可见紫外外分光光度法详解
紫外可见分光光度法简介
紫外-可见分光光度法简介紫外-可见分光光度法(ultraviolet-visible spectrophotometry, UV-VIS),它是利用物质的分子或离子对某一波长范围的光的吸收作用,对物质进行定性分析、定量分析及结构分析, 所依据的光谱是分子或离子吸收入射光中特定波长的光而产生的吸收光谱。
按所吸收光的波长区域不同,分为紫外分光光度法和可见分光光度法,合称为紫外-可见分光光度法。
紫外--可见分光光度法:是根据物质分子对波长为200-760nm这一范围的电磁波的吸收特性所建立起来的一种定性、定量和结构分析方法。
操作简单、准确度高、重现性好。
波长长(频率小)的光线能量小,波长短(频率大)的光线能量大。
分光光度测量是关于物质分子对不同波长和特定波长处的辐射吸收程度的测量。
吸收光谱描述物质分子对辐射吸收的程度随波长而变的函数关系曲线,称为吸收光谱或吸收曲线。
紫外-可见吸收光谱通常由一个或几个宽吸收谱带组成。
最大吸收波长(λmax)表示物质对辐射的特征吸收或选择吸收,它与分子中外层电子或价电子的结构(或成键、非键和反键电子)有关。
朗伯-比尔定律是分光光度法和比色法的基础。
这个定律表示:当一束具有I0强度的单色辐射照射到吸收层厚度为b,浓度为c的吸光物质时,辐射能的吸收依赖于该物质的浓度与吸收层的厚度。
其数学表达式为:式中的A 叫做吸光度;I0为入射辐射强度;I为透过吸收层的辐射强度;(I/I0)称紫藤为透射率T;ε是一个常数,叫做摩尔吸光系数,ε值愈大,分光光度法测定的灵敏度愈高。
紫外-可见分光光度计有稳定的、有足够输出功率的、能提供仪器使用波段的连续光谱,如钨灯、卤钨灯(波长范围350~2500纳米),氘灯或氢灯(180~460纳米),或可调谐染料激光光源等。
②单色器[1]。
它由入射、出射狭缝、透镜系统和色散元件(棱镜或光栅)组成,是用以产生高纯度单色光束的装置,其功能包括将光源产生的复合光分解为单色光和分出所需的单色光束。
紫外-可见分光光度法
一、分光光度计的主要部件 1. 光源
对光源基本要求:足够光强、稳定、 连续辐射且强度随波长变化小。
钨及碘钨灯:340~2500 nm,多 用在可见光区;
氢灯和氘灯:160~375 nm,多用 在紫外区。
2. 单色器
单色器的用途就是把混合光变成 单色光,由入射狭缝、准直镜、色散 元件、聚焦元件和出口狭缝组成。常 用的色散元件有棱镜和光栅。
对于光谱分析,可测量的最小分析信 号xL为
xL xb ksb
空白试验 多次测量 的平均值
根据一定 置信度确 定的系数
空白试验 多次测量 的标准差
与 xL xb ksb 相对应的浓
度或量即为检出限L
L xL xb ksb
S
S
方法的灵敏度
2. 标准比较法
该法是标准曲线法的简化,即只
配制一个浓度为cs的标准溶液,并测量 其吸 光度 , 求 出吸 收系 数 k, 然 后 由
Aa2
Ab2
a
2
lca
b
2
lcb
cb
Aa2b
a
2
lca
l
b
2
1. 解方程组
Aa1b
Aa1
Ab1
a
1
lca
b
1
lcb
Aa2b
Aa2
Ab2
a
2
lca
b
2
lcb
2. 双波长法—等吸收点法
测定b组分时,选择b组分的最大吸收波长作测定波长 1,由b的峰顶向横坐标作垂线与a吸收曲线的一侧相 交,从相交点作横坐标的平行线与a吸收曲线的另一 侧相交,交点所对应的波长为参比波长2 。在1和2 处分别测量吸光度 A1ab与 ,然后相减求 Aab 。
紫外分光光度法详解
(2)单色器
单色器是将光源辐射的复合光色散成单色光的光学装置。
一般由狭缝、色散元件及透镜系统组成。
最常用的色散元件是光栅和棱镜。
