超声波测距文献

合集下载

超声测距毕业论文

超声测距毕业论文

超声测距毕业论文超声测距技术在近年来得到了广泛的应用和研究,其在工业、医疗、交通等领域都有着重要的作用。

本文将从超声测距技术的原理、应用以及未来发展方向等方面进行探讨。

一、超声测距技术的原理超声测距技术是利用超声波在介质中传播的特性来实现距离测量。

其原理是通过发射超声波信号并接收回波信号,根据信号的时间差来计算出被测物体与测量仪器之间的距离。

超声波在空气中的传播速度约为340米/秒,而在固体、液体等介质中的传播速度则有所不同,因此可以根据超声波的传播时间来计算距离。

二、超声测距技术的应用1. 工业领域超声测距技术在工业领域中有着广泛的应用。

例如,在物流仓储中,可以利用超声测距技术来实现货物的自动堆垛和搬运。

此外,在制造业中,超声测距技术也可以用于机器人的定位和导航,提高生产效率和产品质量。

2. 医疗领域超声测距技术在医疗领域中有着重要的应用。

例如,超声测距技术可以用于医学影像的获取,如超声心动图和超声造影。

此外,超声测距技术还可以用于医疗器械的导航和定位,如手术导航系统和超声引导下的穿刺操作。

3. 交通领域超声测距技术在交通领域中也有着广泛的应用。

例如,在停车场中,可以利用超声测距技术来实现车位的自动检测和导航,提高停车效率。

此外,超声测距技术还可以用于智能交通系统中的车辆检测和跟踪,提高交通安全性和交通流畅度。

三、超声测距技术的未来发展方向随着科技的不断进步,超声测距技术也在不断发展和创新。

未来,超声测距技术有望在以下方面取得更大的突破和应用。

1. 精度提升目前的超声测距技术已经可以实现较高的测量精度,但仍有进一步提升的空间。

未来,可以通过改进传感器设计、优化信号处理算法等方式来提高测量精度,满足更高精度要求的应用场景。

2. 多功能化除了测距功能外,超声测距技术还可以结合其他传感技术实现更多功能。

例如,可以结合温度传感器实现温度测量,结合气体传感器实现气体浓度监测等。

未来,超声测距技术有望实现多功能化,满足不同领域的需求。

超声波测距系统外文文献翻译

超声波测距系统外文文献翻译

=======大学本科生毕业设计外文文献及中文翻译文献题目: ULTRASONIC RANGING SYSTEM 文献出处: United States Patent译文题目:超声波测距系统学生:指导教师:专业班级:自动化11-4学号: 110601140416电气信息工程学院2014年5月1日超声波测距系统摘要超声波测距系统,是指选择性地激励一个变压器,使之产生换能器驱动信号。

超声换能器发射的超声波脉冲用于响应驱动信号然后接收到一个在超声波信号发出之后的回波信号。

分路开关接在变压器的绕组上,当超声波信号的传输在允许的近距离范围内达到一个稳定的等级,分路开关选择性的闭合来阻止蜂鸣器报警。

第1章发明背景像在宝丽来相机中应用的可用范围测试系统,它们都是准确而且可靠的,但都不适用于近距离测距,举个例子,2到3英寸的距离内就不适用,所以他们在9英寸甚至更远的距离测距是可靠的。

它们可以应用在很多的应用程序中,但不适用于可移动机器人领域内。

机器人通常必须通过门口只有两三英寸的间隙,如果当可移动机器人被操作于避障模式下通过狭小空间,可能机器人的规避路径过于狭窄,此外,规避动作应该使偏指定的路径距离最小化。

近距离测距不用于超声波系统的一个原因是,近距离输出脉冲输出太长以至于它重叠在回波脉冲上,即使输出脉冲缩短,输出脉冲仍然重叠回波脉冲,因为声音紧跟着输出脉冲。

备中产生的回波信号脉冲的范围为100毫伏,但设置传感器响应所必需的电路回声脉冲是大约150伏到300伏之间。

因此即使是最小的声波也会盖过回声信号。

事实上,dual-diode钳位电路用于将150伏降低到二极管的击穿电压,即0.7伏特。

但是这700毫伏足以盖过100毫伏的回波信号。

目前系统需要50毫秒将300伏特的峰值发射电压降到0.7伏特,且额外需要500到600毫秒的时间将它稳定在1毫伏范围。

第2章发明总结本发明可以提供一种改进的超声波测距系统。

本发明也可以提供一个改进的多通道超声波测距系统。

超声波检测的文献综述

超声波检测的文献综述

超声波检测的文献综述第一篇:超声波检测的文献综述文献综述—基于超声波的包覆层固化深度的检测方法一、本课题的研究背景及意义对材料表面保护、装饰形成的覆盖层,如涂层、镀层、敷层、贴层、化学式成膜等,统称为包覆层[1]。

实际上,材料表面的包覆层厚度对产品的使用性能和使用寿命影响极大,因而,包覆层厚度的检测对所有表面技术要求较高的产品都是必须的。

由于众多包覆层的厚度范围很大,从纳米尺度的气象沉积、离子注入层到毫米级的热喷涂层、堆焊层、渗碳层等,故不同厚度的测量也有许多不同的方法,这些方法均是利用不同的原理测出不同尺度范围的表面包覆层的厚度[3]。

包覆层厚度的测量,根据被测包覆层是否损坏可分为有损测厚和无损测厚两大类。

有损测厚主要有:阳极溶解库仑法、光学法、化学溶解法、轮廓法等;无损测厚有:磁性法、涡流法、射线法、电容法、超声波法、光学法等[3]。

这些方法各有其特点、适用性及局限性,在实际测量时,我们应考虑到包覆层厚度、零件形状与尺寸、覆层成分和测量环境等多种因素,选择适合的测量方法才能获取最可靠的结果。

现代无损检测的定义是:在不损坏试件的前提下,以物理或化学方法为手段,借助先进的技术和设备器材,对试件的内部及表面的结构,性质,状态进行检查和测试的方法,而超声波检测作为无损检测的方法之一,最早开始于1930年,是利用进入被检材料的超声波对材料表面或内部缺陷进行检测,而利用超声波进行材料包覆层厚度的测量也是常规超声波检测的一个重要方面[5]。

