函数的思想在数列中的应用 ppt课件
合集下载
函数的应用课件ppt课件ppt
然后根据复合函数的解析式确定图像的变换方式。
03
复合函数的性质
复合函数具有一些特殊的性质,如周期性、奇偶性、单调性等。这些性
质可以通过分析复合函数的解析式和基本初等函数的性质来得出。
03
函数在实际问题中应用
经济学中函数应用
需求分析
通过构建需求函数,描述 商品价格与需求量之间的 关系,帮助企业预测市场 变化。
不等式在解决实际问题中的应用
通过建立不等量关系式,即不等式,来求解实际问题中的范围或最优解。例如,求解经 济中的最优化问题、工程中的约束条件问题等。
方程和不等式在解决实际问题中的综合应用
有些问题既需要建立等量关系又需要建立不等量关系,这时就需要综合运用方程和不等 式来求解。例如,求解金融中的投资组合问题、物流中的运输优化问题等。
分析和设计。
04
微分学在函数研究中应用
微分学基本概念与性质
微分定义
微分是函数局部变化率的线性近似,描述了函数 在某一点附近的变化趋势。
微分性质
微分具有线性性、可加性、乘法法则等基本性质 ,这些性质在解决复杂问题时非常有用。
高阶微分
高阶微分描述函数更高层次的变化率,如加速度 、加加速度等。
微分法在函数研究中应用
函数与方程关系探讨
函数与方程的联系
方程是函数值为零的特殊情况,函数图像与x轴的交点即为方程的 解。
函数与方程的区别
函数表示一种对应关系,而方程则表示一种等量关系。
函数思想在解方程中的应用
通过构造函数,利用函数的性质(如单调性、连续性等)来求解方 程。
函数与不等式关系探讨
函数与不等式的联系
不等式可以看作是函数值大于或小于零的情况,函数图像在x轴上 方的部分对应不等式大于零的解集,下方的部分对应小于零的解
函数的应用课件ppt课件ppt课件ppt
大数据与函数应用
随着大数据技术的不断发展,函 数应用将更多地涉及到大规模数 据的处理和分析,需要更加高效
和稳定的技术支持。
大数据技术将促进函数应用的个 性化发展,使得函数能够更好地 满足不同用户的需求,提升用户
体验。
大数据技术将提升函数应用的预 测能力和决策支持能力,使得函 数能够更好地服务于商业智能和
05
未来函数应用的发展趋势
深度学习与函数应用
深度学习技术将进一步拓展函数应用的领域,特别是在图像识别、语音识别、自然 语言处理等领域,将会有更多的函数应用出现。
深度学习技术将提升函数应用的精度和效率,使得函数能够更好地满足复杂场景的 需求。
深度学习技术将促进函数应用的自动化和智能化,使得函数能够更好地适应不断变 化的环境和需求。
成本与收益
经济增长
在经济增长研究中,函数可以描述国 民生产总值、人均收入等经济指标随 时间的变化规律,用于预测经济发展 趋势和制定经济政策。
在经济分析中,函数用于表示成本、 收益与产量或销售量之间的关系,用 于制定经济决策和评估经济效益。
03
函数的应用实例
三角函数在物理中的应用
总结词 正弦函数 余弦函数 正切函数 应用实例
运动学
在物理学中,函数可以描述物体运动的速度、加速度、位移等物理量随时间的变化规律。
波动
函数可以描述波动现象,如正弦波、余弦波、波动方程等。
热力学
在热力学中,函数可以描述温度、压力、体积等物理量之间的关系,用于研究热力学的性质和变 化规律。
工程领域
控制系统
在工程控制系统中,函数用于描 述系统的输入和输出之间的关系 ,通过调节系统参数实现控制目
解决周期性问题
描述简谐振动、交流电等周 期性现象。
excel函数的应用课件ppt课件ppt
展望Excel函数在云端和移动 设备上的发展趋势和前景。
THANKS
感谢观看
在需要批量处理数据时,利用数组 公式提高计算速度。
合理选择函数
根据实际需求选择合适的函数,避 免使用过于复杂或低效的公式。
06
总结与展望
Excel函数的重要性和应用前景
01
02
03
04
总结Excel函数在数据处 理、分析和可视化方面 的重要作用。
分析Excel函数在不同行 业和领域中的应用案例 。
SUM函数:求和
1 2 3
总结词
快速计算数据总和
详细描述
SUM函数用于计算指定单元格范围内的数值总 和,通过在单元格中输入“=SUM(范围)”即可 。
示例
=SUM(A1:A10)将计算单元格A1到A10之间的数 值总和。
AVERAGE函数:求平均值
总结词
准确计算数据平均值
详细描述
AVERAGE函数用于计算指定单元格范围内的数值平均值 ,通过在单元格中输入“=AVERAGE(范围)”即可。
详细描述
自定义函数是用户根据实际需求编写的函数,可以替代或扩展Excel内置函数的功能。通过学习编写自 定义函数,用户可以根据自己的需求定制特定的计算逻辑,提高工作效率。
函数的查找与引用
总结词
掌握如何查找和引用函数是提高Excel函 数应用效率的重要步骤。
VS
详细描述
在Excel中,可以通过函数向导或函数列 表查找所需的函数,并了解其参数和使用 方法。同时,掌握函数的引用方法,如绝 对引用和相对引用,可以在公式复制时确 保引用的正确性,避免出错。
详细描述
Excel函数是Excel软件中内置的公式,它们被设计用来执行 各种计算、数据处理和分析任务。这些函数通常由一个特定 的字母和参数组成,用户可以直接在单元格中输入函数来使 用它们。
函数的应用ppt课件ppt课件
算法设计
算法是计算机科学中的核心概念之一。函数可以用来设计和实现各种算 法,通过比较不同算法的性能和效率,可以找到最优的解决方案。
03
软件工程
在软件工程中,函数是实现软件功能的基本单元之一。通过合理地组织
函数之间的关系和调用逻辑,可以提高软件的可维护性和可扩展性。
函数在工程学中的应用
机械工程
在机械工程中,函数可以用来描述机械系统的运动规律和特性。例如,通过分析曲线的变化趋势和特征,可以优化机 械系统的设计和性能。
函数与其他数学领域的结合
函数与几何的结合