棱镜根据光的折射原理而将复合光色散为不同波长的单 色光,然后再让所需波长的光通过一个很窄的狭缝照射到吸 收池上。 由玻璃或石英制成。玻璃棱镜用于可见光范围,石英棱 镜则在紫外和可见光范围均可使用。
光束分器 光源
比值
单色器
显示 吸收池 检测器
自动记录,快速全波段扫描。可消除光源不稳定、检测器灵 敏度变化等因素的影响,特别适合于结构分析。仪器复杂, 价格较高。
岛津UV-2550紫外可见分光光度计
双波长分光光度计
单色器
光源
单色器
切 光 源
吸 收 池
检 测 器
不需要参比溶液;可以消除背景吸收干扰;适合多组分混 合物、浑浊试样的定量分析,可进行导数光谱分析。价格 昂贵
光电倍增管比普通光电管更灵敏,是利用二次电子发射来
放大光电流。是目前高中档分光光度计中常用的一种检测器。 光电二极管阵列检测器是紫外-可见光度检测器的一个重要 进展。这类检测器用光电二极管阵列作检测元件。通过单色器 的光含有全部的吸收信息,在阵列上同时被检测,并用电子学
方法及计算机技术对二极管阵列快速扫描采集数据,由于扫描
池。 使用比色皿时应注意手持两侧毛边,保持清洁、透明, 避免磨损透光面。盛放液体高度占四分之三。
(4)检测器
将光信号转变成电信号的装置。 要求灵敏度高,响应时间短,噪声水平低且有良好的稳定 性。 常用的检测器有光电管、光电倍增管和光电二极管阵列检
测器。
光电管能将所产生的光电流放大,可用来测量很弱的光。 常用的光电管有蓝敏和红敏光电管两种。前者适用波长范围 210-625nm ;后者适用范围 625-1000nm
紫外分光光度法1详解
E 摩尔吸光系数
M 10
E1% 1cm
>104强吸收 <102弱吸收
C:g / 100 mL
E E11c%m百分吸光系数
比吸光系数
偏离比尔定律的因素
(一)化学因素 浓度变化引起的离解、缔合、与溶剂间作用等。 减免:控制溶液条件。 (二)光学因素 1.非单色光的影响:E1与E2相差越大,引起 的偏离越大。也与杂光的强度和检测器对之的 响应灵敏度有关。 减免:选用较纯的单色光。
选max的光作为入射光。
入射光选择示意图
A
结论:单组份分 析时,一般选择 max的光作为入 射光,测量灵敏 度高,且对比尔 定律的偏离小。
max
2.杂散光(stray light) 减免:优化仪器设计,维护好仪器。 3.反射光和散射光:使A偏高
减免:真溶液用空白对比补偿。胶 体溶液或浑浊溶液较难用空白补偿。 4.非平行光
紫外可见分光光度计的光学性能
狭缝或谱带宽:单色光纯度指标之一,低级仪 器几纳米,中高级仪器0.1~0.5nm 分辨率:260nm处,中等仪器 <0.5nm,高级 仪器 <0.1nm 杂散光:中等仪器 <0.5%,高级仪器<0.001%, 影响仪器测定浓度上限。 光度准确度:±1%~±0.1%
分光光度计的校正
•光电二极管阵列
阴极
真 抽真空 空 光 电 管
光束
e
阳极丝(Ni)
直流放大
R
- 90V DC +
阴极表面可涂渍不同光敏物质:高灵敏(K,Cs,Sb其中二者)、红光敏 (Na/K/Cs/Sb, Ag/Cs,625~1000nm)、紫外光敏(200~625nm)、平坦响应 (Ga/As,响应受波长影响小)。产生的光电流约为硒光电池的1/10。
紫外-可见分光光度法的基本原理
R
*
n
* 跃迁
所需能量最大; 电子只有吸收远紫外光的能量才能发生跃迁,
吸收光谱处于远紫外区,多为饱和烃。
甲烷 乙烷 125 nm 135 nm
n * 跃迁
所需能量较大,但小于 *跃迁;含有未共用电子对 (n电子)原子的饱和化合物都可发生,如含杂原子的分子: -NH2、-OH、-S、-X中的未成键的n电子 吸收波长为150~250nm,大部分在远紫外区
圆 折 二 射 色 法 性 法
X 射 干 线 涉 衍 法 射 法
原 旋 子 光 吸 法 收 光 谱
