人教版八年级数学下册《平均数》基础练习
人教八年级数学下册-平均数(附习题)
误区 计算加权平均数时漏掉权 二八年级期末考试成绩如下:八(1)班55人,平 均分 81分;八(2)班40人,平均分90分;八(3)45 人,平均分85分;八(4)班60人,平均分84分.求 年级平均分. 错解:x 81 90 85 84 =8(5 分)
4
正解:x 81 55 90 40 85 45 8460 =84.(6 分)
2.加权平均数中的“权”对计算结果 有什么影响?
3.能把这种加权平均数的计算方法推 广到一般吗?
一般地,若n个数x1,x2,…,xn的权分别是w1,
w2,…,wn,则
x=
x1w1+x2w2 + L +xnwn w1+w2+ L +wn
叫做这n个数的加权平均数.
如果这家公司想招一名口语能力较强的翻译, 听、说、读、写成绩按3:3:2:2的比确定,计 算两名应试者的平均成绩(百分制),从他们的 成绩看,应录取谁?
6+4
此时乙将被录取
2.晨光中学规定学生的学期体育成绩满分为100分, 其中早锻炼及体育课外活动占20%,期中考试 成绩占30%,期末考试成绩占50%.小桐的三项 成绩(百分制)依次是95分、90分、85分,小 桐这学期的体育成绩是多少?
解:小桐这学期的体育成绩为:
95 20%+90 30%+8550% =88.5(分) 20% 30% 50%
即样本平均数是1672.
用寿命合适吗?
因此,可以估计这批灯泡的平均使用寿
命大约是1672h.
1.例3中各组的“数据”和“权”怎么确定? 2.总结用样本平均数估计总体平均数的一般步骤. 3.某次数学测试成绩统计如图,试根据统计图中
的信息,求这次测试的平均成绩.
八年级数学(下)第二十章《平均数》同步练习题(含答案)
八年级数学(下)第二十章《平均数》同步练习题(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为95分、80分、90分,若依次按照60%、30%、10%确定成绩,则小王的成绩是 A .85.5分B .90分C .92分D .265分【答案】B【解析】根据加权平均数的求法可以求得小王的成绩,由题意可得,小王的成绩是:9560%8030%9010%9060%30%10%⨯+⨯+⨯=++,故选B .2.我省某市五月份第二周连续七天的空气质量指数分别为:111、96、47、68、70、77、105,则这七天空气质量指数的平均数是 A .71.8B .77C .82D .95.7【答案】C【解析】平均数是指在一组数据中所有数据之和再除以数据的个数,因此(111+96+47+68+70+77+105)÷7=82,故选C .3.学校广播站要招聘1名记者,小亮和小丽报名参加了3项素质测试,成绩如下∶将写作能力、普通话水平、计算机水平这三项的总分由原先按3∶5∶2计算,变成按5∶3∶2计算,总分变化情况是 A .小丽增加多B .小亮增加多C .两人成绩不变化D .变化情况无法确定【答案】B【解析】当写作能力、普通话水平、计算机水平这三项的总分按3∶5∶2计算时, 小亮的成绩是90375551274.7352⨯+⨯+⨯=++,小丽的成绩是60384572274.4352⨯+⨯+⨯=++,当写作能力、普通话水平、计算机水平这三项的总分按5∶3∶2计算时,小亮的成绩是90575351277.7352⨯+⨯+⨯=++,小丽的成绩是60584372269.6352⨯+⨯+⨯=++, 故写作能力、普通话水平、计算机水平这三项的总分由原先按3∶5∶2计算,变成按5∶3∶2计算, 小亮的成绩变化是77.7-74.7=3,小丽的成绩变化是69.6-74.4=-4.8,故小亮成绩增加的多,故选B . 4.某住宅小区六月份1日至5日每天用水量变化情况如图所示.那么这5天平均每天的用水量是A .30吨B .31吨C .32吨D .33吨【答案】C【解析】由折线统计图知,这5天的平均用水量为∶3032362834325++++=(吨),故选C .5.某同学用计算器计算30个数据时,错将其中一个数据105输入15,那么由此求出的平均数与实际平均数的差是 A .3.5B .3C .-3D .0.5【答案】C【解析】求30个数据的平均数时,错将其中的一个数据105输入成15,即少加了90; 则由此求出的平均数与实际平均数的差是∶-90330=-,故选C . 二、填空题:请将答案填在题中横线上.6.8个数x 1,x 2,46,41,43,39,37,34的平均数为40,则x 1+x 2=________. 【答案】80【解析】121(464143393734)408x x +++++++=,∴x 1+x 2=80,故答案为:80. 7.小青在八年级上学期的数学成绩如下表所示.如果学期总评成绩根据如图所示的权重计算,小青该学期的总评成绩是__________分.【答案】84.2【解析】小青该学期的总评成绩为∶86×10%+90×30%+81×60%=84.2(分),故答案为∶84.2. 8.某校为丰富学生课余生活,举办了艺术周活动,八年级一班的合唱成绩如下表∶若去掉一个最高分和一个最低分,则余下数据的平均分是__________. 【答案】9.5分【解析】去掉一个最高分9.9分,一个最低分9.2分,余下数据的平均分为9.29.329.639.72769.512328+⨯+⨯+⨯==+++(分).故答案为:9.5分.9.若两组数x 1,x 2,…,x n ;y 1,y 2,…,y n ,它们的平均数分别为x 和y ,那么新的一组数∶x 1+y 1,x 2+y 2,…,x n +y n 的平均数是__________. 【答案】x +y 【解析】由题意知,121()n x x x x n=+++,121()n y y y y n=+++.所以新数据的平均数为1122331212111()()()n n n n x y x y x y x y x x x y y y x y nn n++++++++=+++++++=+.故答案为:x +y .三、解答题:解答应写出文字说明、证明过程或演算步骤.10.设一组数据12n x x x ,,…,的平均数为m ,求下列各组数据的平均数∶ (1)12333n x x x +++,,…,; (1)12222n x x x ,,…,. 【解析】设一组数据12n x x x ,,…,的平均数是m ,即12nx x x x m n+++==…,则12n x x x mn +++=…. (1)∵12n x x x mn +++=…,∴123333n x x x mn n ++++++=+…,∴12333n x x x +++,,…,的平均数是33mn nm n+=+. (2)∵12n x x x mn +++=…, ∴122222n x x x mn +++=…,∴12222n x x x ,,…,的平均数是22mnm n=. 11.一种什锦糖果是由甲、乙、丙三种不同价格的糖果混合而成的,已知甲种糖果的单价为9元/kg ,乙种糖果的单价为10元/kg ,丙种糖果的单价为12元/kg .(1)若甲、乙、丙三种糖果数量按2∶5∶3的比例混合,则混合后得到的什锦糖果的单价定为每千克多少元才能保证获得的利润不变?(2)若甲、乙、丙三种糖果数量按6∶3∶1的比例混合,则混合后得到的什锦糖果的单价定为每千克多少元才能保证获得的利润不变?【解析】(1)1×20%×9+1×50%×10+1×30%×12=10.4(元). 要保证混合后的利润不变,这种什锦糖果单价应定为10.4元. (2)1×60%×9+1×30%×10+1×10%×12=9.6(元). 要保证利润不变,这种什锦糖果单价应定为9.6元.12.学校经过初步比较后,决定从八(1)、(4)、(8)班这三个班中推荐一个班为市级先进班集体的候选班、现对这三个班进行综合素质考评,下表是它们五项素质考评的得分表(以分为单位,每项满分为10分).根据五个项目的重要程度,若按行为规范∶学习成绩∶校运动会∶艺术获奖∶劳动卫生=3∶2∶3∶1∶1比例,对各班的得分重新计算,比较出大小关系,并从中推荐一个得分最高的班级作为市级先进班集体的候选班.【解析】设k 1,k 4,k 8顺次为3个班的考评分,则 k 1=0.3×10+0.2×10+0.3×6+0.1×10+0.1×7=8.5, k 4=0.3×10+0.2×8+0.3×8+0.1×9+0.1×8=8.7, k 8=0.3×9+0.2×10+0.3×9+0.1×6+0.1×9=8.9,因为k 8>k 4>k 1,所以推荐八(8)班为市级先进班集体的候选班.13.某班进行个人投篮比赛,受污损的下表记录了在规定时间内投进几个球的人数情况∶同时已知,进球3个以上(包括3个)的人平均每人投进3.5个球;进球4个以下(包括4个)的人平均每人投进2.5个球,问∶投进3个球和4个球的各有多少人? 【解析】设投进3个球的有x 人,投进4个球的有y 人,由题意得,3452 3.5(2)01122734 2.5(127)x y x y x y x y ++⨯=++⎧⎨⨯+⨯+⨯++=++++⎩, 整理,得6318x y x y -=⎧⎨+=⎩,解得93x y =⎧⎨=⎩.故投进3个球的有9人,投进4个球的有3人.14.某校举办八年级学生数学素养大赛,比赛共设四个项目:七巧板拼图、趣题巧解、数学应用、魔方复原,每个项目得分都按一定百分比折算后记入总分.下表为甲、乙、丙三位同学的得分情况(单位∶分).(1)比赛后,甲猜测七巧板拼图、趣题巧解、数学应用、魔方复原这四项得分分别按10%,40%,20%,30%折算记入总分.根据猜测,求出甲的总分;(2)本次大赛组委会最后决定,总分为80分以上(包括80分)的学生获一等奖.现获悉乙、丙的总分分别是70分、80分,甲的七巧板拼图、魔方复原两项得分折算后的分数和是20分,问∶甲能否获得这次比赛一等奖?【解析】(1)由题意,得甲的总分为∶66×10%+89×40%+86×20%+68×30%=79.8(分).(2)设趣题巧解所占的百分比为x,数学运用所占的百分比为y,由题意,得20608070 20809080x yx y++=⎧⎨++=⎩,解得0.30.4 xy=⎧⎨=⎩,∴甲的总分为∶20+89×0.3+86×0.4=81.1>80,∴甲能获一等奖.。
人教版八年级下册数学 20.1.1 平均数 同步练习
20.1.1 平均数同步练习一、选择题1.某居民区的月底统计用电情况如下,其中3户用电45度,5户用电50度,6户用电42度,则平均用电()度.A. 41B. 42C. 45.5D. 462.甲、乙、丙三种糖果售价分别为每千克6元,7元,8元,若将甲种8千克,乙种10千克,丙种3千克混在一起,则售价应定为每千克().A. 6.7元B. 6.8元C. 7.5元D. 8.6元3.小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为95分、80分、90分,若依次按照60%、30%、10%确定成绩,则小王的成绩是()A. 85.5分B. 90分C. 92分D. 265分4.宾馆客房的标价影响住宿百分率,下表是某宾馆在近几年旅游周统计的平均数据:在旅游周,要使宾馆客房收入最大,客房标价应选()A. 160元B. 140元C. 120元D. 100元5.湖南省2017年公务员录用考试是这样统计成绩的:综合成绩=笔试成绩×60%+面试成绩×40%.小红姐姐的笔试成绩是82分,她的竞争对手的笔试成绩是86分.小红姐姐要使自己的综合成绩追平竞争对手,则她的面试成绩必须比竞争对手多()A. 2.4分B. 4分C. 5分D. 6分6.某校把学生的纸笔测试、实践能力、成长记录三项成绩分别按50%、20%、30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是()A. 甲B. 乙、丙C. 甲、乙D. 甲、丙7.在计算四个数的加权平均数时,下列各组数可以作为权数的是()A. -0.2,0.1,0.4,0.7B. ,0,,C. ,,,D. 0.2,0.7,0,0.28.小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为80分、85分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A. 255分B. 分C. 分D. 分二、填空题9.小亮本学期数学的平时作业、期中考试、期末考试及数学综合实践活动的成绩分别是88分、82分、90分和90分,各项占学期成绩的百分比分别为30%、30%、35%、5%,则小亮的数学学期成绩是__________分.10.若数据3,2,m,5,9,n的平均数为3,那么m和n的平均数是______.11.甲、乙、丙三人分别投资50万元、30万元、20万元成立一个股份公司,一年后亏损了12万,甲提出每人承担4万元的损失,你认为这个提议_______(填“合理”或“不合理”). 12.某学生7门学科考试成绩的平均分是80分,其中3门学科的总分是78分,则另外4门学科成绩的平均分是_______________.13.一家公司打算招聘一名英文翻译,对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:应试者听说读写甲85 83 78 75乙73 80 85 82如果这家公司想招一名口语能力较强的翻译,听、说、读、写成绩按照3∶3∶2∶2的比确定,则甲的得分为_________,乙的得分为__________,应该录取__________.14.已知一组数据x1,x2,x3,x4的平均数是2,则数据2x1+3,2x2+3,2x3+3,2x4+3的平均数是___.三、解答题15.(8分)某公司招聘人才,对应聘者分别进行阅读、思维和表达能力三项测试,其中甲、乙两人的成绩(单位:分)如下表:根据实际需要,公司将阅读、思维和表达能力三项测试得分按3∶5∶2的比例确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?16.某公司欲聘请一位员工,三位应聘者A、B、C的原始评分如下表:应聘者仪表工作经验电脑操作社交能力工作效率A 4 5 5 3 3B 4 3 3 5 4C 3 3 4 4 4(1)如果按五项原始评分的平均分,应聘用谁;(2)如果按仪表、工作经验、电脑操作、社交能力、工作效率的原始评分分别占10%,15%,20%,25%,30%综合评分,谁将被聘用?为什么?17.体育课上,全班男同学进行了100米测验,达标成绩为15秒,下表是某小组8名男生的成绩测试记录,其中“+”表示成绩大于15秒,“-”表示成绩小于15秒.-0.8 +1 -1.2 0 -0.7 +0.6 -0.4 -0.1问:(1)这个小组男生最优秀的成绩是多少秒?最差的成绩是多少秒?(2)这个小组男生的达标率为多少?(达标率=达标人数总人数)(3)这个小组男生的平均成绩是多少秒?18.2019年3月1日,某园林公司派出一批工人去完成种植2200棵景观树木的任务,这批工人3月1日到5日种植的数量(单位:棵)如图所示.(1)这批工人前两天平均每天种植多少棵景观树木?(2)因业务需要,到3月10日必须完成种植任务,你认为该园林公司是否需要增派工人?请运用统计知识说明理由.19.个体户王某经营一家饭馆,下面是饭馆所有工作人员在某个月份的工资;王某3000元,厨师甲450元,厨师乙400元,杂工320元,招待甲350元,招待乙320元,会计410元.计算工作人员的平均工资;计算出的平均工作能否反映帮工人员这个月收入的一般水平?去掉王某的工资后,再计算平均工资;后一个平均工资能代表一般帮工人员的收入吗?根据以上计算,从统计的观点看,你对的结果有什么看法?20.设一组数据的平均数为m,求下列各组数据的平均数:;.参考答案1.C【解析】由题意可得:(度).故选C.2.B【解析】由题意可得:(元).故选B.3.B【解析】根据加权平均数的求法可以求得小王的成绩,由题意可得,小王的成绩是:,故选B.点睛:本题主要考查加权平均数的计算方法,解决本题的关键是要熟练掌握加权平均数的计算方法.4.B【解析】试题解析:设客房的总数是a,A. 160元:a×63.8%×160=102.08a (元);B. 140元:a×74.3%×140=104.02a (元);C. 120元:a×84.1%×120=100.92a (元);D. 100元:a×95%×100=95a (元);104.02a>102.08a>100.92a>95a;所以B(140元)时收入最高.故选B.5.D【解析】解:设小红姐姐的面试成绩为x分,她的竞争对手的面试成绩是y分,则82×0.6+0.4x=86×0.6+0.4y,解得:x-y=6,故小红姐姐的面试成绩比竞争对手多6分.故选D.6.C【解析】利用加权平均数的定义分别计算成绩,然后判断谁优秀即可.解:由题意知,甲的总评成绩=90×50%+83×20%+95×30%=90.1,乙的总评成绩=98×50%+90×20%+95×30%=95.5,丙的总评成绩=80×50%+88×20%+90×30%=84.6,∴甲、乙的学期总评成绩是优秀。
人教版数学八年级下册20.1.1平均数
次.
