步进电机工作特性原理

合集下载

步进电机的工作原理

步进电机的工作原理
步进电机的工作原理
优选步进电机的工作原理
步进电动机的工作原理与特点
原理:步进电机是利用电磁铁原理,将脉冲信号
转换成线位移或角位移的电机。每来一个 电脉冲,电机转动一个角度,带动机械移 动一小段距离。
特点:(1)来一个脉冲,转一个步距角。
(2)控制脉冲频率,可控制电机转速。 (3)改变脉冲顺序,改变转动方向。 (4)角位移量或线位移量与电脉冲数成正比.
系称为矩频特性
特点:
步进电动机矩频特性
下降曲线。以最 大负载转矩(启 动转矩)Tq为起 点,随着控制脉 冲频率增加,步 进电动机的转速 逐步升高、而带 负载能力却下降
A
B'
C'
C
B
A'
B相通电,转子2、4齿 和B相轴线对齐,相对 A相通电位置转30;
A
B'
C'
C
B
A'
C相通电再转30
这种工作方式,因三相绕组中每次只有一相通电, 而且,一个循环周期共包括三个脉冲,所以称三相 单三拍。
三相单三拍的特点:
(1)每来一个电脉冲,转子转过 30。此角称为
步距角,用S表示。
步进电机的种类:
通常按励磁方式分为三大类: 1)反应式:转子无绕组,定转子开小齿、步距小。应 用最广。 2)永磁式:转子的极数=每相定子极数,不开小齿, 步距角较大,力矩较大。 3)感应子式(混合式): 开小齿,混合反应式与永磁 式优点:转矩大、动态性能好、步距角小。
以反应式为例说明步进电机的结构和原理
(2)转子的旋转方向取决于三相线圈通电的顺序, 改变通电顺序即可改变转向。
二、三相单双六拍
三相绕组的通电顺序为: AABBBCCCAA 共六拍。

步进电机

步进电机
1.1 概述
原理:步进电机是利用电磁铁原理,将脉冲信号
转换成线位移或角位移的电机。每来一个 电脉冲,电机转动一个角度,带动机械移 动一小段距离。 特点:(1)来一个脉冲,转一个步距角。
(2)控制脉冲频率,可控制电机转速。
(3)改变脉冲顺序,改变方向。
优点
(1)直接实现数字控制;
(2)控制性能好; (3)无接触式; (4)抗干扰能力强; (5)误差不长期积累;
1.3.3 单步运行特性
1.单步运行时的矩角特性和稳定区 以三相单三步运行方式为例,设电机空载时,A相通电 时的矩角特性如图4中的曲线A所示,转子处于稳定平衡点 OA。如加一脉冲,A相断电,B相通电,则矩角特性变为曲 线B。 M
A
A
B
B
OB OA
A
B
θ
b
θ定区
步进电动机的步距角θ b由转子齿数、定子相数和通电 方式所决定,即
360 b mCZ k
式中m为相数。C为状态系数,采用单、双拍通电方式时 C=2,采用单拍或双拍通电方式时C=1。ZK为转子齿数。
若步进电动机所加的通电脉冲频率为f,则其转速为
60 f n mCZ k
1.3 静态运行特性
步进电动机不改变通电状态下的运行特性称
M B M max sin(e 120)
MB 与MA 相距120°电度角。这是一条与A相特性完全相同, 但相位上相差120°(电度角)的特性。当A、B同时通电时,合 成矩角特性应为二者之叠加,即
M AB M A M B M max sin(e 60)
可见MAB是一条幅值与单相通电时相同,相移60°电度角(θt/6) 的正弦曲线,如图3中曲线MAB所示。
1.3.4 连续运行特性

