第1章 电路模型和电路定律

合集下载

电路分析基础第一章 电路模型和电路定律

电路分析基础第一章  电路模型和电路定律

+

+

+
实际方向
实际方向
+
U >0
U<0
上页
下页
电压参考方向的两种表示方式
(1) 用正负极性表示
+
(2) 用双下标表示
U
A
UAB
B
UAB =UA- UB= -UBA
上页 下页
3. 关联参考方向 元件或支路的u,i 采用相同的参考方向称之为关联 采用相同的参考方向称之为 参考方向,即电流从电压的“+”极流入,从“-” 极流出该元件。反之,称为非关联参考方向。 极流出该元件
P6吸 = U 6 I 3 = (−3) × (−1) = 3W
上页 下页

对一完整的电路,发出的功率=吸收的功率
3. 电能(W ,w)
在电压、电流一致参考方向下,在t0到t的时间内 该部分电路吸收的能量为
w(t0 , t ) = ∫ p (τ ) dτ = ∫ u (τ )i (τ ) dτ
t0 t0
电源 Sourse
灯 Lamp
RS US 电路模型
R
Circuit Models 干电池 Battery
上 页 下 页
电路理论中研究的是 理想电路元件构成的电路(模型)。
电路模型,不仅能够反映实际电路及 其器件的基本物理规律,而且能够对 其进行数学描述。这就是电路理论把 电路模型作为分析研究对象的实质所 在。
干电池 Battery 电路理论中,“电路”与“网络”这两个术语可通用。“网络” 的含义较为广泛,可引申至非电情况。
例:手电筒电路
开关 灯泡
10BASE-T wall plate

电路分析基础第01章 电路模型和电路定律

电路分析基础第01章 电路模型和电路定律
在电压和电流的关联参考方向下,
i 元件
+
u
_
电功率可写成
p(t) = u(t) i(t)
当p>0时,元件吸收电能; p<0时,元件实际上是释放电能。
18
在 U、 I 参考方向选择一致的前提下,
若 P = UI 0
a I a R 或 U
I
R
U
b
“吸收功率”
b
I a
若 P = UI 0
+
-
U b
大小 的变化, Uab的变化可能是 _______ 方向 的变化。 或者是 _______
R2
-15V
R2
-
15V
16
b 10V a
6Ω + 3V -
c
b为参考点:
4V

Va= -10V Vb=0V Vc=Vb-Ubc
d
a为参考点:
Va=0
Vb=10V
Vc=Vb-Ubc =10-3=7V
=0-3= -3V
Vd=Vc-Ucd
Ubc=Vb-Vc
Vd=3V
= -7V 电位是相对量
17
§1.3 电功率和能量
_
考虑内阻
实际电压源也不允许短路。因其内阻小,若 短路,电流很大,可能烧毁电源。
35
+
u
u
+
us
i
R 0
S
_
O 一个好的电压源要求
小知识
电池容量:电池的容量单位mAh,其含义是“毫安时”,
1毫安时的概念就是以1毫安的电流放电能持续1个小时
例如:某充电电池标有600mAh 表示如果通过电池的电流是600mA的时候, 电池能工作1小时; 当然如果通过电池的电流是100mA的时候,

1 第1章 电路模型和电路定律

1 第1章 电路模型和电路定律

电感元件 只具有储 只具有储 存磁能的 存磁能的 电特性
电容元件 只具有储 只具有储 存电能的 存电能的 电特性
理想电压源 输出电压恒 定,输出电 流由它和负 载共同决定
理想电流源 输出电流恒 定,两端电 压由它和负 载共同决定
实际电路与电路模型
S 电 源 负 载 R0 I
+
RL U
电源
+ _US
电路模型(circuit model)
电路模型:由理想电路元件和理想导线互相连接而成。 电路模型:由理想电路元件和理想导线互相连接而成。
实际电路器件品种多,电磁特性多元而复杂, 实际电路器件品种多,电磁特性多元而复杂, 直接画在电路图中困难而繁琐,且不易定量描述。 直接画在电路图中困难而繁琐,且不易定量描述。
p发 = ui

U = 5V, I = - 1A 5V,
u

P发= UI = 5×(-1) = -5 W 5× p发<0,说明元件实际吸收功率5W <0,说明元件实际吸收功率5W
能量的计算
dw t) ( 两边从根据功率的定义 p(t) = ,两边从-∞到t dt
积分,并考虑w(-∞) = 0,得 积分, 0,
电 电
负 载