原 子 发 射 光 谱
原 子 荧 光 光 谱
红 外 光 谱 法
分 子 荧 光 光 谱 法
分 子 磷 光 光 谱 法
核 磁 共 振 波 谱 法
紫外-可见分光光度法的基本原理
1、紫外可见吸收光谱法 根据溶液中物质的分子或离子对紫外 光谱区或可见光谱区辐射能的吸收以研 究物质组成和结构的方法。
,即分子中含有孤对电子和键同时存在时,才发生n→ *跃迁;
吸收波长为200~400nm,一般在近紫外区;吸收系数较低
O
H3C-C-CH3
例:丙酮有280nm左右的n→ *跃迁吸收峰( =10~30 L· mol-1· cm-1 )
→ *跃迁
所需能量较小,吸收波长处于远紫外区的近紫外端或 近紫外区 含有不饱和键的有机分子易发生这类跃迁 C=C C=C ; N=N ; C=O 属于强吸收,max >104L· mol-1· cm-1, 具有共轭双键的化合物 → *跃迁所需能量降低
(2)准确度较高:相对误差为 2%-10%。如采用精密分光光 度计测量,相对误差可减少至1%-2%。
紫外可见分光光度法
波长和颜色的关系
λ(nm) 400-450 450-480 480-490 490-500 500-560 560-580 580-610 610-650 650-760
颜色 紫 蓝 绿蓝 蓝绿 绿 黄绿 黄 橙 红
互补光 黄绿 黄 橙 红 红紫 紫 蓝 绿蓝 蓝绿
二、物质对光的选择性吸收
1、物质对光的吸收的本质
定性分析: 1、与标准品或标准图谱对比,鉴定未知物; 2、鉴别异构体 如:顺反异构、互变异构(如酮-烯醇式) 3、纯度检查
定量分析: 1、单一组分测定 2、多组分同时测定
第二节 紫外可见分光光度计
一、紫外可见分光光度计的构造
光源
单色器 吸收池
检测 系统
信号显 示系统
(一)光源
1、作用:提供符合要求的入射光。
3、分类: (1)可见光光源:
①钨丝灯:是最常见的可见光光源,它可发射波长 为325-2500nm范围的连续光谱,其中最适宜的使 用范围是320-1000nm,除用作可见光源外,还可 用作近红外光源。
②卤钨灯
在钨丝中加入适量的卤化物或卤素,灯泡用石 英制成,具有较长的寿命和高的发光效率。
(2) 紫外光光源: 多为气体放电光源,其中应用最多的是氢灯和
➢ 以光的衍射现象和干涉现象为基础(平面反射光栅和平面 凹面光栅)Βιβλιοθήκη (三)吸收池(又称比色皿)
1、作用:盛装被测溶液和参比溶液。 2、分类: (1)玻璃比色皿:适用于可见光区。(能否用于紫 外光区?) (2)石英比色皿:适用于紫外及可见光区。
3、主要规格: 0.5cm、1.0cm、2.0cm、3.0cm等。
紫外可见分光光度计基本组成
钨灯卤素 灯或氘灯
棱镜或光 栅,玻璃 或石英
紫外分光光度法
第4节 紫外分光光度法
• (3)紫外吸收光谱常用吸收曲线来描述。
•
即用一束具有连续波长的紫外光照射
一定浓度的样品溶液,分别测量不同波长下
溶液的吸光度,以吸光度对波长作图得到该
化合物的紫外吸收曲线,即紫外吸收光谱。
•
化合物的紫外吸收特征可以用曲线上
最大吸收峰所对应的最大吸收波长λmax 和
该波长下的摩尔吸光系数εmax 来表示。
远紫外区,而在近紫外光区是透明的, 它们的吸收光谱曲线必须在真空中测定。
(一)紫外吸收光谱的产生
2、价电子的种类及电子跃迁类型:
• ②n → σ* 跃迁
• 含有氧、氮、硫、卤素等杂原子的饱和 烃衍生物都可发生 n → σ* 跃迁,它比 σ → σ* 跃迁的能量要低,吸收波长较长, 一般在150~250 nm范围内。如CH3OH
• 1.生色团和助色团 • ①生色团——含不饱和键基团,有π键 • 含有不饱和键,能吸收紫外可见光,产生
n→π* 或π→π*跃迁的基团称为发色团