探索函数图像的几何性质,如对称性、周期性等,加深对函数性 质的理解。
函数与代数的结合
利用代数技巧和方法研究函数的性质,如求导、积分等,进一步拓 展函数的应用范围。
函数与概率统计的结合
将概率统计的思想和方法应用于函数分析,研究随机过程和随机函 数的性质。
函数在交叉学科中的应用
电磁学
在电磁学中,电场和磁场可以用函数来表示,通过分析这 些函数的性质和变化规律,可以了解电磁波的传播和电磁 力的作用机制。
函数在计算机科学中的应用
01 02
数据处理
在计算机科学中,数据处理和分析是核心任务之一。函数可以用来表示 和处理数据,通过分析数据的变化规律和特征,可以挖掘出有价值的信 息。
1 2
函数在物理中的应用
利用函数描述物理现象和规律,如波动方程、热 传导方程等。
函数在经济中的应用
分析经济数据的规律和趋势,预测经济发展趋势 ,为决策提供依据。
3
函数在生物医学中的应用
研究生物体内各种生理指标的变化规律,为医学 研究和临床诊断提供支持。
函数在人工智能领域的应用
01
算法是计算机科学中的核心概念之一。函数可以用来设计和实现各种算 法,通过比较不同算法的性能和效率,可以找到最优的解决方案。
03
软件工程
在软件工程中,函数是实现软件功能的基本单元之一。通过合理地组织
函数之间的关系和调用逻辑,可以提高软件的可维护性和可扩展性。
函数在工程学中的应用
机械工程
在机械工程中,函数可以用来描述机械系统的运动规律和特性。例如,通过分析曲线的变化趋势和特征,可以优化机 械系统的设计和性能。
函数与其他数学领域的结合
函数与几何的结合
探索函数图像的几何性质,如对称性、周期性等,加深对函数性 质的理解。
函数与代数的结合
利用代数技巧和方法研究函数的性质,如求导、积分等,进一步拓 展函数的应用范围。
函数与概率统计的结合
将概率统计的思想和方法应用于函数分析,研究随机过程和随机函 数的性质。
函数在交叉学科中的应用
电磁学
在电磁学中,电场和磁场可以用函数来表示,通过分析这 些函数的性质和变化规律,可以了解电磁波的传播和电磁 力的作用机制。
函数在计算机科学中的应用
01 02
数据处理
在计算机科学中,数据处理和分析是核心任务之一。函数可以用来表示 和处理数据,通过分析数据的变化规律和特征,可以挖掘出有价值的信 息。
1 2
函数在物理中的应用
利用函数描述物理现象和规律,如波动方程、热 传导方程等。
函数在经济中的应用
分析经济数据的规律和趋势,预测经济发展趋势 ,为决策提供依据。
3
函数在生物医学中的应用
研究生物体内各种生理指标的变化规律,为医学 研究和临床诊断提供支持。
函数在人工智能领域的应用
01
函数的应用课件(共20张PPT)
解 设提高x个2元,则将有10x辆电瓶车空出,且租金 总收人为
y=(20+2x)(300-10x) =-20x2+600x-200x+6000 =-20(x2-20x+100-100)十6000 =-20(x-10)2+8000.(x∈N且x≤30)
调动思维,探究新知 在活初动中2,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
2=a(0-6)2+5,
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
调动思维,探究新知 在活初动中2,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
解 如果x∈[0,180],则 f(x)=5x;如果x∈(180,260],
按照题意有
f(x)=5×180+7(x-180)=7x-360.
因此
f
x
7
x
5x , x 0 360 , x
2. 北京市自2014年5月1日起,居民用水实行阶梯水 价制度、其中年用水量不超过180m3的部分,综合用水 单价为5元/m3;超过180m3但不超过 260m3的部分,综合用水单价为7元/m3. 如果北京市一居民年用水量为xm3,其要 缴纳的水费为f(x)元。假设0≤x≤260, 试写出f(x)的解析式,并作出f(x)的图象.
由此得到,当x=10时,ymax=8000,即每辆电瓶车 的租金为
20+10×2=40 元时,毎天租金的总收人最高,为8000元.
ห้องสมุดไป่ตู้
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
y=(20+2x)(300-10x) =-20x2+600x-200x+6000 =-20(x2-20x+100-100)十6000 =-20(x-10)2+8000.(x∈N且x≤30)
调动思维,探究新知 在活初动中2,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
2=a(0-6)2+5,
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
调动思维,探究新知 在活初动中2,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
解 如果x∈[0,180],则 f(x)=5x;如果x∈(180,260],
按照题意有
f(x)=5×180+7(x-180)=7x-360.
因此
f
x
7
x
5x , x 0 360 , x
2. 北京市自2014年5月1日起,居民用水实行阶梯水 价制度、其中年用水量不超过180m3的部分,综合用水 单价为5元/m3;超过180m3但不超过 260m3的部分,综合用水单价为7元/m3. 如果北京市一居民年用水量为xm3,其要 缴纳的水费为f(x)元。假设0≤x≤260, 试写出f(x)的解析式,并作出f(x)的图象.
由此得到,当x=10时,ymax=8000,即每辆电瓶车 的租金为
20+10×2=40 元时,毎天租金的总收人最高,为8000元.