选手
演讲内容
演讲能力
演讲效果
A
85
95
95
B
95
85
95
解析:本题中演讲内容、演讲能力、演讲效果三 项成绩的权分别是 __5_0_%___、___4_0_%__、___1_0_%___
选手A的最后得分是:
85 ×50%+95 ×40%+95 ×10% 50%+40%+10%
=90
√选手B的最后得分是: 95 ×50%+85 ×40%+95 ×10% =91
=88.5
归纳权的形式
:
1、比值的形式
2、百分比的形式
如 3:3:2:4 如 20%,30%,50%
本节课你掌握了什么知识?
权:数据的重要程度 加权平均数: 平均数不同比重数据的
加权平均数的计算:第一步:数据分别乘以相应的权作为分子;
第二步:所有的权相加作为分母; 第三步:将分子除以分母
布置作业
自行阅读教材 P111—113
问题1 一家公司打算招聘一名英文翻译。对甲、乙 两名应试者各进行了听、说、读、写的英语水平测试,他
们的各项成绩(百分制)如下表所示。
应试者 听 说 读 写
甲
85 78 85 73
乙
73 80 82 83
(1)如果公司想招一名综合能力较强的翻译, 计算两名应试者的平均成绩,应该录用谁?
答:因为_x__乙__>__x_甲 __,所以__乙___将被录取.
典例评析
例1 一次演讲比赛中,评委将从演讲内容、演讲
能力、演讲效果三个方面为选手打分.各项成绩均按百分
制计,然后再按演讲内容占50%、演讲能力占40%、演
专题数据的分析(常考知识点分类专题)(基础篇)(专项练习)八年级数学下册基础知识专项讲练
专题20.5 数据的分析(常考知识点分类专题)(基础篇)(专项练习)一、单选题★【知识点一】平均数与加权平均数1. 一组数据,有4个数的平均数为20,另外16个数的平均数为15,则这20个数的平均数是()A. 16B. 17.5C. 18D. 202. 思政课上,某小组的2023全国“两会”知识测试成绩统计如表(满分10分):成绩78910频数1342则该组测试成绩的平均数为( )(单位:分)A. 8.2B. 8.3C. 8.7D. 8.9★【知识点二】利用平均数与加权平均数做出决策3. 实验中学举行了以“爱我中华”为主题的演讲比赛,7名评委为某选手的打分如表(满分10分),去除一个最高分和一个最低分之后取平均值为最后得分,该选手的最后得分为()分数8.308.509.009.50频数1312A. 8.24B. 8.65C. 8.80D. 8.924. 某商店在一段时间内销售了某种女鞋30双,各种尺码的销售量如表所示,如果鞋店要购进100双这种女鞋,那么购进24厘米、24.5厘米和25厘米三种女鞋数量之和最合适的是()尺码/厘米2222.52323.52424.525销售量/双12512631A. 20双B. 33双C. 50双D. 80双★【知识点三】众数与中位数5. 样本数据1-,4,7,a的中位数与平均数相同,则a的值是( )A. 4-或2或12B. 2或5或12C. 4-或2D. 2-或126. 荸荠口感脆甜,营养丰富,黄岩院桥素有“店头荸荠三根葱”的美誉.某校兴趣小组对50株荸荠的叶状茎生长度进行测量、记录,统计如下表:株数(株)712238叶状茎长度45.646.546.947.8(cm)这批荸荠叶状茎长度的众数为( )A. 45.6B. 46.5C. 46.9D. 47.8★【知识点四】利用众数与中位数做出决策7. 从小到大的一组数据-1,1,2,x,6,8的中位数为2,则这组数据的众数和平均数分别是()A. 2,4B. 2,3C. 1,4D. 1,38. 2012年5月份,齐齐哈尔市一周空气质量报告中某项污染指数的数据是:31,35,30,31,34,32,31,这组数据的中位数、众数分别是【】A. 32,31B. 31,31C. 31,32D. 32,35★【知识点五】方差、极差与标准差9. 一个样本有20个数据,其中最小值为61,最大值为70,若取组距为2,则可分为( )A. 5组B. 6组C. 7组D. 8组10. 某小组五位同学参加某次考试(满分20分)的平均成绩是16分,其中三位男生成绩的方差为6,两位女生的成绩分别为17分、15分,则这五位同学成绩的标准差为()B. 2C.D. 6A.★【知识点六】利用方差做出决策11. 某校队有A ,B ,C 三位短跑运动员,下表是三人最近10次百米赛跑的成绩平均分以及方差,如果现在要推荐一位运动员参加区级比赛,你认为最合适的运动员是( )ABCx1320'''1305'''1305'''2s 2.16.40.9A. AB. BC. CD. 无法确定12. 某鞋店对某款女鞋一周的销售情况进行统计,结果如下:尺码353637383940销售量(双)618331221根据上表信息,该店主决定下周多进一些37码的鞋子,影响店主进货决策的统计量是( )A. 众数B. 中位数C. 平均数D. 方差二、填空题★【知识点一】平均数与加权平均数13. 已知数据a ,b ,c 的平均数为8,那么数据123a b c +++,,的平均数是_________.14. 面试时,某人的基本知识、表达能力、工作态度的得分分别是85分,80分,88分,若依次按20%,30%,50%的比例确定成绩,则这个人的面试成绩是______分.★【知识点二】利用平均数与加权平均数做出决策15. 某公司招聘人才,对应聘者分别进行了阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的测试成绩(百分制)如下表:(单位:分),将阅读能力、思维能力和表达能力三项测试得分按1:3:1的比确定每人的最后成绩,被录用的是_________.应聘者阅读能力思维能力表达能力甲859080乙95809516. 某公司招聘,甲、乙两位候选人面试和笔试成绩如表所示.若面试与笔试成绩按6和4的权计算每人的平均成绩,从两人的成绩看,公司录取的是__________(填“甲”或“乙”).候选人面试笔试甲9284乙9086★【知识点三】众数与中位数17. 小王统计了一周家庭用水量,绘制了如图的统计图,那么这周用水量的众数是______,中位数是________.18. 已知3、2、n的平均数与2n、3、n、3、5的唯一众数相同,则这8个数的中位数是______.★【知识点四】利用众数与中位数做出决策19. 如图是容容前三次购买苹果单价的统计图,第四次又买的苹果单价是a元/千a___________.克,发现这四个单价的中位数恰好也是众数,则20. 家鞋店对上周某一品牌女鞋的销售量统计如下:尺码/厘米2222.52323.52424.5销售量/双1251173该鞋店决定本周进该品牌女鞋时多进一些尺码为23.5厘米的鞋,则影响鞋店决策的统计量是_____.★【知识点五】方差、极差与标准差21. 一组数据2,3,4,7,a,3,5,1的平均数是4,则这组数据的方差为____________.22. 如果有一组数据-2,0,1,3,x的极差是6,那么x的值是_________.★【知识点六】利用方差做出决策23. 甲、乙、丙、丁四名短跑运动员进行百米测试,每人5场测试成绩的平均数x (单位:秒)及方差2s(单位:秒2)如下表所示:甲乙丙丁x1010.110102s2 1.6 2.5 1.5根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择__.24. 某校要从甲、乙两名同学中选取一名成绩稳定的同学去参加数学竞赛,已知五次模拟测试中统计所得的信息为x甲=115,S甲2=12,x乙=115,S乙2=36,则应选择____参加竞赛.三、解答题25. 某校有3600名学生,为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图.(1)参与本次问卷调查的学生共有 人,其中选择D类的人数有 人;(2)在扇形统计图中,求E类对应的扇形圆心角 的度数,并补全C对应的条形统计图;(3)若将A、B、C.D.E这四类上学方式视为“绿色出行”,请估计该校选择“绿色出行”的学生人数.26. 小明随机抽取了某校八年级部分学生,针对他们晚上在家学习时间的情况进行调查,并将调查结果绘制成如下两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)补全条形统计图和扇形统计图;(2)本次抽取的八年级学生晚上学习时间的众数是小时,中位数是小时;(3)若该校共有600 名八年级学生,则晚上学习时间超过1.5 小时的约有多少名学生?27. 某校为了解初中学生每天在校体育活动的时间(单位:h),随机调查了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的初中学生人数为___________,图①中m的值为_____________;(Ⅱ)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(Ⅲ)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.28. 在本学期某次考试中,某校八⑴、八⑵两班学生数学成绩统计如下表:分数5060708090100八⑴351631112班人数八⑵251112137班请根据表格提供的信息回答下列问题:1.八⑴班平均成绩为_________分,八⑵班平均成绩为________分,从平均成绩看两个班成绩谁优谁次?____________________2.八⑴班众数为________分,八⑵班众数为________分.从众数看两个班的成绩谁优谁次?____________________3.已知八⑴班的方差大于八⑵班的方差,那么说明什么?专题20.5 数据的分析(常考知识点分类专题)(基础篇)(专项练习)一、单选题★【知识点一】平均数与加权平均数【1题答案】【答案】A 【解析】【分析】根据平均数的计算方法进行计算即可求解.【详解】解:依题意,这20个数的平均数是()142016151620⨯+⨯=故选:A .【点睛】本题考查了求一组数据的平均数,熟练掌握平均数的定义是解题的关键.平均数:是指一组数据中所有数据之和再除以数据的个数.【2题答案】【答案】C 【解析】【分析】根据表格中的数据和加权平均数的计算方法,可以计算出该组测试成绩的平均数.【详解】解:由表格可得,该组测试成绩的平均数为:7183941028.71342⨯+⨯+⨯+⨯=+++,故选:C .【点睛】本题考查加权平均数、频数分布表,解答本题的关键是明确加权平均数的计算方法.★【知识点二】利用平均数与加权平均数做出决策【3题答案】【答案】C 【解析】【分析】去除一个最高分,取出一个最低分之后,只剩下五个数据,依据加权平均数的概念计算可得.【详解】解:该名选手的最后得分为8.5039.009.508.805⨯++=.故选:C .【点睛】考查了加权平均数,关键是熟练掌握加权平均数公式,注意要去掉一个8.30,一个9.50.【4题答案】【答案】B 【解析】【分析】求得销售这三种鞋数量之和为10,是30的三分之一,故要购进的这三种鞋应是100的三分之.【详解】根据题意可得:∵销售的某种女鞋30双,24厘米、24.5厘米和25厘米三种女鞋数量之和为10,∴要购进100双这种女鞋,购进这三种女鞋数量之和应是100333≈ ,∴购进100双这种女鞋,购进这三种女鞋数量之和最合适的是33双,故选:B【点睛】本题主要考查了综合运用统计知识解决问题的能力,理清题意,是解决此类问题的关键.★【知识点三】众数与中位数【5题答案】【答案】A 【解析】【分析】根据中位数和平均数的意义列方程求解.对于a 的取值分情况讨论:①1a ≤-;②17a -<<;③7a ≥.【详解】①当1a ≤-时,平均数为()11474a -+++,中位数为32,故可得:()1314742a -+++=,解得:4a =-.②当17a -<<时,平均数为()11474a -+++,中位数为42a +,故可得:()1414742a a +-+++=,解得:2a =.③当7a ≥时,平均数为()11474a -+++,中位数为112,故可得:()11114742a -+++=,解得:12a =.综上所述,a 可取4-或2或12.故选:A .【点睛】本题主要考查中位数和平均数的意义.解题的关键是对于a 的值要分情况讨论.【6题答案】【答案】C【解析】【分析】根据众数的定义即可求解,众数:在一组数据中出现次数最多的数.【详解】解:在这组数据中,46.9出现23次,次数最多,∴这批荸荠叶状茎长度的众数为46.9,故选:C .【点睛】本题考查了求一组数据的众数,熟练掌握众数的定义是解题的关键.★【知识点四】利用众数与中位数做出决策【7题答案】【答案】B【解析】【分析】先利用中位数的定义求出x 的值,再根据众数的定义和平均数的公式,即可求出这组数据的众数和平均数.【详解】解:∵一组数据-1,1,2,x ,6,8的中位数为2,∴x =2×2-2=2,2出现的次数最多,故这组数据的众数是2,这组数据的平均数是()11226863-+++++÷=.【点睛】本题主要考查了众数,平均数及中位数,解题的关键是将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【8题答案】【答案】B【解析】【分析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).【详解】解:由此将这组数据重新排序为30、31、31、31、32、34、35,∴中位数是按从小到大排列后第4个数为:31.众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是31,故这组数据的众数为31.所以这组数据的中位数是31,众数是31.故选B .★【知识点五】方差、极差与标准差【9题答案】【答案】A【解析】【分析】先计算这组数据的极差,再根据组数=极差÷组距,进行计算即可.【详解】解:最小值为61,最大值为70,即极差是70619-=,则组数是925÷≈(组).故选:A .【点睛】本题考查的是频数分布表,掌握组距、分组数的确定方法:组距=(最大值-最小值)÷组数是解题的关键.【10题答案】【答案】B【分析】设三位男生的成绩分别为a 、b 、c ,可求得3位男同学考试分数的平均数,再由三位男生的方差为6,求得这个学习小组5位同学考试分数的方差,从而求得标准差.