• 是指在200~1000nm波长范围内产生特征吸收 带的具有一个或多个不饱和键和未共用电子对 的基团。如
•
C O CC NN C C
CO
COOH
(二)紫外吸收光谱中的有关术语
吸收峰波长
吸收强度 极性溶剂
π→π*
n→π*
与组成双键的
有关
原子种类基本无关
强吸收 104~105 弱吸收 <102
向长波方向移动 向短波方向移动
2、价电子的种类及电子跃迁类型:
• 由于一般紫外-可见分光光度计只能提供 190~850nm范围的单色光,因此只能测 量n → π* 跃迁和部分 n → σ* 跃迁、π → π* 跃迁的吸收,而对只能产生200 nm以 下吸收的 σ → σ* 跃迁则无法测量。常见 电子跃迁所处的波长范围及强度如图824所示。
紫外可见分光光度法的原理及应用
物质颜色和吸收光颜色的关系
物质颜色
黄绿 黄 橙 红
紫红 紫 蓝
绿蓝 蓝绿
吸
颜
色
紫 蓝 绿蓝 蓝绿 绿 黄绿 黄 绿 红
收 波
光 长(nm)
400 ~ 450 450 ~ 480 480 ~ 490 490 ~ 500 500 ~ 560 560 ~ 580 580 ~ 600 600 ~ 650 650 ~ 750
用经过分光后的不同波长的光依次透过该物质,通过测 量物质对不同波长的光的吸收程度(吸光度), 以波长为横 坐标,吸光度为纵坐标作图,就可以得到该物质在测量波长 范围内的吸收曲线。这种曲线体现了物质对不同波长的光的 吸收能力,称为吸收光谱。
吸收光谱
透射光 检测器
入射光 不同波长光
紫外-可见分光光度法的原理
2.分子吸收光谱的分类:
分子吸收光谱涉及三种跃迁能级,所需能量大小顺序
? E电 ? ? E振 ? ? E转
? E电 ? 1 ~ 20ev ? ? ? 0.06 ~ 1.25?m ? 紫外 ? 可见吸收光谱 ? E振 ? 0.05 ~ 1ev ? ? ? 25 ~ 1.25?m ? 红外吸收光谱 ? E转 ? 0.005 ~ 0.05ev ? ? ? 250 ~ 25?m ? 远红外吸收光谱
比耳定律实验
当一束平行的单色光通过液层厚度一定的溶液时,在入射光波长、
强度和溶液温度等不变时,吸光度A与溶液浓度 c 关系:A=k c
3.紫外-可见吸收光谱的产生 由于每个电子能级上耦合有许多的振-转能级,所以处
于紫外 -可见光区的电子跃迁而产生的吸收光谱具有 “带状吸收” 的特点。
第十三章 可见和紫外分光光度法
第十三章 可见和紫外分光光度法分光光度法(spectrophotometry)是一种现代仪器分析方法,它是利用物质的吸收光谱和光的吸收定律对物质进行定性或定量分析的。
根据所用光源波长的不同,分光光度法又可分为:光源波长在380 nm ~ 780 nm 为可见分光光度法;10 nm ~ 380 nm 为紫外分光光度法(常用波长为200 nm ~ 380 nm);780 nm ~ 3⨯105 nm 为红外分光光度法。
可见-紫外分光光度法通过测定物质对特定波长光的吸收,求出物质的含量或对物质进行定性。
它的优点是选择性好,灵敏度高,一般物质可测到10-3 mol •L -1~10-6 mol •L -1;相对误差虽比滴定分析大,但对微量分析而言,绝对误差极小,符合分析准确度好的要求;仪器设备简单,操作便捷,应用广泛,在化工、环保、医药、卫生、生物等领域中常用来分析物质的组成和结构、测定化合物的含量及研究生化过程等。
本章主要学习可见-紫外分光光度法基本原理和方法。
第一节 分光光度法基本原理——吸收光谱和朗伯-比耳定律一、吸收光谱的产生与吸收曲线(一)原子光谱和分子光谱当原子中的电子吸收或释放一定能量后将从一个能级(E 1)轨道跃迁到另一个能级(E 2)轨道上,吸收或释放的能量可以是具有一定波长的光。