超声波被用于无损检测,主要是因为有以下几个特性:①超声波的波束能集中在特定的方向上,在介质中沿直线传播,具有良好的指向性;②超声波在介质中传播过程中,会发生衰减和散射;③超声波在异种介质的界面上将产生反射、折射和波型转换,可以获得从缺陷界面反射回来的反射波,从而达到探测缺陷的目的;④超声波的能量比声波大得多,对各种材料的穿透性较强;⑤超声波在固体中的传输损失很小,探测深度大。

超声波精确测距的研究

超声波精确测距的研究

超声波精确测距的研究超声波测距是一种重要的无损检测技术,在工业、医疗和科研等领域具有广泛的应用价值。

随着科学技术的发展,对超声波测距的精度和稳定性的要求也越来越高。

本文将围绕超声波精确测距的研究展开,首先介绍超声波测距的背景和现状,然后提出存在的问题和相应的研究方法,最后分析实验结果并展望未来研究方向。

超声波测距的研究现状超声波测距的方法主要有时间差法、幅值法、频率法和相位法等。

其中,时间差法是最常用的方法,其原理是利用超声波传播速度与传播时间的乘积来确定距离。

目前,研究人员已经提出了多种优化时间差法测距的技术,如多普勒频移补偿、回波信号增强、噪声抑制等。

问题提出尽管现有的超声波测距方法已经取得了一定的成果,但仍存在一些问题。

首先,测距精度受到多种因素的影响,如超声波传播速度的变化、检测表面的粗糙度等。

其次,现有的方法在低噪声环境下测距效果较好,但在复杂环境下,如存在多径效应、衰减效应等时,测距精度和稳定性会受到较大影响。

因此,如何提高超声波测距的精度和稳定性是亟待解决的问题。

研究方法为了解决上述问题,本文采用了以下研究方法:1、实验设计:设计不同距离、不同材料的超声波测距实验,以模拟实际应用中的各种情况。

2、数据采集和处理:利用高精度数据采集卡和信号处理软件,获取超声波回波信号,并进行信号增强、噪声抑制等处理。

3、误差分析:通过对实验数据的分析,找出影响测距精度的主要因素,并对其进行误差分析。

实验结果与分析实验结果表明,超声波测距的精度和稳定性得到了显著提高。

在近场区域内,测距误差小于1%,稳定性良好;在远场区域内,测距误差略高,但仍在可接受范围内。

通过对实验数据的分析,发现超声波传播速度的波动和检测表面粗糙度是影响测距精度的主要因素。

在复杂环境下,本文所采用的方法具有较好的鲁棒性和抗干扰能力。

结论与展望本文通过对超声波精确测距的研究,提出了一种有效的优化方法,提高了测距精度和稳定性。

然而,仍存在一些局限性,如对复杂环境的适应能力有待进一步提高。

【文献综述】超声波测距系统

【文献综述】超声波测距系统

文献综述电子信息工程超声波测距系统前言:人能听到的声音频率为20Hz~20kHz,即为可听声波,超出此频率范围的声音,即20Hz 以下的声音称为次声波,20kHz以上的声音称为超声波。

由于超声波具有较强的指向性,且在传播中能量消耗较慢,所以在介质中传播较远,因此超声波经常被用在距离的测量上,如物位测量仪和测距仪等都可以由超声波进行实现。

超声波在空气中的传播速度为340米/秒(因温度大小会有规律变化),因此,如果能测出超声波在空气中的传播时间,就能算出其传播的距离。

超声波测距是一种利用声波特性、电子计数、光电开关相结合来实现非接触式距离测量的方法,不受光线、被测对象颜色等的影响,相比较与其它仪器而言更为卫生,更耐潮湿、粉尘、高温、腐蚀气体等恶劣环境,并且具有维护简单、无污染、可靠性高、寿命长等特点,可应用于纸业、矿业、电厂、化工业、水处理厂、污水处理厂、农业用水、环保检测、食品(酒业、饮料业、添加剂、食用油、奶制品)、防汛、水文、明渠、空间定位、公路限高等行业中。

且可在不同环境中进行距离准确度在线标定,可直接用于水、酒、糖、饮料等液位控制,可进行差值设定,可直接显示各种液位罐的液位、料位高度等【12】。

主题:现在认为,超声波最先是从1876年F.Galton的气哨实验开始,这是人类首次产生高频声波。

在以后30年内,人们对超声波仍然了解的比较少,发展较为缓慢,没有重视对超声波的研究。

在第一次世界大战中,超声波的研究才慢慢的受到各国的重视。

这时期法国人Langevin使用了一种晶体传感器,并使其在水下接收一些相对低频率的超声波,并且提出是否可以使用超声波来对水中的潜艇进行检测或者在水下利用超声波进行通信【16】。

在1929年,前苏联科学家Sokolov最先提出了利用超声波探进行检查金属物内部是否存在缺陷的想法【17】。

在间隔两年后,德国人Mulhauser获准一项关于超声检测方法的德国专利,但是他却没有在这方面进行深入的探索研究。

文献综述模板

文献综述模板

基于温度补偿的超声波测距系统的设计文献综述1. 课题的提出现代的社会计算机技术、自动化技术和工业机器人不断发展,测距方式因场合的不同,要求精度的不同正发生巨大的变化]1[。

例如在自动化装配、检测、分类、加工与运输等过程中,要对随意放置的工件进行作业,这就必须对工件的位置、形状、姿势、种类自动地进行判别,尤其在在工件运输过程中进行识别,则问题更为复杂与困难。