步进电机的分类;简述步进电机的工作原理

步进电机的分类;简述步进电机的工作原理

步进电机的分类;简述步进电机的工作原理一、引言步进电机是一种将电脉冲信号转换成角位移的电动机,广泛应用于打印机、数控机床、纺织、医疗器械、精密仪器仪表等设备中。

本文将围绕步进电机的分类和工作原理展开讨论,通过深度和广度兼具的分析,帮助读者更好地理解和应用步进电机。

二、步进电机的分类1. 按照工作原理分类步进电机可以根据其工作原理分为磁性、霍尔效应和混合式步进电机。

其中,磁性步进电机主要由永磁体和电磁线圈构成,它的工作原理是利用电磁线圈中产生的磁场与永磁体磁场之间的吸引和排斥作用来实现转动。

霍尔效应步进电机则是利用霍尔元件检测转子位置而进行步进运动。

混合式步进电机则是将两种原理进行了有机结合,综合了两者的优点,具有较高的精度和扭矩。

2. 按照结构分类步进电机根据结构不同也可分为单转子步进电机和双转子步进电机。

单转子步进电机结构简单,适用于一般的定位应用;双转子步进电机通过在转子上添加转子齿和隔板,可以大大提高定位精度和抗负载能力,适用于高端控制系统。

三、步进电机的工作原理步进电机的工作原理可以简单概括为根据控制信号实现电磁线圈的通断来控制转子旋转。

具体来说,通过电流控制,电磁线圈产生的磁场与永磁体间不断吸引和排斥,从而实现转子的旋转。

步进电机的角位移是由电脉冲信号的频率和数量决定的,不同的驱动方式会影响步进电机的运动特性,通常可采用全步进、半步进和微步进等方式。

四、结论与展望通过对步进电机的分类和工作原理的深度和广度兼具的讨论,相信读者已经对步进电机有了更清晰的理解。

在今后的应用中,我们还可以深入研究步进电机的控制技术、驱动方式以及在不同领域的应用案例,以期更好地发挥步进电机的优势作用。

步进电机作为一种精密定位设备,必将在工业自动化领域发挥越来越重要的作用。

个人观点和理解:在我看来,步进电机作为一种精密定位设备,在工业生产和日常生活中扮演着非常重要的角色。

其高精度、高可靠性的特点使其在自动控制系统中得到广泛应用。

步进电机结构及原理

步进电机结构及原理

步进电机结构及原理
步进电机是一种将电脉冲信号转变为角位移或线位移的开环控制元件。

它利用电磁学原理,将电能转换为机械能。

其结构通常包括前后端盖、轴承、中心轴、转子铁芯、定子铁芯、定子组件、波纹垫圈和螺钉等部分。

步进电机的工作原理基于电磁感应定律。

当施加在电机线圈上的电脉冲信号产生磁场时,磁场与定子铁芯相互作用产生转矩,驱动转子旋转。

通过控制施加在电机线圈上的电脉冲顺序、频率和数量,可以实现对步进电机的转向、速度和旋转角度的控制。

每接收一个脉冲信号,步进电机就按设定的方向转动一个固定的角度,称为“步距角”,其旋转是以固定的角度一步一步运行的。

步进电机具有一些显著的特点。

首先,它们是开环控制系统的一部分,这意味着它们不依赖于位置反馈来调节运动。

其次,步进电机具有高精度的定位能力,这使得它们在需要精确控制位置的应用中非常有用。

此外,步进电机可以在不同的负载条件下保持恒定的速度,因为电机的转速只取决于脉冲信号的频率,而不受负载变化的影响。

总的来说,步进电机是一种功能强大且适应性强的电机类型,广泛应用于各种需要精确控制位置和速度的场合。

如需了解更多信息,建议咨询电机方面的专家或查阅相关专业书籍。

步进电机的原理

步进电机的原理

步进电机的原理
步进电机是一种通过电信号控制转子按一定步长运动的电机。

其工作原理是将电信号转化为磁场,进而驱动转子。

步进电机通常由定子和转子组成。

定子含有若干绕组,每个绕组在电流作用下产生磁场。

转子上有多对永磁体,其磁极数目与定子绕组数目相一致。

当给定子绕组通电时,会在定子上产生磁场,这个磁场会吸引转子上的永磁体,使转子翻转一定的角度。

通过改变定子绕组通电的顺序和时间,可以控制转子按一定步长顺时针或逆时针旋转。

步进电机一般由驱动器和控制器配合使用。

驱动器将控制器发送的电信号转换为合适的电流和电压,以驱动步进电机。

控制器根据需要设定转子运动的步长和方向,并发出相应的电信号给驱动器。

步进电机具有精准定位、运动平稳等特点,适用于需要精确控制位置和转速的设备。

它被广泛应用于打印机、数控设备、机器人、电子仪器等领域。

步进电机的原理,分类,细分原理

步进电机的原理,分类,细分原理

步进电机原理及使用说明一、前言步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。

在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。

这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。

使得在速度、位置等控制领域用步进电机来控制变的非常的简单。

虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机,交流电机在常规下使用。

它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。

因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。

步进电机是将电脉冲信号转变为角位移或线位移的一种开环线性执行元件,具有无累积误差、成本低、控制简单特点。

产品从相数上分有二、三、四、五相,从步距角上分有0.9°/1.8°、0.36°/0.72°,从规格上分有口42~φ130,从静力矩上分有0.1N•M~40N•M。

签于上述情况,我们决定以广泛的感应子式步进电机为例。

叙述其基本工作原理。

望能对广大用户在选型、使用、及整机改进时有所帮助。

二、感应子式步进电机工作原理(一)反应式步进电机原理由于反应式步进电机工作原理比较简单。

下面先叙述三相反应式步进电机原理。

1、结构:电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。

0、1/3て、2/3て,(相邻两转子齿轴线间的距离为齿距以て表示),即A与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A…与齿5相对齐,(A…就是A,齿5就是齿1)下面是定转子的展开图:2、旋转:如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力以下均同)。

如B相通电,A,C相不通电时,齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C偏移为1/3て,齿4与A偏移(て-1/3て)=2/3て。

步进电机原理及使用说明-安装接线方法

步进电机原理及使用说明-安装接线方法

步进电机原理及使用说明-安装接线方法步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件双击自动滚屏发布者:admin 时间:2008-8-20 19:25:05 阅读:1050次【字体:大中小】一、前言步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。

在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。

这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。

使得在速度、位置等控制领域用步进电机来控制变的非常的简单。

虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机,交流电机在常规下使用。

它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。

因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。

目前,生产步进电机的厂家的确不少,但具有专业技术人员,能够自行开发,研制的厂家却非常少,大部分的厂家只一、二十人,连最基本的设备都没有。

仅仅处于一种盲目的仿制阶段。

这就给户在产品选型、使用中造成许多麻烦。

签于上述情况,我们决定以广泛的感应子式步进电机为例。

叙述其基本工作原理。

望能对广大用户在选型、使用、及整机改进时有所帮助。

二、感应子式步进电机工作原理(一)反应式步进电机原理由于反应式步进电机工作原理比较简单。

下面先叙述三相反应式步进电机原理。

1、结构:电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。

0、1/3て、2/3て,(相邻两转子齿轴线间的距离为齿距以て表示),即A与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A'与齿5相对齐,(A'就是A,齿5就是齿1)下面是定转子的展开图:2、旋转:如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力以下均同)。

如B相通电,A,C相不通电时,齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C偏移为1/3て,齿4与A偏移(て-1/3て)=2/3て。