产生的光波波长λ 与跃迁前后两个能级的能量差有关21chc hc hc h E E E λνν====∆- 式中h 为普朗克常量;c 为光速;ν 为频率。
不同能级间电子的跃迁产生的能量差不同,因此吸收或发射的光的波长也就不同,这便形成了相应的原子的吸收或发射光谱。
它们都是不连续的线状光谱。
不同元素的原子其电子结构不同,能级结构不同,因而有其特征的光谱线。
利用此类性质的分析法称为原子光谱法。
分子是由多个原子结合而成,分子及其内部粒子存在着三种与光的吸收或发射有关的运动形式:价电子在分子轨道上的运动;原子或原子团相对于连接它们的化学键的振动和分子绕着其重心转动。
紫外可见光分光光度法
紫外-可见分光光度法是在190~800nm波长范围内测定物质的吸光度,用于鉴别、杂质检查和定量测定的方法。
当光穿过被测物质溶液时,物质对光的吸收程度随光的波长不同而变化。
因此,通过测定物质在不同波长处的吸光度,并绘制其吸光度与波长的关系图即得被测物质的吸收光谱。
从吸收光谱中,可以确定最大吸收波长λmax和最小吸收波长λmin。
物质的吸收光谱具有与其结构相关的特征性。
因此,可以通过特定波长范围内样品的光谱与对照光谱或对照品光谱的比较,或通过确定最大吸收波长,或通过测量两个特定波长处的吸收比值而鉴别物质。
用于定量时,在最大吸收波长处测量一定浓度样品溶液的吸光度,并与一定浓度的对照溶液的吸光度进行比较或采用吸收系数法求算出样品溶液的浓度。
可见分光光度法和紫外分光光度法
光栅是利用光的衍射与干涉作用制成的,它可用于紫 是利用光的衍射 干涉作用制成的 它可用于紫 衍射与 作用制成的,
外、可见及红外光域,而且在整个波长区具有良好的、几 可见及红外光域 而且在整个波长区具有良好的、 乎均匀一致的分辨能力。它具有色散波长范围宽、 乎均匀一致的分辨能力。它具有色散波长范围宽、分辨本 领高、成本低、便于保存和易于制备等优点。缺点是各级 领高、成本低、便于保存和易于制备等优点。缺点是各级 光谱会重叠而产生干扰。 光谱会重叠而产生干扰。 Back
εmax表明了该吸收物质最大限度的吸光能力,也反映了 表明了该吸收物质最大限度的吸光能力 最大限度的吸光能力, 光度法测定该物质可能达到的最大灵敏度, 越大, 光度法测定该物质可能达到的最大灵敏度,εmax越大,
表明该物质的吸光能力越强, 表明该物质的吸光能力越强,用光度法测定该物质的灵 敏度越高,ε>1000即可进行分光光度法测定。 敏度越高, 即可进行分光光度法测定。 即可进行分光光度法测定
(四)检测器 检测器的功能是检测信号、测量单色光透过溶液后光 检测器的功能是检测信号、 强度变化的一种装置。 强度变化的一种装置。 常用的检测器有光电池、光电管和光电倍增管等。 常用的检测器有光电池、光电管和光电倍增管等 光电池 硒光电池对光的敏感范围为300~800nm,其中又以500 ,其中又以 硒光电池对光的敏感范围为 ~ 600nm最为灵敏。这种光电池的特点是能产生可直接推 最为灵敏。 最为灵敏 动微安表或检流计的光电流, 动微安表或检流计的光电流,但由于容易出现疲劳效应而 只能用于低档的分光光度计中。 只能用于低档的分光光度计中。 光电管在紫外 可见分光光度计上应用较为广泛。 光电管在紫外-可见分光光度计上应用较为广泛。 在紫外 可见分光光度计上应用较为广泛 光电倍增管是检测微弱光最常用的光电元件,它的灵 光电倍增管是检测微弱光最常用的光电元件, 敏度比一般的光电管要高200倍,因此可使用较窄的单色器 敏度比一般的光电管要高 倍 狭缝,从而对光谱的精细结构有较好的分辨能力。 狭缝,从而对光谱的精细结构有较好的分辨能力。back
紫外分光光度法与紫外分光光度计详解演示文稿
苯环、酰基……
• K 由于共轭性吸收带, 起因与多烯、烯酮等
• B 由于苯(环)性, 起因于芳香族、杂芳 香族化合物,有时候 尚能显示精细结构
