第11章 配合物
第十一章:配位化合物介绍
配合物中直接与中心原子结合成键的配位原子的总数目。 单齿配体 配位数等于 配体数 如[Fe(CN)6]3多齿配体 配位数不等于配体数 如[Pt(en)2]2+ 表11-1 常见金属离子的配位数 配 位 数 2 4 离 子 Ag+,Cu+,Au+ Zn2+,Cu2+,Hg2+,Ni2+,Co2+,Pd2+, Si4+,Ba2+ Fe2+,Fe3+,Co2+,Co3+,Cr3+,Pt4+, Pd4+,Al3+,Si4+,Ca2+,Ir3+
26Fe 3+ 2+ +
例如:
[Ar] 3d54s04p0 [Ar] 3d84s24p0 [Ar] 4d105s05p0 [Ar] 3d84s24p0
26Si
4+
[SiF6]2-
27Co 47Ag 28Ni
2 配位体 ( ligand ): 在中心原子周围以一定的空间 构型排列的阴离子或 分子(以配位键结合),它 们能给出孤对电子或电子
[Ni(CO)4]
配合物 [Cu(NH3)4]SO4
内层
[ Cu ( NH 3 ) 4 ] 2+ 中 心 原 子 配配 配 配 位位 位 离 原体 数 子 子 电 荷
外层
S O4 2 外 界 离 子
1 中心原子(central atom )
位于配离子中心的离子或原子 具有空的价电子轨道(通常指(n-1)d,ns,np,nd轨 道)能接受孤对电子 一般是金属离子,大多是过度金属,Ⅷ及其附近副族 元素,少数高氧化值的主族元素离子
配位化合物知识介绍
结果: [Ni(CN)4]2-形成之前和之后, 中心原子的d电子排布发生了
变化,原来由单电子占据、后来腾空了的(n-1)d轨道参与了杂化, 这样一类络合物叫内轨型配合物(Inner orbital complexes), 它们是 指配位体孤对电子填充在(n-1)d轨道和一部分n层轨道上的一类 络合物 。
三氯化五氨•一水合钴(III)
Cu(NH3)4 SO4 硫酸四氨合铜(Ⅱ)
K3 Fe(NCS)6 六异硫氰根合铁(Ⅲ)酸钾
H2 PtCl6 六氯合铂(Ⅳ)酸 Cu(NH3)4 (OH)2 氢氧化四氨合铜(II)
K PtCl5 (NH3) 五氯•氨合铂(Ⅳ)酸钾 先阴离子后中性分子
Zn(OH)(H2O)3 NO3 硝酸一羟基•三水合锌(II)
1.2 配合物的命名
(一) 内外界之间 阴离子前,阳离子后;
(二) 配合单元
配体数目(汉字) + 配体名 + 合 + 中心离子名(氧化态,
(多种配体,以 • 分隔)
用罗马数字)
例:[Cu (NH3)4]SO4 硫酸四氨合铜(II)
[CrCl2 (H2O)4 ]Cl 氯化二氯•四水合铬(III)
配位化合物[CoCl2(H2O)4]Cl的配位体分别是_______;配位原子 分别是______;配位数是_____;命名为_____________。
(三)配体顺序
1.先无机,后有机 : [PtCl3 (C2H4 )] 三氯•乙烯合铂(II) 阴离子
2. 无机配体: 先阴离子,后中性分子,最后阳离子:
K[PtCl3(NH3)] 三氯•氨合铂(II)酸钾
3.同类配体: 按配位原子元素符号的英文字母顺序:
[Co
第11章 过渡金属有机配合物催化交叉偶联反应
11.2.4 Suzuki偶联反应机理
ArX Ar-Ar' Pd
o
ArPdAr'
ArPdX NaOR
ROB(OH)2 ArPdOR Ar'B(OH)2
NaX
图11-3 Suzuki偶联反应机理
11.3 Stil1e偶联反应 在钯配合物催化下,卤代烃与锡有 机化合物间的交叉偶联反应,称Stille偶 联反应 。
I + SnBu3 Pd(dba)2 L
序 号 1
2 3 4 5 6 7 8
配 体(L) PPh3
MePPh2 P(CH2CH2CN)3 (4-MeOC6H4)3P (4-FC6H4)3P (4-ClC6H4)3P (2-MeC6H4)3P (2-furyl)3P
相对速率 1
<0.07 <0.07 <0.07 0.60 0.71 35.2 105
2. 卤代烃 溴代芳烃是最早使用的Suzuki偶联反 应的底物,卤代芳烃和烯基卤的活性是I >Br>Cl>F。芳基或烯基三氟甲磺酸酯 (Triflates),甚至磺酸酯都能与有机硼 酸发生Suzuki偶联反应
CO2Et + OTf
O B O C5H11 OTBDMS
Pd(PPh3)4 K3PO4
11.1 Kumada偶联反应 Kumada偶联反应是在镍配合物催化 下,Grignard试剂与卤代烃间的交叉偶 联反应。 1960年Chatt和Shaw Grignard试剂 对镍配合物中Ni-X键的烃化反应; 1970年Uchino 二芳基镍配合物与 卤代烃R’-X反应生成新的芳基卤合镍和 联二芳烃。 Kumada将这两个化学计量反应组合 起来并实现了催化循环
以上结果表明,钯配合物中的烷氧基和乙酰基 能促进配体交换反应,这对Suzuki偶联反应是很重 要的
第十一章配合物图片2003-12-8 AND12-11
配位化合物
祖母绿(翡翠)
3BeO·Al2O3 ·6SiO2 + Cr3+ in Al3+ sites