步进电动机概念及其工作原理

步进电动机概念及其工作原理

步进电动机概念及其工作原理步进电动机是一种将脉冲信号变换成相应的角位移(或线位移)的电磁装置,是一种特殊的电动机。

一般电动机都是连续转动的,而步进电动机则有定位和运转两种基本状态,当有脉冲输入肘步进电动机一步一步地转动,每给它一个脉冲信号,它就转过一定的角度。

步进电动机的角位移量和输入脉冲的个数严格成正比,在时间上与输入脉冲同步,因此只要控制输入脉冲的数量、频率及电动机绕组通电的相序,便可获得所需的转角、转速及转动方向。

在没有脉冲输入时,在绕组电源的激励下气隙磁场能使转子保持原有位置处于定位状态。

步进电动机按其输出转矩的大小来分,可以分为快速步进电动机和功率步进电动机。

快速步进电动机连续工作频率高而输出转矩较小,一般在N·cm级,可以作为控制小型精密机床的工作台(例线切割机床)也可以和液压转矩放大器组成电液脉冲马达去驱动数控机床的工作台,而功率步进电动机的输出转矩就比较大是N·m级的,可以直接去驱动机床的移动部件。

步进电动机按其励磁相数,可以分为三相、四相、五相、六相甚至八相。

一般来说随着相数的增加,在相同频率的情况下,每相导通电流的时间增加,各相平均电流会高些,从而使电动机的转速—转矩特性会好些,步距角亦小。

但是随着相数的增加,电动机的尺寸就增加,结构亦复杂,目前多用3~6相的步进电动机。

由于步进电动机的转速随着输入脉冲频率变化而变化,调速范围很广,灵敏度高,输出转角能够控制,而且输出精度较高,又能实现同步控制,所以广泛地使用在开环系统中,也还可用在一般通用机床上,提高进给机构的自动化水平。

步进电动机按其工作原理来分,主要有磁电式和反应式两大类,这里只介绍常用的反应式步进电动机的工作原理,现用下图的步进电动机的简化图来加以说明。

在电动机定子上有A、B、C三对磁极,磁极上绕有线圈,分别称之为A相、B相和C相,而转子则是一个带齿的铁心,这种步进电动机称之为三相步进电动机。

如果在线圈中通以直流电,就会产生磁场,当A、B、C三个磁极的线圈依次轮流通电,则A、B、C三对磁极就依次轮流产生磁场吸引转子转动。

说明步进电机的工作原理

说明步进电机的工作原理

说明步进电机的工作原理步进电机的工作原理。

步进电机是一种特殊的电机,它通过电脉冲信号来驱动,将电能转化为机械能。

步进电机的工作原理是基于磁场的相互作用和电流的变化,下面将详细介绍步进电机的工作原理。

1. 磁场的相互作用。

步进电机通常由定子和转子两部分组成,定子是由一组线圈组成,而转子则由永磁体或者铁芯组成。

当电流通过定子线圈时,会产生一个磁场,这个磁场会与转子上的永磁体或者铁芯产生相互作用,从而使转子产生转动。

2. 电流的变化。

步进电机的工作原理还涉及到电流的变化。

通过改变定子线圈中的电流方向和大小,可以改变磁场的方向和大小,从而控制转子的转动。

通常情况下,步进电机会通过控制器来控制电流的变化,从而实现精确的步进运动。

3. 步进运动。

步进电机的特点之一就是可以实现精确的步进运动。

这是因为步进电机是按照一定的步进角度来运动的,每接收一个脉冲信号,转子就会向前或者向后运动一个固定的步进角度。

这种特性使得步进电机在需要精确控制位置和速度的应用中非常有用。

4. 工作原理总结。

综上所述,步进电机的工作原理是基于磁场的相互作用和电流的变化。

通过改变定子线圈中的电流方向和大小,可以控制转子的转动,从而实现精确的步进运动。

步进电机因其精准的控制能力和简单的结构,在自动化设备、数控机床、印刷机械等领域得到了广泛的应用。

除了以上介绍的基本工作原理,步进电机还有很多不同的类型和控制方式,例如单相步进电机、双相步进电机、三相步进电机等,每种类型的步进电机都有其特定的工作原理和应用场景。