电路模型:由理想元件及其组合代表实际电路器件, 电路模型:由理想元件及其组合代表实际电路器件,与 实际电路具有基本相同的电磁性质,称其为电路模型。 实际电路具有基本相同的电磁性质,称其为电路模型。 通常用电路图来表示电路模型
利用电路模型研究问题的特点 1.主要针对由理想电路元件构成的集总参数电路, 1.主要针对由理想电路元件构成的集总参数电路, 主要针对由理想电路元件构成的集总参数电路 其中电磁现象可以用数学方式来精确地分析和计算; 其中电磁现象可以用数学方式来精确地分析和计算; 2.研究与实际电路相对应的电路模型, 2.研究与实际电路相对应的电路模型,实质上就是 研究与实际电路相对应的电路模型 探讨各种实际电路共同遵循的基本规律。 探讨各种实际电路共同遵循的基本规律。 集总参数电路元件的特征 元件中所发生的电磁过程都集中在元件内部进行 其次要因素可以忽略的理想电路元件; 其次要因素可以忽略的理想电路元件;任何时刻从元 件两端流入和流出的电流恒等且由元件端电压值确定。 件两端流入和流出的电流恒等且由元件端电压值确定。

第1章-电路模型和电路定律

第1章-电路模型和电路定律
u为有限值时,i=0。 * 理想导线的电阻值为零。
1.6 电容元件 (capacitor)
1、电容器
++ ++ ++ ++ +q –--– –--– –q
线性定常电容元件:任何时刻,电容元件极板上的电 荷q与电压 u 成正比。
2、电路符号
C
3. 元件特性 i
与电容有关两个变量: C, q 对于线性电容,有: q =Cu
1.7 电感元件
1 、线性定常电感元件
iL
变量: 电流 i , 磁链
+
u

def ψ L
i
L 称为自感系数 L 的单位:亨(利) 符号:H (Henry)
2 、韦安( ~i )特性
0
i
3 、 电压、电流关系:
i
+–
ue –+
i , 右螺旋 e , 右螺旋 u , e 非关联 u , i 关联
交流: iS是确定的时间函数,如 iS=Imsint
(b) 电源两端电压是任意的,由外电路决定。
(3). 伏安特性
i
+
iS
u
_
u
IS
O
i
(a) 若iS= IS ,即直流电源,则其伏安特性为平行于电 压轴的直线,反映电流与 端电压无关。
(b) 若iS为变化的电源,则某一时刻的伏安关系也是 这样 电流为零的电流源,伏安曲线与 u 轴重合, 相当于开路元件
+ u
+ C
C
def
q
u
C 称为电容器的电容


电容 C 的单位:F (法) (Farad,法拉)

第一章电路模型和电路定律

第一章电路模型和电路定律

低频信号发生器
实际电路元件
电感 电阻 电容 互感
1、元件通过其端子与外部连接。 元件通过其端子与外部连接。 元件的特性通过与端子有关的电路物理量来描述; 2、元件的特性通过与端子有关的电路物理量来描述;这些物理量之间的代数关系称为 元件的端子特性(也称元件特性); );采用电流和电压来描述元件特性时也称为元件 元件的端子特性(也称元件特性);采用电流和电压来描述元件特性时也称为元件 的伏安特性。(如线性电阻的欧姆定律) 。(如线性电阻的欧姆定律 的伏安特性。(如线性电阻的欧姆定律) 线性元件:即表征元件特性的代数关系是一个线性关系;否则称为非线性元件。 3、线性元件:即表征元件特性的代数关系是一个线性关系;否则称为非线性元件。 集总(参数)元件:是指有关电、磁场物理现象都有由元件来“集总”表征; 4、集总(参数)元件:是指有关电、磁场物理现象都有由元件来“集总”表征;即元 件外部不存在任何电场与磁场。(严格来说,不可能) 。(严格来说 件外部不存在任何电场与磁场。(严格来说,不可能) 电路常用物理量及符号:电流I 电压U 电荷Q 电功率P 电能W 磁通Φ 5、电路常用物理量及符号:电流I、电压U、电荷Q、电功率P、电能W、磁通Φ、磁通 一般小写字母表示随时间变化的量,大写表示恒定量。 链Ψ。一般小写字母表示随时间变化的量,大写表示恒定量。
i
参考方向 实际方向 B
i>0
i<0
电流和电压的参考方向
参考方向 U 实际方向 参考方向 U 实际方向
+