目前,非接触式测距仪常采用超声波、激光和雷达。

但激光和雷达测距仪造价偏高,不利于广泛的普及应用,在某些应用领域有其局限性。

超声波测距仪造价相对较低,在一定场合可以替代激光仪,节省成本,因此用途广泛。

超声波方法明显突出的优点:1.超声波的传播速度仅为光波的百万分之一,并且指向性强,能量消耗缓慢,因此可以直接测量较近目标的距离]2[;2.超声波对色彩、光照度不敏感,可适用于识别透明、半透明及漫反射差的物体 (如玻璃、抛光体);3.超声波对外界光线和电磁场不敏感,可用于黑暗、有灰尘或烟雾、电磁干扰强、有毒等恶劣环境中;4.超声波传感器结构简单、体积小、费用低、信息处理简单可靠,易于小型化与集成化,并且可以进行实时控制]3[;因此,超声波方法作为非接触检测和识别的手段,已越来越引起人们的重视。

在机器人避障、导航系统、机械加工自动化装配及检测、自动测距、无损检测、超声定位、汽车倒车、水库液位测量等方面已经有了广泛的应用]4[。

2.超声波测试仪概况及发展前景超声检测主要是利用超声波作为载体,即通过超声在媒质中的传播、散射、吸收、波形转换等,提取反映媒质本身特性或内部结构的信息,达到检测媒质性质、物体形状或几何尺寸、内部缺陷或结构的目的。

我国无损检测技术是从无到有,从低级阶段逐渐发展到应用普及的现阶段水平。

超声波检测仪器的研制生产,也大致按此规律发展变化。

五十年代,我国开始从国外引进超声波仪器,多是笨重的电子管式仪器。

如英国的UCT-2超声波检测仪,重达24Kg,各单位积极开展试验研究工作,在一些工程检测中取得了较好的效果。

超声波测距文献

超声波测距文献
文献综述:
超声波测距仪设计
1. 前言
超声测距指的是利用超声波的反射特性进行距离测量,在车辆自动导航、 机器入的定位和对象识别、海洋水声以及工业距离的测量方面具有重要意义。 常见的测距原理和方法主要有脉冲回波法和相位差法两种。
相位差法与脉冲回波法的不同体现在对回波的处理方式上,由超声波换能 器接收端获得调制声波的回波,经放大电路转换后,得到与放大的相位完全相 同的电信号,此电信号放大后与光源的驱动电压相比较,测得两个正弦电压的 相位差,根据所测相位差就可算得所测距离。由于采用的是相位比较,使得测 距精确度大大提高,但这种方法本身存在明显的缺陷。由于相位测量存在以2n 为周期的多值解,从而容易造成解的不确定性。为了消除多解,常常需要引入 包络检测和采用发射多种不同频率波的方式减小不确定度,这就使得该方法的 实现复杂化。
[8] 曾毓敏. 基于80C552单片机的驾斐蹙蜜型题仪[J].南京师范大学物理系 [9] 安宗权. 基于ATmega8单片机的超声波测距仪[M]. 安徽工业大 [10] 刘凤然. 基于单片机的超声波测距系统[J].传感器世界.2001,5:29-32
[11] 葛健强. 基于 CPLD 的超声波测距仪研制[M]. 无锡商业职业技术学院学 报.2004,4(3):8-10
在测距计数电路设计中,采用了相关计数法,其主要原理是:测量时单片 机系统先给发射电路提供脉冲信号,单片机计数器处于等待状态,不计数;当 信号发射一段时间后,由单片机发出信号使系统关闭发射信号,计数器开始计 数,实现起始时的同步;当接收信号的最后一个脉冲到来后,计数器停止计数。
双向超声波测距仪的系统主要有几下部分组成(如图 2 所示): LED 显示 模块,AT89C51 芯片,超声波发射模块,超声波接收模块,电源模块等五大模 块组成。

超声波测距-毕业设计论文完整版.doc

超声波测距-毕业设计论文完整版.doc

摘要随着社会的发展,人们对距离或长度测量的要求越来越高。

在社会生活中应用超声波测距技术已很广泛,如汽车倒车雷达、测距仪和物位测量仪等都可以通过超声波来实现。

由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声测距技术的研究和开发具有实际意义。

本文介绍了一种利用超声波测距的系统,该系统是一种基于STC12C2052 单片机的超声波测距系统,它根据超声波在空气中传播的反射原理,以超声波传感器为检测部件,应用单片机技术和超声波在空气中的时间差来测量距离。

该系统主要由主控制器模块、超声波发射模块、超声波接收模块和显示模块等四个模块构成。

通过单片机的I/O口控制超声波发射电路发出40KHz的超声波,反射波经由超声波检测接收电路、放大电路送入单片机外部中断端,通过计算超声波的发射和返回的时间,确定超声波发生器和反射物体之间的距离,完成测距。

该系统可实现4米内测距,盲区20厘米。

关键词:超声波;测距;单片机AbstractWith the development of society, the demand on the measurement of distance or length is increasing. It is applied widely by ultrasonic to measure distance,such as cars reversing radar,range finder and level measurement and so on.Because of the strong point of ultrasonic, low energy consumption,long distance transporting in media, thus it is practical and significant to measure distance by ultrasonic.In this paper ,it introduces a system to measure distance by ultrasonic,which is based on the STC12C2052.The theory is based on the principles of reflection of ultrasonic spreading in the air. The system uses ultrasonic sensors as a detector, and applies MCU and the time difference of ultrosonic spreading in the air to measure the distance. The system consists of the main controller module, ultrasonic transmitter module, ultrasonic receiver module and display module. The MCU I / O port controls ultrasonic transmitter to send 40 KHz ultrasonic, and the reflecting singal is received by the ultrasonic receiver circuit, and it is amplified,and finally,it starts the interruptor of the MCU.The MCU calculates the time of launch and return of ultrasonic to get the disctance between the ultrasonic generator and the reflective objects. The range of measurement is within four meters,with the blind spot of 20 cm。

超声波毕设文献综述(可编辑修改word版)

超声波毕设文献综述(可编辑修改word版)