同时,步进电机的控制方式也有很多种,例如开环控制、闭环控制、微步进控制等,每种控制方式都有其适用的场景和优势。

总之,步进电机是一种非常重要的电机类型,其工作原理基于磁场的相互作用和电流的变化,通过精确的控制来实现步进运动。

步进电机在工业自动化、仪器仪表、医疗设备等领域有着广泛的应用,可以说是现代工业中不可或缺的一部分。

希望通过本文的介绍,读者对步进电机的工作原理有了更深入的了解。

步进电机及驱动常见故障分析与处理

步进电机及驱动常见故障分析与处理
空载时,步进电杌某相通以直流电流时,该相对应的定、转子齿对齐,这时转子无转矩输出。
3.混合式步进电机; (二)步进电动机绕组电流控制电路
合,当驱动器工作异常时继电器断开。
参快数速选 步择进不电当动可,机如连变电续流工磁过作阻大频,率式超高过,步相而进电输流出电;转矩机小又。 称为反应式步进电机,它的工作原理是由改变 脉与冲反频 应率式与步机进械电电发机动生相共比机振,。相的同体定积子的永和磁式转步子进电的动机软转矩钢大齿,步之距角间也的大。电磁引力来改变定子和转子的 快速步进电动机相连对续工位作频置率,高,这而输种出电转矩动小。机结构简单、步距角小。
从运动的型式上可分为:
1.旋转步进电机。 2.直线步进电机。 3.平面步进电机。
三.步进电机的驱动电路、控制方式及接线图 (一). 驱动电路:
负载过 步大进,超电过电机动绕机的组承载的能驱力;动电路,单极性电流一般采用下图<a>双管串联电路,
参 脉数冲选发 双择 生极不 电当 路性, 故如 障电电 ;流流过一大,般超采过相用电流下;图<b>的H桥电路;
从电流的极性上可分为:
RESET:复位信号永,磁如复式位信步号进为低电电平机时的,输入转脉冲子信铁号起心作用上,装如果有复多条永久磁铁,转子的转动与定 脉指冲令频 脉率冲与频机率械与位发电是生机共发由振生。共定振;、转子之间的电磁引力与磁铁磁力共同作用的。与反应式 所快谓速静 步态进是电指动电机步机连进不续改工电变作通频机电率状高相态,比,而转输,子出不转相动矩同时小的。体工作积状态的。永磁式步进电动机转矩大,步距角也大。 H混N合C式-21步轴进参电数机设结混置合不了合当反式;应式步步进进电电机和机永磁结式合步进了电机反的应优点式,采步用进永久电磁铁机提和高电永动机磁的式转矩步,采进用电细密机的极的齿优来减点小步,距角, 是目前数控机床采上用应用永最多久的步磁进铁电动提机。高电动机的转矩,采用细密的极齿来减小步距角, 双极性电流一般是采目用下前图<数b>的控H桥机电床路; 上应用最多的步进电动机。

步进电机的工作原理

步进电机的工作原理

1. 步进电机的工作原理该步进电机为一四相步进电机,采用单极性直流电源供电。

只要对步进电机的各相绕组按合适的时序通电,就能使步进电机步进转动。

图1是该四相反应式步进电机工作原理示意图。

图1 四相步进电机步进示意图开始时,开关SB接通电源,SA、SC、SD断开,B相磁极和转子0、3号齿对齐,同时,转子的1、4号齿就和C、D相绕组磁极产生错齿,2、5号齿就和D、A相绕组磁极产生错齿。

当开关SC接通电源,SB、SA、SD断开时,由于C相绕组的磁力线和1、4号齿之间磁力线的作用,使转子转动,1、4号齿和C相绕组的磁极对齐。

而0、3号齿和A、B相绕组产生错齿,2、5号齿就和A、D相绕组磁极产生错齿。

依次类推,A、B、C、D四相绕组轮流供电,则转子会沿着A、B、C、D方向转动。

四相步进电机按照通电顺序的不同,可分为单四拍、双四拍、八拍三种工作方式。

单四拍与双四拍的步距角相等,但单四拍的转动力矩小。

八拍工作方式的步距角是单四拍与双四拍的一半,因此,八拍工作方式既可以保持较高的转动力矩又可以提高控制精度。

单四拍、双四拍与八拍工作方式的电源通电时序与波形分别如图2.a、b、c 所示:a. 单四拍b. 双四拍c八拍51单片机驱动步进电机的方法。

驱动电压12V,步进角为7.5度. 一圈360 度, 需要48 个脉冲完成该步进电机有6根引线,排列次序如下:1:红色、2:红色、3:橙色、4:棕色、5:黄色、6:黑色。

采用51驱动ULN2003的方法进行驱动。

ULN2003的驱动直接用单片机系统的5V电压,可能力矩不是很大,大家可自行加大驱动电压到12V。

1.步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。

在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。

这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。

使得在速度、位置等控制领域用步进电机来控制变的非常的简单。

步进电机的工作原理及其原理图

步进电机的工作原理及其原理图

一、前言步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。

在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。

这一线性关系的存在,加上步进电机只有周期性的误差而无累积误目前,叙(一)反应式步进电机原理由于反应式步进电机工作原理比较简单。

下面先叙述三相反应式步进电机原理。

1、结构:电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。

0、1/3て、2/3て,(相邻两转子齿轴线间的距离为齿距以て表示),即A与齿1相对齐,B与齿2向我们理论上可以制造任何相的步进电机,出于成本等多方面考虑,市场上一般以二、三、四、五相为多。

3、力矩:电机一旦通电,在定转子间将产生磁场(磁通量Ф)当转子与定子错开一定角度产生力F与(dФ/dθ)成正比S其磁通量Ф=Br*SBr为磁密,S为导磁面积,F与L*D*Br成正比L为铁芯有效长度,D为转子直径Br=N·I/RN·I为励磁绕阻安匝数(电流乘匝数)R为磁阻。

力矩=力*1也可以作(时,既可以作四相电机使用,可以作二相电机绕组串联或并联使用。

2、分类感应子式步进电机以相数可分为:二相电机、三相电机、四相电机、五相电机等。

以机座号(电机外径)可分为:42BYG(BYG为感应子式步进电机代号)、57BYG、86BYG、110BYG、(国际标准),而像70BYG、90BYG、130BYG等均为国内标准。

3、步进电机的静态指标术语相数:产生不同对极N、S磁场的激磁线圈对数。

常用m表示。

拍数:完成一个磁场周期性变化所需脉冲数或导电状态用n表示,或指电机转过一个齿距角所需脉冲数,以四相电机为例,有四相四拍运行方式即AB-BC-CD-DA-AB,四相八拍运行方式即A-AB-B-BC-C-CD-D-DA-A.步距角:对应一个脉冲信号,电机转子转过的角位移用θ表示。