+

+


+
U>0
U<0
电流和电压的关联参考方向
i
+ u

电路 第一章

电路 第一章

绪论1. “电路分析”是电类(强电、弱电)专业本科生必修的重要的是电气程专业的主本课程的地位修的一门重要的专业基础课。

是电气工程专业的主干技术基础课程。

通过对本课程的学习,使同学们基本论分析计算电路的掌握电路的基本理论、分析计算电路的基本方法和进行实验的基本技能,为后续课程准备必要的电路知识知识。

前续课程高等数学大学物理等前续课程:高等数学、大学物理等。

后续课程:模拟电子技术、数字电子技术、信号与系统等与系统等。

3.研究的内容●电路理论的研究体系:电路分析(analysis):在给定的激励(excitation)下,求结构已知的电路的响应(response)。

激励给定响应待求?电路已知re电路综合(synthesis):在特定的激励下,为了得到预期的响在特定的激励为得到预期的响应而研究如何构成所需的电路。

激励已知目标给定电路未知re●电路分析(analysis)研究内容:以电路模型为基础,编写描述电路的方程式,通过响应的求解、分析,认识已知电路的功能和特性。

根据所分析电路的不同可分为:1、电阻电路分析;2、动态电路分析;动态电路分析3、正弦稳态电路分析4、二端口网络二端口网络(简单电路)5. 教材及主要参考书1.教材:12006[]邱关源,《电路》,高等教育出版社,第五版,2.参考书:[2]汪缉光,刘秀成主编,《电路原理》(第二版),清华大学出版社。

[3](美)尼尔森.《电路》.北京:电子工业出版社,20086. 具体要求及成绩评定⑴自主学习要求:⑵听课要积极主动⑶课后及时做思考题、作业,有问题及时课后时做考题作有问题时解决认真作业,必须独立完成;必须抄题目、画电路,电路图使用铅笔和尺子,下一节课前必须交上一节课的作业。

20 %平时成绩成绩评定标准:实验成绩期末考试20 %60 %(平时成绩:考勤、作业、课堂练习提问、答疑)第一章电路模型和电路定律第章电路模型和电路定律1.1电路和电路模型.1.2电流和电压的参考方向1.3电功率和能量1.4电路元件141.5电阻元件1.6电压源和电流源161.7受控电源1.8基尔霍夫定律教学目标1.牢固掌握电路模型和理想电路元件的特性。

1-电路模型和电路定律

1-电路模型和电路定律

W PT 40 5 30 6000W h 6kW h 6度
三. 电功率的计算 在关联参考方向下,p(t) = u(t)i(t); 在非关联参考方向下,p(t) = -u(t)i(t)。 1.计算功率p(t)时,一定要根据u(t)与i(t)是否为关联 参考方向而选用相应的计算式; 2.不论用哪个计算式,计算的p(t)都是吸收功率; 3.如计算出的p(t)>0,二端元件的确吸收功率,相当 于负载;如计算出的p(t)<0,则二端元件吸收负功 率,即二端元件发出(产生)功率,相当于电源。 4. 对于同一二端元件,当 u(t) 、 i(t) 一定时,不论选 取关联参考方向还是非关联参考方向,计算出的 p(t)应该相同。
§ 1.4 电阻元件
一. 电阻元件:是从实际电阻器抽象出来的模型,只 反映电阻器对电流呈现阻力的性能。 时变 线性电阻 时不变 1. 电阻元件分类 非线性电阻时变 时不变
线性时 不变电阻
线性时 变电阻
非线性时 不变电阻
非线性 时变电阻
2.线性电阻(线性时不变电阻):元件上电压正比 于电流,该元件称为线性电阻。欧姆定律只适用于线 性电阻。 ① u(t ) Ri (t ) 只适用于线性电阻( R 为常数); ②如电阻上的电压与电流参考方向非关联, 欧姆定律 公式中应冠以负号;公式和参考方向必须 配套使用。u(t ) Ri (t ) 。 ③说明线性电阻是无记忆、双向性的元件。 电导:反映材料的导电能力。电阻、电导是从相反的 两个方面来表征同一材料特性。 u( t ) 1 i (t ) Gu (t ) G ,G称为电导。 R R 电阻R单位:欧(姆) ,符号: 电导G单位:西(门子) ,符号: S
注意
如果一个元件吸收功率100W,也可认为它发出–100W 。