【详解】解:∵两位女生的成绩分别为17分、15分,∴两位女生的成绩的平均数是()1715216+÷=(分),∴三位男生成绩的平均数是16分.三位男生的方差2221[(16)(16)(16)]63a b c =⨯-+-+-=,222(16)(16)(16)18a b c ∴-+-+-=,∴这个学习小组5位同学考试分数的方差222221[(16)(16)(16)(1716)(1516)]5a b c =⨯-+-+-+-+-1(1811)5=⨯++4=,∴2=,故选:B .【点睛】本题考查标准差,计算标准差需要先算出方差,标准差即方差的算术平方根;注意标准差和方差一样都是非负数.★【知识点六】利用方差做出决策【11题答案】【答案】C【解析】【分析】通过比较平均数和方差进行选择即可.【详解】解:A ,B ,C 三位短跑运动员中B 和C 的平均数最小且相等,A ,B ,C 三位运动员中C 的方差最小,∴综合平均数和方差两个方面说明C 成绩既高又稳定,∴最合适的人选是C .故选:C .【点睛】本题考查了平均数和方差数据特征并根据题意进行决策,理解平均数和方差的特征是解题的关键.【12题答案】【答案】A【解析】【分析】根据各种统计量的含义与性质进行选择即可【详解】A 、众数是最多的数,它代表了销量最好,故符合题意;B 、中位数是指排好序后最中间的数,对进货没有指导意义,故不符题意;C 、平均数是所有尺码的平均销售量,反映整体水平,也不能做进货指导,故不符题意;D 、方差反映的是波动水平,不能做进货指导,故不符题意.故选:A【点睛】本题题考查众数、中位数、平均数、方差的理解与应用,理解这些概念是关键.二、填空题★【知识点一】平均数与加权平均数【13题答案】【答案】10【解析】【分析】根据数据a ,b ,c 的平均数为8,求出24a b c ++=,进而求出123a b c +++,,的平均数为10.【详解】解:∵数据a ,b ,c 的平均数为8,∴8324a b c ++=⨯=,∴12312324630a b c a b c +++++=+++++=+=,∴123a b c +++,,的平均数13003==.故答案为10.【点睛】本题考查了算术平均数,平均数是指在一组数据中所有数据之和除以这组数据的个数所得的商,熟悉掌握算术平均数的公式是本题的解题关键.【14题答案】【答案】85【解析】【分析】根据加权平均数进行求解即可.【详解】解:根据题意这个人的面试乘积为85208030885017244485⨯+⨯+⨯=++=%%%,故答案为:85.【点睛】本题考查了加权平均数的计算,熟练掌握加权平均数的计算方法是解本题的关键.★【知识点二】利用平均数与加权平均数做出决策【15题答案】【答案】甲【解析】【分析】分别求出三个人的加权成绩,然后进行比较即可.【详解】解:由题意得:甲的成绩85190380187131⨯+⨯+⨯==++分;乙的成绩95180395186131⨯+⨯+⨯==++分,∴乙的成绩<甲的成绩,∴被录取的是甲,故答案为:甲.【点睛】本题主要考查了加权平均数,解题的关键在于能够熟练掌握加权平均数的求法.【16题答案】【答案】甲【解析】【分析】根据题意先算出甲、乙两位候选人的加权平均数,再进行比较,即可得出答案.【详解】解:甲的平均成绩为:(92×6+84×4)÷10=88.8(分),乙的平均成绩为:(90×6+86×4)÷10=88.4(分),因为88.8>88.4,所以甲将被录取.故答案为:甲【点睛】本题考查了加权平均数,熟练握加权平均数的计算公式是解题的关键.★【知识点三】众数与中位数【17题答案】【答案】①. 1 ②. 1【解析】【分析】根据众数和中位数的定义解答即可.【详解】根据统计图可知用水量为1的天数为3天,最多,故这周用水量的众数是1;将这周用水量按从小到大排列为:0.5,1,1,1,1.5,1.5,2,∴这周用水量的中位数是1.故答案为:1,1.【点睛】本题考查众数和中位数的定义.解题的关键是掌握一组数据中出现次数最多的数值为众数;按顺序排列的一组数据中居于中间位置的数为中位数,当数据为偶数个时,为最中间两个数的平均值.【18题答案】【答案】3.5【解析】【分析】先求出n的值,再求出中位数,求一组数据的中位数是将这组数据从小到大排列,再求这组数据中间的数,即为中位数.【详解】∵2n、3、n、3、5有唯一众数∴2n、3、n、3、5这组数中的众数为3∵3、2、n的平均数与2n、3、n、3、5的唯一众数相同∴3、2、n的平均数为3∴4n=∴这8个数从小到大排列一次是:2、3、3、3、4、4、5、8∴这8个数的中位数是343.52+=.故答案为:3.5.【点睛】本题考查中位数、众数和平均数的求解方法,解题的关键是掌握相关概念,进行数据分析.★【知识点四】利用众数与中位数做出决策【19题答案】【答案】8【解析】【分析】根据统计图中的数据利用中位数和众数的定义即可得到a的值.【详解】由统计图可知,前三次的中位数是8,∵第四次又买的苹果单价是a元/千克,这四个单价的中位数恰好也是众数,a=时,中位数是8.5,众数是9,不合题意;∴当9a=时,中位数是8,众数是8,符合题意;当8a=时,中位数是7,众数是6,不符合题意;当6故答案为:8.【点睛】本题考查条形统计图、中位数、众数,解答本题的关键是明确题意,利用数形结合的思想解答.【20题答案】【答案】众数【解析】【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【详解】解:鞋店最关心的应该是某一尺码鞋子的销售量最多,在统计量中也就是众数,所以影响鞋店决策的统计量是众数,故答案为:众数.【点睛】此题主要考查统计的有关知识,熟练掌握平均数、中位数、众数、方差的意义是解题的关键.★【知识点五】方差、极差与标准差【21题答案】【答案】4.25【解析】【分析】根据平均数的定义先求出x 的值,再根据方差的定义求出这组数的方差即可.【详解】利用平均数的计算公式,得234735148a +++++++=⨯,解得7a =,∴这组数据为2,3,4,7,7,3,5,1,∴这组数据的方差为()()()()()()2222222124234442745414 4.258s ⎡⎤=-+⨯-+-+⨯-+-+-=⎣⎦.故答案为:4.25.【点睛】本题考查了方差的定义、平均数,掌握公式正确求解计算是解题关键.【22题答案】【答案】4或-3##-3或4【解析】【分析】根据极差的定义求解.分两种情况:x 为最大值或最小值.【详解】解:∵3-(-2)=5,一组数据-2,0,1,3,x 的极差是6,∴当x 为最大值时,x -(-2)=6,解得x =4;当x 是最小值时,3-x =6,解得:x =-3.故答案为:4或-3.【点睛】此题主要考查了极差的定义,正确理解极差的定义,能够注意到应该分两种情况讨论是解决本题的关键.★【知识点六】利用方差做出决策【23题答案】【答案】丁【解析】【分析】根据平均数比较成绩的好坏,根据方差比较数据的稳定程度.【详解】甲、丙、丁的平均数较小,丁的方差<甲的方差<丙的方差,∴丁比较稳定,∴成绩较好状态稳定的运动员是丁,故答案为:丁.【点睛】本题重点考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【24题答案】【答案】甲【解析】【分析】比较两人的平均数和方差,方差越小,成绩越稳定,反之,方差越大,成绩越不稳定.【详解】解:∵x甲=x乙=115,S甲2=12<S乙2=36,∴甲、乙的平均成绩相同,但甲的成绩比乙的成绩稳定,∴应该选择甲同学参加竞赛,故答案为:甲.【点睛】本题考查了平均数和方差,熟悉它们的意义是解题的关键.三、解答题【25题答案】α=︒,答案见解析;(3)3456人.【答案】(1)450,72;(2)36【解析】【分析】(1)用A的人数除以A所占总人数的百分比即得总的学生数;用D所占总人数的百分比乘以总的学生数即得D的学生人数;(2)用100%减去A、B、C、D、F所占的百分比,得到E所占的百分比,然后再乘360°,即得到E类对应的圆心角;用20%乘以总的学生数即得到C类的学生数;(3)用3600×4%即得到F类学生的人数,再用3600减去F类学生数即可.【详解】解:(1)用A的人数除以A占总人数的比值:162÷36%=450(人),故本次问卷调查的学生共有450人,其中D类的人数有:450×16%=72(人).故答案为:共有460人,D类的人数有72人.(2)E类学生占总人数的百分比为:1-36%-14%-20%-16%-4%=10%,故E类对应的圆心角为:10%×360°=36°,C类学生为:20%×450=90(人),如下图所示:α=︒.所以36(3)3600名学生中,F类所占的人数为:3600×4%=144(人),故选择“绿色出行”的学生人数为:3600-144=3456(人),所以该校选择“绿色出行”的学生人数为3456(人).【点睛】本题考查了扇形统计图及条形统计图的相关知识,两个统计图要结合看,考查了学生数形结合的思想,熟练的掌握统计图所代表的每一部分的含义是解题的关键.【26题答案】【答案】(1)补全条形统计图和扇形统计图见解析;(2)2,2;(3)晚上学习时间超过1.5 小时的约有450名学生.【解析】【分析】(1)先由1小时的人数及其所占百分比求得总人数,总人数乘以2.5小时对应百分比求得其人数,用2小时人数除以总人数可得其百分比;(2)根据人数、中位数的定义求解可得;(3)总人数乘以样本中2小时和2.5小时人数所占百分比之和可得.【详解】(1)分别由条形统计图和扇形统计图知:1小时的人数为2人、所占百分比为5%,∴被调查的学生总人数为2÷5%=40人,∴2.5小时的人数为40×30%=12人,2小时人数所占百分比为18100%45% 40⨯=,补全条形统计图和扇形统计图如下:(2)2小时出现的次数最多,是18次,因此众数是2小时,把这40个数据从小到大排列后处在第20、21位的数都是2,因此中位数是2小时,故答案为:2,2;(3)晚上学习时间超过1.5小时的学生约有600(30%45%)450⨯+=(人)答:晚上学习时间超过1.5 小时的约有450名学生.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.【27题答案】【答案】(Ⅰ)40,25;(Ⅱ)平均数是1.5,众数为1.5,中位数为1.5;(Ⅲ)每天在校体育活动时间大于1h的学生人数约为720.【解析】【分析】(Ⅰ)求得直方图中各组人数的和即可求得学生人数,利用百分比的意义求得m;(Ⅱ)利用加权平均数公式求得平均数,然后利用众数、中位数定义求解;(Ⅲ)利用总人数乘以对应的百分比即可求解.【详解】解:(Ⅰ)本次接受调查的初中学生人数为:4+8+15+10+3=40(人),m=100×1040=25.故答案是:40,25;(Ⅱ)观察条形统计图,∵0.94 1.28 1.515 1.810 2.13 1.54815103x ⨯+⨯+⨯+⨯+⨯==++++,∴这组数据的平均数是1.5.∵在这组数据中,1.5出现了15次,出现的次数最多,∴这组数据的众数为1.5.∵将这组数据按从小到大的顺序棑列,其中处于中间的两个数都是1.5,有1.5 1.5 1.52+=,∴这组数据的中位数为1.5.(Ⅲ)∵在统计的这组每天在校体育活动时间的样本数据中,每天在校体育活动时间大于1h 的学生人数占90%,∴估计该校800名初中学生中,每天在校体育活动时间大于1h 的人数约占90%.有80090%720⨯=.∴该校800名初中学生中,每天在校体育活动时间大于1h 的学生人数约为720.【点睛】本题考查的是条形统计图的综合运用,还考查了加权平均数、中位数和众数以及用样本估计总体.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.【28题答案】【答案】【答题空1】80【答题空2】80【答题空3】70【答题空4】90【答题空5】(2)班成绩好【解析】【分析】(1)根据平均数的计算公式计算出两个班的平均成绩,即可比较;(2)求出两个班成绩的众数,根据众数的大小即可比较;(3)根据方差的特征即可回答.【详解】(1)八(1)班平均成绩为:503605701680390111001280351631112⨯+⨯+⨯+⨯+⨯+⨯=+++++(分);八(2)班平均成绩为: 502605701180129013100780251112137⨯+⨯+⨯+⨯+⨯+⨯=+++++(分);从平均成绩看两个班成绩一样.(2)八(1)班70分的有16人,人数最多,众数为70(分);八(2)班90分的有13人,人数最多,众数为90(分);从众数看两个班的成绩八(2)班成绩优.(3)八(1)班的方差大于八(2)班的方差,说明八(1)班的学生成绩不很稳定,波动较大.【点睛】本题考查加权平均数、众数的求法以及方差的意义.加权平均数:若n 个数x 1,x 2,x 3,…,x n 的权分别是w 1,w 2,w 3,…,w n ,则112212......n nnx w x w x w w w w ++++++叫做这n 个数的加权平均数.一组数据中出现次数最多的数据叫做众数.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.。
八年级数学人教版下册 平均数同步测试(2022年最新)
在△AOP与△BOP中,
,
∴△AOP≌△BOP,
∴AP=BP,
在△EOP与△FOP中,
,
∴△EOP≌△FOP,
在Rt△AEP与Rt△BFP中,
,
∴Rt△AEP≌Rt△BFP,
∴图中有3对全等三角形,
故答案为3.
考点:角平分线的性质,全等三角形的判定和性质.
2.如图,AB=AD,要证明△ABC与△ADC全等,只需增加的一个条件是______________
21.某市为了解高峰时段从总站乘16路车出行的人数,随机抽查了10个班次乘该路车人数,结果如下:
14,23,16,25,23,28,26,27,23,25.
(1)计算这10个班次乘车人数的平均数;
(2)如果16路车在高峰时段从总站共出车60个班次,根据上面的计算结果,估计在高峰时段从总站乘该路车出行的乘客共有多少?
4.如图,AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠EBD=42°,则∠AEB=_____.
【答案】132° .