ห้องสมุดไป่ตู้
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
函数专题ppt课件
数学建模中的函数应用
总结词:简化问题
详细描述:在数学建模中,函数被用来描述和简化复杂的问题。例如,在物理学中,牛顿的第二定律就是一个函数,它描述 了力、质量和加速度之间的关系。通过使用函数,我们可以将复杂的物理现象简化为易于理解和分析的数学模型。
物理中的函数应用
总结词:揭示规律
详细描述:在物理学中,函数被用来揭示各种自然现象的规 律。例如,在研究电路时,电压和电流之间的关系可以用函 数来表示。通过函数,我们可以更好地理解电路的工作原理 ,并预测其行为。
一元二次方程 $ax^2 + bx + c = 0$ 可以转化为顶点式 $y = a(x - h)^2 + k$,从而将其视
为二次函数。
一元二次方程的根对应于二次函 数图像与 $x$ 轴的交点。
解一元二次方程可以通过求函数 值为 $0$ 的 $x$ 值得到。
分式方程与函数的关系
分式方程是含有分式的方程,其解析 式可以表示为 $frac{x}{a} + frac{b}{x} = c$。
理解单调性在解决实际问题中 的应用,如求最值、优化问题
等。
函数的奇偶性
01 02 03 04
掌握奇偶性的判定方法
了解函数奇偶性的定义,即函数满足f(-x)=f(x)为偶函数,满足f(x)=-f(x)为奇函数。
掌握判定函数奇偶性的方法,如代入法、图象法等。
理解奇偶性在解决实际问题中的应用,如对称性问题、周期性分析等 。
解分式方程需要找到满足方程条件的 $x$ 值,即找到函数值为特定值的 $x$ 值。
分式方程可以转化为函数形式,其中 $x$ 是自变量,$y$ 是因变量。
THANKS
感谢观看
03
函数运用ppt课件
04
在几何中,函数可以描述图形之间的关系,如直线、 曲线、曲面等。
函数在物理中的应用
物理中许多现象都可以用函数来 描述,如速度、加速度、力等。
在热学中,函数可以描述温度、 压力等物理量的变化规律。
在力学中,函数被用来描述物体 的运动轨迹和受力情况。
在电磁学中,函数可以描述电场 、磁场和电流等物理量的变化规 律。
函数的表示方法有多种,包括解 析法、表格法、图象法和列举法 等。
列举法是通过列举所有可能的输 入值和对应的输出值来表示函数 ,适用于简单函数或离散型函数 。
函数的性质
函数的性质包括奇偶性、 单调性、周期性和对称性 等。
对称性是指函数图像关于 某一直线或点对称的性质 。
奇偶性是指函数图像关于 原点对称或关于y轴对称 的性质。
Part
03
函数的实际应用
函数在数学中的应用
函数在数学中有着广泛的应用,它是描述变量之间关 系的一种重要工具。在数学领域,函数被用于解决各
种问题,如代数、几何、微积分等。
输标02入题
在代数中,函数被用来表示变量之间的关系,可以解 决方程和不等式问题。
01
03
在微积分中,函数是研究变化率和积分的基础,可以 解决优化、极值和积分等问题。
实际应用
例如,在投资组合优化中,最值可以用来确定最 优投资组合,在生产计划中,最值可以用来确定 最优生产计划等。
极值与最值的实际应用
极值的应用
例如,在天气预报中,通过分析气象数据的变化率,可以预测天气变化的趋势;在股票 市场中,通过分析股票价格的变动率,可以预测股票价格的走势。
最值的应用
例如,在城市规划中,通过分析人口分布和土地利用情况,可以确定最优的城市规划方 案;在物流管理中,通过分析运输成本和运输时间,可以确定最优的运输路线和方案。
函数的概念(优秀课)ppt课件
函数的表示方法
解析法、列表法和图象法。
函数的定义域、值域与对应关系
01
函数的定义域
使函数有意义的自变量$x$的 取值范围。
02
函数的值域
函数值的集合,即${ y|y=f(x),x in D}$。
03
函数的对应关系
自变量$x$与因变量$y$之间的 对应法则。
函数的性质:奇偶性、周期性、单调性
奇偶性
01
角度计算
反三角函数可以用于计算角度,如已知三角形的两边长,可以利用反正
弦或反余弦函数计算出夹角。
02
工程应用
在工程中,反三角函数常用于解决与角度、长度等相关的实际问题,如
建筑设计、机械制造等领域。
03
复合函数
反三角函数可以与其他函数组合形成复合函数,用于解决更复杂的数学
问题。例如,可以将反三角函数与多项式、指数函数等进行复合,得到
0,+∞)上是减函数。
指数函数与对数函数的应用举例
增长率问题
通过指数函数可以描述某些量的增长速 度,如人口增长、细菌繁殖等。
利息计算
通过指数函数可以计算复利问题中的本 金和利息。
对数运算
通过对数函数可以简化某些复杂的运算 ,如计算幂、开方等。
数据分析
通过对数函数可以对某些数据进行归一 化处理,以便更好地进行数据分析和可 视化。
对数函数的图像与性质
对数函数的定义
形如y=log_a x(a>0且a≠1) 的函数称为对数函数。
对数函数的图像
当a>1时,图像在x轴上方,且 随着x的增大,y值也增大;当 0<a<1时,图像在x轴下方,且
随着x的增大,y值减小。
对数函数的性质
解析法、列表法和图象法。
函数的定义域、值域与对应关系
01
函数的定义域
使函数有意义的自变量$x$的 取值范围。
02
函数的值域
函数值的集合,即${ y|y=f(x),x in D}$。
03
函数的对应关系
自变量$x$与因变量$y$之间的 对应法则。
函数的性质:奇偶性、周期性、单调性
奇偶性
01
角度计算
反三角函数可以用于计算角度,如已知三角形的两边长,可以利用反正
弦或反余弦函数计算出夹角。
02
工程应用
在工程中,反三角函数常用于解决与角度、长度等相关的实际问题,如
建筑设计、机械制造等领域。
03
复合函数
反三角函数可以与其他函数组合形成复合函数,用于解决更复杂的数学
问题。例如,可以将反三角函数与多项式、指数函数等进行复合,得到
0,+∞)上是减函数。
指数函数与对数函数的应用举例
增长率问题
通过指数函数可以描述某些量的增长速 度,如人口增长、细菌繁殖等。
利息计算
通过指数函数可以计算复利问题中的本 金和利息。
对数运算
通过对数函数可以简化某些复杂的运算 ,如计算幂、开方等。
数据分析
通过对数函数可以对某些数据进行归一 化处理,以便更好地进行数据分析和可 视化。
对数函数的图像与性质
对数函数的定义
形如y=log_a x(a>0且a≠1) 的函数称为对数函数。
对数函数的图像