模电第1章-电路模型和电路的基本定律

模电第1章-电路模型和电路的基本定律

1.4 电路的基本元件及其特性
电路的基本元件是构成电路的基本元素。电路中 普遍存在着电能的消耗、磁场能[量]的储存和电场能 [量]的储存这三种基本的能[量]转换过程。表征这 三种物理性质的电路参数是电阻、电感和电容。 只含一个电路参数的元件分别称为理想电阻元 件、理想电感元件和理想电容元件,通常简称电 阻元件、电感元件和电容元件。 元件的基本物理性质是指当把它们接入电路时, 在元件内部将进行什么样的能量转换过程以及表现 在元件外部的特征。
1.4 电路的基本元件及其特性
1.4.1 电阻元件和欧姆定律 电阻:是电路中阻止电流流动、表示能量损耗大 小的参数。电阻有线性电阻和非线性电阻之分(这 里只讨论线性电阻)。 所谓线性电阻,是指电阻元件的阻值R是个常数, 加在该电阻元件两端的电压u和通过该元件中的电流 i之间成正比关系,即 u=Ri 非线性电阻的伏安特性:其曲线可以是通过坐标原点 或不通过坐标原点的曲线,也可以是不通过坐标原点 的直线。
P UI
或 p ui
(2)当电流、电压取非关联的参考方向时
P -UI 或 p -ui
如果P>0(或p>0)时,表示元件吸收功率,是负载 如果P<0(或p<0)时,表示元件发出功率,是电源
1.2.2 功率的计算 例: 如图所示各元件电流和电压的参考方向,已知 U1=3V,U2=5V,U3=U4=-2V,I1=-I2=-2A, I3=1A,I4=3A。试求各元件的功率,并指出是吸收 还是发出功率?是电源还是负载?整个电路的总功 率是否满足功率守恒定律?(a)(b)来自1.2.2 功率的计算
电功率: 该元件两端的电压与通过该元件电流的乘积
P UI
如果电压和电流都是时变量时,瞬时功率写成
p ui

第一章 电路模型和电路定律

第一章 电路模型和电路定律

第一章 ª 重点:电路模型和电路定律1. 电压、电流的参考方向 2. 电功率、能量 3. 电路元件特性 4. 基尔霍夫定律KCL、KVL§1.1 电路和电路模型 §1.1 电路和电路模型 §1.2 电流和电压的参考方向 §1.2 电流和电压的参考方向 §1.3 电功率和能量 §1.3 电功率和能量 §1.4 电路元件 §1.4 电路元件 §1.5 电阻元件 §1.5 电阻元件 §1.6 电压源和电流源 §1.6 电压源和电流源 §1.7 受控电源 §1.7 受控电源 §1.8 基尔霍夫定律 §1.8 基尔霍夫定律§1.1 电路和电路模型一、电路:电工设备构成的整体,它为电流的流通提供路径。

电路主要由电源、负载、连接导线及开关(中间环节)等构成。

电源(source):提供能量或信号的发生器。

又称激励或激励源。

负载(load):将电能转化为其它形式能量的用电设备,或对 信号进行处理的设备。

导线(line)、开关(switch):将电源与负载接成通路装置。

响应:由激励而在电路中产生的电压、电流。

电源: 提供 电能的装置升压 变压器 输电线负载: 取用 电能的装置电灯 电动机 电炉 ...发电机降压 变压器中间环节:传递、分 配和控制电能的作用二、电路模型 (circuit model) 1. 理想电路元件:根据实际电路元件所具备的电磁性质来设 想的具有某种单一电磁性质的元件,其u,i关系可用简单 的数学式子严格表示。

几种基本的电路元件: 电阻元件:表示消耗电能的元件。

电感元件:表示各种电感线圈产生磁场,储存磁场能的元件。

电容元件:表示各种电容器产生电场,储存电场能的元件。

电源元件:表示各种将其它形式的能量转变成电能的元件。

第一章电路模型和电路定律《电路》-邱关源

第一章电路模型和电路定律《电路》-邱关源

第一章 电路模型和电路定律本章要点1.电路模型、电路元件的概念;2.电压、电流参考方向概念;3.元件、电路功率的计算方法;4.电阻、独立电源、受控电源的概念;电路中电流和电压之间相互约束。

分为两种:元件约束、集合约束。

由基尔霍夫定律体现。

1‐1 电路和电路模型电路在不同的场景应用时复杂程度也不同,小到手电筒,大到输电网络。

电路由电子器件构成,借助电压、电流完成信号传输、测量、控制、计算。

电能或电信号发生器成为电源,用电设备或信号接收装置等称为负载。

通常激励称为输入,如电源;响应称为输出,如用电设备。

电路模型就是利用理想电路元件或他们的组合模块建立的模型。

建模时要考虑工作条件,并按不同准确度的要求把给定工作情况下的主要物理现象和功能反映出来。

1‐2 电流和电压的参考方向Uab 即电压方向为a →b ,Iab 即电流方向为a →b 。

1‐3 电功率和能量电功率与电压和电流密切相关。

当正电荷从原件“+”极经元件运动到元件”‐”极时,元件吸收能量;当正电荷从原件“‐”极经元件运动到元件”+”极时,元件释放电能量; 元件吸收或释放能量(△W)计算:△W=u*△qI=ୢ୯ୢ୲,△W=u*i*△t,功率p=୼୛୼୲=ui;P>0、W>0时,元件吸收功率与能量;p<0、W<0时,元件释放电能或发出功率。