步进电机原理

步进电机原理

步进电机原理
步进电机是一种将电能转化为机械能的电动机器。

其工作原理是通过交替通断电流来控制电机的转动,使电机按一定的步长顺序运动。

步进电机的主要原理是利用电磁现象产生的磁力作用于电机的转子,使其转动。

步进电机通常由一个固定的定子和一个可旋转的转子构成。

定子上安装有若干个电磁线圈,称为相。

每个相上通过电流时,会产生一个磁场,磁场的方向根据电流的方向来确定。

在工作时,电机的相依次通电,使得磁场相继产生。

这些磁场的方向和强度会根据通电顺序和电流大小而有所变化。

转子中的永磁体会受到这些磁场的作用,产生相应的力矩,使转子转动。

为了控制电机的转动,通常采用分步驱动的方式。

在每一步中,只向电机的一个相通电,其他相不通电。

通过不断切换通电的相,可以实现电机的连续旋转。

这种控制方法称为全步控制。

此外,还可以通过向电机的相施加不同的电流大小和方向来实现半步控制或微步控制,以实现更精确的运动。

步进电机具有定位精度高、响应速度快、结构简单等优点,在许多领域得到广泛应用。

步进电机原理

步进电机原理

步进电机原理步进电机是一种将电脉冲转化为角位移的执行机构。

当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。

可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。

步进电机可以作为一种控制用的特种电机,利用其没有积累误差(精度为100%)的特点,广泛应用于各种开环控制。

现在比较常用的步进电机包括反应式步进电机(vr)、永磁式步进电机(pm)、混合式步进电机(hb)和单相式步进电机等。

反应式步进电机一般为三相,可实现高转矩输出。

步进角一般为1.5度,但噪声和振动非常大,可以通过驱动器细分技术解决。

(刺绣框架驱动)混合式步进电机是指混合了永磁式和反应式的优点。

它又分为两相和五相:两相步进角一般为1.8度而五相步进角一般为0.72度。

(绣框金片)步进电机的一些基本参数:步进角:表示控制系统发出步进脉冲信号时电机的旋转角度。

当电机出厂时,它给出一个步进角值。

例如,86byg250a电机给出的值为0.9°/1.8°(半步为0.9°,全步为1.8°)。

这个步进角可以叫做?电机固有步进角?,它不一定是电机实际工作时的实际步进角。

实际步距角与驾驶员有关。

相数:指电机内部的线圈组数。

目前常用的步进电机有两相、三相和五相。

步进角随电机的相数而变化。

一般来说,两相电机的步进角为0.9°/1.8°,三相电机的步进角为0.75°/1.5°,五相电机的步进角为0.36°/0.72°。

保持转矩(holdingtorque):是指步进电机通电但没有转动时,定子锁住转子的力矩。

它是步进电机最重要的参数之一,通常步进电机在低速时的力矩接近保持转矩。

由于步进电机的输出力矩随速度的增大而不断衰减,输出功率也随速度的增大而变化,所以保持转矩就成为了衡量步进电机最重要的参数之一。

步进电机基础知识:类型、 用途和工作原理

步进电机基础知识:类型、 用途和工作原理

步进电机基础知识:类型、用途和工作原理本文将为您介绍步进电机的基础知识,包括其工作原理、构造、控制方法、用途、类型及其优缺点。

1)步进电机:步进电机是一种通过步进(即以固定的角度移动)方式使轴旋转的电机。

其内部构造使它无需传感器,通过简单的步数计算即可获知轴的确切角位置。

这种特性使它适用于多种应用。

2)步进电机工作原理:与所有电机一样,步进电机也包括固定部分(定子)和活动部分(转子)。

定子上有缠绕了线圈的齿轮状突起,而转子为永磁体或可变磁阻铁芯。

稍后我们将更深入地介绍不同的转子结构。

图1显示的电机截面图,其转子为可变磁阻铁芯。

图1:步进电机截面图步进电机的基本工作原理为:给一个或多个定子相位通电,线圈中通过的电流会产生磁场,而转子会与该磁场对齐;依次给不同的相位施加电压,转子将旋转特定的角度并最终到达需要的位置。