绿宝石
CuAl6(PO4)4(OH)8⋅4H2O
配位化合物的基本概念
CuSO4 + 4NH3 === [Cu(NH3)4]SO4 AgCl + 2NH3 === [Ag(NH3)2]Cl PtCl4 + 2KCl === K2[PtCl6] 3NaF + AlF3 === Na3[AlF6]
MX5Y MX4Y2 MX3Y3 MX4YZ MX3Y2Z
MX2Y2Z2
1 2 2 2 3 5
[PtCl(NH3)5]Cl3,K[PtCl5(NH3)] [PtCl2(NH3)4]Cl2,[PtCl4(NH3)2] [PtCl3(NH3)3]Cl [PtCl(NO2)(NH3)4]Cl2 [PtCl3(OH)(NH3)2] [PtCl2(OH)2(NH3)2]
配位化合物 —— 由简单化合物之间进一步反应形成的含有 复杂离子的分子间化合物。不同于“复盐”,但并无绝对的界限,在它
之间存在大量的处于中间状态的复杂化合物。
配离子 —— 配位化合物的复杂离子称为配离子。是一种较 为稳定的结构单元,既可存在于晶体中,也可存在于溶液中。 可以是阳离子、阴离子或中性分子。通常用[ ]标出。 内界和外界 —— 内界由中心离子和配位体构成,如 [Ag(NH3)2],放在[ ]内。[ ]以外部分称为外界,如 [Ag(NH3)2]Cl中的Cl-。 中心离子或中心原子 —— 亦称为配合物的形成体,位于配 离子(或分子)的中心。绝大多数是带正电的金属离子。许 多过渡金属离子是较强的配合物形成体。如[Ag(NH3)2]-中 Ag+离子,Ni(CO)4中的中性原子Ni,SiF62-中的高氧化态非金 属元素Si(IV)等。
无机化学 第十一章 配合物
有环状结构,被称为螯合物或内配合物。
2+同一配体的两个或两个以上的配位原子间有一个原子,这样才能形成比较配位化合物金属有机配合物SO4科学家鲍林CN -为强配体,使Co 3个d 电子重排中心采取d 2sp 3 杂化,配离子Co(CN)为正八面体构型。
3d4s4p d 2sp 3杂化过渡金属Ni 的d轨道与CO的π*能量相近,对称性一致,可以成键。
按重叠后的(C2H4) ]·H2Oσ配键d-pπ配键在八面体场中,六个配体沿x,y,z轴的个方向分布,以形成八面体场。
正八面体场中配体与d z2 轨道的相对位置,轨道的波瓣与六个配体正相对,d x 2-y 2d z 2球形场正八面体场中配体与d xy 轨道的相对位置,,轨道的波瓣不与配体相对,能量升高的少,低于球形场。
d xy d xz d yz 球形场坐标原点为正六面体的中心,三轴分别沿与三边平行的方向伸展。
4 个配体的位置如图所示,形成四面体场。
正四面体场中配体与d x 2-y 2 轨道的相对位置正四面体场中配体与d xy 轨道的相对位置d d d 球形场(d )球形场(d )坐标原点位于正方形中心,坐标轴沿正方形对角线方向伸展。
4个配位原子位于正方形的顶点,形成正方形电场。
yx-++--y 2d x 2-y 2轨道的波瓣与配体一一相对,受电场作用最大,能量最高。
d xy 轨道处于y 平面内,受电场作用较大,能量居第二位。
++--d xy yx轨道的环形波瓣在x O y 平面内,列第三位。
d z 2yx能量最低的是轨道和轨道d xz d yz ++--z d yzyz++--d xzxz2.影响分裂能大小的因素弱场强场 小大-----光谱化学序列弱场强场 小大X -,OH -等弱场配体△小,常有△< P ,取高自旋光谱化学序列中NO 2-,CN -,CO 等强场配体△大,常导致△> P ,取低自旋方式,强场低自旋。
高自旋排布(dε)4 (dγ)2 低自旋排布(dε)6 (dγ)05个d轨道的能量为零点。
2011第二学期复习题1
第十一章配合物1、填空(1)、根据配合物的价键理论,配合物的形成体与配体之间以( )键结合,它是由配体提供的( )投入到形成体的( )形成的。
由于配合物具有一定的空间构型,形成体参与成键的轨道采取( )方式。
(2)、根据配合物的价键理论,填充下表中的空白处。
(3)、根据晶体场理论,在电子构型为d1~d10的过渡金属离子中,当形成六配位的八面体配合物时,其高自旋和低自旋配合物的电子排布不相同的中心离子的电子构型为( );过渡金属配离子往往具有一定颜色,这是由于中心离子能产生( )跃迁所致。
(4)、当△0>P时,过渡金属离子能形成( )自旋八面体配合物;当△0<P时,则形成( )自旋八面体配合物;(5)、在光谱化学序中,F-是( )场配体,CN-是( )场配体;[FeF6]3-是( )自旋配合物,在八面体场中,中心离子Fe 3+的电于排布为( );[Fe (CN)6]3-是( )自旋配合物,中心离子Fe 3+的电于排布为( )。
二.选择题(1)、下列配合物中,空间构型为直线形的是( )。
(A) [Cu (en)2]2+(B) [Cu (P2O7)2] 6-(C)[Cu(EDT A)] 2+(D)[ CuCl2](2)下列配离子中,未成对电子数最多的是( )。