【解析】
试题解析:∵∠ACB=∠ECD=90°,
∴∠BCD=∠ACE,
在△BDC和△AEC中,
,
∴△BDC≌△AEC(SAS),
∴∠DBC=∠EAC,
∵∠EBD=∠DBC+∠EBC=42°,
【答案】4
【解析】
∵FD⊥AO于D,FE⊥BO于E,
∴∠ODF=∠OEF=90°,
①加上条件OF是∠AOB的平分线可利用AAS判定△DOF≌△EOF;
②加上条件DF=EF可利用HL判定△DOF≌△EOF;
③加上条件DO=EO可利用HL判定△DOF≌△EOF;
2020最新学年八年级数学下册 第二十章第1课时 平均数练习 (新版)新人教版(考试专用)
20.1.1 第1课时平均数知识点1 算术平均数1.7名学生的体重(单位: kg)分别是40,42,43,45,47,47,58,则这组数据的平均数是( )A.44 B.45 C.46 D.472.某中学举行校园歌手大赛,7位评委给选手小明的评分如下表:若比赛的计分方法如下:去掉一个最高分,去掉一个最低分,其余分数的平均值作为该选手的最后得分,则小明的最后得分为( )A.9.56分 B.9.57分C.9.58分 D.9.59分3.[2018·株洲]睡眠是评价人类健康水平的一项重要指标,充足的睡眠是青少年健康成长的必要条件之一.小强同学通过问卷调查的方式了解到本班三名同学某天的睡眠时间分别为7.8小时,8.6小时,8.8小时,则这三名同学该天的平均睡眠时间是________小时.4求该同学这五次投实心球的平均成绩.知识点2 加权平均数5.[2018·无锡]某商场为了了解A产品的销售情况,在上个月的销售记录中,随机抽取了5天A则这5天中,A产品平均每件的售价为( )A.100元 B.95元 C.98元 D.97.5元6.[2017·聊城]为了满足顾客的需求,某商场将5 kg奶糖、3 kg酥心糖和2 kg水果糖混合成什锦糖出售.已知奶糖的售价为每千克40元,酥心糖的售价为每千克20元,水果糖的售价为每千克15元,混合后什锦糖的售价应为每千克( )A.25元 B.28.5元C.29元 D.34.5元7.[2018·桂林]某学习小组共有学生5人,在一次数学测验中,有2人得85分,2人得90分,1人得70分,在这次测验中,该学习小组的平均分为________分.8.某校规定学生的数学学期综合成绩是由平时、期中和期末三项成绩按3∶3∶4的比例计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分、90分和85分,则他本学期数学学期综合成绩是________分.9.[2018·宜宾改编]某校拟招聘一名优秀数学教师,现有甲、乙、丙三名教师入围,三名教师笔试、面试成绩如下表所示,综合成绩按照笔试占60%、面试占40%进行计算,学校录取综合成绩得分最高者,求被录取教师的综合成绩.10.[2018·淮安]若一组数据3,4,5,x,6,7的平均数是5,则x的值是( ) A.4 B.5 C.6 D.711.[2018·重庆]某企业对一工人在五个工作日里生产零件的数量进行调查,并绘制了如图20-1-1所示的折线统计图,则在这五天里,该工人每天生产零件的平均数是________个.图20-1-112.某次射击训练中,一小组的成绩(单位:环)如下表所示,已知该小组的平均成绩为8环,那么成绩为9环的人数是13.如图20-1-2是根据今年某校九年级学生体育考试跳绳的成绩绘制成的统计图.如果该校九年级共有200名学生参加了这项跳绳考试,根据该统计图给出的信息,可得这些同学跳绳考试的平均成绩为________个.图20-1-214.[2018·日照]某校招聘教师一名,现有甲、乙、丙三人通过专业知识、讲课、答辩按照招聘简章要求,对专业知识、讲课、答辩三项赋权5∶4∶1,请计算三名应聘者的平均成绩,从成绩看,应该录取谁?拓广探究创新练冲刺满分15.某班为了从甲、乙两名同学中选出班长,进行了一次演讲答辩与民主测评,A,B,C,D,E五位老师作为评委,对“演讲答辩”情况进行评价,全班50名同学参与了民主测评,结果如下表所示:演讲答辩得分表(测评分=“好”票数×2分+“较好”票数×1分+“一般”票数×0分;综合得分=演讲答辩分×(1-a)+民主测评分×a(0.5≤a≤0.8).(1)当a=0.6时,甲的综合得分是多少?(2)当a在什么范围内时,甲的综合得分高?当a在什么范围内时,乙的综合得分高?教师详解详析1.C [解析] 平均数为(40+42+43+45+47+47+58)÷7=322÷7=46.2.C [解析] 去掉一个9.8分和一个9.4分,然后计算剩余五个数的平均数,所以小明的最后得分=9.5+9.7+9.8+9.4+9.55=9.58(分).故选C.3.8.4 [解析] 根据题意得(7.8+8.6+8.8)÷3=8.4(时), 则这三名同学该天的平均睡眠时间是8.4小时.4.解:该同学这五次投实心球的平均成绩为:x =10+15(0.5+0.2+0.3+0.6+0.4)=10+0.4=10.4(m).5.C [解析] A 产品平均每件的售价为:(90×110+95×100+100×80+105×60+110×50)÷(110+100+80+60+50) =(9900+9500+8000+6300+5500)÷400 =39200÷400 =98(元).6.C [解析] 根据题意得:(40×5+20×3+15×2)÷(5+3+2)=29(元),即混合后什锦糖的售价应为每千克29元.故选C.7.84 [解析] x -=15(2×85+2×90+1×70)=84(分),故该学习小组的平均分为84分.8.88 [解析] 90×3+90×3+85×43+3+4=88(分).9.解:∵甲的综合成绩为80×60%+76×40%=78.4(分),乙的综合成绩为82×60%+74×40%=78.8(分),丙的综合成绩为78×60%+78×40%=78(分),∴被录取的教师为乙,其综合成绩为78.8分.10.B [解析] ∵3+4+5+x +6+76=5.∴x =5.故选B.11.34 [解析] 由图可知这组数据是36,34,31,34,35,故x -=15(36+34+31+34+35)=15×170=34.因此答案为34.12.313.175.5 [解析] 22%×180+27%×170+26%×175+25%×178=175.5(个). 14.解:(1)甲的平均成绩为70×5+85×4+80×15+4+1=77(分);乙的平均成绩为90×5+85×4+75×15+4+1=86.5(分);丙的平均成绩为80×5+90×4+85×15+4+1=84.5(分).因为乙的平均成绩最高,所以应录取乙. 15.解:(1)甲的演讲答辩得分=90+92+943=92(分),甲的民主测评得分=40×2+7×1+3×0=87(分),当a =0.6时,甲的综合得分=92×(1-0.6)+87×0.6=36.8+52.2=89(分).(2)∵乙的演讲答辩得分=89+87+913=89(分),乙的民主测评得分=42×2+4×1+4×0=88(分),∴乙的综合得分=89(1-a)+88a.由(1)知甲的综合得分=92(1-a)+87a.当92(1-a)+87a>89(1-a)+88a时,a<0.75.又∵0.5≤a≤0.8,∴当0.5≤a<0.75时,甲的综合得分高;当92(1-a)+87a<89(1-a)+88a时,a>0.75.又∵0.5≤a≤0.8,∴当0.75<a≤0.8时,乙的综合得分高.。
(部编本人教版)最新八年级数学下册 第二十章第1课时 平均数练习 (新版)部编本人教版【经典练习】
20.1.1 第1课时平均数知识点1 算术平均数1.7名学生的体重(单位: kg)分别是40,42,43,45,47,47,58,则这组数据的平均数是( )A.44 B.45 C.46 D.472.某中学举行校园歌手大赛,7位评委给选手小明的评分如下表:若比赛的计分方法如下:去掉一个最高分,去掉一个最低分,其余分数的平均值作为该选手的最后得分,则小明的最后得分为( )A.9.56分 B.9.57分C.9.58分 D.9.59分3.[2018·株洲]睡眠是评价人类健康水平的一项重要指标,充足的睡眠是青少年健康成长的必要条件之一.小强同学通过问卷调查的方式了解到本班三名同学某天的睡眠时间分别为7.8小时,8.6小时,8.8小时,则这三名同学该天的平均睡眠时间是________小时.4求该同学这五次投实心球的平均成绩.知识点2 加权平均数5.[2018·无锡]某商场为了了解A产品的销售情况,在上个月的销售记录中,随机抽取了5天A则这5天中,A产品平均每件的售价为( )A.100元 B.95元 C.98元 D.97.5元6.[2017·聊城]为了满足顾客的需求,某商场将5 kg奶糖、3 kg酥心糖和2 kg水果糖混合成什锦糖出售.已知奶糖的售价为每千克40元,酥心糖的售价为每千克20元,水果糖的售价为每千克15元,混合后什锦糖的售价应为每千克( )A.25元 B.28.5元C.29元 D.34.5元7.[2018·桂林]某学习小组共有学生5人,在一次数学测验中,有2人得85分,2人得90分,1人得70分,在这次测验中,该学习小组的平均分为________分.8.某校规定学生的数学学期综合成绩是由平时、期中和期末三项成绩按3∶3∶4的比例计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分、90分和85分,则他本学期数学学期综合成绩是________分.9.[2018·宜宾改编]某校拟招聘一名优秀数学教师,现有甲、乙、丙三名教师入围,三名教师笔试、面试成绩如下表所示,综合成绩按照笔试占60%、面试占40%进行计算,学校录取综合成绩得分最高者,求被录取教师的综合成绩.10.[2018·淮安]若一组数据3,4,5,x,6,7的平均数是5,则x的值是( ) A.4 B.5 C.6 D.711.[2018·重庆]某企业对一工人在五个工作日里生产零件的数量进行调查,并绘制了如图20-1-1所示的折线统计图,则在这五天里,该工人每天生产零件的平均数是________个.图20-1-112.某次射击训练中,一小组的成绩(单位:环)如下表所示,已知该小组的平均成绩为8环,那么成绩为9环的人数是13.如图20-1-2是根据今年某校九年级学生体育考试跳绳的成绩绘制成的统计图.如果该校九年级共有200名学生参加了这项跳绳考试,根据该统计图给出的信息,可得这些同学跳绳考试的平均成绩为________个.图20-1-214.[2018·日照]某校招聘教师一名,现有甲、乙、丙三人通过专业知识、讲课、答辩按照招聘简章要求,对专业知识、讲课、答辩三项赋权5∶4∶1,请计算三名应聘者的平均成绩,从成绩看,应该录取谁?拓广探究创新练冲刺满分15.某班为了从甲、乙两名同学中选出班长,进行了一次演讲答辩与民主测评,A,B,C,D,E五位老师作为评委,对“演讲答辩”情况进行评价,全班50名同学参与了民主测评,结果如下表所示:演讲答辩得分表(测评分=“好”票数×2分+“较好”票数×1分+“一般”票数×0分;综合得分=演讲答辩分×(1-a)+民主测评分×a(0.5≤a≤0.8).(1)当a=0.6时,甲的综合得分是多少?(2)当a在什么范围内时,甲的综合得分高?当a在什么范围内时,乙的综合得分高?教师详解详析1.C [解析] 平均数为(40+42+43+45+47+47+58)÷7=322÷7=46.2.C [解析] 去掉一个9.8分和一个9.4分,然后计算剩余五个数的平均数,所以小明的最后得分=9.5+9.7+9.8+9.4+9.55=9.58(分).故选C.3.8.4 [解析] 根据题意得(7.8+8.6+8.8)÷3=8.4(时), 则这三名同学该天的平均睡眠时间是8.4小时.4.解:该同学这五次投实心球的平均成绩为:x =10+15(0.5+0.2+0.3+0.6+0.4)=10+0.4=10.4(m).5.C [解析] A 产品平均每件的售价为:(90×110+95×100+100×80+105×60+110×50)÷(110+100+80+60+50) =(9900+9500+8000+6300+5500)÷400 =39200÷400 =98(元).6.C [解析] 根据题意得:(40×5+20×3+15×2)÷(5+3+2)=29(元),即混合后什锦糖的售价应为每千克29元.故选C.7.84 [解析] x -=15(2×85+2×90+1×70)=84(分),故该学习小组的平均分为84分.8.88 [解析] 90×3+90×3+85×43+3+4=88(分).9.解:∵甲的综合成绩为80×60%+76×40%=78.4(分),乙的综合成绩为82×60%+74×40%=78.8(分),丙的综合成绩为78×60%+78×40%=78(分),∴被录取的教师为乙,其综合成绩为78.8分.10.B [解析] ∵3+4+5+x +6+76=5.∴x =5.故选B.11.34 [解析] 由图可知这组数据是36,34,31,34,35,故x -=15(36+34+31+34+35)=15×170=34.因此答案为34.12.313.175.5 [解析] 22%×180+27%×170+26%×175+25%×178=175.5(个). 14.解:(1)甲的平均成绩为70×5+85×4+80×15+4+1=77(分);乙的平均成绩为90×5+85×4+75×15+4+1=86.5(分);丙的平均成绩为80×5+90×4+85×15+4+1=84.5(分).因为乙的平均成绩最高,所以应录取乙. 15.解:(1)甲的演讲答辩得分=90+92+943=92(分),甲的民主测评得分=40×2+7×1+3×0=87(分),当a =0.6时,甲的综合得分=92×(1-0.6)+87×0.6=36.8+52.2=89(分).(2)∵乙的演讲答辩得分=89+87+913=89(分),乙的民主测评得分=42×2+4×1+4×0=88(分),∴乙的综合得分=89(1-a)+88a.由(1)知甲的综合得分=92(1-a)+87a.当92(1-a)+87a>89(1-a)+88a时,a<0.75.又∵0.5≤a≤0.8,∴当0.5≤a<0.75时,甲的综合得分高;当92(1-a)+87a<89(1-a)+88a时,a>0.75.又∵0.5≤a≤0.8,∴当0.75<a≤0.8时,乙的综合得分高.。
初二平均数中位数众数方差练习题
初二平均数中位数众数方差练习题1. 某班级有10个学生,他们的身高分别是:150cm, 152cm, 148cm, 155cm, 160cm, 145cm, 155cm, 150cm, 157cm, 153cm。
请计算该班级学生的平均身高、中位数、众数和方差。
解答:平均身高:(150 + 152 + 148 + 155 + 160 + 145 + 155 + 150 + 157 + 153) ÷ 10 = 153.5cm中位数:首先将身高从小到大排序:145cm, 148cm, 150cm, 150cm, 152cm, 153cm, 155cm, 155cm, 157cm, 160cm中位数为中间的数值,也就是150cm。
众数:众数是指出现次数最多的数值。
在这个例子中,150cm和155cm各出现了两次,其他的数值只出现了一次,因此众数有两个,即150cm 和155cm。
方差:方差是用来衡量数据的离散程度,是每个数据值与平均值的差的平方的平均值。
计算方差的方法如下:1) 计算各个数据值与平均值的差的平方:(150 - 153.5)^2 = 9.02(152 - 153.5)^2 = 2.25(148 - 153.5)^2 = 29.02(155 - 153.5)^2 = 2.25(160 - 153.5)^2 = 42.02(145 - 153.5)^2 = 71.02(155 - 153.5)^2 = 2.25(150 - 153.5)^2 = 9.02(157 - 153.5)^2 = 12.02(153 - 153.5)^2 = 0.252) 计算差的平方的平均值:(9.02 + 2.25 + 29.02 + 2.25 + 42.02 + 71.02 + 2.25 + 9.02 + 12.02 + 0.25) ÷ 10 ≈ 21.12因此,该班级学生身高的方差约为21.12。
【初中数学】人教版八年级下册第1课时 加权平均数(练习题)