• R由于自由基性吸收、 起因于CO、NO2等
发色基团
第11页,共52页。
紫外可见分光光度计的主要应用
(1)定性分析(参加)
(2)结构分析(参加) (3)纯度检查
P))
Varian Cary 5000i ( S.L. 5×10-7,N ± 0.0002A (P-P))
日立 U-3200(S.L. 5×10-6,N×)
U-3400(S.L. 1×10,N×) 岛津 UV-3101PC(S.L. 1×10-6,N×)
UV-2401PC(S.L. 1.5×10-4,N×) 北京普析通用
• 190-400nm 紫外区 • 400-750nm 可见区 • 750-1100 nm 近红外区
第5页,共52页。
吸收光谱来源
• 吸收光度法:当一束连续光源通过单色器, 被分解为各个波长单色光,单色光通过样 品后被选择性吸收,用光检测器给予记录 不被吸收的透过光,形成的图像就是吸收 光谱
第6页,共52页。
(4)附件的开发与发展
• 附件的开发成为 仪器发展的主要 内容之一,附件 的增加满足了很 多客户特殊的测 量要求。
第35页,共52页。
二、用好紫外可见分光光度计
第36页,共52页。
紫外方法分析应用中值得注意的几个问题
1. 暗电流:直接造成光度准确度不好,测定 误差大。
• 包括仪器的电路部分的固有的暗电流;由 于光学系统密封不好以及样品室密封不好 进来的光照到接收器上产生的电流。
杂散光与吸光度相对误差
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
能复合成白光的两种颜色的光叫互
补色光。物质所显示的颜色是吸
收光的互补色。
分光光度分析法是以物质对光的选 择性吸收为基础的分析方法。
根据物 质所吸 收光的 波长范 围不同
可见分光光度法 紫外分光光度法 红外分光光度法
几乎所有的无 机离子和许多有机 化合物可以用分光 光度法进行测定。 如土壤中的氮、磷 以及植物灰、动物 体液中各种微量元 素的测定。
单光束分光光度计实现参 比的方法
用空白液校准完仪器后放入浸提液,测定 其吸光度,然后在制作标准曲线和测定样 品的时候,同时减去参比的吸光度; 例如:用空白液校完仪器后,测定参比的 吸光度为 0.006,而样品测定吸光度为 0.447 ,则带入标准曲线计算的实际吸光度为 0.441 ,这样就扣除了参比对测定结果的影 响。
二、分光光度计的类型
1.单光束
简单,价廉,适于在给定波长处测量吸光度或透光度, 一般不能作全波段光谱扫描,要求光源和检测器具有很高 的稳定性。
2.双光束
自动记录,快速全波段 扫描。可消除光源不稳定、 检测器灵敏度变化等因素的 影响,特别适合于结构分析。 仪器复杂,价格较高。
3.双波长
将不同波长的两束单色光(λ 1、λ 2) 快束交替通过同一
吸收曲线的讨论
(1)同一种物质对不同波长光的吸光度不 同。吸光度最大处对应的波长称为最大吸收波长 λmax (2)不同浓度的同一种物质,其吸收曲线 形状相似λmax不变。而对于不同物质,它们的 吸收曲线形状和λmax则不同。 (3)吸收曲线可以提供物质的结构信息,并作为物质定性分析的依据 之一。
吸收池而后到达检测器。产生交流信号。无需参比池。△=
1~2nm。两波长同时扫描即可获得导数光谱。A 原理来自光栅 和棱 镜分 光原 理
双光束光度计动画示意
动画
双波长光度计光路示意图
医疗器械产品对紫外吸光度的要求 ——GB 8368-2005 、 GB 8369-2005
将浸提液通过孔径为 0.45μm 的滤膜进行过 滤,以避免漫射光干扰。在制备后 5h 内, 将该溶液放人1cm的石英池中,空白液放入 参比池中,用扫描 UV 分光光度计记录 250 nm-320 nm波长范围内的光谱。 以吸光度对应波长的记录图谱报告结果。 上述方法试验时,浸提液的吸光度应不大 于0.1