图2显示了其工作原理。

首先,线圈A通电并产生磁场,转子与该磁场对齐;线圈B通电后,转子顺时针旋转60°以与新的磁场对齐;线圈C通电后也会出现同样的情况。

下图中定子小齿的颜色指示出定子绕组产生的磁场方向。

图2:步进电机的步进3)步进电机的类型与构造步进电机的性能(无论是分辨率/步距、速度还是扭矩)都受构造细节的影响,同时,这些细节也可能会影响电机的控制方式。

实际上,并非所有步进电机都具有相同的内部结构(或构造),因为不同电机的转子和定子配置都不同。

3.1转子步进电机基本上有三种类型的转子:永磁转子:转子为永磁体,与定子电路产生的磁场对齐。

这种转子可以保证良好的扭矩,并具有制动扭矩。

这意味着,无论线圈是否通电,电机都能抵抗(即使不是很强烈)位置的变化。

但与其他转子类型相比,其缺点是速度和分辨率都较低。

图3显示了永磁步进电机的截面图。

图3:永磁步进电机可变磁阻转子:转子由铁芯制成,其形状特殊,可以与磁场对齐(请参见图1和图2)。

这种转子更容易实现高速度和高分辨率,但它产生的扭矩通常较低,并且没有制动扭矩。

步进电机的工作原理及运行特性

步进电机的工作原理及运行特性

步进电机的工作原理
当A相断电,B相 绕组通电时,磁阻 转矩吸引转子逆时 针方向转动30º, 即转子2、4磁极 与B相磁极对齐,
原理示意图
返回目录 运行特性 原理 课堂练习
步进电机的工作原理
,当B相断电,C 相绕组通电时,磁 阻转矩吸引转子再
逆时针方向转动 30º,使转子1、3 磁极与C相磁极对
齐,
B通电
BB’对2、4极 有拉力,转子2、 4极和B相对齐, 相对于AB通电
旋转了15°
原理示意图
返回目录 运行特性 原理 课堂练习
三相单双三拍运行方式:通电AB—B—BC—C—CA—A—AB
BC通电
BB’对2、4极 有拉力,CC’ 对1、3极有拉 力,转子停在 两拉力的平衡 位置,相对于 B通电旋转了
原理示意图
返回目录 运行特性 原理 课堂练习
步进电机的运行特点
一种通电状态转换到另一种通电状态称为 一拍,每一拍转子转过的角度称为步距角θs, 上述的通电方式称为三相单三拍运行,三相是指 定子为三相绕组,单是指每拍只有一相绕组通电, 三拍是指经过三次切换绕组的通电状态为一个循 环。 三相步进电动机运行方式:
每一拍转子转过的角度称为
,上述的通电方式
称为三相单三拍运行,三相是指定子为三相绕组,单是指
每拍只有一相绕组通电,三拍是指经过三次切换绕组的通
电状态为一个循环。
返回目录 运行特性 原理 课堂练习
课堂练习——电路图
下面题目 被选前, 你可选其 中一题作

1、说出步进电机的工作原理。 2、说出三相单三拍运行的运行特征。
返回目录 运行特性 原理 课堂练习
15°
原理示意图
之后是C通电—CA通电……总之,每 个循环周期有溜走六种通电状态,所 以称之为三相六拍,步距角为15°

5v步进电机工作原理

5v步进电机工作原理

5v步进电机工作原理
步进电机是一种特殊的电动机,它通过改变电流的方向和大小来控制转子的位置。

步进电机由定子和转子组成,转子就是电动机的旋转部分。

步进电机中的定子由电磁线圈组成,每个电磁线圈称为一个相。

通常有两相、三相和四相步进电机。

每相线圈可以分为两个端子,通过对这两个端子施加电流,可以产生一个磁场。

当两相线圈电流交替改变时,可以使得转子在一个固定的步距内旋转。

在步进电机中,通常使用电子驱动器来控制电流的变化。

驱动器根据预设的步进角度和转速,控制线圈电流的大小和方向。

通过依次激活不同的线圈,驱动器可以使得转子以预定的步距和方向旋转,从而实现精确的位置控制。

具体来说,当一个线圈通电时,它会产生磁场,将转子吸引到一个特定的位置。

当驱动器改变电流的方向,使得线圈产生反向磁场时,转子会转动到下一个对应的位置。

通过不断重复这个过程,驱动器可以控制转子的位置和旋转方向。

总结起来,步进电机的工作原理是通过不断改变电流的方向和大小来控制转子的位置,从而实现精确的位置控制。

24步进电机工作原理

24步进电机工作原理

24步进电机工作原理24步进电机是一种常见的电机类型,其工作原理简单且可靠。

它主要由定子和转子两部分组成。

定子上有一组电磁线圈,而转子上有一组永磁体。

当电流通过定子的线圈时,会产生磁场,这个磁场会与转子上的永磁体产生相互作用,从而使转子转动。

为了更好地理解24步进电机的工作原理,我们可以将其比作一个人在行走的过程。

假设转子是人的脚步,定子的线圈则是人的大脑。

当人决定向前行走时,大脑会发出指令,脚步会相应地向前迈出一步。

同样地,当电流通过定子的线圈时,它会产生一个磁场,这个磁场会让转子转动一个固定的角度,也就是一步。

24步进电机之所以称为24步进电机,是因为它可以被分成24个固定的步骤。

每个步骤对应转子转动的一个固定角度,通常为15度。

这意味着,通过在不同的线圈上通电,我们可以控制转子的转动方向和角度。

例如,当我们依次在第1、2、3、4个线圈上通电时,转子会按照顺时针方向转动。

如果我们反过来依次在第4、3、2、1个线圈上通电,转子会按照逆时针方向转动。

通过改变通电顺序,我们可以控制转子的转动速度和方向。

需要注意的是,24步进电机是一个离散式的电机,即它只能转动固定的角度,而不能连续旋转。

这在一些应用中是非常有用的,比如打印机、数码相机等。

此外,24步进电机还具有高精度和高扭矩的特点,使其在一些精密控制系统中得到广泛应用。

24步进电机的工作原理可以简单地概括为:通过在定子的线圈上通电,产生磁场,使转子按照固定的角度转动。

通过改变通电顺序,我们可以控制转子的转动方向和速度。

这种离散式的转动特性使24步进电机在一些特定的应用领域中具有广泛的应用前景。

42步进电机工作原理

42步进电机工作原理

42步进电机工作原理
42步进电机是通过不断地向前走42步的方式来工作的。

它是
一种电动机,可以按照程序控制来进行精确定位和旋转操作。

步进电机的原理基于电磁感应和电磁场的作用。

步进电机的核心部件是电磁线圈,通常有两个或更多个。

每个线圈都有两个端子,通过电流传入线圈中来产生磁场。

这些线圈通常被称为相。

每个相之间存在一定的电位差,导致线圈之间形成了一个旋转磁场。

步进电机通过改变电磁线圈中的电流来控制其运动。

当电流通过一个线圈时,该线圈中的磁场与永久磁铁中的磁场相互作用,产生力矩,使步进电机顺时针或逆时针旋转一定的角度。

这就是步进电机的基本工作原理。

为了实现精确定位和旋转,步进电机通常需要与控制电路一起使用。

控制电路通过改变电流或电压的大小和方向来控制步进电机的运动。

它可以根据需要发送脉冲信号来控制步进电机前进的步数和速度。

总之,42步进电机的工作原理是通过改变电磁线圈中的电流
来控制其旋转运动,从而实现精确定位和旋转操作。

通过与控制电路的配合,可以实现更加复杂的运动模式和精确的定位控制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