所有的电子器件本身都有功率的限制,使用时要注意。

1‐4 电路元件电路元件为电路中最基本的组成单元。

元件与元件之间或通过端子与外部链接,构成电路。

电路物理量包括电流i 、电压v 、电荷q 及磁通量Φ等。

电路元件可分为线性元件、非线性元件,有源器件、无源器件等。

1‐5 电阻元件欧姆定律u=ri 。

R 即为电阻。

R 是一个正实常数。

单位:Ω(欧姆)。

线性电阻元件为无源器件。

电阻元件一般把吸收的电能转换为热能或光能等。

电阻元件也有非线性器件。

1‐6 电压源和电流源电源即电池、发电机、信号源等。

是有源二端器件。

电压源两端电压恒定,与通过元件的电流无关,电流大小由外部电路决定。

《电路原理》第一章 电路模型和电路定律

《电路原理》第一章 电路模型和电路定律

uS
i
直流电压源 的伏安关系

+
i
uS R 外电路
uS i 0 R i 0 ( R )
i ( R 0)
uS 0 ,电压源不能短路!
返 回 上 页 下 页
电压源功率:
i
P uS i
电压、电流的参考方向非关联;
uSS u
_
i
uS
_
+
+
u
+
+
_
物理意义:外力克服电场力作功,电 源发出功率,发出功率, 起电源作用 电压、电流的参考方向关联;
2、电路模型
中间环节 S 开关 电 源 I
负 载
R0
+
RL
+ _
连接导线
US
U

负载
实体电路
电源
电路模型
用抽象的理想电路元件及其组合,近似地代替实际的 器件,从而构成了与实际电路相对应的电路模型。
• 理想电路元件
理想电路元件
组成电路模型的最小单元,是具有某种确定的电 磁性质并有精确定义的基本结构。 + R L C – IS
u
_
物理意义: 电场力做功,电源吸收功 率,吸收功率,充当负载 或发出负功

计算图示电路各元件的功率。
R 5
5V
_
i
_
2
P V uS i 10 1 10W 10
满足:P(发)=P(吸)
+
10V
uR
+
_ +

uR (10 5) 5V
i
uR
5 1A R 5

电路基础第1章 电路模型和电路定律

电路基础第1章 电路模型和电路定律
dq
p ui
(1-3)
dW udq
(1-4a)
在直流电路中 P UI
(1-4b)
用 p 表示随时间变化的功率;用P 表示恒定功率。
在国际单位制中,功率的单位是瓦[特],简称瓦, 用W表示。 当u、i 为关联参考方向时,功率的计算为
1(11)
电流的基本单位:安[培](简称安、用A表示) 辅助单位:千安(kA)毫安(mA)微安(μA)
1kA 103 A 1mA 103 A 1μA 106 A
⑵ 电流的实际方向与参考方向:
正电荷移动的方向为电流的实际方向。
为计算而假设的方向,称为参考方向。 R1 a R3
参考方向可以任意设定。
理想元件是假想元件,具有单一的电磁性质,具有精确 的定义与相应的数学模型。
理想电阻、理想电感、理想电容
R
L
C
1(8)
R0
+
RL
Us
实际手电筒电路
电路模型
根据理想元件端子的数目,可分为二端、三端、 四端元件等。
1.1.3 集总参数电路
集总参数元件:在任何时刻,流入元件任意一端的电流和 元件任意端之间的电压是单值的物理量,集总参数元件有 确定的电磁性质和确切的数学定义
连接电源与负载的网络
提供能量 又称为激励
2.电路的种类及功能
转换或消耗能量 为响应
⑴ 传输、分配、转换电能;--能量领域
⑵ 传送、处理、储存信号。--信息领域
1(5)
电池
电容器
晶体管
运算放大器
电阻器
线圈
1(6)
低频信号发生器的内部结构
1(7)
1.1.2 电路模型 从实际电路中抽象出来的、由理想元件组成的电路。

电路第一章

电路第一章

第一章电路模型和电路定律§1-1 电路和电路模型1.实际电路实际电路——由电器设备组成(如电动机、变压器、晶体管、电容等等),为完成某种预期的目的而设计、连接和安装形成电流通路。

图1是最简单的一种实际照明电路。

它由三部分组成:1)提供电能的能源(图中为干电池),简称电源或激励源或输入,电源把其它形式的能量转换成电能;2)用电设备(图中为灯泡),简称负载,负载把电能转换为其他形式的能量。