(A) [Ni (NH3)6]3+(B) [Mn (H2O)6]2+(C) [Fe (CN)6]4-(D) Ni (CO)4(3)、下列关于配合物的叙述中错误的是( )。
(A)在螯合物中,中心离子的配位数一定不等于配体的数目;(B)同种元素的内轨型配合物比外轨型配合物稳定;(C)中心离子的未成对电子愈多,配合物的磁矩愈大;(D)价键理论的内轨型配合物对应着晶体场理论的高自旋配合物。
(4)、某金属离子与弱场配体形成的八面体配合物的磁矩为4.98 B·M,而与强场配体形成反磁性的八面体配合物,则该金属离子为( )。
(A)Cr3+(B)Ti3+((:)Mn3+(D)Au3+(5)已知[Co (NH3)6]3+的μ=0,则下列叙述中错误的是( )。
第11章 配位化学基础
N P
O S
F Cl
Ne Ar Kr Xe Rn
Sr Y 配位原子 Ba Lu
Tc Re Bh
Fr Ra Lr Rf Db Sg 配体中与中心金属直接 结合的原子。
Cu Zn Ga Ge As Se Br •Ni 排列在中心金属周围 Ag Cd In Sn Sb Te I •Pd分子或者阴离子 Pt Au Hg Tl Pb Bi Po At • 分为单齿配体与多齿配体
2018/5/31
21
配合物的分类
特殊配合物
1)夹心配合物:
金属原子 M 被夹在两个平行的碳环之间,形成夹心配合物。
2)羰基配合物
以 CO 为配体的配合物称为羰基配合物。
3)原子簇状化合物
有两个或两个以上金属原子以金属 –金属键( M–M)直接结合而 形成的化合物。
4)多核配合物
含两个或两个以上中心金属离子的配合物。
单齿 配体
特点 多齿 配体 举例
有两个或两个以上的配位原子同时与中心金属
结合。可分为二齿、三齿、多齿配体等。
O :O
N N
O H 2C :N CH2 CH 2 N: CH2 C O O: H 2C CH2 C O:
C C O
:O
邻二氮菲 (phen)
乙二胺四乙酸根 (EDTA4-)
配位数
配合物的组成
2018/5/31
11
[Fe(SCN)(H2O)5]2+, [Co(SCN)4(H2O)2]2-, [Cu(NH3)4(H2O)2]2+, [CuBr4]22018/5/31
12
2018/5/31
第11章-过渡金属有机配合物催化交叉偶联反应
Cp2TiCl2 R'
O
CHOH
R'
Cp2TiCl2 H2O + (CH3)2CHMgBr
O
OH
R' CH OH
R'
(CH3)2CHOMgX
Cp2TiCl2
(CH3)2CHMgX
(CH3)2CHMgX
R'
Cp2Ti Cl
OCH R'
R' CO
R'
Cp2Ti H Cl
Cp2Ti Cl
CH3 CH
CH3
Kumada将这两个化学计量反应组合 起来并实现了催化循环
11.1.1 Kumada偶联反应催化剂 该反应的催化剂是零价镍有机配合物
11.1.2 Kumada偶联反应底物 卤代芳烃和烷基、芳基Grignard试剂是
Kumada偶联反应底物。
11.1.3 Kumada偶联反应的选择性
1. Kumada偶联反应的化学选择性
Ph L2Ni Cl +
MgCl
Ph L2Ni Cl +
MgCl
L2Ni Ph
Ph
CH2=CHCH3 H NiL2 Ph
CH2=CHCH3 + PhH
CH2CH2CH3 L2Ni Ph
PhCH2CH2CH3
2 . Kumada偶联反应中的立体化学
11.1.4 Kumada偶联反应机理
图11-1 Kumada偶联反应机理
12
Ph3Sb
13.2
5
(4-FC6H4)3P
0.60
13
dppe
0.33
6 (4-ClC6H4)3P
0.71
高中化学竞赛课程 无机化学第十一章 配位化合物和配位平衡
Chapter 11 Coordination Compounds and Coordication Equilibrium
一、 配合物的基本概念
实验: 1. CuSO4(aq)
+ BaCl2 + NaOH
BaSO4 Cu(OH)2
有SO42有Cu2+
2. CuSO4(aq) + NH3.H2O 深蓝色aq + 乙醇 深兰色晶体
[Co(en)3][Cr(ox)3]和[Cr(en)3][Co(ox)3] [PtII(NH3)4][PtIVCl6]和[PtIV(NH3)4Cl2][PtIICl4]
配位体的种类、数目可以任意组合,中心离子、氧化态可以 相同,也可以不同。
d. 键合异构 组合相同,但配位原子不同的配体,如-NO2-和-ONO[CoNO2(NH3)5]Cl2 (黄褐色) [CoONO(NH3)5]Cl2 (红褐色)
[Co(en)3]2+ > [Co(NH3)6]2+
2. 化学式的书写原则
(1) 配合物中,阳离子在前,阴离子在后。 (2) 配离子中,按如下顺序:
形成体
阴离子配体
中性配体
例如: [Co(NO2)(NH3)5]SO4
3. 配位化合物的命名原则
遵循无机化合物的命名原则,不同点是配离子部分。
NaCl [Co(NH3)6]Cl3
d1~d3构型: 无高低自旋之分,无论强场还是弱场, 均形成内轨型配合物.
d8~d10构型: 无高低自旋之分,无论强场还是弱场, 均形成外轨型配合物.