随着传感器和单片机控制技术的不断发展,非接触式检测技术已被广泛应用到多个文领域。

目前,典型的非接触式测距方法有超声波测距、CCD 探测、雷达测距、激光测距等。

但是雷达测距容易受到电磁波的影响,激光测距成本太高等因素。

与前几种测距方献式相比,超声波测距可以直接测量近距离目标,而且覆盖面积较大的优点。

目前,超声波测距已普遍在液体测量、移位机器人定位和避障等领域,应用前景广阔。

无庸置疑,综未来的超声波测距仪将与自动化智能化接轨,与其他的测距仪集成和融合,形成多测距仪。

随着测距仪的技术进步,测距仪将从具有单纯判断功能发展到具有学习功能,最终述发展到具有创造力。

在新的世纪里,面貌一新的测距仪将发挥更大的作用。

近几十年来,国内科研人员在超声波回拨信号处理方法、新型超声波换能器研发、超声波放射脉冲选取等方面进行了大量的理论分析与研究,并针对超声波测距的常见影响因素提出了温度补偿、接收回路串如自动增益调节环节等提高测距精度的措施来提高测量精度。

如童峰、杨奕淳、程晓亮等先后在该方面做了大量研究。

根据前人的研究,本设计主要是在提高测量精度。

本设计采用以单片机为核心的低成本、高精度、微型化数字显示超声波测距仪的硬件电路和软件设计方法。

系统由 AT89C51 单片机、发射电路、接收电路、超声波传感器探头、八段 LED 数码显示管组成。

两个探头的信号经单片机综合分析处理,实现超声波的发送与接收,从而实现利用超声波方法测量物体间的距离。

所设计的测距仪能测的范围为40---650cm,最大误差不超过1%。

实验方案:本设计采用以 AT89C51 单片机为核心的低成本、高精度、微型化数字显示超声波测距仪的硬件电路和软件设计方法。

系统由 AT89C51 单片机、发射电路、接收电路、超声波传感器探头、八段 LED 数码显示管组成。

实现原理与过程:由单片机产生 40kHz 的方波,但是这个方波太弱需要经过放大才能驱动超声波发生器,经过放大后,超声波传感器发射端震荡发射超声波。

超声波测距装置设计文献综述

超声波测距装置设计文献综述

超声波测距装置的设计摘要:为了使移动机器人能够自动避障行走,需要配备测距系统,使其能够及时获得距离障碍物的距离信息(距离和方向)。

本文介绍的三向(前、左、右)超声波测距系统是为了给机器人提供一个运动距离信息,使其了解自己的前、左、右环境。

分析了汽车倒车防撞系统的基本设计原理和目前国外此类防撞系统存在的问题,详细介绍了超声波测距系统和根据该系统的设计原理、方法和步骤开发的汽车倒车防撞报警器。

这种报警器可以自动检测车后障碍物的距离,并在倒车过程中汽车到达极限位置时发出声光报警,提醒驾驶员刹车。

本设计采用超声波传感器发射和接收信号,包括发射、接收和报警电路。

超声波传感器的主要元件是锆钛酸铅,这是一种压电元件,具有很强的方向性。

报警电路部分采用声光报警,信号传输后可实现声音报警。

本设计采用国产假通用元件,成本低,性能可靠。

有利于推广。

关键词:超声波,防撞,倒车,报警器,传感器1.序超声波因其指向性强、耗能慢、在介质中距离远等特点,常被用于测距,如测距仪、物位计等,都可以通过超声波来实现。

超声波检测往往快捷方便,计算简单,易于实现实时控制,在测量精度上能够满足工业和实际的要求,因此在移动机器人的发展中得到了广泛的应用。

2.发展历史随着机器人技术在其诞生后短短几十年内的飞速发展,其应用也逐渐从工业生产走向人们的生活。

如此广泛的应用使得提高人们对机器人的认识显得尤为重要。

机器人通过其感知系统感知前方障碍物与周围环境的距离,可以实现避障、自动寻线、测距等功能。

与其他测距技术相比,超声波测距具有成本低、测量精度高、不受环境限制、应用方便等优点。

结合红外线和灰色传感器,机器人可以找到线路并绕过障碍物。

超声波因其指向性强、耗能慢、在介质中传播距离远等优点,常被用于测距。

主要用于倒车雷达、测距仪、物位测量仪、移动机器人、建筑工地和一些工业现场的研究,如距离、液位、井深、管道长度、流量等。

超声波检测往往快捷方便,计算简单,易于实现实时控制,在测量精度方面能够满足工业应用的要求,因此得到了广泛的应用。

超声波测距外文文献

超声波测距外文文献

International Journal of Computer science & Information Technology (IJCSIT), Vol 1, No 2, November 2009EFFECT OF VARIATION OF SEPARATION BETWEEN THE ULTRASONIC TRANSMITTER AND RECEIVER ON THE ACCURACY OF DISTANCE MEASUREMENTAjay Kumar Shrivastava1, Ashish Verma2 and S. P. Singh31Department of Computer Application, Krishna Institute of Engineering and Technology, Ghaziabad (U.P.), Indiaajay@2Department of Physics and Electronics, Dr H S Gour University, Sagar (M.P.), Indiavermaashish31@3Department of Electronics and Communication, Noida Institute of Engineering and Technology, Ghaziabad (U.P.), Indiasahdeopsingh@ABSTRACTAccuracy of distance measurement of an object from an observation point such as a stationary or moving vehicle, equipment or person is most important in large number of present day applications. Ultrasonic sensors are most commonly used due to its simplicity and low cost. The accuracy of the measured distance is dependent on the separation between the ultrasonic transmitter and receiver. This dependency has been studied and reported in this paper. The result shows that the accuracy of distance measured is dependent on the separation between the transmitter and the receiver.KEYWORDSAccuracy of distance measurement, Ultrasonic sensor, distance measurement, microcontroller, sewer pipeline inspection, sewer pipeline maintenance, robotics.1. INTRODUCTIONDistance measurement of an object in front or by the side of a moving or stationary entity is required in a large number of devices and gadgets. These devices may be small or large and also quite simple or complicated. Distance measurement systems for such applications are available. These use various kinds of sensors and systems. Low cost and accuracy as well as speed are important in most of the applications. Hence ultrasonic sensors are most commonly used. To maintain the accuracy of measured distance the separation between transmitter and receiver is very important. In this paper, we describe the results of a study on the variation of error of measurement of distance of an object by varying the separation between the transmitter and receiver of the ultrasonic sensors by using microcontroller P89C51RD2. Ultrasound sensors are very versatile in distance measurement. They are also providing the cheapest solutions. Ultrasound waves are suitable both for air and underwater use [1].19International Journal of Computer science & Information Technology (IJCSIT), Vol 1, No 2, November 2009Ultrasonic sensors are also quite fast for most of the common applications. In simpler system a low cost version of 8- bit microcontroller can be used to implement the system to lower the cost. We are applying this system for sewer inspection system. Sewer blockages have become quite common. The blockages have become more frequent due to the dumping of polythene bags, hair and solid materials into the sewer system [2], [3]. There has been no work done in this direction. This is a new study which is useful to find out the optimal separation between ultrasonic transmitter and receiver to measure small distances.2. PRINCIPLEUltrasonic transducer uses the physical characteristics and various other effects of ultrasound of a specific frequency. It may transmit or receive the ultrasonic signal of a particular strength. These are available in piezoelectric or electromagnetic versions. The piezoelectric type is generally preferred due to its lower cost and simplicity to use [5]. The transmitter and receiver are available either as single unit or as separate units. The Ultrasonic wave propagation velocity in the air is