3)连接导线,导线提供电流通路,电路中产生的电压和电流称为响应。

任何实际电路都不可缺少这三个组成部分。

图1 手电筒电路实际电路功能:1)进行能量的传输、分配与转换(如电力系统中的输电电路)。

2)进行信息的传递与处理(如信号的放大、滤波、调协、检波等等)。

实际电路的外貌结构、具体功能以及设计方法各不相同,但遵循同一理论基础,即电路理论。

2.电路模型电路模型——足以反映实际电路中电工设备和器件(实际部件)的电磁性能的理想电路元件或它们的组合。

理想电路元件——抽掉了实际部件的外形、尺寸等差异性,反映其电磁性能共性的电路模型的最小单元。

发生在实际电路器件中的电磁现象按性质可分为:1)消耗电能;2)供给电能;3)储存电场能量;4)储存磁场能量假定这些现象可以分别研究。

将每一种性质的电磁现象用一理想电路元件来表征,有如下几种基本的理想电路元件:1)电阻——反映消耗电能转换成其他形式能量的过程(如电阻器、灯泡、电炉等)。

2)电容——反映产生电场,储存电场能量的特征。

3)电感——反映产生磁场,储存磁场能量的特征。

4)电源元件——表示各种将其它形式的能量转变成电能的元件需要注意的是:1)具有相同的主要电磁性能的实际电路部件,在一定条件下可用同一模型表示;2)同一实际电路部件在不同的工作条件下,其模型可以有不同的形式。

如在直流情况下,一个线圈的模型可以是一个电阻元件;在较低频率下,就要用电阻元件和电感元件的串联组合模拟;在较高频率下,还应计及导体表面的电荷作用,即电容效应,所以其模型还需要包含电容元件。

第1章电路模型和电路定律

第1章电路模型和电路定律

显然:由麦克斯韦方程组(Maxwell’s equations) 抽象简化成简单代数规则,是实现设计建造所有实用 系统的第一步。它也是实现设计建造所有实用系统的 基础。
电路分析课程就是讲解进行这种抽象与简化的第 一步。
推荐教材

1、电路模型和电路定律 2、电路元件的等效变换 3、电路的一般分析方法 4、电路定理 5、含有运算放大器的电阻电路 6、储能元件 7、一阶电路和二阶电路的时域分析 8、相量法 9、单相正弦稳态电路的分析
这是英国科学家麦克斯韦在十九世纪建立的一组描 述电场、磁场与电荷密度、电流密度之间关系的偏微方 程组。
麦克斯韦方程组(Maxwell’s equations)枯涩难懂, 直接用于路论中的实用电气系统设计难度很大。 例如:图示电路。 建立麦氏方程组:
I
I J C dS
S
U Edl J E

10、含有耦合电感的电路 11、电路的频率响应 12、三相电路 13、非正弦周期电流电路和信号的频谱 14、线性动态电路的复频域分析 15、电路方程的矩阵形式 16、二端口网络 17、非线性电路 18、均匀传输线
第1章
电路模型和电路定律
本章内容
1.1
1.2 1.3电路Fra bibliotek电路模型1.4
电路元件特性
场论描述自然界任何物体电磁属性的物理定律是麦 克斯韦方程组(Maxwell’s equations)。它也是设计实用 电气系统的根本。
描述电荷如何产生电场的高斯定律; 论述磁单极子不存在的高斯磁定律; 描述时变磁场如何产生电场的法拉 第感应定律; 描述电流和时变电场怎样产生磁场 的麦克斯韦-安培定律。
电、电物理量及其参考 方向

电路基础知识1

电路基础知识1

电路基础
令 G 1/R
G称为电导 电导的单位: S (西) (Siemens,西门子)
则 欧姆定律表示为 i G u . 线性电阻R是一个与电压和电流无关的常数。 伏安特性曲线:
u
R tg 电阻元件的伏安特性为 一条过原点的直线

O
i
电路基础
(2) 电阻的电压和电流的参考方向相反 i R u
在参考方向选定后,电流(或电压) 值才有正负之分。 对任何电路分析时都应先指定各处的 i , u 的参考方向。 例:
I
a
R
b
若 I = 5A ,则实际方向与参考方向一致, 若 I =-5A ,则实际方向与参考方向相反。
电路基础
R
5、关联参考方向: i
+
u
-
• 当电压的参考方向指定后,指定电流从标以电压参考 方向的“+”极性端流入,并从标“—”端流出,即电流
电路基础
1.5 电容元件 (capacitor)
1、电容器
+ + + + ++ ++ +q
– – – – –q
-- --
线性定常电容元件:任何时刻,电容元件极板上的电 荷q与电流 u 成正比。
2、电路符号
C
电路基础
3. 元件特性 与电容有关两个变量: C, q i 对于线性电容,有: q =Cu
(1) i的大小与 u 的变化率成正比,与 u 的大小无关;
(2) 电容在直流电路中相当于开路,有隔直作用; (3) 电容元件是一种记忆元件; (4) 当 u,i为关联方向时,i= Cdu/dt;
u,i为非关联方向时,i= –Cdu/dt 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河北科技师范学院 欧美学院 机电系
问题 复杂电路或交变电路中,两点间电压的实
际方向往往不易判别,给实际电路问题的 分析计算带来困难。 电压(降)的参考方向 参考方向 U 实际方向 假设高电位指向低电 位的方向。 参考方向 U – 实际方向
+