人教版八年级下册第1课时加权平均数(179)1.一次考试中,甲组12人的平均分数为70分,乙组8人的平均分数为80分,那么这两组20人的平均分数为.2.某班有学生52人,期末数学考试平均成绩是72分,有两名同学下学期要转学,已知他俩的成绩分别为70分和80分,求他俩转学后该班的数学平均分.3.某公司招聘一名工作人员,对甲、乙两名应聘者进行笔试与面试,他们的成绩(百分制)如下表所示.若公司分别赋予面试成绩和笔试成绩6和4的权,计算甲、乙两人各自的平均成绩.从他们的成绩看,谁将被录取?4.学校广播站要招聘1名记者,小亮和小丽报名参加了3项素质测试,成绩如下:将写作能力、普通话水平、计算机水平这三项的总分由原先按3∶5∶2计算,变成按5:3∶2计算,则总分变化情况是()A.小丽成绩增加的多B.小亮成绩增加的多C.两人成绩均不变化D.变化情况无法确定5.如图是根据今年某校九年级学生体育考试跳绳的成绩绘制成的统计图.如果该校九年级共有200名学生参加了这项跳绳考试,根据该统计图给出的信息,可得这些同学跳绳考试的平均成绩为个.6.某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核,甲、乙、丙各项得分(单位:分)如下表:(1)根据三项得分的平均数,从高到低确定三名应聘者的排名顺序;(2)该公司规定:笔试、面试、体能得分分别不得低于80分、80分、70分,并按60%,30%,10%的比例计入总分,根据规定,请你说明谁将被录用.7.某班为了从甲、乙两位同学中选出班长,进行了一次演讲答辩与民主测评,A,B,C,D,E五位老师作为评委,对“演讲答辩”情况进行评价,全班50位同学参与了民主测评,结果如下表所示:演讲答辩得分表(单位:分)民主测评统计表规定:演讲答辩得分按“去掉一个最高分和一个最低分再算平均分”的方法确定;民主测评分=“好”票数×2分+“较好”票数×1分+“一般”票数×0分;综合得分=演讲答辩分×(1−a)+民主测评分×a(0.5⩽a⩽0.8).(1)当a=0.6时,甲的综合得分是多少?(2)当a在什么范围内时,甲的综合得分高?当a在什么范围内时,乙的综合得分高?8.7名学生的体重(单位:kg)分别是40,42,43,45,47,47,58,则这组数据的平均数是()A.44B.45C.46D.479.为了满足顾客的需求,某商场将5kg奶糖,3kg酥心糖和2kg水果糖混合成什锦糖出售.已知奶糖的售价为每千克40元,酥心糖为每千克20元,水果糖为每千克15元,混合后什锦糖的售价应为每千克()A.25元B.28.5元C.29元D.34.5元10.某校调査了20名男生某一周参加篮球运动的次数,调査结果如下表所示,那么这20名男生该周参加篮球运动次数的平均数是()A.3B.3.5C.4D.4.511.某中学举行校园歌手大赛,7位评委给选手小明的评分如下表:若比赛的计分方法如下:去掉一个最高分,去掉一个最低分,其余分数的平均值作为该选手的最后得分,则小明的最后得分为()A.9.56分B.9.57分C.9.58分D.9.59分12.某校规定学生的数学学期综合成绩是由平时、期中和期末三项成绩按3∶3∶4的比例计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分、90分和85分,则他本学期数学学期综合成绩是分.13.某次射击训练中,一小组的成绩(单位:环)如下表所示,已知该小组的平均成绩为8环,那么成绩为9环的人数是.参考答案1.【答案】:74分=74(分),【解析】:这两组20人的平均分数=12×70+8×8012+8故答案为74分.2.【答案】:52×72=3744(分),3744−70−80=71.88(分).50答:他俩转学后该班的数学平均分是71.88分【解析】:先算出52个人的总分数,再求出50人的总分数,最后除以总人数50=88.2,3.【答案】:甲的平均成绩为87×6+90×46+4=87.4,乙的平均成绩为91×6+82×46+4因为甲的平均成绩大于乙的平均成绩,所以甲会被录取【解析】:先分别算出甲、乙的平均成绩,平均成绩较高者将被录取4.【答案】:B【解析】:当写作能力、普通话水平、计算机水平这三项的总分按3∶5∶2计算时,=74.7(分),小亮的成绩是90×3+75×5+51×23+5+2=74.4(分),小丽的成绩是60×3+84×5+72×23+5+2当写作能力、普通话水平、计算机水平这三项的总分按5∶3∶2计算时,=77.7(分),小亮的成绩是90×5+75×3+51×25+3+2=69.6(分),小丽的成绩是60×5+84×3+72×25+3+2故写作能力、普通话水平、计算机水平这三项的总分由原先按3∶5∶2计算,变成按5∶3∶2计算,小亮的成绩变化是77.7−74.7=3(分),小丽的成绩变化是69.6−74.4=−4.8(分),故小亮成绩增加的多5.【答案】:175.5【解析】:22%×180+27%×170+26%×175+25%×178=175.5(个)6(1)【答案】x ¯甲=83+79+903=84(分); x ¯乙=85+80+753=80(分); x ¯丙=80+90+733=81(分).∴排名顺序为甲、丙、乙【解析】:代入求平均数公式求出三人的平均成绩,比较得出的结果(2)【答案】由题意可知,只有甲不符合规定.∵x′¯乙=85×60%+80×30%+75×10%=82.5(分),x′¯丙=80×60%+90×30%+73×10%=82.3(分), ∴乙将被录用【解析】:由于甲的面试成绩低于80分,根据公司规定甲被淘汰;再将乙与丙的总成绩按比例求出总分,比较得出结果7(1)【答案】甲的演讲答辩得分=90+92+943=92(分),甲的民主测评得分=40×2+7×1+3×0=87(分),当a =0.6时,甲的综合得分=92×(1−0.6)+87×0.6=36.8+52.2=89(分)【解析】:由题意可知:分別计算出甲的演讲答辩得分以及甲的民主测评得分,再将a =0.6代入公式计算可以求得甲的综合得分(2)【答案】∵乙的演讲答辩得分=89+87+913=89(分),乙的民主测评得分=42×2+4×1+4×0=88(分),∴乙的综合得分=89(1−a)+88a .由(1)知甲的综合得分=92(1−a)+87a .当92(1−a)+87a >89(1−a)+88a 时,a <0.75,又∵0.5⩽a ⩽0.8,∴当0.5⩽a<0.75时,甲的综合得分高;当92(1−a)+87a<89(1−a)+88a时,a>0.75,又∵0.5⩽a⩽0.8,∴当0.75<a⩽0.8时,乙的综合得分高【解析】:同(1)一样先计算出乙的演讲答辩得分以及乙的民主测评得分,得出乙的综合得分,再与甲的综合得分比较,得出两位同学哪一位当选为班长8.【答案】:C【解析】:平均数为(40+42+43+45+47+47+58)÷7=322÷7=469.【答案】:C【解析】:根据题意得:(40×5+20×3+15×2)÷(5+3+2)=29(元),即混合后什锦糖的售价应为每千克29元.故选 C10.【答案】:C【解析】:根据题意得:(2×2+2×3+10×4+6×5)÷20=4,即平均数为4.故选 C11.【答案】:C【解析】:去掉一个9.8分和一个9.4分,然后计算剩余五个数的平均数,所以小=9.58(分).故选C明的最后得分=9.5+9.7+9.8+9.4+9.5512.【答案】:88=88(分)【解析】:90×3+90×3+85×43+3+413.【答案】:3【解析】:设成绩为9环的人数为x,则(3×7+4×8+9x)÷(3+4+x)=8,解得x=3。
八年级-人教版-数学-下册-[综合训练]第1课时-平均数(1)
20.1数据的集中趋势(第1课时)1.八年级(1)班对数学期末总评成绩规定如下:总评成绩由考试成绩和平时成绩(满分120分)两部分组成,其中考试成绩占80%,平时成绩占20%,且总评成绩大于或等于100分时,该生综合评定为A等.(1)小敏的考试成绩为90分,她的综合评定有可能达到A等吗?为什么?(2)小浩的平时成绩为120分,综合评定若要达到A等,他的考试成绩至少要多少分?2.某风景区对5个旅游景点的门票价格进行了调整,据统计,调价前后各景点的游客人数基本不变,有关数据如下表所示:(1)该风景区称调整后这5个景点门票的平均收费不变,平均日总收入持平,问风景区是怎样计算的?(2)另一方面,游客认为调整收费后风景区的平均日总收入相对于调价前,实际上增加了约9.4%,问游客是怎样计算的?参考答案1.【答案】解:(1)小敏的综合评定不可能达到A等.理由如下:设小敏的平时成绩为x分,根据题意,得90×80%+20%x≥100,解得x≥140.因为平时成绩满分是120分,所以小敏的综合评定不可能达到A等;(2)设小浩的考试成绩为x分,根据题意,得80%x+120×20%≥100,解得x≥95,所以他的考试成绩至少要95分.2.【答案】解:(1)风景区是这样计算的:调整前的平均价格:10101520255++++=16(元).调整后的平均价格:551525305++++=16(元).∵调整前后的平均价格不变,平均日人数不变,∴平均日总收入持平;(2)游客是这样计算的:原平均日总收入:10×1+10×1+15×2+20×3+25×2=160(千元).现平均日总收入:5×1+5×1+15×2+25×3+30×2=175(千元).∴平均日总收入增加了约175160160-≈9.4%.。
八年级数学下:算术平均数与加权平均数(练习1、2)
八年级数学下:算术平均数与加权平均数(练习1)【基础知识训练】1.如果一组数据5,x ,3,4的平均数是5,那么x=_______.2.某班共有学生50人,平均身高为168cm ,其中30名男生平均身高为170cm ,•则20名女生的平均身高为________.3.某校八年级(一)班一次数学考试的成绩为:100分的3分,90分的13人,80•分的17人,70分的12人,60分的2人,50分的3人,全班数学考试的平均成绩是_______.(结果保留到个位) 4分和一个最低分后的平均分是________分.5.在航天知识竞赛中,包括甲同学在内的6•名同学的平均分为74分,其中甲同学考了89分,则除甲以外的5名同学的平均分为_______分. 【创新能力应用】6.如果一组数据x 1,x 2,x 3,x 4的平均数是x ,那么另一组数据x 1,x 2+1,x 3+2,x 4+3的平均数是( ) A .x B .x +1 C .x +1.5 D .x +67.有m 个数的平均数是x ,n 个数的平均数是y ,则这(m+n )个数的平均数为( ) A ....22x yx y mx ny mx nyB C D m nm n++++++ 8.x 1,x 2,x 3,……,x 10的平均数是5,x 11,x 12,x 13,……,x 20的平均数是3,则x 1,x 2,x 3,……,x 20的平均数是( )A .5 B .4 C .3 D .89.某居民院内月底统计用电情况,其中3户用电45度,5户用电50度,6户用电42度,则平均每户用电( ) A .41度 B .42度 C .45.5度 D .46度10.甲、乙、丙三种糖果售价分别为每千克6元,7元,8元,若将甲种8千克,•乙种10千克,丙种3千克混在一起,则售价应定为每千克( )A .6.7元 B .6.8元 C .7.5元 D .8.6元 11.为了增强市民的环保意识,某初中八年级(二)班的50名学生在今年6月5日(•世界环境日)这一天调查了各自家庭丢弃旧塑料袋的情况.统计数据如下表:请根据以上数据回答:(1)50户居民每天丢弃废旧塑料袋的平均个数是______个. (2)该校所在的居民区有1万户,则该居民区每天丢弃的废旧塑料袋约_____万个.12.某商场四月份随机抽查了6天的营业额,结果分别如下(单位:万元):2.8,•3.2,3.4,3.0,3.1,3.7,试估算该商场四月份的总营业额,大约是______万元.13.某班进行个人投篮比赛,受污染的下表记录了在规定时间内投进n•个球的人数分布情况,同时,已知进球3个或3个以上的人平均每人投进3.5个球;进球4个或4个以下的人平均每人投进2.5个球,问投进3个球和4个球的各有多少人?14.随机抽查某城市30天的空气状况统计如下:其中,w≤50时,空气质量为优;50<w≤100时,空气质量为良;100<w≤150时,空气质量为轻微污染.(1)请用扇形统计图表示这30天中空气质量的优、良、轻微污染的分布情况;(2)估计该城市一年(365)天有多少空气质量达到良以上.15.老王家的鱼塘中放养了某种鱼1500条,若干年后,准备打捞出售,为了估计鱼塘中这种鱼的总质量,现从鱼塘中捕捞三次,得到数据如下表:(1)鱼塘中这种鱼平均每条重约多少千克?(2)若这种鱼放养的成活率是82%,鱼塘中这种鱼约有多少千克?(3)如果把这种鱼全部卖掉,价格为每千克6.2元,那么这种鱼的总收入是多少元?若投资成本为14000元,这种鱼的纯收入是多少元?16.某单位欲从内部招聘管理员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:根据录用程序组织200名职工对三人利用投票推荐Array的方式进行民主评议,三人得票(没有弃权票,每位职工只能推荐1人)如上图所示,每得一票记作1分.(1)请算出三人的民主评议得分;(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用?(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4:3:3•的比例确定个人的成绩,那么谁将被录用?17.某风景区对5个旅游景点的门票价格进行了调整,据统计,调价前后各景点的游客人数基本不变,有关数据如下表所示:(1)该风景区称调整后这5个景点门票的平均收费不变,平均日总收入持平,问风景区是怎样计算的?2(2)另一方面,游客认为调整收费后风景区的平均日总收入相对于调价前,•实际上增加了约9.4%,问游客是怎样计算的?(3)你认为风景区和游客哪一个说法较能反映整体实际?x+1,x+2,x+3的平均数。
人教版八年级下册数学课时练《 平均数》 试题试卷 含答案解析
人教版八年级下册数学《20.1.1平均数》课时练学校:_______姓名:_______班级:_______考号:________一、单选题1.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么所求出平均数与实际平均数的差是().-D.3-A.0.5B.3C.0.52.若将7个数按照从小到大的顺序排成一列,中间的数恰是这7个数的平均数,前4个数的平均数是25,后4个数的平均数是35,则这7个数的和为()A.175B.210C.240D.2453.已知一组数据a1,a2,a3,a4,a5的平均数为5,则另一组数据a1+5,a2-5,a3+5,a4-5,a5+5的平均数为()A.4B.5C.6D.104.甲、乙两名学生进行射击练习,两人在相同条件下各射靶5次.射击成绩统计如下:从射击成绩的平均数评价甲、乙两人的射击水平,则()命中环数(单位:环)78910甲命中相应环数的次数2201乙命中相应环数的次数1310A.甲比乙高B.甲、乙一样C.乙比甲高D.不能确定5.某种品牌水果糖的售价为15元/kg,酥糖的售价为18元/kg.现将两种糖均匀混合,为了估算混合糖的售价,称了10份糖,每份糖1kg,其中水果糖的质量(单位:kg)如下:0.58,0.52,0.59,0.49,0.60,0.55,0.56,0.49,0.52,0.54.你认为这种糖比较合理的定价为()A.16.6元/kg B.16.4元/kg C.16.5元/kg D.16.3元/kg6.某超市销售A,B,C,D四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是()A .1.95元B .2.15元C .2.25元D .2.75元二、填空题7.小方的数学平时成绩为84分,期中成绩为80分,学校按平时、期中、期末成绩之比为3∶3∶4的比例计算学期的总评成绩,他计划总评成绩要达到85分,则期末考试他至少要得到______分.8.某同学使用计算器求30个数据的平均数时,错将其中的一个数据105输入为150,那么由此求出的平均数比实际平均数多____.9.已知7,4,5和x 的平均数是6,则x =_________.10.一组数据a ,b ,c ,d ,e 的平均数是7,则另一组数据a +2,b +2,c +2,d +2,e +2的平均数为________.11.某校招聘教师,规定综合成绩由笔试成绩和面试成绩构成,其中笔试占60%,面试占40%,有一名应聘者的综合成绩为84分,笔试成绩是80分,则面试成绩为______分.12.为了了解学生课业负担情况,某市在城区几所学校中随机抽取了50名初三学生,调查他们每天完成作业所用时间,并将抽查结果绘制成了如图所示的统计图,请计算这50名初三学生平均每天完成作业所用时间为_______分钟.三、解答题13.某便利店为了了解20:00~21:00去该店购物的顾客人数,随机抽查了10天该时间段的顾客人数,结果如下:14231625232826272325根据以上数据,请你估计20:00~21:00去该便利店购物的顾客人数.14.设一组数据12n x x x ,,,¼的平均数为m ,求下列各组数据的平均数:()121333n x x x ++¼+,,,;()122222n x x x ¼,,,.15.某校八年级一班有学生50人,八年级二班有学生45人,期末数学测试中,一班学生的平均分为81.5分,二班学生的平均分为83.4分,这两个班95名学生的平均分是多少?16.某班进行个人投篮比赛,受污染的表记录了在规定时间内投进n 个球的人数分布情况,同时,已知进球3个或3个以上的人平均每人投进3.5个球,进球4个或4个以下的人平均每人投进2.5个球,问投进3个球和4个球的各有多少人?进球数n012345投进n 个球的人数127____________217.小明想调查某个高速公路入口处每天的汽车流量(单位:辆).一天,他从上午8:00~11:00在该入口处,每隔相等的一段时间作一次统计,共统计了8次,数据如下:记录的次数第一次第二次第三次第四次第五次第六次第七次第八次3min 内通过的汽车流量5150646258555553试估计:这天上午这3h 内共有多少车次通过该入口?18.某学校考察各个班级的教室卫生情况时包括以下几项:黑板、门窗、桌椅、地面.一天,三个班级的各项卫生成绩(单位:分)分别如下:黑板门窗桌椅地面一班95909085二班90958590三班85909590(1)小明将黑板、门窗、桌椅、地面这四项得分依次按15%,10%,35%,40%的比例计算各班的卫生成绩,那么哪个班的成绩最高?(2)你认为上述四项中,哪一项更为重要?请你按自己的想法设计一个评分方案,根据你的评分方案,哪一个班的卫生成绩最高?参考答案1.D 2.B 3.C 4.B 5.B 6.C 7.89.58.1.59.810.911.9012.8813.解:1(1423316252282627)2310´+´++´+++=(人).答:20:0021:00~去该便利店购物的顾客人数为23人.14.【解析】设一组数据12n x x x ,,,¼的平均数是m ,即12nx x x x m n++¼+==,则12n x x x mn ++¼+=.()121n x x x mn ++¼+= ,123333n x x x mn n \++++¼++=+,12333n x x x \++¼+,,,的平均数是33mn nm n+=+;()122n x x x mn ++¼+= ,122222n x x x mn \++¼+=,12222n x x x \¼,,,的平均数是22mnm n=.15.【解析】由题意知,这两个班的平均成绩=(83.4×45+81.5×50)÷(45+50)=82.4(分).答:这两个班95名学生的平均分是82.4分.16.9;3;【解析】设投进3个球的有x 人,投进4个球的有y 人.依题意得.()()3452 3.52{217234 2.5127x y x y x y x y ++´´++´+´++´++++==,整理得6{318 x yx y-+==,解得9 {3 xy==.答:投进3个球的有9人,投进4个球的有3人.17.解:每3min的平均汽车流量为:()51506462585555538=56+++++++¸(辆).所以,可以估计这天上午这3h通过该入口的车次大约为:()563603=3360´´¸(车次),答:这天上午3h内共有3360车次通过该入口.18.解:(1)一班的成绩=95×15%+90×10%+90×35%+85×40%=88.75分;二班的成绩=90×15%+95×10%+85×35%+90×40%=88.75分;三班的成绩=85×15%+90×10%+95×35%+90×40%=91分;∴三班的成绩最高.(2)若将黑板、门窗、桌椅、地面按10%,35%,15%,40%的比例计算各班卫生成绩:∵一班的加权平均成绩=9510%9035%9015%8540%88.5´+´+´+´=,二班的加权平均成绩=9010%9535%8515%9040%91´+´+´+´=,三班的加权平均成绩=8510%9035%9515%9040%90.25´+´+´+´=,∵9190.2588.5>>;∴二班的卫生成绩最高.。