当a>1时,图像在x轴上方,且 随着x的增大,y值也增大;当 0<a<1时,图像在x轴下方,且
随着x的增大,y值减小。
对数函数的性质
函数的概念ppt课件
函数的特性
确定性
对于给定的输入值,函数总是产生一个唯一的 输出值。
可计算性
函数可以在有限的步骤内计算出输出值。
可重复性
对于相同的输入值,函数总是产生相同的输出值。
函数的类别
多项式函数
由多项式组成的函数,如二次 函数、三次函数等。
指数函数
输出值与输入值的指数相关的 函数。
线性函数
输出值与输入值成正比关系的 函数。
极限的分类
根据函数趋于某点的不同方 式,极限分为左极限和右极 限。
极限的性质
极限具有唯一性、有界性、 局部保号性等性质。
极限的运算性质
极限的加减乘除法则
极限的加减乘除运算法则可以用来计算极限。
极限的复合运算
复合运算是指将多个基本运算组合在一起进行计算。
重要极限及其推论
重要极限是极限计算中常用的几个基本极限,它们具 有形式简单、应用广泛的特点。
优化组织管理
在组织管理中,函数可以用来优化流程和资源配置,提高组织效率和 绩效。
1.谢谢聆 听
对应关系
自变量与因变量之 间的对应关系。
变量
函数中的自变量和 因变量。
定义域
函数中自变量的取 值范围。
解析式
用数学表达式来表 示函数关系。
值域
函数中因变量的取 值范围。
图表法表示函数
坐标系
建立直角坐标系,以横轴表示自变量,纵轴 表示因变量。
连线
描点
根据函数的对应关系,在坐标系上描出相应 的点。
用平滑的曲线将这些点连接起来,形成函数 图像。
函数的连续性
连续性的定义
如果函数在某一点处的极限等于该点的函数 值,则函数在该点连续。
函数的应用课件
高维函数
有多个输入值的函 数。
连续函数
函数的值在定义域 内是连续变化的。
02
常见函数的应用
一次函数的应用
一次函数在日常生活和科学研究中有着广泛的应用,如表示物体的运动 速度、路程、时间等关系,以及在经济学中表示成本、收益等随数量变 化的情况。
一次函数可以用于解决线性方程组问题,通过代入法、消元法等技巧求 解未知数。
04
函数与其他数学知识的综 合应用
函数与导数的综合应用
01
函数单调性的判断
利用导数研究函数的单调性,通 过导数的正负来判断函数在某区
间内的单调性。
03
切线方程
利用导数求切线方程,在某点处 的导数值即为该点处的切线斜率
。
02
极值与最值
导数可以用来研究函数的极值和 最值,通过求导找到函数的拐点 ,进而确定极值点和最值点。
在图像上,一次函数的图像是一条直线,其斜率表示函数的增减性,截 距表示函数与y轴的交点。
二次函数的应用
二次函数在解决实际问题中应用广泛,如计算物体的运动轨迹、抛物线的形状等。
二次函数可以用于求解最优化问题,如最大值、最小值等,通过求导数和令导数等 于零的方法找到极值点。
二次函数的图像是一个抛物线,其开口方向由二次项系数决定,顶点坐标可以通过 配方法或公式法求得。
函数在经济学中的应用
总结词
描述函数在经济学领域中的应用,如供需关系、成本收益分析等。
详细描述
在经济学中,函数被广泛应用于描述各种经济现象和关系,如供需关系、成本 收益分析、经济增长模型等。通过建立函数关系,可以更好地理解经济规律, 预测市场变化趋势,为企业和政府决策提供依据。
函数在计算机科学中的应用
高一函数课件ppt课件ppt
函数的乘法
总结词
理解函数乘法的基本概念和性质
函数乘法的性质
函数乘法满足交换律和结合律,即 f(x)*g(x)=g(x)*f(x)和 (f(x)*g(x))*h(x)=f(x)*(g(x)*h(x))。
ABCD
函数的乘法定义
函数乘法是指将两个函数的对应点一一对应,并 取乘积的函数值。
函数乘法的几何意义
函数乘法的几何意义是将两个函数的图像在坐标 系中一一对应,并取乘积的纵坐标。
函数的除法
总结词
理解函数除法的基本概念和性 质
函数除法的性质
函数除法满足交换律和结合律, 即f(x)/g(x)=g(x)/f(x)和 ((f(x)/g(x)))/h(x)=f(x)/(g(x)*h(x) )。
函数的除法定义
函数图像的解析
极值分析:
对于连续函数,分析其导数的正负变化,确定极值点。
函数图像的解析
单调性分析:
通过分析函数的导数正负变化,确定函数的单调区间。
函数图像的解析
01
实际应用:
02
通过分析函数图像,可以解决与 现实生活相关的问题,如最优化 问题、经济问题等。
05
函数的实际应用
生活中的函数应用
高一函数课件ppt
目 录
• 函数的基本概念 • 函数的分类 • 函数的运算 • 函数的图像 • 函数的实际应用
01
函数的基本概念
函数的定义
总结词
描述函数的基本定义
详细描述
函数是数学中一个重要的概念,它描述了两个集合之间的对应关系。在一个函 数中,每一个自变量x都有唯一的因变量y与之对应。
函数的表示方法
函数减法是指将一个函数的对应点与另一 个函数的对应点一一对应,并取相同的函 数值。
4.1数列的概念课件(人教版)
2n2
30n
2(n2
15n)
2 n
15 2
2
225 2
,
因为 n N* ,所以当 n 7 或 n 8 时, Sn 取最小值.
(2)当 n 1 时, a1 S1 2 30 28 .
当 n 2 时, an Sn Sn1 2n2 30n [2(n 1)230(n 1)] 4n 32 .
, Sn1
n ,n
1 2
.
例 6 已知数列an 的前 n 项和公式为 Sn n2 n ,求an 的通项公式.
解:因为 a1 S1 2 , an Sn Sn1 n2 n [(n 1)2 (n 1)] 2n(n 2) , 并且当 n 1 时, a1 21 2 依然成立.
所以an 的通项公式是 an 2n .
特别地,各项都相等的数列叫做常数列.
如果数列{an} 的第 n 项 an 与它的序号 n 之间的对应关系可以用一个式子来 表示,那么这个式子叫做这个数列的通项公式.
通项公式就是数列的函数解析式,根据通项公式可以写出数列的各项.
例 l 根据下列数列{an} 的通项公式,写出数列的前 5 项,并画出它们的图象.
解析:因为 Sn 3n 2 ,所以 Sn1 3n1 2(n 1) ,则 an 3n 3n1 23n1 . 1,n 1
当 n 1 时, a1 S1 3 2 1,不符合上式,所以 an 2 3n1 ,n 2 .
-4 7.数列an 中, a1 1, a2 5 , an2 an1 an (nN*) ,则a2022 __________.
验证得当 n 1 时, a1 28 满足上式,所以 an 4n 32 .