在光谱分析中,依据物质对光的选择性吸收而建立起来
的分析方法称为吸光光度法,主要有:
红外吸收光谱:分子振动光谱,吸收光波长范围 2.51000 m ,主要用于有机化合物结构鉴定。
紫外吸收光谱:电子跃迁光谱,吸收光波长范围
200400 nm(近紫外区) ,可用于结构鉴定和定量分析。 可见吸收光谱:电子跃迁光谱,吸收光波长范围 400750 nm ,主要用于有色物质的定量分析。
第二章 紫外-可见分光光度分 析法
吸光光度法的基本原理
颜色的产生白光(太阳光):由各种单色光组成的复合光
有色物质的不同颜色是由于吸收了不同 波长的光所致。溶液能选择性地吸收某些 波长的光,而让其他波长的光透过,这时 溶液呈现出透过光的颜色。透过光的颜色 是溶液吸收光的互补色。有色溶液对各种 波长的光的吸收情况,常用光吸收曲线来 描述。将不同波长的单色光依次通过一定 的有色溶液,分别测出对各种波长的光的 吸收程度(用字母A表示)。以波长为横 坐标,吸光程度为纵坐标作图,所得的曲 线称为吸收曲线或吸收光谱曲线。
仪器
紫外-可见分光光度计
一、基本组成
general process
光源 单色器 样品室 检测器 显示
1. 光源
在整个紫外光区或可见光谱区可以发射连续光谱,具 有足够的辐射强度、较好的稳定性、较长的使用寿命。 可见光区:钨灯作 为光源,其辐射波长范 围在320~2500 nm。 紫外区:氢、氘灯。 发射185~400 nm的连 续光谱。
(4)不同浓度的同一种物质,在某一定波长下吸光度 A 有差异,在
λmax处吸光度A 的差异最大。此特性可作为物质定量分析的依据。
(5)在λmax处吸光度随浓度变化的幅度最大,所以测定最灵敏。吸
收曲线是定量分析中选择入射光波长的重要依据。
KMnO4的颜色及吸收光谱
叶绿素的结构和吸收光谱
第二节 紫外可见分 光光度计
2.单色器
将光源发射的复合光分解成单色光并可从中选出一任 波长单色光的光学系统。
①入射狭缝:光源的光由此进入单色器;
②准光装置:透镜或返射镜使入射光成为平行光束; ③色散元件:将复合光分解成单色光;棱镜或光栅; ④聚焦装置:透镜或 凹面反射镜,将分光
后所得单色光聚焦至
出射狭缝; ⑤出射狭缝。
3.样品室
样品室放置各种类型的吸收池 (比色皿)和相应的池架附件。吸 收池主要有石英池和玻璃池两种。 在紫外区须采用石英池,可见区一 般用玻璃池。
4.检测器
利用光电效应将透过吸收池的 光信号变成可测的电信号,常用的 有光电池、光电管或光电倍增管。
5. 结果显示记录系统
检流计、数字显示、微机进行 仪器自动控制和结果处理
简单的说,吸光度就是表示物质对光的 吸收程度
三个基本过程
(1)能源提供能量; (2)能量与被测物之间的相互作用; (3)产生信号。 基本特点: (1)一般光分析法均包含三个基本过程; (2)选择性测量,不涉及混合物分离(不同于 色谱分析); (3)涉及大量光学元器件。
溶液颜色与光吸收的关系
光波是一种电磁波。电磁波包括无线电波、 微波、红外光、可见光、紫外光、x射线等。如果 按照其频率或波长的的大小排列,可见光只是电 磁波中一个很小的波段。见表12-1
通常,待测物质的 含量1~10-5%时, 能够用分光光度法 准确测定。所以它 主要用于测定微量 组分。
光分析法:基于物质发射的电磁辐射或电 磁辐射能量与待测物质相互作用后所产生 的辐射信号与物质组成及结构关系所建立 起来的分析方法 吸光度,absorbance,是指光线通过溶液或 某一物质前的入射光强度 与该光线通过溶 液或物质后的透射光强度比值的以10为底 的对数(即lg(Iin/Iout),影响它的因素有溶 剂、浓度、温度等等。