approximately 340 m/s, the same as sonic velocity. To be precise, the ultrasound velocity is governed by the medium, and the velocity in the air is calculated using the formula given below (1). V= 340+0.6(t-15) m/s t:temperature, °C (1)In this study, we assumed the temperature to be 20°C, so the velocity of ultrasound in the air is 343 m/s. Because the travel distance is very short, the travel time is little affected by temperature. It takes approximately 29.15µsec for the ultrasound to propagate through 1cm, so it is possible to have 1cm resolution in the system [6].3. EXPERIMENTAL SETUPThe system consists of a transmitter and a receiver module controlled by a microcontroller P89C51RD2. We have used a microcontroller development kit for testing of the system. We are using 40Khz ultrasound sensors for our experiments. The Simplified block diagram of the system is shown in Fig.1. In Fig. 1, the interrupt1 signal initiates the system. When the interrupt1 signal is generated, MCU starts the timer1 to measure time and simultaneously generates the controlled 40Khz pulses having a train of specific number of pulses. These pulses are applied to the amplifier circuit and after amplification the ultrasound transmitter transmits the pulse train in the direction of the object. These ultrasonic pulses are reflected from the object and travels back in different directions. These reflected waves arrive at receiver. After amplification and processing it generates signal interrupt. This is applied as interrupt2 to the MCU. Interrupt2 stops the timer1, and MCU calculates the time elapsed between the generation of the wave and reception of the wave. This time is proportional to the distance travelled by the waves. Using the formula, MCU calculates the distance of the obstacle and display it or transfer it to the part of the total system where it is used for further control. Using this elapsed time, we calculate the distance of the object from the ultrasonic sensors.20International Journal of Computer science & Information Technology (IJCSIT), Vol 1, No 2, November 2009INT1 MCU Ultrasound Transmitter CircuitTINT2 Receiver Amplifier Display RFig 1: Block Diagram of the System4. EXPERIMENTAL RESULTSThe waveforms of the transmitted and received waveforms of the ultrasonic signal is stored in Digital Storage Oscilloscope. We have taken the readings for various separation between tranmitter and reciever. We have measured the distance in the interval of 5cm. For every measured distance three reading have been taken. The table shows the average of the three readings. The maesured distance is calculated on the basis of travelled time. The formula to calculate the distance is given below: Dist. (cm) = (Travelled Time*10-6 * 34300) / 2 (2)The ultrasonic waves travelled from the transmitter to the object and from the object back to the receiver hence the whole distance is divided by two. Values of %Error have also been calculated and shown. The error result shows that there is some error in recording the start and finish times in the system. When the distance increases the error is distributed in a larger distance and hence the %error decreases. We have taken the measurements for various separations of transmitter and receiver renging from 2cm to 15cm. The Table 1 shows the results when separation between tranmitter and reciever is 2cm. Table 1: Experimental Results (For 2cm Separation between Transmitter and Reciever) S.No . 1 2 3 4 5 6 7 8 9 10 Actual Distance(cm) 5 10 15 20 25 30 35 40 45 50 Travelled Time (µSec) 400 690 1050 1250 1650 1930 2180 2400 2700 3000 Measured Distance (cm) 6.86 11.83 18.01 21.44 28.30 33.10 37.39 41.16 46.31 51.45 % Error 37.20 18.34 20.05 7.19 13.19 10.33 6.82 2.90 2.90 2.90The result shows that the acuracy of measured distance is increses for longer distances. The %error becomes constant for measured distances above 40cm. The highest %error is occured in small distance of 5cm. It is also shown by Fig.2.21International Journal of Computer science & Information Technology (IJCSIT), Vol 1, No 2, November 2009Fig. 2: Graph of Actual Distance versus Measured Distance for 2cm Separation between Transmitter and Reciever. The Table 2 shows the result when separation between transmitter a reciever is 5cm. Table 2: Experimental Results for 5cm Separation between Transmitter and reciever) S.No. 1 2 3 4 5 6 7 8 9 10 Actual Distance(cm) 5 10 15 20 25 30 35 40 45 50 Travelled Time (µSec) 410 700 1000 1300 1600 1870 2220 2500 2780 3120 Measured Distance (cm) 7.03 12.01 17.15 22.30 27.44 32.07 38.07 42.88 47.68 53.51 % Error 40.63 20.05 14.33 11.48 9.76 6.90 8.78 7.19 5.95 7.02The resluts shows that the accuracy is incresed in camparison to the previous results. This is also shown by the Fig. 3.Fig. 3: Graph of Actual Distance versus Measured Distance when Separation between Transmitter and Reciever is 5 cm.22International Journal of Computer science & Information Technology (IJCSIT), Vol 1, No 2, November 2009The Table 3 shows the results when separation between transmitter and reciever is 10 cm. These results indicates that when we increase the separation between transmitter and receiver the %error increses for small measured distances. Table 3: Experimental Results for Separation of 10cm between Transmitter and reciever)S.No. 1 2 3 4 5 6 7 8 9 10Actual Distance(cm) 5 10 15 20 25 30 35 40 45 50Travelled Time (µSec) 620 750 1010 1310 1600 1870 