1.数列的相关概念及分类 2.数列的符号表示 3.从函数角度看数列 4.数列的通项公式 5.数列的递推公式 6.数列的前n项和
初中函数的概念ppt课件
02 函数的性质
CHAPTER
函数的奇偶性
奇函数
如果对于函数$f(x)$的定 义域内任意一个$x$,都 有$f(-x)=-f(x)$,则称 $f(x)$为奇函数。
偶函数
如果对于函数$f(x)$的定 义域内任意一个$x$,都 有$f(-x)=f(x)$,则称 $f(x)$为偶函数。
奇偶性判断
可以通过计算$f(-x)$并与 $f(x)$进行比较,来判断 函数的奇偶性。
02
03
04
一次函数定义
一次函数是形如y=kx+b( k≠0)的函数,其中x和y是变
量,k和b是常数。
一次函数图像
一次函数的图像是一条直线, 通过点(0,b)和斜率为k。
一次函数性质
当k>0时,函数为增函数;当 k<0时,函数为减函数。
一次函数的应用
一次函数在生活和生产中有着 广泛的应用,如路程、速度、
或无穷大。
反比例函数的应用
反比例函数在现实生活中有着广 泛的应用,例如在物理学中描述 电阻与电流的关系,或者在经济 学中描述生产与成本的关系等。
正比例函数
01
正比例函数的定义
正比例函数是一种函数,其图像是一条通过原点的直线。当x增大时,y
的值也相应增大,且x与y的比值保持不变。Βιβλιοθήκη 02正比例函数的性质
时间的关系等。
二次函数
二次函数定义
二次函数是形如y=ax^2+bx+c (a≠0)的函数,其中x和y是 变量,a、b和c是常数。
二次函数图像
二次函数的图像是一个抛物线 ,顶点坐标为(-b/2a,cb^2/4a)。
二次函数性质
当a>0时,抛物线开口向上; 当a<0时,抛物线开口向下。
《数列的概念》课件
奇偶性是指数列中奇数项和偶数项分别具有不同的性质或规律。例如,奇数项都是正数, 而偶数项都是负数;或者奇数项和偶数项分别构成等差数列或等比数列等。
数学表达
如果对于任意的正整数n,都有an=(-1)^n*b(n),其中b(n)是另一个数列,则称数列{an} 具有奇偶性。
03
数列的应用
在数学中的应用
性质
递推数列的每一项都可以通过前一项或前几项计 算得出,具有很强的规律性。
THANK YOU
公式
通项公式为 $a_n = a_1 times r^{(n-1)}$,其 中 $a_1$ 是首项,$r$ 是公比。
3
性质
等比数列的任意一项都可以通过首项和公比计算 出来,且任意两项之间的比值都是固定的。
递推数列
定义
递推数列是一种通过递推关系式来定义数列的数 列。
公式
递推数列的通项公式通常不能直接求解,需要通 过递推关系式逐步计算得出。
《数列的概念》ppt课件
• 数列的定义 • 数列的性质 • 数列的应用 • 数列的运算 • 数列的拓展
01
数列的定义
数列的描述
总结词
数列是一种特殊的函数,它按照一定的次序排列。
详细描述
数列是一种有序的数字排列,每个数字都有其对应的位置,并且每个位置上的 数字都是唯一的。数列可以看作是函数的特例,其中自变量是自然数或整数, 因变量是实数或复数。
02 03
详细描述
有界性是数列的一个重要性质,它保证了数列不会发散到无穷大或无穷 小。具体来说,如果存在正数M,使得对于所有n,数列的第n项an都 满足|an|≤M,则称数列有界。
数学表达
如果存在正数M,使得对于所有n,都有|an|≤M,则称数列{an}有界。
数学表达
如果对于任意的正整数n,都有an=(-1)^n*b(n),其中b(n)是另一个数列,则称数列{an} 具有奇偶性。
03
数列的应用
在数学中的应用
性质
递推数列的每一项都可以通过前一项或前几项计 算得出,具有很强的规律性。
THANK YOU
公式
通项公式为 $a_n = a_1 times r^{(n-1)}$,其 中 $a_1$ 是首项,$r$ 是公比。
3
性质
等比数列的任意一项都可以通过首项和公比计算 出来,且任意两项之间的比值都是固定的。
递推数列
定义
递推数列是一种通过递推关系式来定义数列的数 列。
公式
递推数列的通项公式通常不能直接求解,需要通 过递推关系式逐步计算得出。
《数列的概念》ppt课件
• 数列的定义 • 数列的性质 • 数列的应用 • 数列的运算 • 数列的拓展
01
数列的定义
数列的描述
总结词
数列是一种特殊的函数,它按照一定的次序排列。
详细描述
数列是一种有序的数字排列,每个数字都有其对应的位置,并且每个位置上的 数字都是唯一的。数列可以看作是函数的特例,其中自变量是自然数或整数, 因变量是实数或复数。
02 03
详细描述
有界性是数列的一个重要性质,它保证了数列不会发散到无穷大或无穷 小。具体来说,如果存在正数M,使得对于所有n,数列的第n项an都 满足|an|≤M,则称数列有界。
数学表达
如果存在正数M,使得对于所有n,都有|an|≤M,则称数列{an}有界。
数列与函数的综合应用
数列与函数在科研项目中的应用
案例分析:数 列与函数在科 研项目中的应
用
案例背景:介 绍科研项目的
背景和目的
案例过程:详 细描述数列与 函数在科研项 目中的应用过
程
案例结论:总 结数列与函数 在科研项目中 的应用效果和
意义
数列与函数在实际工程中的应用
案例分析:数列与函数在桥梁 设计中的应用
案例分析:数列与函数在建筑 结构分析中的应用
函数的表示方法:函数可以用解析式、表格、图象等多种方式表示,这些表示方法各有优缺点, 可以根据具体情况选择使用。
函数的实际应用:函数在实际生活中有着广泛的应用,如物理学、工程学、经济学等领域都需 要用到函数的概念和性质。
数列与函数的关联
数列是一种特殊的函数,具有离散的特点 数列的项数无限时,可以转化为连续函数 函数的概念可以推广到数列,如等差数列、等比数列等 数列与函数在数学中有着广泛的应用,如求和、积分等
数列与函数的运算规则
数列的加减法
定义:数列的加减 法是指将两个数列 对应项相加或相减, 得到一个新的数列
规则:对应项相加 或相减,得到新的 数列
运算步骤:先确定 两个数列的项数, 然后对应项相加或 相减,得到新的数 列