步进电机原理及使用说明一、前言步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。

在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。

这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。

使得在速度、位置等控制领域用步进电机来控制变的非常的简单。

虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机,交流电机在常规下使用。

它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。

因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。

目前,生产步进电机的厂家的确不少,但具有专业技术人员,能够自行开发,研制的厂家却非常少,大部分的厂家只一、二十人,连最基本的设备都没有。

仅仅处于一种盲目的仿制阶段。

这就给用户在产品选型、使用中造成许多麻烦。

步进电机是将电脉冲信号转变为角位移或线位移的一种开环线性执行元件,具有无累积误差、成本低、控制简单特点。

产品从相数上分有二、三、四、五相,从步距角上分有0.9°/1.8°、0.36°/0.72°,从规格上分有口42~φ130,从静力矩上分有0.1N·M~40N·M。

签于上述情况,我们决定以广泛的感应子式步进电机为例。

叙述其基本工作原理。

望能对广大用户在选型、使用、及整机改进时有所帮助。

二、感应子式步进电机工作原理(一)反应式步进电机原理由于反应式步进电机工作原理比较简单。

下面先叙述三相反应式步进电机原理。

1、结构:电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。

0、1/3て、2/3て,(相邻两转子齿轴线间的距离为齿距以て表示),即A与齿1相对齐,B 与齿2向右错开1/3て,C与齿3向右错开2/3て,A'与齿5相对齐,(A'就是A,齿5就是齿1)下面是定转子的展开图:2、旋转:如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力以下均同)。

如B相通电,A,C相不通电时,齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C偏移为1/3て,齿4与A偏移(て-1/3て)=2/3て。

如C相通电,A,B相不通电,齿3应与C对齐,此时转子又向右移过1/3て,此时齿4与A偏移为1/3て对齐。

如A相通电,B,C相不通电,齿4与A对齐,转子又向右移过1/3て这样经过A、B、C、A分别通电状态,齿4(即齿1前一齿)移到A相,电机转子向右转过一个齿距,如果不断地按A,B,C,A……通电,电机就每步(每脉冲)1/3て,向右旋转。

如按A,C,B,A……通电,电机就反转。

由此可见:电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。

而方向由导电顺序决定。

不过,出于对力矩、平稳、噪音及减少角度等方面考虑。

往往采用A-AB-B-BC-C-CA-A 这种导电状态,这样将原来每步1/3て改变为1/6て。

甚至于通过二相电流不同的组合,使其1/3て变为1/12て,1/24て,这就是电机细分驱动的基本理论依据。

不难推出:电机定子上有m相励磁绕阻,其轴线分别与转子齿轴线偏移1/m,2/m……(m-1)/m,1。

并且导电按一定的相序电机就能正反转被控制——这是步进电机旋转的物理条件。

只要符合这一条件我们理论上可以制造任何相的步进电机,出于成本等多方面考虑,市场上一般以二、三、四、五相为多。

3、力矩:电机一旦通电,在定转子间将产生磁场(磁通量Ф)当转子与定子错开一定角度产生力F与(dФ/dθ)成正比S其磁通量Ф=Br*SBr为磁密,S为导磁面积F与L*D*Br成正比L为铁芯有效长度,D为转子直径Br=N·I/RN·I为励磁绕阻安匝数(电流乘匝数)R为磁阻。

力矩=力*半径力矩与电机有效体积*安匝数*磁密成正比(只考虑线性状态)因此,电机有效体积越大,励磁安匝数越大,定转子间气隙越小,电机力矩越大,反之亦然。

(二)感应子式步进电机1、特点:感应子式步进电机与传统的反应式步进电机相比,结构上转子加有永磁体,以提供软磁材料的工作点,而定子激磁只需提供变化的磁场而不必提供磁材料工作点的耗能,因此该电机效率高,电流小,发热低。

因永磁体的存在,该电机具有较强的反电势,其自身阻尼作用比较好,使其在运转过程中比较平稳、噪音低、低频振动小。

感应子式步进电机某种程度上可以看作是低速同步电机。

一个四相电机可以作四相运行,也可以作二相运行。

(必须采用双极电压驱动),而反应式电机则不能如此。

例如:四相,八相运行(A-AB-B-BC-C-CD-D-DA-A)完全可以采用二相八拍运行方式.不难发现其条件为C=,D=.一个二相电机的内部绕组与四相电机完全一致,小功率电机一般直接接为二相,而功率大一点的电机,为了方便使用,灵活改变电机的动态特点,往往将其外部接线为八根引线(四相),这样使用时,既可以作四相电机使用,可以作二相电机绕组串联或并联使用。

2、分类感应子式步进电机以相数可分为:二相电机、三相电机、四相电机、五相电机等。

以机座号(电机外径)可分为:42BYG(BYG为感应子式步进电机代号)、57BYG、86BYG、110BYG、(国际标准),而像70BYG、90BYG、130BYG等均为国内标准。

3、步进电机的静态指标术语相数:产生不同对极N、S磁场的激磁线圈对数。

常用m表示。

拍数:完成一个磁场周期性变化所需脉冲数或导电状态用n表示,或指电机转过一个齿距角所需脉冲数,以四相电机为例,有四相四拍运行方式即AB-BC-CD-DA-AB,四相八拍运行方式即A-AB-B-BC-C-CD-D-DA-A.步距角:对应一个脉冲信号,电机转子转过的角位移用θ表示。