2019年人教版数学八年级下册20.1.1 平均数
第二十章数据的分析20.1 数据的集中趋势20.1.1 平均数基础闯关全练1.一组数据7,8,10,12,13的平均数是()A.7B.9C.10D.122.(2018湖南株洲中考)睡眠是评价人类健康水平的一项重要指标,充足的睡眠是青少年健康成长的必要条件之一,小强同学通过问卷调查的方式了解到本班三位同学某天的睡眠时间分别为7.8小时、8.6小时、8.8小时,则这三位同学该天的平均睡眠时间是_______小时.3.学校组织领导、教师、学生、家长对教师的教学质量进行综合评分,满分为100分,张老师的得分情况如下:领导平均给80分,教师平均给76分,学生平均给90分,家长平均给84分,如果按照1:2:4:1的权进行计算,则张老师的综合评分为()A.83.5分B.84.5分C.85.5分D.86.5分4.(2018广西桂林中考)某学习小组共有5人,在一次数学测试中,有2人得85分,2人得90分,1人得70分,在这次测试中,该学习小组的平均分为_______分.5.(2018新疆中考)某餐厅供应单价为10元、18元、25元三种价格的抓饭,图20-1-1-1是该餐厅某月销售抓饭情况的扇形统计图,根据该统计图可算得该餐厅销售抓饭的平均单价为_______元.6.4月23日是“世界读书日”,向阳中学对在校学生课外阅读情况进行了随机问卷调查,共发放100份调查问卷,并全部收回,根据调查问卷,将课外阅读情况整理后,制成表格如下:请你根据以上信息,解答下列问题:(1)被调查的学生月平均阅读册数为_______;(2)若向阳中学共有学生1600人,求四月份该校学生共阅读课外书籍多少本.能力提升全练1.(2018广东深圳南山期末)已知小华上学期语文、数学、英语三科平均分为92分,他记得语文得了88分,英语得了95分,但他把数学成绩忘记了,你能告诉他以下哪个分数是他的数学成绩吗?( )A .93分B .95分C .94分D .96分2.某外贸公司要出口一批食品罐头,标准质量为每听454克,现抽取10听样品进行检测,它们的质量与标准质量的差值(单位:克)如下:-10,+5,0,+5,0,0,-5,O ,+5,+10.估计这批食品罐头每听质量的平均数为( )A .453克B .454克C .455克D .456克3.(2018江苏扬州宝应一模)调查某一路口某时段的汽车流量,记录了30天同一时段通过该路口的汽车辆数,其中有2天是256辆,2天是285辆,23天是899辆,3天是447辆.那么这30天在该时段通过该路口的汽车平均辆数为( )A .125B .320C .770D .9004.已知3,7,4,a 四个数的平均数为5;18,9,7,a ,b 五个数的平均数是10,则a=_______,b=_______.三年模拟全练一、选择题1.(2018浙江宁波慈溪期中.7,★☆☆)某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是( )A .80分B .82分C .84分D .86分2.(2018重庆涪陵期末,14,★☆☆)x ₁,x ₂,…,x ₁₀的平均数为a ,x ₁₁,x ₁₂,…,x ₅₀的平均数为b ,则x ₁,x ₂,…,x ₅₀的平均数为( )A .a+bB .2b a + C .605010b a + D .504010b a + 二、填空题3.(2017湖北黄冈模拟,11,★☆☆)某市2017年5月份某一周的日最高气温(单位:℃)分别为25,28,30,29,31,32,28,这周的日最高气温的平均值是____.4.(2018湖北武汉汉江期末.13.★☆☆)公司招聘公关人员,有笔试和面试两个环节,应聘者甲的笔试得分为86分,面试得分为90分,若公司决定对这次笔试和面试的成绩分别赋予4和6的权,则面试者甲两项成绩的加权平均数为____.三、解答题5.(2016山东聊城东昌府期末.22.★★☆)某公司招聘人才,对应聘者分别进行阅读能:(1)如果根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将被录用?(2)根据实际需要,公司将阅读能力、思维能力和表达能力三项测试得分按3:5:2确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,则谁将被录用?五年中考全练一、选择题1.(2018江苏淮安中考,3,★☆☆)若一组数据3,4,5,x,6,7的平均数是5,则x 的值是()A.4B.5C.6D.72.(2018山东聊城中考,10,★☆☆)为了满足顾客的需求,某商场将5kg奶糖,3 kg酥心糖和2kg水果糖混合成什锦糖出售,已知奶糖的售价为每千克40元,酥心糖为每千克20元,水果糖为每千克15元,混合后什锦糖的售价应为每千克()A.25元B.28.5元C.29元D.34.5元3.(2018山东临沂中考,9,★☆☆)某老师为了解学生周末学习时间的情况,在所任班级中随机调查了10名学生,绘成如图20-1-1-2所示的条形统计图,则这10名学生周末学习的平均时间是()A.4小时B.3小时C.2小时D .1小时二、填空题4.(2018四川宜宾中考.11.★☆☆)某校拟招聘一名优秀数学教师,现有甲、乙、丙三名教师入围,三名教师笔试、面试成绩如下表所示,综合成绩按照笔试占60%、面试占40%_______分.5.(2016浙江金华中考.13.★★☆)为监测某河道水质,环保部门进行了6次水质检测,绘制了如图20-1-1-3所示的氨氮含量折线统计图.若这6次水质检测氨氮含量平均数为1.5 mg/L ,则第3次检测得到的氨氮含量是_______mg/L.核心素养全练某风景区对5个旅游景点的门票价格进行了调整,据统计,调价前后各景点的游客人数基本不变,有关数据如下表所示:(1)该风景区称调整后这5个景点门票的平均收费不变,平均日总收入持平,请问风景区是怎样计算的?(2)另一方面,游客认为调整收费后风景区的日平均收入相对于调价前,实际上增加了约2.5%,请问游客是怎样计算的?(3)你认为风景区和游客哪一个说法较能反映整体的实际情况?第二十章 数据的分析20.1 数据的集中趋势20.1.1 平均数1. C (7+8+10+12+13 )÷5=10.故选 C .2.答案8.4解析 一组数据的和除以这组数据的个数就是这组数据的平均数.所以这三位同学该天的平均睡眠时间是31×(7.8+8.6+8.8)=8.4(小时).3.B 根据加权平均数的定义求得张老师的综合评分是14211×84+4×90+2×76+1×80+++=84.5(分).故选B .4.答案84解析 (85×2+90×2+70×1)÷5=84(分),所以该学习小组的平均分为84分.5.答案17解析该餐厅销售抓饭的平均单价为25×20%+10×30%+18×50%=17(元).6.解析(1)2.3.月平均阅读册数为 5101550205×5+10×4+15×3+50×2+201++++⨯=2.3. (2)2.3×1600=3680(本).故四月份该校学生共阅读课外书籍3680本.1.A 设数学成绩为x 分,则(88+95+x)÷3=92,解得x=93.即数学成绩为93分.2.C 因为-10+5+0+5+0+0-5+0+5+10=10(克),所以这10听罐头平均每听与标准质量的差值为1010=1克,故这10听罐头质量的平均数为454+1=455(克),所以可估计这批食品罐头每听质量的平均数为455克.故选C .3.C 由题意可得这30天在该时段通过该路口的汽车平均辆数是303×447+23×899+2×285+2×256=770.故选C . 4.答案6;10解析 因为3,7,4,a 的平均数为5,所以3+7+4+a=20,解得a=6.因为18,9,7,a ,b 的平均数为10,所以18+9+7+a+b=50.解得b=10.一、选择题1.D 由加权平均数的定义可知x=15432%60%40%6090%4080+=+⨯+⨯=86(分),故选D . 2.D 前10个数的和为10a ,后40个数的和为40b ,故这50个数的平均数为504010b a +,故选D .二、填空题3.答案29℃解析 这周的日最高气温的平均值是71×(25+28+30+29+31+32+28)=29℃. 4.答案88.4分 解析64690486+⨯+⨯=-x =88.4(分). 三、解答题5.解析(1)甲的平均成绩为甲-x =(93+86+73)÷3=84(分),乙的平均成绩为乙-x =(95+81+79)÷3=85(分),∵乙-x >甲-x ,∴乙将被录用.(2)根据题意得253273586393++⨯+⨯+⨯=-甲x =85.5(分), 253279581395++⨯+⨯+⨯=-乙x =84.8(分), ∵甲-x >乙-x ,∴甲将被录用.一、选择题1.B 由平均数的定义可得(3+4+5+x+6+7)÷6=5,解得x=5,故选B .2.C 混合后什锦糖的售价应为每千克23515×2+20×3+40×5++=29(元). 3.B 根据条形统计图可知,10名学生中学习1小时的有1人;学习2小时的有2人;学习3小时的有4人;学习4小时的有2人:学习5小时的有1人,则这10名学生周末学习的平均时间为1030124211×5+2×4+4×3+2×2+1×1=++++=3小时,故选B . 二、填空题4.答案78.8解析本题主要考查加权平均数的定义和应用,甲的综合成绩为76×40%+80×60%=78.4分,乙的综合成绩为74×40%+82×60%=78.8分,丙的综合成绩为78×40%+78×60%=78分,∵78.8>78.4>78,∴被录取教师的综合成绩为78.8分.5.答案1解析 由题意可得第3次检测得到的氨氮含量是1.5×6-(1.6+2+1.5+1.4+1.5)=9-8=1(mg/L).核心素养全练解析(1)风景区是这样计算的:调整前的门票平均价格为51×(60+60+65+70+75)=66(元),调整后的门票平均价格为51×(55+55+65+75+80)=66(元).因为调整前后的门票平均价格不变,日平均人数不变,所以日平均总收入持平.(2)游客是这样计算的:调整前的日平均总收入为60×1+60×1+65×2+70×3+75×2=610(千元),调整后的日平均总收入为55×1+55×1+65×2+75×3+80×2=625(干元).所以日平均总收入增加了( 625-610)÷610×100%≈2.5%.(3)根据加权平均数的定义可知,游客的算法是正确的,故游客的说法较能反映整体的实际情况.。
八年级数学下册20.1平均数3.加权平均数练习(含答案)
3.加权平均数1.(易错题)某校八年级共有四个班,在一次英语测试中四个班的平均分与各班参加考试的人则该校八年级参加这次英语测试的所有学生的平均分约为(精确到0.1)( B )(A)83.1分(B)83.2分(C)83.4分(D)83.5分某次射击(A)5人(B)6人(C)4人(D)7人3.在中国好声音选秀节目中,四位参赛选手的各项得分如下表(每项按10分制),如果将专业、形象、人气这三项得分按3∶2∶1的比例确定最终得分,最终得分最高进入下一轮比赛人气指数(A)小赵(B)小王 (C)小李 (D)小黄4.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩2的权重,根据四人各自的平均成绩,公司将录取( B )(A)甲(B)乙 (C)丙 (D)丁5.为了调查某一路口某时段的汽车流量,记录了15天同一时段通过该路口的汽车辆数,其中有2天是142辆,2天是145辆,6天是156辆,5天是157辆.那么这15天在该时段通过该路口的汽车平均辆数为153辆.6.(2018宜宾)某校拟招聘一名优秀数学教师,现有甲、乙、丙三名教师入围,三名教师笔试、面试成绩如表所示,综合成绩按照笔试占60%、面试占40%进行计算,学校录取综合成绩得分如图是某校八年级学生为灾区捐款情况的条形图和扇形统计图若该校八年级学生有800人,则八年级捐款总数为7 600 元.8.八年级某班40名学生参加“环保知识竞赛”的得分如下表:如果该班学生得分的平均成绩是2.5分,求表中的人数x,y分别是多少?解:根据题意,得解得x=7,y=4.故x,y分别是7,4.9.甲、乙两名大学生竞选班长,现对甲、乙两名候选人从笔试、口试、得票三个方面表现进行评分,各项成绩如表所示:上?(2)如果将笔试、口试和得票按2∶1∶2来计算各人的成绩,那么又是谁会竞选上?解:(1)甲的成绩为85×20%+83×30%+90×50%=86.9(分),乙的成绩为80×20%+85×30%+92×50%=87.5(分),因为87.5>86.9,所以乙会竞选上.(2)甲的成绩为=86.6(分),乙的成绩为=85.8(分),因为86.6>85.8,所以甲会竞选上.10.(分类讨论)甲、乙两同学相约到一家商店去买若干次白糖,两个人买糖方式不同:甲每次总是买1千克的糖,乙每次总是买一元钱白糖,而白糖的价格是变动的,若两人买2次白糖,试问这两位同学买白糖的方式谁比较合算?小明是这样解答的:设两次买白糖的价格分别是x1,x2则甲的平均单价是,乙也是,所以两人买白糖的方式一样合算,你认为小明的解答正确吗?如果不正确应如何改正.解:不正确.设甲平均每千克白糖单价为a=;乙平均每千克白糖单价为b==,因为a≠b,所以a-b=-=>0,即a>b,所以乙买白糖的方式合算.11.(拓展探究)某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如图所示,每得一票记作1分.(1)请算出三人的民主评议得分;(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用;(精确到0.01)(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4∶3∶3的比例确定个人成绩,那么谁将被录用?解:(1)甲、乙、丙的民主评议得分分别为200×25%=50(分),200×40%=80(分),200×35%=70(分).(2)甲的测试平均成绩为≈72.67(分);乙的测试平均成绩为≈76.67(分);丙的测试平均成绩为=76.00(分).因为76.67>76>72.67,所以候选人乙将被录用.(3)甲的个人成绩为=72.9(分); 乙的个人成绩为=77(分);丙的个人成绩为=77.4(分).由于丙的个人成绩最高,所以候选人丙将被录用.。
人教版八年级数学下《平均数》 拓展练习