2200 2400 2680 3000Measured Distance (cm) 10.63 12.86 17.32 22.47 27.44 32.07 37.73 41.16 45.96 51.45% Error 112.66 28.63 15.48 12.33 9.76 6.90 7.80 2.90 2.14 2.90Again the accuracy increases with the distance but the small distances are not so accurate. The error is high for small distances. It is also shown by the Fig. 4.Fig. 4: Graph of Actual Distance versus Measured Distance when Separation between Transmitter and Reciever is 10 cm. The Table 4 is showing the result of measured distance when 15cm separation between transmitter and reciever. These results shows that when we increase the separation between transmitter and receiver the %error increses. This increase is very high in small measured distances like 5cm in our experiment. The lowest %error observed for the measured distance of 45cm and again it is increasing for the measured distance of 50cm. The results shows that we have to stop the increament of seaparation between transmitter and receiver in our experiment.23International Journal of Computer science & Information Technology (IJCSIT), Vol 1, No 2, November 2009Table 4: Experimental Results for 15cm Separation between Transmitter and Reciever) S.No. 1 2 3 4 5 6 7 8 9 10 Actual Distance(cm) 5 10 15 20 25 30 35 40 45 50 Travelled Time (µSec) 1300 930 1180 1350 1620 1900 2200 2420 2700 3200 Measured Distance (cm) 22.30 15.95 20.24 23.15 27.78 32.59 37.73 41.50 46.31 54.88 % Error 345.90 59.50 34.91 15.76 11.13 8.62 7.80 3.76 2.90 9.76Again the error for the small distance say 5cm is very high. It is also showing that the graph between actual distance versus measured distance is not a straight line. This graph is shown in Fig. 5.Fig. 5: Graph of Actual Distance versus Measured Distance for 15cm Separation between Transmitter and Reciever. The graph between the measured distance the actual distance indicates that the measured distance is proportional to the actual distance.5. ANALYSIS OF THE RESULTSThe experimental results shows that the distance measured for different separations between transmitter and receiver are accurate for long distances e.g. more than 20cm. For small actual distances say 5cm, the small transmitter and receiver distances are better in comparison to the long distances between transmitter and receiver. If we place the transmitter and receiver at 15cm separation than the small distance like 5cm are not going to be measured correctly. Result shows the error of 345%. Hence we have to place the transmitter and receiver at proper distance like 5-10cm. For long distances the distance between transmitter and receiver has very low impact on the accuracy. We have compared the all measured distances for different separations between transmitter and receiver and the results are shown in the Table 5.24International Journal of Computer science & Information Technology (IJCSIT), Vol 1, No 2, November 2009Table 5: Comparison of Measured Distances for different Separations between Transmitter and Reciever Actual Dist. (cm) 5 10 15 20 25 30 35 40 45 50 Measured Distance (in cm) when Separation between Transmitter and Reciever is = 2cm 6.86 11.83 18.01 21.44 28.30 33.10 37.39 41.16 46.31 51.45 5cm 7.03 12.01 17.15 22.30 27.44 32.07 38.07 42.88 47.68 53.51 10cm 10.63 12.86 17.32 22.47 27.44 32.07 37.73 41.16 45.96 51.45 15cm 22.30 15.95 20.24 23.15 27.78 32.59 37.73 41.50 46.31 54.88S. No. 1 2 3 4 5 6 7 8 9 10As we can see in the table that small measured distance like 5cm is measured accurately when 2cm separation between transmitter and receiver. It has the lowest error. When we increase the distance to be measured, the accuracy of measured distance are high and it the highest for 10cm separation between transmitter and receiver. Hence for the range of 5cm to 50cm, as we taken in our experiments, the separation between transmitter and receiver are 2cm to 10cm. If we increase this than the error percentage also increases. The Fig.6 shows the graph between actual distance and the different measured distances for various separations between transmitter and receiver.Fig. 6: Graph for Comparison of Measured Distances for different Separations between Transmitter and Reciever This graph is also showing that the graph plotting of measured distance when separation between transmitter and receiver is 2cm, 5cm and 10cm is almost on the same points. The graph plotting when 15cm separation between transmitter and receiver, is not very encouraging for this range of 5cm to 50cm.25International Journal of Computer science & Information Technology (IJCSIT), Vol 1, No 2, November 20096. CONCLUSIONSWe have done the experiments on our ultrasonic measurement system for the various separations between transmitter and receiver and the result shows that the measured distance is satisfactory for our study. When the distance increases the error becomes constant and very less. A correction may be applied to calculate the correct distance. Interrupt1 initiates the system and interrupt2 stops the timer and on the basis of the travelled time distance calculated. In future, the whole system will be mounted on the one PCB. This study shows that for small distances the separation between transmitter and receiver should be 5cm to 10cm. Hence this study will help in fixing the separation between transmitter and receiver in the robotic vehicle for blockage detection so we are able to calculate the more accurate distance of the blockage in the