θ=360度(转子齿数J*运行拍数),以常规二、四相,转子齿为50齿电机为例。

四拍运行时步距角为θ=360度/(50*4)=1.8度(俗称整步),八拍运行时步距角为θ=360度/(50*8)=0.9度(俗称半步)。

定位转矩:电机在不通电状态下,电机转子自身的锁定力矩(由磁场齿形的谐波以及机械误差造成的)静转矩:电机在额定静态电作用下,电机不作旋转运动时,电机转轴的锁定力矩。

此力矩是衡量电机体积(几何尺寸)的标准,与驱动电压及驱动电源等无关。

虽然静转矩与电磁激磁安匝数成正比,与定齿转子间的气隙有关,但过份采用减小气隙,增加激磁安匝来提高静力矩是不可取的,这样会造成电机的发热及机械噪音。

4、步进电机动态指标及术语:1、步距角精度:步进电机每转过一个步距角的实际值与理论值的误差。

用百分比表示:误差/步距角*100%。

不同运行拍数其值不同,四拍运行时应在5%之内,八拍运行时应在15%以内。

2、失步:电机运转时运转的步数,不等于理论上的步数。

称之为失步。

3、失调角:转子齿轴线偏移定子齿轴线的角度,电机运转必存在失调角,由失调角产生的误差,采用细分驱动是不能解决的。

4、最大空载起动频率:电机在某种驱动形式、电压及额定电流下,在不加负载的情况下,能够直接起动的最大频率。

5、最大空载的运行频率:电机在某种驱动形式,电压及额定电流下,电机不带负载的最高转速频率。

6、运行矩频特性:电机在某种测试条件下测得运行中输出力矩与频率关系的曲线称为运行矩频特性,这是电机诸多动态曲线中最重要的,也是电机选择的根本依据。

如下图所示:其它特性还有惯频特性、起动频率特性等。

电机一旦选定,电机的静力矩确定,而动态力矩却不然,电机的动态力矩取决于电机运行时的平均电流(而非静态电流),平均电流越大,电机输出力矩越大,即电机的频率特性越硬。

如下图所示:其中,曲线3电流最大、或电压最高;曲线1电流最小、或电压最低,曲线与负载的交点为负载的最大速度点。

要使平均电流大,尽可能提高驱动电压,使采用小电感大电流的电机。

7、电机的共振点:步进电机均有固定的共振区域,二、四相感应子式步进电机的共振区一般在180-250pps之间(步距角1.8度)或在400pps左右(步距角为0.9度),电机驱动电压越高,电机电流越大,负载越轻,电机体积越小,则共振区向上偏移,反之亦然,为使电机输出电矩大,不失步和整个系统的噪音降低,一般工作点均应偏移共振区较多。

8、电机正反转控制:当电机绕组通电时序为AB-BC-CD-DA或()时为正转,通电时序为DA-CA-BC-AB或()时为反转。

三、驱动控制系统组成使用、控制步进电机必须由环形脉冲,功率放大等组成的控制系统,其方框图如下:1、脉冲信号的产生。

脉冲信号一般由单片机或CPU产生,一般脉冲信号的占空比为0.3-0.4左右,电机转速越高,占空比则越大。

2、信号分配我厂生产的感应子式步进电机以二、四相电机为主,二相电机工作方式有二相四拍和二相八拍二种,具体分配如下:二相四拍为,步距角为1.8度;二相八拍为,步距角为0.9度。

四相电机工作方式也有二种,四相四拍为AB-BC-CD-DA-AB,步距角为1.8度;四相八拍为AB-B-BC-C-CD-D-AB,(步距角为0.9度)。

3、功率放大功率放大是驱动系统最为重要的部分。

步进电机在一定转速下的转矩取决于它的动态平均电流而非静态电流(而样本上的电流均为静态电流)。

平均电流越大电机力矩越大,要达到平均电流大这就需要驱动系统尽量克服电机的反电势。

因而不同的场合采取不同的的驱动方式,到目前为止,驱动方式一般有以下几种:恒压、恒压串电阻、高低压驱动、恒流、细分数等。

为尽量提高电机的动态性能,将信号分配、功率放大组成步进电机的驱动电源。

我厂生产的SH系列二相恒流斩波驱动电源与单片机及电机接线图如下:说明:CP 接CPU脉冲信号(负信号,低电平有效)OPTO 接CPU+5VFREE 脱机,与CPU地线相接,驱动电源不工作DIR 方向控制,与CPU地线相接,电机反转VCC 直流电源正端GND 直流电源负端A 接电机引出线红线接电机引出线绿线B 接电机引出线黄线接电机引出线蓝线步进电机一经定型,其性能取决于电机的驱动电源。

步进电机转速越高,力距越大则要求电机的电流越大,驱动电源的电压越高。

电压对力矩影响如下:4、细分驱动器在步进电机步距角不能满足使用的条件下,可采用细分驱动器来驱动步进电机,细分驱动器的原理是通过改变相邻(A,B)电流的大小,以改变合成磁场的夹角来控制步进电机运转的。

四、步进电机的应用(一)步进电机的选择步进电机有步距角(涉及到相数)、静转矩、及电流三大要素组成。

一旦三大要素确定,步进电机的型号便确定下来了。

1、步距角的选择电机的步距角取决于负载精度的要求,将负载的最小分辨率(当量)换算到电机轴上,每个当量电机应走多少角度(包括减速)。

相关文档
最新文档