注意事项:在进行 数列的加减法时,ຫໍສະໝຸດ 需要注意数列的项 数和对应项的符号
函数的加减法
案例分析:数列与函数在机械 工程中的应用
案例分析:数列与函数在电子 工程中的应用
如何提高数列与函数的综合应 用能力
掌握数列与函数的基本概念和性质
理解数列与函数的定义和性质 掌握数列与函数的极限和连续性 熟悉数列与函数的导数和积分 掌握数列与函数的图象和几何意义
理解数列与函数的运算规则
函数的性质ppt课件
社会学
在社会学中,函数被用于描述和分析各种社会现象。例如,犯罪率是社会环境和政策的函数,教育程度 是个人背景和社会环境的函数等。
05
总结与展望
总结
函数的导数
函数的导数是指函数在某一点处的切线斜 率,可以反映函数的变化速率和方向。
函数的单调性
函数的单调性是指函数在某区间上的函数 值变化趋势,可以分为单调递增和单调递 减两种情况。
周期性的判断
可以通过寻找是否存在这样的T来 判断函数是否具有周期性。
凹凸性
凹函数
如果函数f(x)在区间I上任 一点处的切线的斜率都大 于0,则称f(x)为凹函数。
凸函数
如果函数f(x)在区间I上任 一点处的切线的斜率都小 于0,则称f(x)为凸函数。
凹凸性的判断
可以通过计算二阶导数来 判断函数的凹凸性。
函数的值域是指因变 量取值范围。
02
函数的性质
奇偶性
奇函数
如果函数f(x)满足f(-x)=-f(x),则 称f(x)为奇函数。
偶函数
如果函数f(x)满足f(-x)=f(x),则称 f(x)为偶函数。
奇偶性判断
根据奇偶函数的定义,可以通过计 算f(-x)与f(x)的关系来判断函数的奇 偶性。
单调性
概率统计
在概率统计中,函数用于描述随机变量的概率分布和统计特征。通过函 数,我们可以表示和解决许多实际问题,如概率密度函数和分布函数等 。
函数在自然科学中的应用
物理学
在物理学中,函数被广泛应用于描述物体的运动、力的相互作用、电磁场等。例如,牛顿 第二定律 F=ma 就描述了力与加速度之间的关系,而加速度是速度的函数。
函数的表示方法
01
02
03
在社会学中,函数被用于描述和分析各种社会现象。例如,犯罪率是社会环境和政策的函数,教育程度 是个人背景和社会环境的函数等。
05
总结与展望
总结
函数的导数
函数的导数是指函数在某一点处的切线斜 率,可以反映函数的变化速率和方向。
函数的单调性
函数的单调性是指函数在某区间上的函数 值变化趋势,可以分为单调递增和单调递 减两种情况。
周期性的判断
可以通过寻找是否存在这样的T来 判断函数是否具有周期性。
凹凸性
凹函数
如果函数f(x)在区间I上任 一点处的切线的斜率都大 于0,则称f(x)为凹函数。
凸函数
如果函数f(x)在区间I上任 一点处的切线的斜率都小 于0,则称f(x)为凸函数。
凹凸性的判断
可以通过计算二阶导数来 判断函数的凹凸性。
函数的值域是指因变 量取值范围。
02
函数的性质
奇偶性
奇函数
如果函数f(x)满足f(-x)=-f(x),则 称f(x)为奇函数。
偶函数
如果函数f(x)满足f(-x)=f(x),则称 f(x)为偶函数。
奇偶性判断
根据奇偶函数的定义,可以通过计 算f(-x)与f(x)的关系来判断函数的奇 偶性。
单调性
概率统计
在概率统计中,函数用于描述随机变量的概率分布和统计特征。通过函 数,我们可以表示和解决许多实际问题,如概率密度函数和分布函数等 。
函数在自然科学中的应用
物理学
在物理学中,函数被广泛应用于描述物体的运动、力的相互作用、电磁场等。例如,牛顿 第二定律 F=ma 就描述了力与加速度之间的关系,而加速度是速度的函数。
函数的表示方法
01
02
03
函数的思想在数列中的应用
ቤተ መጻሕፍቲ ባይዱ
又 an·an+1·an+2·an+3=an+an+1+an+2+an+3,
所以 an+1·an+2·an+3·an+4=an+1+an+2+an+3+an+4,
将以上两式相减得(a 将以上两式相减得 n-an+4)(an+1·an+2·an+3-1)=0, = ,
递 推 的 意 识
又已知条件知 an+1·an+2·an+3≠1, , 故数列{a 的周期为 故 an+4=an,故数列 n}的周期为 4. ∴a1+a2+a3+a4+…+a100=25(a1+a2+a3+a4)=200 +
一、函数的意识
练习 2、等差数列 n}的通项 an = 12 − 2n ,求 {an } 的前 n 项和 Sn 最 、等差数列{a 的通项 大值? 大值?
练 习 1 、 设 {a } 是 公 差 大 于 零 的 等 差 数 列 , 且
n
a3a6 = 55,a2 + a7 = 16 。求数列 {an } 的通项公式。 的通项公式。
点击样卷
的通项公式。 求数列 {bn } 的通项公式。 5× 4 d = 30 a = 10 5a1 + 1 2 (1)解法 1、 得 d = −2 解法 a1 + 6d = −2 a7 − a3 = −2 解法 2、 S5 = 5a3 = 30, a3 = 6, d = 4
满足: 变式 3、等差数列 n}满足: a1 < 0 S5 = S10 ,问 {an } 的前 、等差数列{a 满足 _____项和最 项和最_____? ?
三、巧用函数的周期性 【例3】 在数列 n}中,a1=1,a2=5,an+2=an+1-an (n∈N*), 】 在数列{a 中
又 an·an+1·an+2·an+3=an+an+1+an+2+an+3,
所以 an+1·an+2·an+3·an+4=an+1+an+2+an+3+an+4,
将以上两式相减得(a 将以上两式相减得 n-an+4)(an+1·an+2·an+3-1)=0, = ,
递 推 的 意 识
又已知条件知 an+1·an+2·an+3≠1, , 故数列{a 的周期为 故 an+4=an,故数列 n}的周期为 4. ∴a1+a2+a3+a4+…+a100=25(a1+a2+a3+a4)=200 +
一、函数的意识
练习 2、等差数列 n}的通项 an = 12 − 2n ,求 {an } 的前 n 项和 Sn 最 、等差数列{a 的通项 大值? 大值?