sewage filled sewer lines. Hence we can prevent human labour to go in the sewage filled sewer lines to detect the blockage which are very dangerous to the human as they contain the poisonous gases.ACKNOWLEDGMENTThis work is supported by MP Council of Science and Technology (MPCST), Bhopal, Project Code No. R&D/PHYSICS.23/08-09-1.REFERENCES[1] J. David and N cheeke “Fundamentals of Ultrasonic Waves” CRC Press, Florida, USA, 2002, ISBN 0-8493-0130-0. [2] Singh SP, Verma Ashish, Shrivastava AK “Design and Development of Robotic Sewer Inspection Equipment Controlled by Embedded Systems” Proceedings of the First IEEE International Conference on Emerging Trends in Engineering and Technology, July 16-18, 2008, Nagpur, India pp. 1317-1320. [3] Shrivastava AK, Verma Ashish, Singh SP “Partial Automation of the Current Sewer Cleaning System”, Invertis Journal of Science and Technology, Vol.1, No.4, 2008, pp 261-265. [4] O. Duran, K.Althoefer, and L Seneviratene, “State of the Art in Sensor Technologies for Sewer Inspection”, IEEE Sensors Journal, April 2002, Vol. 2, N.2, pp 63. [5] Hongjiang He, Jianyi Liu, “The Design of Ultrasonic Distance Measurement System Based on S3C2410” Proceedings of the 2008 IEEE International Conference on Intelligent Computation Technology and Automation, 20-22 Oct, 2008, pp. 44-47. [6] Yongwon Jang, Seungchul Shin, Jeong Won Lee, and Seunghwan Kim, “A Preliminary Study for Portable Walking Distance Measurement System Using Ultrasoinc Sensors” Proceedings of the 29th Annual International Conference of the IEEE EMBS Cité Internationale Lyon, France, Aug 23-26, 2007, pp. 5290-5293.26International Journal of Computer science & Information Technology (IJCSIT), Vol 1, No 2, November 2009AuthorsAjay Kumar Shrivastava was born at Guna (M.P.), India on 7th August, 1977. He had done his graduation in Electronics from Dr. H.S.Gour University, Sagar (M.P.), India in 1998. After that he had completed his MCA from the same university in 2002. He has more than seven years of teaching experience. He had worked as Lecturer in Technocrats Institute of Technology, Bhopal (M.P.), India for three years. Presently he is working as Associate Professor in Krishna Institute of Engineering and Technology, Ghaziabad (U.P.), India from Aug. 2005. His research interests include Embedded Systems and Data Mining. Mr. Shrivastava is the life member of Computer Society of India (CSI). He is also life member of Association of Computer, Electronics and Electrical Engineers (ACEEE) and International Association of Computer Science and Information Technology (IACSIT) and International Association of Engineers (IAENG). He is also the member of Computer Science Teachers Association (CSTA). He is also reviewer of various ACEEE organized conferences. He has published a paper in National Journal and published/presented four papers in conferences.Dr. Ashish Verma was born on 23rd March 1963. He received the M.Sc. degree in Physics with specialization in Electronics and solidstate physics in1984 and Ph.D. degree in Physics in 1991 from Dr. Hari Singh Gour Central University, Sagar, (M.P.), India. He has having 24 years of teaching (UG/PG) and research experience and is currently working as a Senior Lecturer in the department of Physics and Electronics, Dr. Hari Singh Gour Central University, Sagar. He has guided about 150 students (UG/PG) for their projects in the field of Electronics and Physics. He guided 4 Ph.D. students (One as Co-Supervisor). Presently, he is guiding 8 Ph.D. students for their innovative research. He is supervising 3 Ph.D. students in Physics and Electronics of M.P. BHOJ (Open) University, Bhopal, (M.P.), India. He had published a book entitled “Microprocessor”, Vishwavidyalaya Prakashan, Sagar (M.P.), India and written two chapters in “Bhotiki”, Madhya Pradesh Hindi Granth Academy, Bhopal (M.P.), India. Dr. Verma published / presented about 50 research papers in the National /International Journals / Conferences of high repute. He is the Executive Council (Government Nominee) in Government Girls Autonomous College, Sagar, (M.P.). He had worked in various committees of the university. Prof. S.P.Singh was born at village Manirampur in Nalanda district, Bihar, India on 10th June 1939. He did his schooling and intermediate studies at Patna. He completed his B.Sc.(Engg.) degree in Electrical Engineering from National Institute of Technology, Jamshedpur, India in the year 1964. He did M.Tech. in Electrical Engineering (Electronic Devices and Circuits) from Indian Institute of Technology, Kanpur, India in 1975. He obtained his Ph.D. degree from Ranchi University, Ranchi, India in the year 1993. His topic was microprocessor based speed control of induction motors.27International Journal of Computer science & Information Technology (IJCSIT), Vol 1, No 2, November 2009He joined N.I.T., Jamshedpur, India as Lecturer in Electrical Engineering in 1964 continued there as lecturer, AP and Professor till 1999. He started teaching electronic subjects and shifted to electronics engineering. After retirement from NIT in 1999, he continued to work as professor in institutes around Delhi. Currently, he is working as professor in Electronics & Communication Engineering at Noida Institute of Engineering and Technology, Greater Noida, U.P., India. Prof. Singh was a member of IEEE from 1974 to 1991. At present Dr. Singh is a fellow of I.E.T.E., India.28。