稳定性:内轨型配合物 > 外轨型配合物
例: [Fe(CN)6]3-中CN-很难被置换,而[FeF6]3-中F-很容易被置换。
第11章配合物
四氨合铜 (Ⅱ)配离子 [Cu(NH3)4]2+ 三氯化三(乙二胺)合铁(Ⅲ) [Fe(en)3]Cl3 氢氧化二氨合银(I) [Ag(NH3)2]OH 六氯合铂(Ⅳ)酸 H2[PtCl6] [Co(ONO)(NH3)5]SO4 硫酸亚硝酸根· 五氨合钴(Ⅲ) [Co(NH3)5(H2O)]2(SO4)3 硫酸五氨· 水合钴(Ⅲ) [Co(NH3)2(en)2]Cl3 三氯化二氨· 二(乙二胺)合钴(Ⅲ)
第十一章
第一节 第二节
配 位 化 合 物
Coordination Compound
配合物的基本概念 配合物的化学键理论
第三节
第四节 第五节
配位平衡
螯合物 螯合滴定
1
配合物与医学关系 (1)生物体微量元素以配合物形式存在,参与生 物体的生理活动: 如 维生素B12 Co 3 +的配合物
血红蛋白
叶绿素
怎么知道[Fe(H2O)6]3+是外轨型配合物, [Fe(CN)6]3-是内轨型配合物? 通过测定配合物的磁矩µ ,并将其与理论值对 比来确定配合物是属于外轨型还是内轨型的。 µ≈ [n(n+2)]1/2 B
1.配合物磁矩µ 的理论近似计算公式:
B = 9.27×10-24 A· 2(J· -1) m T
14
常见配合物的中心原子、配体、配位原子、配位数 配合物 中心 原子 配 体 配位 原子 配 位 数
[Ag(NH3)2]+ [HgI4]2[Fe(CN)6]3[Co(NH3)5Cl]2+ [Fe(en)3]Cl3
Ag+ Hg2+ Fe3+ Co3+ Fe3+
:NH3 :I:CN:NH3、:Clen
厦门大学无机化学第11章配位化合物
第十一章配位化合物11.1 基本概念 (1)11.2 化学键理论 (6)11.3 晶体场理论 (11)11.4 螯合物 (18)11.5 配位平衡 (19)11.1 基本概念11.1.1 配位化合物的基本概念前言配位化合物是一类由中心金属原子(离子)和配位体组成的化合物。
第一个配合物是1704年普鲁士人在染料作坊中为寻找蓝色染料,而将兽皮、兽血同碳酸钠在铁锅中强烈煮沸而得到的,即KFe[Fe(CN)6]。
配合物的形成对元素和配位体都产生很大的影响,以及配合物的独特性质,使人们对配位化学的研究更深入、广泛,它不仅是现代无机化学学科的中心课题,而且对分析化学、生物化学、催化动力学、电化学、量子化学等方面的研究都有重要的意义。
1.配位化合物的定义配合物是由中心原子(或离子)和配位体(阴离子或分子)以配位键的形式结合而成的复杂离子或分子,通常称这种复杂离子或分子为配位单元。
凡是含有配位单元的化合物都称配合物。
如:[Co(NH3)6]3+、[HgI4]2-、Ni(CO)4等复杂离子或分子,其中都含配位键,所以它们都是配位单元。
由它们组成的相应化合物则为配合物。
如:[Co(NH3)6]Cl3、k2[HgI4]、Ni(CO)411.1.2 组成2.配位化合物的组成图11-01表11-01 常见的配体表11.1.3 命名3.配位化合物的命名对于整个配合物的命名,与一般无机化合物的命名原则相同,如配合物外界酸根为简单离子,命名为某化某;如配合物外界酸根为复杂阴离子,命名为某酸某;如配合物外界为OH-,则命名为氢氧化某。
但配合物因为存在较为复杂的内界,其命名要比一般无机化合物复杂。
内界的命名顺序为:例如:11.1.4 配合物的类型4.配位化合物的类型(1).简单配位化合物简单配位化合物是指由单基配位体与中心离子配位而成的配合物。
这类配合物通常配位体较多,在溶液中逐级离解成一系列配位数不同的配离子。
例如:这种现象叫逐级离解现象。
华东理工大学现代基础化学课后习题解答第11章
解:欲使 0.1mmolAgCl 全部溶解于 1.0 mL 氨水中,生成[Ag(NH3)2] + ,则:
[Ag(NH3)
+ 2
]
=
0.1
mol.L
−1
AgCl + 2NH3
[Ag(NH3)2] + +Cl −
x
0.1
0.1
K
Ο
=
K
Ο sp
(AgCl)·
K
Ο 稳
{[Ag(NH3)2]
+
}
=1.77×10 −10 ×1.12×10 7 =1.98×10 −3
设平衡时
Ag
+
为
x,则[Ag(NH3)
+ 2
]为
0.1-x,NH3
为
0.3+2x。
Ag + +2NH3 x 0.3+2x
[Ag(NH3)2] + 0.1-x
因
K
Ο 稳
较大,Ag
+
几乎全部配合,则
0.3+2x≈0.3,
0.1-x≈0.1
K
Ο 稳
=
[Ag(NH
3
)
+ 2
]
[Ag + ][NH 3 ]2
= 1.12×10 7
4
0.04 × 0.1 x2
= 1.98 × 10 −3
x = 1.42 mol.L −1
则原始 NH3 的浓度为 1.50 mol·L −1 ,需改用 12.5mL 浓氨水体积为:
(1.50 × 0.1÷12) × 1000 = 12.5 mL
5、10 mL0.10 mol⋅L −1 CuSO4 溶液与 10 mL 6.0 mol⋅L −1 氨水混合达平衡后,计算溶液中
基础化学第十一章(配位化合物)