练 习 1 、 设 {a } 是 公 差 大 于 零 的 等 差 数 列 , 且
n
a3a6 = 55,a2 + a7 = 16 。求数列 {an } 的通项公式。 的通项公式。
点击样卷
的通项公式。 求数列 {bn } 的通项公式。 5× 4 d = 30 a = 10 5a1 + 1 2 (1)解法 1、 得 d = −2 解法 a1 + 6d = −2 a7 − a3 = −2 解法 2、 S5 = 5a3 = 30, a3 = 6, d = 4
满足: 变式 3、等差数列 n}满足: a1 < 0 S5 = S10 ,问 {an } 的前 、等差数列{a 满足 _____项和最 项和最_____? ?
三、巧用函数的周期性 【例3】 在数列 n}中,a1=1,a2=5,an+2=an+1-an (n∈N*), 】 在数列{a 中
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的思想在解数列中的应用
2020/12/2
1
一、利用等差数列通项公式是一次形式的性质
【例 1】 已知数列{an},“对任意 n∈N*,点
Pn(n,an)都在直线 y=3x+2 上”是“{an}成等
差数列”的
(A )
A.充分非必要条件
B.必要非充分条件
C.充要条件
D.既不是充分条件也不是必要条件
点 评:公差不为 0 的等差数列的{an}的通项公式
Tn 取得最小值,求实数 k 的取值范围.
2020/12/2
12
解:(1)设等差数列an 的公差为 d,则 S5 5a1 10d
∵ S5 3a5 2 3(a1 4d) 2 3a1 12d 2 ∴ 5a1 10d 3a1 12d 2 ∴ a1 d 1
a1, a2 , a5 依次成等比数列 a22 a1a5
2020/12/2
6
三、巧用函数的周期性
【例3】 在数列{an}中,a1=1,a2=5,an+2=an+1-an (n∈N*),
则a2011等于 ( A )
A.1
B.-1
C.5
D.-5
解析 方法一 由a1=1,a2=5,an+2=an+1-an (n∈N*)可得该数列为1,5,4,-1,-5,-4, 1,5,4,…. 由此可得a2011=1.
即 (a1 d)2 a1(a1 4d) 化简得: d 2a1 则 a1 1, d 2 , an a1 (n 1)d 2n 1
2020/12/2
13
k
k
bn1
∴
bn
an 1
22
bn
2n
k ∴ bn1 bn 2n
当 n 2时,
bn
bn1
k 2n1
k bn1 bn2 2n2
中,最大项和最小项分别是
( C)
A.a1,a30 B.a1,a9 C.a10,a9
D.a10,a30
解
析a: n
n n
97 1
98
98 97. n 98
考察函 f(x)数 98 97的图. 像 x 98
2020/12/2
9 10
9
【例 6】
已知数列{an}的通项公式
an
k (1
1 2n1
)
3 ,其前
又已知条件知 an+1·an+2·an+3≠1,
故 an+4=an,故数列{an}的周期为 4.
∴a1+a2+a3+a4+…+a100=25(a1+a2+a3+a4)=200
2020/12/2
8
四、利用函数的单调性求数列的最值
【例 5】 已知 an=nn-- 9978,则在数列{an}的前 30 项
足 s5 3a5 2 , 又 a1, a2, a5 依 次 成 等 比 数 列 , 数 列 bn 满 足
b1 9,bn1 bn
k
an 1
nN
,其中 k 为大 0 的常数.
22
(1)求数列 an , bn 的通项公式;
(2)记数列an bn 的前 n 项和为 Tn ,若当且仅当 n 3 时,
an=a1+(n-1)d=dn+(a1-d)是关于 n 的一次函数,因 此,可以利用一次函数 y=kx+b 的性质研究等差数列的
通项问题,其中 k=d,b=a1-d.
2020/12/2
2
精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你
是否会认为老师的教学方法需要改进? • 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭 • “不怕太阳晒,也不怕那风雨狂,只怕先生骂我
…………
b2
b1
k 2
bn
b1
k 2n1
k 2n2
k 2
k
(
2n1 1 2 1
1 2n1
)
k
2n1 1 2n1
k
2k 2n1
2k ∴ bn 9 k 2n1
当 n=1
2020/12/2
时,
b1
9
满足上式∴ bn
9
kHale Waihona Puke 2k 2n1(n
N*)
14
∵ an
2n
1, bn
9
k
k 2n1
(n
N*)
方法二 an+2=an+1-an,an+3=an+2-an+1, 两式相加可得an+3=-an,an+6=an, ∴a2011=1.
2020/12/2
7
【例 4】 数列{an}满足 a1=a2=1,a3=2,且对任意自然数 n
均有 an·an+1·an+2≠1,又 an·an+1·an+2·an+3=an+an+1+an+2+an+3,
项公式an f(n)就是相应的函数解析式,数列的前 n项的和 S n也是n的函数,因此,用函数的观点去考
察数列问题是一种有效的途径。
★利用一次函数、二次函数的性质;
★利用函数的周期性; ★ 利用函数的单调性
2020/12/2
11
【例 6】已知公差不为 0 的等差数列an的前 n 项和为 sn ,且满
则 a1+a2+a3+…+a100 的值是______.
递
推
解析:由 a1=a2=1,a3=2,可得 a4=4,
的
又 an·an+1·an+2·an+3=an+an+1+an+2+an+3,
意
所以 an+1·an+2·an+3·an+4=an+1+an+2+an+3+an+4, 识
将以上两式相减得(an-an+4)(an+1·an+2·an+3-1)=0,
变式 1、等差数列{an}满足:a1 26 ,S5 S9 ,求an的前 n 项和 Sn 最大值?
变式 2、等差数列{an}满足: a1 0 S5 S9 ,问an 的前 ____项和最_____?
变式 3、等差数列{an}满足: a1 0 S5 S10 ,问an 的前 _____项和最_____?
n
项
的和为 Sn ,若当且仅当 n=3 时 Sn 有最小值,求 k 的取值范围。
分 析 :首先,S n 有最小值
?
其次,可以根据函数的单调性
当k>0时, a n 是递增数列
当k<0时, a n 是递减数列
?