+
+


+
U >0
U<0
河北科技师范学院 欧美学院 机电系
河北科技师范学院 欧美学院 机电系
绪言
在电子技术领域内,信号、电路和系统是 三个相互联系又有区别的基本成分。 信号是运载信息的工具。 电路是对信号进行加工、处理的具体结构。 系统是信号通过的全部电路和设备的总和。 电路理论根据电路模型探讨各种电路的一 般分析计算方法和设计方法。
河北科技师范学院 欧美学院 机电系
化时,电流的实际方向往往很难事先判断。
河北科技师范学院 欧美学院 机电系
方向、参考方向 习惯上规定正电荷运动的方向或负电荷运动的 反方向为电流的实际方向。在分析与计算电路时, 常可任意选定某一方向作为电流的参考方向,或称 为正方向。当电流的实际方向与其参考方向一致 时,则电流为正值;当电流的实际方向与其参考方 向相反时,则电流为负值。
河北科技师范学院 欧美学院 机电系
电源: 可将其他形式的能量转换成电能、向 电路提供电能的装置。 电路组成 负载: 可将电能转换成其他形式的能量、在 电路中接收电能的设备。 中间环节:电源和负载之间不可缺少的连接、 控制和保护部件统称为中间环节, 如导线、开关及各种继电器等。 电力系统中 的电路可对电能进行传输、分配 和转换。 电子技术中 的电路可对电信号进行传递、变 换、储存和处理。 建立在同一电路理论基础上。
单位正电荷由a点移到b点时电场力所 做的功称为a、b两点间的电位差,即 a、b间的电压,用符号u表示 。
电位真正降低的方向。通常
电压的高电位端标为“+”极, 低电位端标为“-”极。如果电 压的大小和方向都不随时间改变 ,则这种电压称为恒定电压或直 流电压。用大写字母U表示。
单位
V (伏)、kV、mV、V
中间环节
S
开关 电 池 导线 R0
I
+
RL U
小 灯 泡
电源
+ _US
负 载

图1.1 手电筒的实际电路和电路模型
河北科技师范学院 欧美学院 机电系
1.2 电压和电流的参考方向
电路中的主要物理量有电压、电流、电荷、 磁链、能量、电功率等。在线性电路分析中人们 主要关心的物理量是电流、电压和功率。
河北科技师范学院 欧美学院 机电系
U6 - 6 + U5 5 - I3

I1
+ 2 U2 - +
P U1I1 1 2 2W(发出) 1
P2 U 2 I1 (3) 2 6W(发出)
P3 U 3 I1 8 2 16 W(吸收)
P4 U 4 I 2 (4) 1 4W(发出)
电路模型和电路定律
1.8 基尔霍夫定律
1.7 受控电源
1.3 电功率 和能量
1.5 电阻元件
1.6 电压源和 电流源
1.4 电路元件
河北科技师范学院 欧美学院 机电系
本章学习目的及要求
本章内容是贯穿全课程的重要理论基础, 要求在学习中给予足够的重视。通过本章学习 要求理解理想电路元件和电路模型的概念;理 解电压、电流和功率的概念;深刻理解和掌握 参考方向在电路分析中的应用;牢固掌握基尔 霍夫定律及其应用。 教学重点:基尔霍夫定律和VCR 教学难点:电压、电流参考方向和受控电源
河北科技师范学院 欧美学院 机电系
仔细读懂下面例题 例1-4 右下图电路,若已知元件吸收功率为-20W,
电压U=5V,求电流I。
I
+
U
元 件
解: 由图可知UI为关联参考方向,因此: P -20 I= -4A U = 5 =
河北科技师范学院 欧美学院 机电系
例1-5
+ I1 + 2 U2 - +
U1 - + 1 - U4 4
河北科技师范学院 欧美学院 机电系
单位时间内电流做的功称为电功率,用“P ”表示: UIt W P = t = t = UI …… (1-1) 当式中电压单位为V、电流单位为A、电功率P 的单位为瓦特(W)。
河北科技师范学院 欧美学院 机电系
在 u、 i 取关联参考方向的前提下,乘积“ ui ” 表示元件吸收的功率:
U3 3
I2