1、正八面体场(Oh场)
自由离子
Es 球对称场
六个配体分别位于三个坐标轴的正反两个方向
自由离子
Es 球对称场
Eeg Et2g 10Dq 2Eeg 3Et2g 0
d轨道能级的分裂
d x2 y2
d z2
eg
分裂能
dxy dxz
Δo=10Dq dyz t2g
八面体场
Eeg 6Dq ( 或0.60 ) Et2g 4Dq ( 或 0.40 )
y =2.7×10-3
[Ag(NH3)2]+比[Zn(NH3)4]2+更稳定
0.1mol·L-1AgNO3溶液和0.2 mol·L-1
NH3 ·H2O溶液等体积混合
Ag+ + 2NH3 ⇌ Ag(NH3)2+
初始:
0
0.05
平衡: X 2X
0.05-X= 0.05
0.1mol·L-1AgNO3溶液和0.4 mol·L-1 NH3 ·H2O溶液等体积混合
[Cu(NH3)3]2++NH3 ⇌[Cu(NH3)4]2+ Ks4=1.39×102
Ks1·Ks2·Ks3·Ks4=Ks,Ks称为总稳定常数
1、类型相同的配合物Ks越大,配合物越稳定 计算0.10mol/L [Ag(NH3)2] +中[Ag+]
Ag++2NH3 ⇌ [Ag(NH3)2] +
初始:
中心原子(central atom):一般为副族元素
配体(ligand):一般为负离子或中性分子
如:H2O、CO、NH3 、 X- 、 OH- 、 CN- 、 NO2-、ONO-、SCN-、NCS-、乙二胺
第11章 配位化合物
配离子与异号离子形成中性物质时,配离子要 用中括号括起来,表示它是配合物的内界,只是 表示配离子时,中括号可以省略。
下面请作课堂练习
命名下列配合物: 1、[Co(NH3)6]Cl3;
解:
1、三氯化六氨合钴(Ⅲ) 2、四异硫氰合钴(Ⅱ)酸钾 3、二氯化一氯· 五氨合钴(Ⅲ) 4、四羟基合锌(Ⅱ)酸钾 5、二氯· 二氨合铂(Ⅱ) 6、硫酸三氨· 一氮气合钴(Ⅱ)
↑↓
由CN-提供的电子对
d2sp3杂化
3d
↑↓ ↑↓ ↑↓ ↑ ↑
4s
4p
[Ni(CN)4]2-
↑↓
↑↓
↑↓
↑↓
↑↓
↑↓
dsp2杂化
↑↓
↑↓
配合物的 几何异构体
[Pt(NH3)2Cl2]的 两种几何异构体 相同配体处于相 邻位置的称为顺 式; 处于对角位 置的称为反式。
化学组成相同的配合物由于不同 配体在空间的排列位置不同组成 的异构体称为几何异构体。 H3N Pt Cl H3N
多核配合物──含有不止一个中心原子的 配合物称多核配合物。 金属族状配合物──多核配合物中,两个 中 心原子直接成键结合的配合物称金属族状 配合物。
NH3
NH3
Cu2+ NH3 NH3
NH2—H2N Ni NH2—H2N Ni
金属族状配合 物[Co2(CO)8] 的结构
1-4
配合物的命名
配离子 的命名 的顺序
第11章 配位化合物
Coordination Compounds
学习要求
1、掌握配合物的基本概念和配位键的本质; 2、掌握配合物价键理论的主要论点; 3、掌握配离子稳定常数的意义和应用; 4、掌握配合物的性质特征。
无机及分析化学教案 第11章 配位化合物
第十一章配位化合物配位化合物简称配合物,也称络合物,是一类复杂的化合物,它的存在和应用都很广泛,生物体内的金属元素多以配合物的形式存在。
例如植物中的叶绿素是镁的配合物,植物的光合作用靠它来完成。
又如动物血液中的血红蛋白是铁的配合物,在血液中起着输送氧气的作用;动物体内的各种酶几乎都是以金属配合物形式存在的。
当今配合物广泛地渗透到分析化学、生物化学等领域。
发展成为一门独立的学科──配位化学。
本章将对配合物的基本概念、组成、性质等作一初步介绍。
§11-1 配合物的基本概念一、配合物及其组成配位化合物是一类复杂的化合物,含有复杂的配位单元。
配位单元是由中心离子(或原子)与一定数目的分子或离子以配合键结合而成的。
例如在硫酸铜溶液中加入氨水,开始时有蓝色Cu2(OH)2SO4沉淀生成,当继续加氨水过量时,蓝色沉淀溶解变成深蓝色溶液。
总反应为:CuSO4 + 4NH3ƒ[Cu(NH3)4]SO4 (深蓝色)此时在溶液中,除SO42-和[Cu(NH3)4]2+外,几乎检查不出Cu2+的存在。
再如,在HgCl2溶液中加入KI,开始形成桔黄色HgI2沉淀,继续加KI过量时,沉淀消失,变成无色的溶液。
HgCl2 + 2KI ƒHgI2↓+ 2KCl HgI2 + 2KI ƒK2[HgI4]象[Cu(NH3)4]SO4和K2[HgI4]这类较复杂的化合物就是配合物。
配合物的定义可归纳为:由一个中心离子(或原子)和几个配体(阴离子或分子)以配位键相结合形成复杂离子(或分子),通常称这种复杂离子为配离子。
由配离子组成的化合物叫配合物。
在实际工作中一般把配离子也称配合物。
经研究表明,在[Cu(NH3)4]SO4中,Cu2+占据中心位置,称中心离子(或形成体);中心离子Cu2+的周围,以配位键结合着4个NH3分子,称为配体;中心离子与配体构成配合物的内界(配离子),通常把内界写在方括号内;SO 42-被称为外界,内界与外界之间是离子键,在水中全部离解。
第11章 配合物在溶液中的稳定性和配位平衡 11.2 影响配离子在溶液中稳定性的因素