《平均数》拓展练习一、选择题(本大题共5小题,共25.0分)1.(5分)A居民区的月底统计用电情况,其中3户用电45度,5户用电50度,6户用电42度,则平均用电为()A.41 度B.42 度C.45.5 度D.46 度2.(5分)某小组中有3名学生每人得84分,如果另外7名学生的平均成绩是x,那么整个组的平均成绩是()A.B.C.D.3.(5分)某中学规定学生的学期体育成绩满分为100,其中大课间及体育课外活动占60%,期末考试成绩古40%.小云的两项成绩(百分制)依次为84,94.小云这学期的体育成绩是()A.86B.88C.90D.924.(5分)某市招聘老师的笔试和面试的成绩均按百分制计,并且分别按40%和60%来计算综合成绩.王老师本次招聘考试的笔试成绩为90分,面试成绩为85分,经计算他的综合成绩是()A.85分B.87分C.87.5分D.90分5.(5分)为鼓励业主珍惜每一滴水,某小区物业表扬了100个节约用水模范户,5月份节约用水的情况如下表:那么,5月份这100户平均节约用水的吨数为()吨.每户节水量(单位:吨)1 1.2 1.5节水户数651520A.1B.1.1C.1.13D.1.2二、填空题(本大题共5小题,共25.0分)6.(5分)一次数学测验满分是100分,全班38名学生平均分是67分.如果去掉A、B、C、D、E五人的成绩,其余人的平均分是62分,那么在这次测验中,C的成绩是分.7.(5分)将30个数据分别减去300后,得到一组新数据的平均数是4,那么原30个数据的和是.8.(5分)若1,2,3,a的平均数是3,又4,5,a,b的平均数是5,则a+b=,样本0,1,2,3,4,a,b的平均数是.9.(5分)一个祥本中,各个数据的总和为2018,如果这个样本的平均数为40.36,则样本的数据为个.10.(5分)已知2、5、6和a四个数的平均数是4,又已知10、12、15、b和a 五个数的平均数是9,则b=.三、解答题(本大题共5小题,共50.0分)11.(10分)某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙两个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙两个小组各项得分如下表:小组研究报告小组展示答辩甲918078乙798390(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果研究报告、小组展示、答辩按照4:3:3计算成绩,哪个小组的成绩最高?12.(10分)在某次考试中,现有甲、乙、丙3名同学,共四科测试实际成绩如下表:语文数学英语科学甲959580150乙1059090139丙10010085139(1)若欲从中表扬2人,请你从平均数的角度分析,哪两人将被表扬?(2)为了体现学科差异,参与测试的语文、数学、英语、科学实际成绩须以2:3:2:3的比例计入折合平均数.请你从折合平均数的角度分析,哪两人将被表扬?若欲从中表扬2人,请你从平均数的角度分析,哪两人将被表扬?13.(10分)某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前5名选手的得分如下:12345序号项目笔试成绩/分8592849084面试成绩/分9088869080根据规定,笔试成绩和面试成绩分别按一定的百分比折和成综合成绩(综合成绩的满分仍为100分)(1)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比;(2)求出其余四名选手的综合成绩,并以综合成绩排序确定前两名人选.14.(10分)一位同学进行五次投实心球的练习,每次投出的成绩如表:投实心球序次12345成绩(m)10.510.210.310.610.4求该同学这五次投实心球的平均成绩.15.(10分)某公司对应聘者A,B,C,D进行面试,并按三个方面给应聘者打分,每方面满分20分,最后打分结果如下表,根据实际需要,公司将专业知识、工作经验和仪表形象三项成绩得分按6:3:1的比例确定各人的成绩,此时谁将被录用?A B C D专业知识14181716工作经验18161416仪表形象12111414《平均数》拓展练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)A居民区的月底统计用电情况,其中3户用电45度,5户用电50度,6户用电42度,则平均用电为()A.41 度B.42 度C.45.5 度D.46 度【分析】根据加权平均数的求法可以解答本题.【解答】解:平均用电为:=45.5(度),故选:C.【点评】本题考查加权平均数,解答本题的关键是明确加权平均数的方法.2.(5分)某小组中有3名学生每人得84分,如果另外7名学生的平均成绩是x,那么整个组的平均成绩是()A.B.C.D.【分析】整个组的平均成绩=10名学生的总成绩÷10,依次列式即可得.【解答】解:先求出这10个人的总成绩7x+3×84=7x+252,再除以10可求得平均值为.故选:A.【点评】此题考查了加权平均数的知识,解题的关键是求的10名学生的总成绩.3.(5分)某中学规定学生的学期体育成绩满分为100,其中大课间及体育课外活动占60%,期末考试成绩古40%.小云的两项成绩(百分制)依次为84,94.小云这学期的体育成绩是()A.86B.88C.90D.92【分析】根据加权平均数的计算公式,列出算式,再进行计算即可【解答】解:小云这学期的体育成绩是84×60%+94×40%=88(分),故选:B.【点评】此题考查了加权平均数,掌握加权平均数的计算公式是解题的关键,是一道基础题.4.(5分)某市招聘老师的笔试和面试的成绩均按百分制计,并且分别按40%和60%来计算综合成绩.王老师本次招聘考试的笔试成绩为90分,面试成绩为85分,经计算他的综合成绩是()A.85分B.87分C.87.5分D.90分【分析】根据笔试和面试所占的百分比以及笔试成绩和面试成绩,列出算式,进行计算即可.【解答】解:他的综合成绩为90×40%+85×60%=87(分),故选:B.【点评】此题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,用到的知识点是加权平均数.5.(5分)为鼓励业主珍惜每一滴水,某小区物业表扬了100个节约用水模范户,5月份节约用水的情况如下表:那么,5月份这100户平均节约用水的吨数为()吨.每户节水量(单位:吨)1 1.2 1.5节水户数651520A.1B.1.1C.1.13D.1.2【分析】平均节约用水的吨数等于所有的户节约用水的总和除以户数.【解答】解:5月份这100户平均节约用水的吨数为=1.13(吨),故选:C.【点评】本题考查的是加权平均数的求法.熟记公式是解决本题的关键.二、填空题(本大题共5小题,共25.0分)6.(5分)一次数学测验满分是100分,全班38名学生平均分是67分.如果去掉A、B、C、D、E五人的成绩,其余人的平均分是62分,那么在这次测验中,C的成绩是100分.【分析】先根据平均数公式分别求出全班38名学生的总分,去掉A、B、C、D、E五人的总分,相减得到A、B、C、D、E五人的总分,再根据实际情况得到C的成绩.【解答】解:设A、B、C、D、E分别得分为a、b、c、d、e.则[38×67﹣(a+b+c+d+e)]÷(38﹣5)=62,因此a+b+c+d+e=500分.由于最高满分为100分,因此a=b=c=d=e=100,即C得100分.故答案为:100.【点评】本题利用了平均数的概念建立方程.注意将A、B、C、D、E五人的总分看作一个整体求解.7.(5分)将30个数据分别减去300后,得到一组新数据的平均数是4,那么原30个数据的和是9120.【分析】根据平均数的定义解答.新数据的和为4×30,原数据的和为300×30+4×30.【解答】解:由题意知,将30个数据分别减去300后平均数为4,则原数据的平均数为4+300=304,那么原30个数据的和即为304×30=9120.故答案为9120.【点评】本题考查了平均数的概念.平均数等于所有数据的和除以数据的个数.8.(5分)若1,2,3,a的平均数是3,又4,5,a,b的平均数是5,则a+b =11,样本0,1,2,3,4,a,b的平均数是3.【分析】利用1,2,3,a的平均数是3,可求出a;又4,5,a,b的平均数是5,可求出b,进而解决问题.【解答】解:因为1,2,3,a的平均数是3,所以(1+2+3+a)=3,a=3×4﹣1﹣2﹣3=6;又因为4,5,a,b的平均数是5,所以有(4+5+6+b)=5,b=4×5﹣4﹣5﹣6=5,故a+b=11,0,1,2,3,4,a,b的平均数是(0+1+2+3+4+11)=3.故填11;3.【点评】本题考查平均数的求法即.9.(5分)一个祥本中,各个数据的总和为2018,如果这个样本的平均数为40.36,则样本的数据为50个.【分析】根据算术平均数的定义用数据的总和除以平均数即可得出答案.【解答】解:根据题意知样本的数据个数为2018÷40.36=50,故答案为:50.【点评】本题主要考查算术平均数,样本容量是指样本中包含个体的数目,没有单位,一般是用样本中各个数据的和÷样本的平均数,可以求得样本的容量.10.(5分)已知2、5、6和a四个数的平均数是4,又已知10、12、15、b和a 五个数的平均数是9,则b=5.【分析】根据2、5、6和a四个数的平均数为4,即可求得4个数的和,进而得到a的值,同理可以求得b的值.【解答】解:∵2、5、6和a四个数的平均数是4,∴2+5+6+a=4×4,解得:a=3,∵10、12、15、b和a五个数的平均数是9,∴10+12+15+b+3=5×9,解得:b=5,故答案为:5.【点评】本题考查的是平均数的求法.熟记公式是解决本题的关键.三、解答题(本大题共5小题,共50.0分)11.(10分)某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙两个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙两个小组各项得分如下表:小组研究报告小组展示答辩甲918078乙798390(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果研究报告、小组展示、答辩按照4:3:3计算成绩,哪个小组的成绩最高?【分析】(1)根据算术平均数的定义列式计算可得;(2)根据加权平均数的定义列式计算可得.【解答】解:(1)甲组的平均成绩为=83(分)、乙组的平均成绩为=84(分),所以乙组第一名、甲组第二名;(2)甲组的平均成绩为=83.8(分),乙组的平均成绩为=83.5(分),所以甲组成绩最高.【点评】此题考查了加权平均数,熟练掌握加权平均数的求法是解本题的关键.12.(10分)在某次考试中,现有甲、乙、丙3名同学,共四科测试实际成绩如下表:语文数学英语科学甲959580150乙1059090139丙10010085139(1)若欲从中表扬2人,请你从平均数的角度分析,哪两人将被表扬?(2)为了体现学科差异,参与测试的语文、数学、英语、科学实际成绩须以2:3:2:3的比例计入折合平均数.请你从折合平均数的角度分析,哪两人将被表扬?若欲从中表扬2人,请你从平均数的角度分析,哪两人将被表扬?【分析】(1)把各科分数相加,再除以4即可;(2)按比例计算出平均分,再判断即可.【解答】解:(1)==105(分);==106(分);==106(分);答:乙、丙将被表扬;(2)==108.5(分);==107.7(分);==108.7(分);答:甲、丙将被表扬.【点评】此题考查算术平均数和加权平均数的计算,解题的关键是掌握加权平均数等于各数据与其权的积得和除以数据的个数.在计算时搞清楚数据对应的权.13.(10分)某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前5名选手的得分如下:12345序号项目笔试成绩/分8592849084面试成绩/分9088869080根据规定,笔试成绩和面试成绩分别按一定的百分比折和成综合成绩(综合成绩的满分仍为100分)(1)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比;(2)求出其余四名选手的综合成绩,并以综合成绩排序确定前两名人选.【分析】(1)先设笔试成绩和面试成绩各占的百分比是x,y,根据题意列出方程组,求出x,y的值即可;(2)根据笔试成绩和面试成绩各占的百分比,分别求出其余四名选手的综合成绩,即可得出答案.【解答】解:(1)设笔试成绩和面试成绩各占的百分比是x,y,根据题意得:,解得:,笔试成绩和面试成绩各占的百分比是40%,60%;(2)2号选手的综合成绩是92×0.4+88×0.6=89.6(分),3号选手的综合成绩是84×0.4+86×0.6=85.2(分),4号选手的综合成绩是90×0.4+90×0.6=90(分),5号选手的综合成绩是84×0.4+80×0.6=81.6(分),则综合成绩排序前两名人选是4号和2号.【点评】此题考查了加权平均数,用到的知识点是加权平均数的计算公式,关键是灵活运用有关知识列出算式.14.(10分)一位同学进行五次投实心球的练习,每次投出的成绩如表:投实心球序次12345成绩(m)10.510.210.310.610.4求该同学这五次投实心球的平均成绩.【分析】平均数是指在一组数据中所有数据之和再除以数据的个数.【解答】解:该同学这五次投实心球的平均成绩为:=10.4.故该同学这五次投实心球的平均成绩为10.4m.【点评】此题考查了平均数,解题的关键是掌握平均数的计算公式.15.(10分)某公司对应聘者A,B,C,D进行面试,并按三个方面给应聘者打分,每方面满分20分,最后打分结果如下表,根据实际需要,公司将专业知识、工作经验和仪表形象三项成绩得分按6:3:1的比例确定各人的成绩,此时谁将被录用?A B C D专业知识14181716工作经验18161416仪表形象12111414【分析】根据加权平均数计算A,B,C,D四名应聘者的最后得分,看谁的分数高,分数高的就录用.【解答】解:A的最后得分:=15.0,B的最后得分:=16.7,C的最后得分:=15.8,D的最后得分:=15.8,由于B的最后得分最高,应录用B.【点评】本题考查了加权平均数的概念.在本题中专业知识、工作经验、仪表形象的权重不同,因而不能简单地平均,而应将各人的各项成绩乘以权之后才能求出最后的得分.第11页(共11页)。
八年级数学下册综合算式专项练习题平均数计算
八年级数学下册综合算式专项练习题平均数计算在八年级数学下册中,综合算式是一个重要的知识点,其中涉及到平均数的计算。
平均数是指一组数据的数值总和除以数据个数,通过求平均数可以帮助我们更好地理解数据的统计特征。
本文将为大家介绍一些综合算式中关于平均数的专项练习题。
1. 求平均数题目:某班有8位学生,他们的身高分别为150cm、155cm、158cm、162cm、165cm、170cm、172cm、175cm,请计算这些学生的平均身高。
解析:首先,将各学生的身高相加:150 + 155 + 158 + 162 + 165 + 170 + 172 + 175 = 1227。
然后,将总和除以学生的个数:1227 ÷ 8 = 153.375。
因此,这8位学生的平均身高为153.375cm。
2. 求缺失数题目:某次测试中,小明得了90分,小红得了85分,小李得了95分。
已知这三个人的平均成绩是92分,请计算缺失的一个人的分数。
解析:已知三人的平均成绩是92分,将三个人的成绩相加:90 +85 + 95 = 270。
将总和减去已知的两个分数:270 - 90 - 85 = 95。
因此,缺失的一个人的分数为95分。
3. 平均数与缺失数题目:某次调查中,某班级中共有30位学生,他们身高的平均数为165cm。
已知其中29位学生的身高分别为160cm、165cm、170cm、168cm、167cm、166cm等,请计算缺失的一个学生的身高。
解析:首先,将已知学生的身高相加:160 + 165 + 170 + 168 + 167+ 166 + … = 30 × 165 - 165 = 4950 - 165 = 4785。
然后,将总和减去已知学生的身高:4785 - 4785 = 0。
因此,缺失的一个学生的身高为165cm。
4. 平均数的增减题目:某班级其中10位学生参加了一次考试,他们的平均成绩是80分。
八年级-人教版-数学-下册-[综合训练]第2课时 平均数(2)
20.1数据的集中趋势(第2课时)1.某次射击训练中,一小组的成绩如下表所示.若该小组的平均成绩为7.7环,则成绩为8环的人数是________.2.数学单元测验后,某班课代表对各分数段的成绩统计如下表:若各分数段只包含左边端点的分数,不包含右边端点的分数,则该班数学单元测验的平均成绩为________分.3.某市运行了一种新型公共交通班车,下表是某一天对该班车载客量的统计,请根据所学知识计算这天平均每班车的载客量是多少?(结果取整数)4.“中国汉字听写大会”是由中央电视台和国家语言文字工作委员会联合主办的节目,希望通过节目的播出,能吸引更多的人关注对汉字文化的学习.某校也开展了一次“汉字听写”比赛,每位参赛学生听写40个汉字.比赛结束后随机抽取部分学生的听写结果,按听写正确的汉字个数x绘制成了以下不完整的统计图.根据以上信息回答下列问题:(1)本次共随机抽取了________名学生进行调查,听写正确的汉字个数x在________________范围的人数最多;(2)补全频数分布直方图;(3)各组的组中值如下表所示.若用各组的组中值代表各组每位学生听写正确的汉字个数,求被调查学生听写正确的汉字个数的平均数.参考答案1.【答案】4【解析】设成绩为8环的人数是x ,则有6×1+7×3+8x +9×2=7.7×(1+3+x +2), 解得x =4. 2.【答案】72【解析】组中值分别为45,55,65,75,85,95, 所以该班数学单元测验的平均成绩是x =(45×2+55×4+65×7+75×8+85×6+95×3)÷(2+4+7+8+6+3)=72(分). 3.【答案】解:11331551207122911811117629574352022181785⨯+⨯+⨯+⨯+⨯+⨯=+++++≈(人), 答:这天平均每班车的载客量是74人.4.【答案】解:(1)抽取的学生总数是10÷20%=50(人),听写正确的汉字个数在21≤x <31范围内的人数最多;(2)11≤x <21一组的人数是50×30%=15(人), 21≤x <31一组的人数是50-5-15-10=20(人). 补全频数分布直方图如下;(3)651615262036102350x ⨯+⨯+⨯+⨯==(个). 答:被调查学生听写正确的汉字个数的平均数是23个.。