P5 U5 I3 7 (1) 7W(发出)
注意
P6 U 6 I 3 (3) (1) 3W(吸收)
对一完整的电路,满足:发出的功率=吸收的功率
河北科技师范学院 欧美学院 机电系
思考 回答 在电路分析中,引入参考方向的目的是什么?
应用参考方向时,你能说明“正、负”、“加、 减”及 “相同、相反”这几对词的不同之处吗? 电路分析中引入参考方向的目的是为分析和计算电路提 供方便和依据。 应用参考方向时,“正、负”是指在参考方向下,电压 和电流的数值前面的正、负号,若参考方向下一个电流为 “-2A”,说明它的实际方向与参考方向相反,参考方向下 一个电压为“+20V”,说明其实际方向与参考方向一致; “加、减”指参考方向下列写电路方程式时,各项前面 的正、负符号; “相同、相反”则是指电压、电流是否为关联参考方向, “相同”是指电压、电流参考方向关联,“相反”指的是电 压、电流参考方向非关联。
第11章 三相电路 第12章 非正弦周期电流电路和 信号的频谱 第13章 拉普拉斯变换 第14章 网络函数 第15章 电路方程的矩阵形式 第16章 二端口网络 第17章 非线性电路简介 第18章 均匀传输线
河北科技师范学院 欧美学院 机电系
第1章
1.1 电路 和电路模 型 1.2 电流和电 压的参考方向
U6 - 6 + U5 5 - I3
求图示电路中各 方框所代表的元件吸 收或产生的功率。已知: U1=1V, U2= -3V,U3=8V, U4= -4V, U5=7V, U6= -3V,I1=2A, I2=1A,,I3= -1A
河北科技师范学院 欧美学院 机电系
+
U1 - + 1 - U4 4 +
教材:
《电路》(第五版). 邱关源主编. 北京: 高等教育 出版社, 2006, 6
主要参考书:
1.《电路分析基础》(第三版). 李瀚荪. 北京: 高等 教育出版社, 1993 2.《电路基本理论》(第三版). 王霭. 上海: 上海交 大出版社, 2002 3.《电路原理》(第三版). 江泽佳. 北京: 高等教育 出版社, 1992 4.《电路理论基础》(第二版). 周长源. 北京: 高等 教育出版社, 1996
河北科技师范学院 欧美学院 机电系
i
+
i
-
u
关联参考方向
u
非关联参考方向
+
图 1.4 关联参考方向与非关联参考方向
河北科技师范学院 欧美学院 机电系
例1-1

i
B
A
u

电压电流参考方向如图中所标, 问:对A、B两部分电路电压电 流参考方向关联否? 答:A电压、电流参考方向非关联; B电压、电流参考方向关联。
电压参考方向的三种表示方式: (1) 用箭头表示:
U
(2)用正负极性表示
+
(3)用双下标表示
U
A
UAB
B
河北科技师范学院 欧美学院 机电系
1.2.3 关联参考方向
在电路分析中,电流与电压的参考方向是任意 选定的,两者之间独立无关。但是为了方便起见, 对于同一元件或同一段电路,习惯上采用“关联” 参 考方向。即电流的参考方向与电压参考“+”极到 “-”极的方向选为一致,如图1-4所示。关联参考 方向又称为一致参考方向,反之,称为非关联参考 方向。 当电流、电压采用关联参考方向时,电路图上 只需标电流参考方向和电压参考极性中的任意一种 即可。
1.2.1 电流及其参考方向
电流
电流强度
带电粒子有规则的定向运动
单位时间内通过导体横截面的电荷量
Δq dq i(t ) lim Δt 0 Δt dt
def
单位
A(安培)、 kA、mA、A
1kA=103A 1mA=10-3A
1 A=10-6A
问题 对于复杂电路或电路中的电流随时间变
河北科技师范学院 欧美学院 机电系
电路的功能
共性
1.1.2 电路模型
实际电气装置种类繁多,如自动控制设备,卫星接收 设备,邮电通信设备等;实际电路的几何尺寸相差甚大, 如电力系统或通信系统可能跨越省界、国界甚至是洲际的, 而集成电路芯片小的如同指甲。 在电路分析中,为了方便于对实际电气装置的分析研 究,通常在一定条件下需要对实际电路采用模型化处理, 即用抽象的理想电路元件及其组合近似地代替实际的器件, 从而构成了与实际电路相对应的电路模型。
图1.2 电流的参考方向
河北科技师范学院 欧美学院 机电系
电流参考方向的两种表示: 用箭头表示:箭头的指向为电流的参考方向。 i A 参考方向 B
用双下标表示:如 iAB , 电流的参考方向由A指向B。 A
iAB
B
河北科技师范学院 欧美学院 机电系
1.2.2 电压及其参考方向
电压u
实际电压方向
河北科技师范学院 欧美学院 机电系
仔细读懂下面例题
例1-3 右下图电路,若已知元件中电流为I=-100A,
电压U=10V,求电功率P,并说明元件是电源 还是负载。 U I +
相关文档
最新文档