Cu2+ + 4NH3
平衡浓度: 0.1-x
x 5.6+4x
11.1.2 配离子平衡浓度的计算
续解:
K
o 不
稳
[Cu 2 ][NH3 ]4 [Cu(NH 3 )42 ]
x (5.6 4x)4 0.1 x
1 2.09 1013
因为 x 很小,可假设:0.1-x 0.1; 5.6+4x 5.6 可解出
,
K
o 稳
,
[Ag(NH3
)2
]
1.1107
解:AgCl的溶解反应为:
AgCl + 2NH3
[Ag(NH3)2]+ + Cl-
Ko
[Ag(NH 3 )2 ][Cl - ] [NH3 ]2
[Ag(NH 3 )2 ][Cl - ][Ag ] [NH3 ]2 [Ag ]
Ko 稳,[Ag(NH3 )2 ]
lg K o 稳,[Hg(CN)4 ]2
11.3.3 配位平衡与氧化还原平衡
例4
已知:
E
o Hg
2
/Hg
0.851V,K
o 稳, [Hg(CN)4
]2
2.51041
E 求: o [Hg(CN)4 ]2 /Hg
续解2:
lg K o z E正o 极 E负o 极 0.0592
NaOH
NaCl
Ag2O
NH3H2O
AgCl
[Ag(NH3)2]+
NaBr
Na2S2O3
AgBr
[Ag(S2O3)2]3- KI AgI Na2S Ag2S
第十一章配位化合物
第十一章 配位化合物 首 页 习题解析 本章练习 本章练习答案 章后习题答案 习题解析 [TOP]例7-1 固体CrCl 3·6H 2O 的化学式可能为〔Cr(H 2O)4Cl 2〕Cl·2H 2O 或〔Cr(H 2O)5Cl 〕Cl·H 2O 或〔Cr(H 2O)6〕Cl 3,今将溶解有0.200gCrCl 3·6H 2O 的溶液流过一酸性阳离子交换柱,在柱上进行离子交换反应: X n+(aq) + n (RSO 3H) (RSO 3)n X + n H +(aq)配合物正离子 阳离子交换树脂 交换后的交换树脂 交换下来的H+ 交换下来的H +用0.100mol·L -1NaOH 标准溶液滴定,计耗去22.50mL ,通过计算推断上述配合物的正确化学式〔已知Mr(CrCl 3·6H 2O)=266.5〕。
析 根据题中条件可知离子的物质的量与配合物的电荷数有确定的关系,因此只要确定离子的物质的量即可求出配离子的电荷,进而求出配合物的化学式。
解 0.200gCrCl 3•6H 2O 的物质的量为1mol 1000mmol mol266.5g 0.200g 1⨯⋅-=0.75mmol 滴定测得 n (H +)=22.50mL×0.100mol·L -1=2.25mmol由交换反应式知:1mol X n+可交换出n mol H +。
因0.75 mmol CrCl 3•6H 2O 交换出2.25 mmol 的H +,由此可得1 :n = 0.75 :2.25 n = 3即X n+为X 3+,所以配正离子只能是[Cr(H 2O)6]3+,配合物为[Cr(H 2O)6]Cl 3。
例7-2(1)根据价键理论,画出[Cd(NH 3)4]2+(μ=0μB )和[Co(NH 3)6]2+(μ=3.87μB )的中心原子与配体成键时的电子排布,并判断空间构型。
无机化学-11配位化合物
2.配位数为4的配合物 [BeX4]2-的空间构型 为四面体, μ=0 。
41/90
[Ni(CN)4]2-的空间 构型为平面正方形, μ=0。
42/90
[NiCl4]2-的空间构型 为四面体, μ=2.83(B.M.)。
43/90
3.配位数为6的配合物
[Fe(CN)6]3-的空间构 型为八面体, μ=2.4(B.M.)。
H2[SiF6]
六氟合硅(Ⅳ)酸(俗名氟硅酸)
H2[PtCl6]
六氯合铂(Ⅳ)酸(俗名氯铂酸)
[Fe(CO)5]
五羰基合铁
[Pt(NH3)2Cl2]
二氯·二氨合铂(Ⅱ)
[Co(NH3)3(NO2)3] 三硝基·三氨合钴(Ⅲ)
24/90
配位化合物的基本概念
配位化合物的类型
简单配位化合物 由一个中心原子和若干个单齿配体所形成的配 合物称为简单配位化合物。
内轨型配合物
44/90
[FeF6]3-的空间构型 为八面体, μ=5.90(B.M.)。
外轨型配合物
45/90
配离子的几何异构 (a) cis-[PtCl2(NH3)2] 顺式,棕黄色,极性分子 (b) trans-[PtCl2(NH3)2] 反式,淡黄色,非极性分子
顺式Pt(Ⅱ)配合物显示治癌活性。
配合物的空间构型不同,d轨道分裂方式不同; 晶体场类型相同,配体L不同,分裂程度不同。
48/90
中心原子d轨道的能级分裂 1. 八面体场中的能级分裂 过渡金属离子d轨道( dx2-y2,dz2,dxy,dyz,
17/90
配离子的电荷 等于中心原子和配位体两者电荷的代数和。 例如:[Cu(NH3)4]2+、[Fe(CN)6]3- 、Ni(CO)4 三 种配离子电荷分别为+2、-3 、0。
第11章 配合物结构
总则: 服从一般无机化合物的命名原则 阴离子在前,阳离子在后; 阴离子为简单离子,则称某化某; 阴离子为复杂离子,则称某酸某; 若外界为氢离子,则缀以“酸”字;
[Co(NH3)6]3+ [Ag(NH3)2]OH H2[PtCl6] [Co(ONO)(NH3)5]SO4 六氨合钴(III)离子