八年级-人教版-数学-下册-[综合训练]第3课时 平均数(3)
20.1数据的集中趋势(第3课时)1.某市初中毕业生进行了一项技能测试,有4万名考生的得分都是不小于70的两位数,从中随机抽取3 000个数据,统计如下表:请根据表格中的信息,估计这4万个数据的平均数约为().A.92B.85C.83D.78 2.在某中学开展的“书香伴我行”读书活动中,为了解九年级300名学生一个月的读书情况,随机调查了九年级50名学生读书的册数,统计数据如表所示.估计这所中学九年级学生一个月共读书约________册,你的估计理由是______________________________________________________.3.小明家鱼塘中养了某种鱼2 000条,现准备打捞出售,为了估计鱼塘中这种鱼的总质量,现从中打捞三次,得到如下表的数据:(1)估计鱼塘中这种鱼平均每条的质量;(2)鱼塘中所有这种鱼的总质量约是多少?(3)若将这些鱼不分大小,按7.5元/kg的价格售出,则小明家收入约为多少?参考答案1.【答案】B【解析】由表可得样本的平均数为8007813008590092858001300900⨯+⨯+⨯≈++,∴估计这4万个数据的平均数约为85.2.【答案】648随机抽取的50名学生读书的平均册数约等于全年级学生读书的平均册数【解析】根据图表,样本中学生一个月读书的平均数为113216317432.1650=⨯+⨯+⨯+⨯,则可以估计这所中学九年级学生一个月共读书约2.16×300=648(册);估计理由是:随机抽取的50名学生读书的平均册数约等于全年级学生读书的平均册数.3.【答案】解:(1)(15×1.6+15×2.0+10×1.8)÷40=1.8,即样本平均数为1.8.因此,可以估计鱼塘中这种鱼平均每条的质量大约是1.8kg;(2)1.8×2 000=3 600(kg),所以鱼塘中所有这种鱼的总质量约是3 600 kg;(3)3 600×7.5=27 000(元),所以小明家收入约为27 000元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《平均数》基础练习一、选择题(本大题共5小题,共25.0分)1.(5分)一组数据3,5,7,m,n的平均数是7,则m,n的平均数是()A.6B.7C.8D.102.(5分)一列数4,5,6,4,4,7,x的平均数是5,则x的值为()A.4B.5C.6D.73.(5分)某区“引进人才”招聘考试分笔试和面试.其中笔试按60%、面试按40%计算加权平均数作为总成绩.吴老师笔试成绩为90分.面试成绩为85分,那么吴老师的总成绩为()分.A.85B.86C.87D.884.(5分)小明要去超市买甲、乙两种糖果,然后混合成5千克混合糖果,已知甲种糖果的单价为a元/千克,乙种糖果的单价为b元/千克,且a>b.根据需要小明列出以下三种混合方案:(单位:千克)甲种糖果乙种糖果混合糖果方案1235方案2325方案3 2.5 2.55则最省钱的方案为()A.方案1B.方案2C.方案3D.三个方案费用相同5.(5分)数据60,70,40,30这四个数的平均数是()A.40B.50C.60D.70二、填空题(本大题共5小题,共25.0分)6.(5分)某校九年级甲班40名学生中,5人13岁,30人14岁,5人15岁.则这个班级学生的平均年龄是.7.(5分)西安市某一周的日最高气温(单位:℃)分别为:35,33,36,33,32,32,37,这周的日最高气温的平均值是℃.8.(5分)如果数据3、2、x、﹣3、1的平均数是2,那么x的值是.9.(5分)某校生物小组7人到校外采集标本,其中2人每人采集到3件,3人每人采集到4件,2人每个采集到5件,则这个小组平均每人采集标本件.10.(5分)小辉期中考试语文、数学、英语三科的平均分为90分,语文得了86分,英语得了91分,他把数学成绩忘记了,他的数学成绩应该为分.三、解答题(本大题共5小题,共50.0分)11.(10分)某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛,现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录,甲、乙、丙三个小组各项得分如下表:小组研究报告小组展示答辩甲918078乙817485丙798391(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果按照研究报告占40%,小组展示占30%,答辩占30%,计算各小组的成绩,哪个小组的成绩最高?12.(10分)下列各数是10名学生的数学考试成绩:82,83,78,66,95,75,56,93,82,81先估算他们的平均成绩,然后在此基础上计算平均成绩,由此检验你的估值能力.13.(10分)甲、乙、丙三位同学参加“华罗庚杯数学竞赛”培训.三个培训段的考试成绩如表:现要选拨一人参赛:甲乙丙代数858570几何928083综合758590(1)若按三次平均成绩选拔,应选谁参加?(2)若三次成绩按3:3:4的比例计算,应选谁参加?(3)若三次成绩按20%,30%,50%计算,应选谁参加?14.(10分)数据x1,x2,x3,…,x n的平均数是a,数据y1,y2,y3,…,y n的平均数是b,探讨:(1)数据x1+x2+…+x n+y1+y2+…+y n的平均数;(2)数据x1+10,x2+10,…,x n+10的平均数;(3)数据2x1+3y1,2x2+3y2,…,2x n+3y n的平均数;(4)由上面的探讨,总结出一般规律.15.(10分)一家公司打算招聘一名英文翻译,对甲乙两名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:应试者听说读写甲85788573乙73808283(1)如果这家公司想招一名综合能力较强的翻译,计算两名应试者的平均成绩(百分制),从他们的成绩看,应该录取谁?(2)如果这家公司想招一名笔译能力较强,听、说、读、写成绩按照2:1:3:4的比确定,计算两名应试者的平均成绩(百分制).从他们的成绩看,应该录取谁?《平均数》基础练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)一组数据3,5,7,m,n的平均数是7,则m,n的平均数是()A.6B.7C.8D.10【分析】数据3,5,7,m,n的平均数是7,即已知这几个数的和是7×5,则可求出m+n,这样就可得到它们的平均数.【解答】解:∵数据3,5,7,m,n的平均数是7,∴3+5+7+m+n=7×5,∴m+n=35﹣3﹣5﹣7=20,∴m,n的平均数是10.故选:D.【点评】本题考查的是样本平均数的求法.熟记公式是解决本题的关键.2.(5分)一列数4,5,6,4,4,7,x的平均数是5,则x的值为()A.4B.5C.6D.7【分析】根据平均数是计算公式即可得出结论.【解答】解:∵数据4,5,6,4,4,7,x的平均数是5,∴(4+5+6+4+4+7+x)÷7=5,解得x=5,故选:B.【点评】本题考查的是平均数的求法及运用,熟记计算公式是解本题的关键.3.(5分)某区“引进人才”招聘考试分笔试和面试.其中笔试按60%、面试按40%计算加权平均数作为总成绩.吴老师笔试成绩为90分.面试成绩为85分,那么吴老师的总成绩为()分.A.85B.86C.87D.88【分析】根据笔试和面试所占的百分比以及笔试成绩和面试成绩,列出算式,进行计算即可.【解答】解:根据题意得,吴老师的综合成绩为90×60%+85×40%=88(分),故选:D.【点评】此题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,用到的知识点是加权平均数.4.(5分)小明要去超市买甲、乙两种糖果,然后混合成5千克混合糖果,已知甲种糖果的单价为a元/千克,乙种糖果的单价为b元/千克,且a>b.根据需要小明列出以下三种混合方案:(单位:千克)甲种糖果乙种糖果混合糖果方案1235方案2325方案3 2.5 2.55则最省钱的方案为()A.方案1B.方案2C.方案3D.三个方案费用相同【分析】求出三种方案混合糖果的单价,比较后即可得出结论.【解答】解:方案1混合糖果的单价为,方案2混合糖果的单价为,方案3混合糖果的单价为=.∵a>b,∴<<,∴方案1最省钱.故选:A.【点评】本题考查了加权平均数,求出各方案混合糖果的单价是解题的关键.5.(5分)数据60,70,40,30这四个数的平均数是()A.40B.50C.60D.70【分析】根据算术平均数的定义计算可得.【解答】解:这四个数的平均数是=50,故选:B.【点评】此题考查了平均数,掌握平均数的计算公式是本题的关键;平均数是指在一组数据中所有数据之和再除以数据的个数.二、填空题(本大题共5小题,共25.0分)6.(5分)某校九年级甲班40名学生中,5人13岁,30人14岁,5人15岁.则这个班级学生的平均年龄是14.【分析】根据加权平均数的计算方法是求出该班所有人数的总岁数,然后除以总学生数即可.【解答】解:根据题意得:=14(岁),答:这个班级学生的平均年龄是14岁;故答案为:14.【点评】此题考查了加权平均数,本题易出现的错误是求13,14,15这三个数的平均数,对平均数的理解不正确.7.(5分)西安市某一周的日最高气温(单位:℃)分别为:35,33,36,33,32,32,37,这周的日最高气温的平均值是34℃.【分析】先求出这7天总的最高温度和,再除以7天,即可得出这周的日最高气温的平均值.【解答】解:这周的日最高气温的平均值是=34(℃),故答案为:34.【点评】此题考查了平均数,熟练掌握平均数的计算公式是解题的关键,是一道基础题.8.(5分)如果数据3、2、x、﹣3、1的平均数是2,那么x的值是7.【分析】根据平均数的计算公式直接解答即可.【解答】解:∵数据3、2、x、﹣3、1的平均数是2,∴=2,解得:x=7,故答案为:7.【点评】此题主要考查了算术平均数的求法,解答此题的关键是要明确:平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.9.(5分)某校生物小组7人到校外采集标本,其中2人每人采集到3件,3人每人采集到4件,2人每个采集到5件,则这个小组平均每人采集标本4件.【分析】运用加权平均数公式即可求解.【解答】解:由题意,可得这个小组平均每人采集标本:=4(件).故答案为4.【点评】本题考查的是加权平均数的求法.熟记公式是解决本题的关键.10.(5分)小辉期中考试语文、数学、英语三科的平均分为90分,语文得了86分,英语得了91分,他把数学成绩忘记了,他的数学成绩应该为93分.【分析】根据题意可以求得三科的总成绩,从而可以求得数学成绩.【解答】解:由题意可得,他的数学成绩为:90×3﹣(86+91)=93(分),故答案为:93.【点评】本题考查算术平均数,解答本题的关键是明确题意,求出相应的数学成绩.三、解答题(本大题共5小题,共50.0分)11.(10分)某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛,现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录,甲、乙、丙三个小组各项得分如下表:小组研究报告小组展示答辩甲918078乙817485丙798391(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果按照研究报告占40%,小组展示占30%,答辩占30%,计算各小组的成绩,哪个小组的成绩最高?【分析】(1)根据算术平均数的定义计算可得;(2)根据加权平均数的定义计算可得.【解答】解:(1)∵==83,==80,==84,∴从高分到低分确定小组的排名顺序为:丙、甲、乙;(2)甲:91×40%+80×30%+78×30%=83.8,乙:81×40%+74×30%+85×30%=80.1,丙:79×40%+83×30%+91×30%=83.5,∴甲组成绩最高.【点评】本题主要考查平均数,解题的关键是掌握算术平均数和加权平均数的定义.12.(10分)下列各数是10名学生的数学考试成绩:82,83,78,66,95,75,56,93,82,81先估算他们的平均成绩,然后在此基础上计算平均成绩,由此检验你的估值能力.【分析】把超过80的部分用正数表示,不足90的部分用负数来表示,然后再根据进行计算即可.【解答】解:估计这10名同学的平均成绩为80分.把他们成绩超过80的部分记作正数,不足80的部分记作负数.这10位学生的分数分别记为:+2,+3,﹣2,﹣14,+15,﹣5,﹣24,+13,+2,+1.80+(2+3﹣2﹣14+15﹣5﹣24+13+2+1)÷10=80﹣0.9=79.1.答:这10名学生的平均成绩是79.1,我估计的分值与此很接近.【点评】本题主要考查的是算术平均数,有理数的加法、正负数,引入正负数进行简便计算是解题的关键.13.(10分)甲、乙、丙三位同学参加“华罗庚杯数学竞赛”培训.三个培训段的考试成绩如表:现要选拨一人参赛:甲乙丙代数858570几何928083综合758590(1)若按三次平均成绩选拔,应选谁参加?(2)若三次成绩按3:3:4的比例计算,应选谁参加?(3)若三次成绩按20%,30%,50%计算,应选谁参加?【分析】(1)根据平均数的定义求出甲、乙、丙三位同学的平均数,进一步判定即可求解;(2)三次成绩按3:3:4的比例计算求出加权平均数后判断即可;(3)三次成绩按20%,30%,50%的比例计算求出加权平均数后判断即可.【解答】解:(1)(85+92+75)÷3=84,(85+80+85)÷3=83,(70+83+90)÷3=81,∵84>83>81,∴若按三次平均成绩选拔,应选甲参加;(2)85×+92×+75×=25.5+27.6+30=83.1,85×+80×+85×=25.5+24+34=83.570×+83×+90×=21+24.9+36=81.9∵83.5>83.1>81.9,∴若三次成绩按3:3:4的比例计算,应选乙参加;(3)85×20%+92×30%+75×50%=17+27.6+37.5=82.1,85×20%+80×30%+85×50%=17+24+42.5=83.570×20%+83×30%+90×50%=14+24.9+45=83.9∵83.9>83.5>82.1,∴若三次成绩按20%,30%,50%计算,应选丙参加.【点评】考查了加权平均数,权的表现形式,一种是比的形式,另一种是百分比的形式,权的大小直接影响结果.14.(10分)数据x1,x2,x3,…,x n的平均数是a,数据y1,y2,y3,…,y n的平均数是b,探讨:(1)数据x1+x2+…+x n+y1+y2+…+y n的平均数;(2)数据x1+10,x2+10,…,x n+10的平均数;(3)数据2x1+3y1,2x2+3y2,…,2x n+3y n的平均数;(4)由上面的探讨,总结出一般规律.【分析】(1)由题意得出x1+x2+x3+…+x n=na,y1+y2+…+y n=nb,再依据平均数的定义计算(x1+y1+x2+y2+…+x n+y n)÷n=(na+nb)÷n可得答案;(2)根据平均数的定义知x1+10,x2+10,…,x n+10的平均数为×(x1+10+x2+10+…+x n+10),据此可得.(3)把2x l+3y1,2x2+3y2,2x3+3y3…2x n+3y n的平均数的式子用a和b表示出来即可;(4)一般规律为:mx1+ny1,mx2+ny2,…,mx n+ny n的平均数为ma+nb.【解答】解:(1)∵数据x1,x2,…x n的平均数为a,数据y1,y2,…y n的平均数为b,∴x1+x2+x3+…+x n=na,y1+y2+…+y n=nb,∴数据x1+y1,x2+y2,…x n+y n的平均数为(x1+y1+x2+y2+…+x n+y n)÷n=(na+nb)÷n=a+b.(2)数据x1+10,x2+10,…,x n+10的平均数为×(x1+10+x2+10+…+x n+10)==a+10;(3)∵x1,x2,x3,…,x n的平均数是a,数据y1,y2,y3,…,y n的平均数是b,∴(2x1+3y1+2x2+3y2+2x3+3y3+…+2x n+3y n)÷n=[2(x1+x2+x3+•+x n)+3(y1+y2+y3+…+y n)]÷n=2a+3b.(4)由以上可得mx1+ny1,mx2+ny2,…,mx n+ny n的平均数为ma+nb.【点评】本题考查了平均数的计算.本题说明了一组数据若是由两组数据的和或倍数组成,则数据的平均数是这两组数据的平均数的和或倍数.15.(10分)一家公司打算招聘一名英文翻译,对甲乙两名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:应试者听说读写甲85788573乙73808283(1)如果这家公司想招一名综合能力较强的翻译,计算两名应试者的平均成绩(百分制),从他们的成绩看,应该录取谁?(2)如果这家公司想招一名笔译能力较强,听、说、读、写成绩按照2:1:3:4的比确定,计算两名应试者的平均成绩(百分制).从他们的成绩看,应该录取谁?【分析】(1)根据平均数的计算公式计算可得;(2)根据加权平均数的公式计算可得.【解答】解:(1)∵=×(85+78+85+73)=80.25,=×(73+80+82+83)=79.5,∴应录取甲;(2)∵==79.5,==80.4,∴此时应录取乙.【点评】本题考查加权平均数,解题的关键是明确题意,找出所求问题需要的条件,会计算加权平均数.。