证明:<a-2.数学答案一、选择题1-5.CBADB BAA 11-12.DC二、填空题13.3514. 15. y=-2x-1 16. 6三、解答题17、解析(1)设等差数列{a n}的公差为d,因为a3=7,a5+a7=26,所以解得所以a n=3+2(n-1)=2n+1,S n=3n+×2=n2+2n.(2)由(1)知a n=2n+1,所以b n===·=·,所以T n=·=·=.18、解析(1)在△ABC中,cos(B+C)=cos(π-A)=-cosA,则由cos2A-3cos(B+C)=1,得2cos2A+3cosA-2=0,即(2cosA-1)(cosA+2)=0,解得cosA=或cosA=-2(舍去).∵0<A<π,∴A=.(2)由余弦定理,得a2=b2+c2-2bccos,∵a=,b+c=9,∴21=b2+c2-bc=(b+c)2-3bc,即21=81-3bc,解得bc=20.∴S△ABC=bcsinA=×20×=5.19、解析(1)因为甲、乙两队的四名队员每进行一次对抗赛都会有2种情况产生,所以进行一个轮次对抗赛后一共有24=16种对抗结果.(2)X的可能取值分别为4,3,2,1,0,P(X=4)=×××==;P(X=3)=×××+×××+×××+×××==;P(X=2)=×××+×××+×××+×××+×××+×××==;P(X=1)=×××+×××+×××+×××==;P(X=0)=×××==.所以X的分布列为X43210PE(X)=4×+3×+2×+1×+0×=2.20.解析(1)证明:∵PA⊥底面ABCD,∴PA⊥AB.取CD中点F,连接BF,∵AB∥DF且AB=DF=1,∴四边形ABFD是平行四边形,则BF=AD=2,∵BF2+CF2=22+12=5=BC2,∴BF⊥CF,∴四边形ABFD是矩形,∴AB⊥AD,∵PA∩AD=A,∴AB⊥平面PAD. (2)由(1)及已知得AB,AD,AP两两垂直,以AB,AD,AP所在直线分别为x轴,y轴,z轴建立空间直角坐标系,则A(0,0,0),B(1,0,0),C(2,2,0),P(0,0,2),∴=(-2,-2,2),=(2,2,0).由E点在棱PC上,设=λ=(-2λ,-2λ,2λ)(0≤λ≤1),则E(2-2λ,2-2λ,2λ).故=+=(1-2λ,2-2λ,2λ),由BE⊥AC,得·=2(1-2λ)+2(2-2λ)=0,解得λ=,即=,设平面ABE的法向量为n=(a,b,c),由得令c=1,则n=(0,-3,1).取平面ABP的法向量i=(0,1,0),设二面角E-AB-P的平面角为α,则cosα===-.由图知二面角E-AB-P为锐二面角,故二面角E-AB-P的余弦值为.21、解析(1)由题意可知解得a=3,c=2,所以椭圆的方程为+y2=1.(2)设P(x1,y1),Q(x2,y2),若直线PQ的斜率不存在,则易算得S△POQ=.当直线PQ的斜率存在时,设其方程为y=kx+m,与椭圆方程联立得(9k2+1)x2+18kmx+9m2-9=0,则x1+x2=-,x1x2=.因为|PQ|==,点O到直线PQ的距离d=,所以S△POQ=|PQ|·d=3,(※)由k1k2===-化简得9k2=2m2-1,代入(※)式得S△POQ=.综上,得三角形POQ的面积是定值.22.解析(1)f(x)的定义域为(0,+∞),f'(x)=--1+=-.(i)若a≤2,则f'(x)≤0,当且仅当a=2,x=1时,f'(x)=0,所以f(x)在(0,+∞)单调递减. (ii)若a>2,令f'(x)=0,得x=或x=.当x∈∪时,f'(x)<0;当x∈时,f'(x)>0.所以f(x)在,单调递减,在单调递增.(2)证明:由(1)知,f(x)存在两个极值点当且仅当a>2.由于f(x)的两个极值点x1,x2满足x2-ax+1=0,所以x1x2=1,不妨设x1<x2,则x2>1,由于=--1+a=-2+a=-2+a,所以<a-2等价于-x2+2lnx2<0.设函数g(x)=-x+2lnx,由(1)知,g(x)在(0,+∞)单调递减,又g(1)=0,从而当x∈(1,+∞)时,g(x)<0, 所以-x2+2lnx2<0,即<a-2.。

相关文档
最新文档