氢氧化二氨合银(I)
4p
3d
3d 7
8
6个 配位键
NH3 NH3 NH3 NH 3 NH3 NH3
外轨型配合物,高自旋
八面体构型
本节小结 内轨型配合物和外轨型配合物的差别
配位键的键能: 内轨型 > 外轨型 配合物的稳定性:内轨型 > 外轨型
几何构型: 内外轨型配合物,杂化方式不同,空间 构型会不同 Ni(NH3)42+ sp3 正四面体 Ni(CN)42 – dsp2 平面四边形
配位化合物的化学键理论
一、价键理论
二、晶体场理论(不要求)
一 、价键理论
1、配合物价键理论的要点:
1)中心原子(或原子M ):有空轨道
配体L:有孤对电子
二者形成配位键ML
2)中心原子采用杂化的空轨道形成配位键 3) 配合物的空间结构,配位数, 磁矩,稳定性 等主要决定于杂化轨道的数目和类型。
价键理论的核心“认为中心原子与配位原子 是通过杂化了的共价配位键而结合的”。
sp3d2杂化,八面体构型
2.内轨型配合物:
配合物中心原子(n-1)d 电子发生重排,电子挤入少 数(n-1)d 轨道。提供少量空的(n-1)d轨道和ns、 np组成的杂化空轨道与配体结合成配键 . 例:[Ni(CN)4]2- , Ni 2+:3d8。
↑↓ ↑↓ ↑↓ ↑ ↑ 3d
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无机化学
11.2 配合物的化学键理论
第11章 配合物结构 11章
§11.2.2 晶体场理论 1. 八面体构型的配合物 ⑴ 晶体场理论要点
在配合物的中心离子M,处于配体L形成的静电场 形成的静电场(晶体 ● 在配合物的中心离子 ,处于配体 形成的静电场 晶体 场)中,二者完全靠静电作用结相合; 中 二者完全靠静电作用结相合; 晶体场对M的 电子产生排斥作用, ● 晶体场对 的d 电子产生排斥作用,使M的d 轨道发生能 的 级分裂,导致 电子重排,产生晶体场稳定化能; 级分裂,导致d 电子重排,产生晶体场稳定化能; 配合物的空间构型不同, 轨道分裂方式不同; ● 配合物的空间构型不同, d 轨道分裂方式不同; 晶体场类型相同,配体L不同 分裂程度不同。 不同, ● 晶体场类型相同,配体 不同,分裂程度不同。
第11章 配合物结构 11章
影响分裂能∆ ⑶ 影响分裂能∆o的因素 —— 中心离子、配位体、晶体场类型 中心离子、配位体、 ① 中心M离子电荷越大, ∆o越大; 中心 离子电荷越大, 越大; 离子电荷越大 主量子数n越大 越大, 越大。 主量子数 越大, ∆o越大。
∆o /cm-1 ∆o /cm-1 ∆o /cm-1
3. 晶体场稳定化能 晶体场稳定化能(CFSE)
晶体场稳定化能(CFSE)的定义 ⑴ 晶体场稳定化能 的定义
d电子从未分裂 电子从未分裂 的d轨道进入分裂后 轨道进入分裂后 轨道, 的d轨道,所产生的 轨道 总能量下降值。 总能量下降值。
无机化学
11.2 配合物的化学键理论
第11章 配合物结构 11章
∆o /cm-1
13000 18600 22900 34000
11.2 配合物的化学键理论
第11章 配合物结构 11章
③ 晶体场类型对分裂能的影响
四面体场
无机化学
平面正方形场
11.2 配合物的化学键理论
第11章 配合物结构 11章
2. 八面体场中中心离子的 电子分布 八面体场中中心离子的d 排布原则: ⑴ 排布原则:① 能量最低原理 ② Hund规则 规则 ③ Pauli不相容原理 不相容原理 • 电子成对能(P):两个电子进入同一轨道时需 电子成对能( ): ):两个电子进入同一轨道时需 要消耗的能量。 要消耗的能量。 强场: 强场:∆o > P 弱场: 弱场:∆o < P
例:[Fe(CN)6]3d2sp3杂化 正八面体
内轨型配合物 (µ=2.4B.M. lgKf = 52.6)
无机化学
11.2 配合物的化学键理论 ⑵ 外轨型配合物 例:[FeF6]3sp3d2杂化 正八面体
第11章 配合物结构 11章
外轨型配合物 (µ=5.90 B.M. lgKf = 14.3)
八面体场CFSE 的计算结果: 的计算结果: 八面体场
dn 构型
t 2g d1 2 2 t 2g d 3 t 2g d3 3 1 d 4 t 2g eg 3 2 5 t 2g e g d 4 2 6 t 2g e g d 5 2 t 2g e g d7 6 2 8 t 2g e g d 6 3 9 t 2g e g d 6 4 10 t 3g e g d 无机化学
⑴ 正四面体
例:[NiCl4]2-
sp3杂化 (µ=2.83 B.M. )
无机化学
11.2 配合物的化学键理论 ⑵ 平面正方形
第11章 配合物结构 11章
例:[NiCl4]2-
dsp2杂化 (µ= 0) )
无机化学
11.2 配合物的化学键理论
第11章 配合物结构 11章
3. 配位数为 6 的配合物 ⑴ 内轨型配合物
11.2 配合物的化学键理论
第11章 配合物结构 11章
影响晶体场稳定化能(CFSE)的因素 ⑶ 影响晶体场稳定化能 的因素
d电子数目 电子数目 配位体的强弱 晶体场的类型
无机化学