2020/12/2
10
课堂小结:
数列可以看作是正整数n的函数,定义域为正整 数集N*(或它的有限子集 {1,2,3,…,n}),数列的通
笨,没有学问无颜见爹娘 ……” • “太阳当空照,花儿对我笑,小鸟说早早早……”
4
二、利用 Sn 是 n 的二次函数的特点解题
S nn (a 1 2 a n) n a 1n (n 2 1 )d
Sn
dn2 2
(a1
d)n 2
S nA n 2 B n(A 2 B 2 0 )
2020/12/2
5
【例 2】等差数列{an}的通项 an 12 2n ,求an 的前n 项 和 Sn 最大值?
2020/12/2
1
一、利用等差数列通项公式是一次形式的性质
【例 1】 已知数列{an},“对任意 n∈N*,点
Pn(n,an)都在直线 y=3x+2 上”是“{an}成等
差数列”的
(A )
A.充分非必要条件
B.必要非充分条件
C.充要条件
D.既不是充分条件也不是必要条件
点 评:公差不为 0 的等差数列的{an}的通项公式
Tn 取得最小值,求实数 k 的取值范围.
2020/12/2
12
解:(1)设等差数列an 的公差为 d,则 S5 5a1 10d
∵ S5 3a5 2 3(a1 4d) 2 3a1 12d 2 ∴ 5a1 10d 3a1 12d 2 ∴ a1 d 1
a1, a2 , a5 依次成等比数列 a22 a1a5
2020/12/2
6
三、巧用函数的周期性
【例3】 在数列{an}中,a1=1,a2=5,an+2=an+1-an (n∈N*),
则a2011等于 ( A )
A.1
B.-1
C.5
D.-5
解析 方法一 由a1=1,a2=5,an+2=an+1-an (n∈N*)可得该数列为1,5,4,-1,-5,-4, 1,5,4,…. 由此可得a2011=1.
即 (a1 d)2 a1(a1 4d) 化简得: d 2a1 则 a1 1, d 2 , an a1 (n 1)d 2n 1
2020/12/2
13
k
k
bn1
∴
bn
an 1
22
bn
2n
k ∴ bn1 bn 2n
当 n 2时,
bn
bn1
k 2n1
k bn1 bn2 2n2
中,最大项和最小项分别是
( C)
A.a1,a30 B.a1,a9 C.a10,a9
D.a10,a30
解
析a: n
n n
97 1
98
98 97. n 98
考察函 f(x)数 98 97的图. 像 x 98
2020/12/2
9 10
9
【例 6】
已知数列{an}的通项公式
an
k (1
1 2n1
)
3 ,其前
又已知条件知 an+1·an+2·an+3≠1,
故 an+4=an,故数列{an}的周期为 4.
∴a1+a2+a3+a4+…+a100=25(a1+a2+a3+a4)=200
2020/12/2
8
四、利用函数的单调性求数列的最值
【例 5】 已知 an=nn-- 9978,则在数列{an}的前 30 项
足 s5 3a5 2 , 又 a1, a2, a5 依 次 成 等 比 数 列 , 数 列 bn 满 足
b1 9,bn1 bn
k
an 1
nN
,其中 k 为大 0 的常数.
22
(1)求数列 an , bn 的通项公式;
(2)记数列an bn 的前 n 项和为 Tn ,若当且仅当 n 3 时,
an=a1+(n-1)d=dn+(a1-d)是关于 n 的一次函数,因 此,可以利用一次函数 y=kx+b 的性质研究等差数列的
通项问题,其中 k=d,b=a1-d.
2020/12/2
2
精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你
是否会认为老师的教学方法需要改进? • 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭 • “不怕太阳晒,也不怕那风雨狂,只怕先生骂我
…………
b2
b1
k 2
bn
b1
k 2n1
k 2n2
k 2
k
(
2n1 1 2 1
1 2n1
)
k
2n1 1 2n1
k
2k 2n1
2k ∴ bn 9 k 2n1
当 n=1
2020/12/2
时,
b1
9
满足上式∴ bn
9
kHale Waihona Puke 2k 2n1(n
N*)
14
∵ an
2n
1, bn
9
k
k 2n1
(n
N*)
方法二 an+2=an+1-an,an+3=an+2-an+1, 两式相加可得an+3=-an,an+6=an, ∴a2011=1.
2020/12/2
7
【例 4】 数列{an}满足 a1=a2=1,a3=2,且对任意自然数 n
均有 an·an+1·an+2≠1,又 an·an+1·an+2·an+3=an+an+1+an+2+an+3,
项公式an f(n)就是相应的函数解析式,数列的前 n项的和 S n也是n的函数,因此,用函数的观点去考
察数列问题是一种有效的途径。
★利用一次函数、二次函数的性质;
★利用函数的周期性; ★ 利用函数的单调性
2020/12/2
11
【例 6】已知公差不为 0 的等差数列an的前 n 项和为 sn ,且满
则 a1+a2+a3+…+a100 的值是______.
递
推
解析:由 a1=a2=1,a3=2,可得 a4=4,
的
又 an·an+1·an+2·an+3=an+an+1+an+2+an+3,
意
所以 an+1·an+2·an+3·an+4=an+1+an+2+an+3+an+4, 识
将以上两式相减得(an-an+4)(an+1·an+2·an+3-1)=0,
变式 1、等差数列{an}满足:a1 26 ,S5 S9 ,求an的前 n 项和 Sn 最大值?
变式 2、等差数列{an}满足: a1 0 S5 S9 ,问an 的前 ____项和最_____?
变式 3、等差数列{an}满足: a1 0 S5 S10 ,问an 的前 _____项和最_____?
n
项
的和为 Sn ,若当且仅当 n=3 时 Sn 有最小值,求 k 的取值范围。
分 析 :首先,S n 有最小值
?
其次,可以根据函数的单调性
当k>0时, a n 是递增数列
当k<0时, a n 是递减数列
?
2020/12/2
10
课堂小结:
数列可以看作是正整数n的函数,定义域为正整 数集N*(或它的有限子集 {1,2,3,…,n}),数列的通
笨,没有学问无颜见爹娘 ……” • “太阳当空照,花儿对我笑,小鸟说早早早……”
4
二、利用 Sn 是 n 的二次函数的特点解题
S nn (a 1 2 a n) n a 1n (n 2 1 )d
Sn
dn2 2
(a1
d)n 2
S nA n 2 B n(A 2 B 2 0 )
2020/12/2
5
【例 2】等差数列{an}的通项 an 12 2n ,求an 的前n 项 和 Sn 最大值?