11.2 配合物的化学键理论
第11章 配合物结构 11章
4. 晶体场理论的应用
解释配合物的磁性 解释配合物的稳定性 解释配合物的颜色(吸收光谱) 解释配合物的颜色(吸收光谱) 解释离子水合热变化规律
第11章 配合物结构 11章
3
5
5
空间 平面三角形 构型 直线形 正四面体 平面正方形 正八面体 平面三角形 四方锥 三角双锥 例
Ag(NH 3 ) + 2
NiCl
2− 4
Ni(CN ) 2 − 4
Fe(CN)
3− 6
− HgI 3
2 SbCl 5 −
Fe(CO)5
无机化学
11.1 配合物的空间构型和磁性
强场: (∆o > P)
无机化学
11.2 配合物的化学键理论
例:[Co(CN)6]3- 与[CoF6]3-性质比较。
第11章 配合物结构 11章
∆o /J
P/J 晶体场
Co3+的价电子构型
[Co(CN)6]367.524 ×10-20 35.250 ×10-20 强场 3d6 t2g6 eg0 0 0 低 内轨型配合物 d2sp3
第11章 配合物结构 11章
§11.2.1 价键理论 价键理论要点: 价键理论要点: 1. 形成体有空的价电子轨道,配位体有孤对电子, 形成体有空的价电子轨道,配位体有孤对电子, 二者形成配位键M←L; 二者形成配位键 ← ; 2. 形成体 中心离子 采取杂化轨道成键; 形成体(中心离子 采取杂化轨道成键; 中心离子)采取杂化轨道成键 3. 配离子空间构型与形成体的杂化类型有关。 配离子空间构型与形成体的杂化类型有关。
第11章 配合物结构 11章
第11章 配合物结构 章
§11.1 配合物的空间构型和磁性 §11.2 配合物的化学键理论
无机化学
11.1 配合物的空间构型和磁性
第11章 配合物结构 11章
§11.1 配合物的空间构型和磁性
§11.1.1 配合物的空间构型 §11.1.2 配合物的磁性
无机化学
11.1 配合物的空间构型和磁性
无机化学
11.2 配合物的化学键理论
2+
第11章 配合物结构 11章
2+
M ( g ) + 6 H 2 O = [M (H 2 O )6 ] ( aq )
无机化学
1
弱 场 电子对数 m1 m 2 0 0 0 0 0 0 0 0 0 0 1 1 2 2 3 3 4 4 5 5
CFSE -4Dq -8Dq -12Dq -6 Dq 0 Dq -4 Dq -8 Dq -12Dq -6 Dq 0 Dq
构型
1 t 2g 2 t 2g 3 t 2g 4 t 2g 5 t 2g 6 t 2g 6 t 2g e1 g 6 2 t 2g e g 6 3 t 2g e g 6 4 t 2g e g
无机化学
11.2 配合物的化学键理论
第11章 配合物结构 11章
1. 配位数为 2的配合物 的配合物 [Ag(NH3)2]+ sp杂化 杂化 直线型 (µ= 0 B.M. )
sp
例:[Ag(S2O3)2]3- , [CuCl2]无机化学
11.2 配合物的化学键理论
第11章 配合物结构 11章
2. 配位数为 4 的配合物
无机化学
[Cr(H2O)6]2+ 14000 [Fe(H2O)6]2+ 10400 [CrCl6]313600
[Cr(H2O)6]3+ 17600 [Fe(H2O)6]3+ 13700 [MoCl6]319200
11.2 配合物的化学键理论
第11章 配合物结构 11章
配体对分裂能的影响(光谱化学序列) ② 配体对分裂能的影响(光谱化学序列) 配合物 [CoF6]3[Co(H2O)6]3+ [Co(NH3)6]3+ [Co(CN)6]3光谱化学序列: 光谱化学序列: I-<Br-<Cl-,SCN-<F-<OH-<C2O42<H2O<NCS<edta<NH3<en<bipy<phen<SO32-<NO2<CO, CN无机化学
晶体场稳定化能(CFSE)的计算 ⑵ 晶体场稳定化能 的计算
n1:t 2 g 轨道中的电子数 n 2:e g 轨道中的电子数
m1:八面体场中, d轨道中的成对电子数 m2:球形体场中, d轨道中的成对电子数
CFSE = (-4n1+6n2)Dq + (m1-m2)P
无机化学
11.2 配合物的化学键理论
第11章 配合物结构 11章
▲ 配合物离子的颜色
• 所吸收光子的频率 与分裂能大小有关。 与分裂能大小有关。 • 颜色的深浅与跃迁电 子数目有关。 子数目有关。
无机化学
11.2 配合物的化学键理论
第11章 配合物结构 11章
• 配合物离子的颜色
[Ti(H2Oห้องสมุดไป่ตู้6]3+ 的吸收光谱
无机化学
11.2 配合物的化学键理论
第11章 配合物结构 11章
§11.1.2 配合物的磁性 物质在磁场中表现出来的性质。 磁 性:物质在磁场中表现出来的性质。 磁 矩: µ = n( n + 2) (B.M.) n —— 未成对电子数 B.M. —— 玻尔磁子 顺磁性: 顺磁性:µ > 0 , n > 0(被磁场吸引) (被磁场吸引) 反磁性: 反磁性:µ = 0 , n = 0(被磁场排斥 ) (
无机化学
11.1 配合物的空间构型和磁性
第11章 配合物结构 11章
n µ/B.M. 例:
0 0
1 1.73
2 2.83
3 3.87