超声波测距毕业设计论文

超声波测距毕业设计论文

超声波测距毕业设计论文超声波测距毕业设计论文引言:在现代科技的推动下,各种测距技术得到了广泛的应用,其中超声波测距技术因其高精度、非接触等特点而备受关注。

本文将探讨超声波测距技术在毕业设计中的应用,并对其原理、方法和实验结果进行详细介绍。

一、超声波测距的原理超声波测距是利用超声波在空气中传播的特性来测量距离的一种技术。

超声波是一种频率高于人类听觉范围的声波,其传播速度与介质的密度和弹性有关。

在超声波测距中,通常使用超声波发射器发射一束超声波,经过被测物体后,超声波被接收器接收到。

通过测量超声波的传播时间,即可计算出被测物体与发射器的距离。

二、超声波测距的方法1. 时间差法时间差法是最常用的超声波测距方法之一。

该方法通过计算超声波从发射器到接收器的传播时间差来确定距离。

具体实现时,发射器发射超声波后,接收器开始计时,当接收到超声波信号后停止计时。

通过测量计时器的数值,可以得到超声波的传播时间,从而计算出距离。

2. 相位差法相位差法是另一种常用的超声波测距方法。

该方法通过测量超声波在传播过程中的相位差来确定距离。

具体实现时,发射器发射超声波信号,在接收器接收到超声波信号后,通过计算超声波信号的相位差,可以计算出距离。

三、超声波测距的应用超声波测距技术在工业、医疗、安防等领域都有广泛的应用。

1. 工业领域在工业领域,超声波测距技术可用于测量物体的距离、厚度、速度等参数。

例如,可以用于测量液体中的液位,以便控制液体的供应和排放;还可以用于测量物体的厚度,以便判断物体是否合格。

2. 医疗领域在医疗领域,超声波测距技术被广泛应用于超声诊断。

通过超声波的反射和传播时间,可以获取人体内部组织和器官的图像,从而实现对疾病的诊断和治疗。

3. 安防领域在安防领域,超声波测距技术可用于人体检测和距离测量。

例如,可以用于人体检测门的设计,以便实现对人员进出的自动控制;还可以用于测量人员与设备之间的距离,以便实现对人员的安全保护。

基于单片机的超声波测距系统-文献综述

基于单片机的超声波测距系统-文献综述

基于单片机的超声波测距系统-文献综述文献综述11电子 (1116405008) 姜丹娜,苏州大学应用技术学院,1. 课题背景随着传感器和单片机控制技术的不断发展,非接触式检测技术已被广泛应用于多个领域,典型的非接触式测距方法有超声波测距、CCD探测、雷达测距、激光测距等。

其中CCD探测具有使用方便、无需信号发射源、同时获得大量的场景[1]信息等特点,但视觉测距需要额外的计算开销.雷达测距具有全天候工作,适[2]合于恶劣的环境中进行短距离、高精度测距的优点,但容易受电磁波干扰。

激光测距具有高方向性、高单色性、高亮度、测量速度快等优势,尤其是对雨雾有[3]一定的穿透能力,抗干扰能力强,但其成本高、数据处理复杂。

随着世界各国汽车持有量的不断增加,车辆碰撞事故也随之增多,尤其在城市道路和高速公路上发生的交通事故更是与日俱增。

自适应汽车防碰撞技术和汽车主动防碰撞预警系统以及与此相关的测距技术正是在这种背景下提出的,并己经成为当前车辆工[4]程和测控技术领域中关注的一个热点研究课题。

2. 研究目的与现状2.1研究目的和意义倒车雷达,又称泊车辅助系统,它是汽车泊车或者倒车时的安全辅助装置,它能以声音或者更为直观的显示告知驾驶员周围障碍物的情况,解除了驾驶员泊车、倒车和起动车辆时视野死角的困扰,提高驾驶的安全性。

现在市面上的倒车雷达人多采用超声波测距原理。

由探头发送超声波,遇到障碍物,产生同波信号,传感器接收到同波信号后,测出发射超声波和接收到同波的时间延迟,从而计算出车体与障碍物之间的距离。

衡量倒车雷达性能的主要指标通常有以卜几个方面:一是测量精度,不仅要求倒车雷达具有高的分辨率,而且还要有低的测量误差;二是探测范围,好的倒车雷达探测自区少、探测范围宽;三是响应时间,这要求倒车雷达能够快速地测[5]量出障碍物的距离,及时地提醒驾驶员障碍物的方位和距离。

2.2研究现状与存在的问题2.2.1研究现状目前市场上普通的超声波测距系统,一般采用发射单超声脉冲的方法,这种方法在测距精度和可靠性等方而的研究已较成熟。

超声波测距实验报告

超声波测距实验报告

目录1、课题设计的目的和意义 (3)2、课题要求 (3)2.1、基本功能要求 (3)2.2、提高要求 (4)3、重要器件功能介绍 (4)3.1、CX20106A红外线发射接收专用芯片 (4)3.2、AT89C51系列单片机的功能特点 (5)3.3、ISD1700优质语音录放电路 (6)4、超声波测距原理 (8)4.1、超声波测距原理图 (8)4.2、超声波测距的基本原理 (9)5、硬件系统设计 (10)5.1、超声波发射单元 (10)5.2、超声波接收单元 (11)5.3、显示单元 (11)5.4、语音单元 (12)5.5、硬件设计中遇到的难题: (12)6、系统软件设计 (14)7、调试与分析 (15)7.1调试 (15)7.2误差分析 (15)8、总结 (16)9、附件 (17)9.1、总电路 (17)9.2、主要程序 (18)10、参考文献 (22)1课题设计的目的及意义随着科学技术的快速发展,超声波在测距仪中的应用越来越广,但就目前技术水平而言,人们可以利用的测距技术还十分有限,因此,这是一个正在蓬勃发展而又有无限前景的技术及产业领域。

展望未来,超声波测距作为一种新型的非常重要有用的工具在各方面都有很大的发展空间,它将朝着更加高定位高精度的方向发展,以满足日益发展的社会需求。

如声纳的发展趋势:研究具体的高定位精度的被动测距声纳,以满足军事和渔业等的发展需求,实现远程的被动探测和识别。

毋庸置疑,未来的超声波测距仪将与自动化智能化接轨,与其他的测距仪集成和融合,形成多测距仪。

超声波测距在某些场合有着显著的优点,因为这种方法是利用计算超声波在被测物体和超声波探头之间的传输来测量距离的,因此它是一种非接触式的测量,所以他就能够在某些场合或环境比较恶劣的环境下使用。

比如测有毒或者有腐蚀性化学物质的液面高度或者高速公路上快速行驶汽车之间的距离。

随着测距仪的技术进步,测距仪将从具有单纯判断功能发展到具有学习功能,最注重发展到具有创造力。

超声波测距系统(论文设计)正文、结论、参考文献等

超声波测距系统(论文设计)正文、结论、参考文献等

1 绪论1.1 超声波技术的广泛应用超声的研究和发展,与媒质中超声的产生和接收的研究密切相关。

1883年Galton 首次制成超声气哨,其原理是将压缩气体经过狭缝喷嘴形成气流,吹动圆形刀口振动形成共振腔,从而产生超声。

此后又出现了各种形式的汽笛和液哨等机械型超声换能器。

由于这类换能器成本低,所以经过不断改进,至今仍广泛地用于超声处理技术中。

20世纪初,电子学的发展使人们能利用某些材料的压电效应和磁致伸缩效应制成各种机电换能器。

1917年,法国物理学家Paul Langevin用天然压电石英制成了夹心式超声换能器,并成功地应用于水下探测潜艇。

随着军事和国民经济各部门中超声应用的不断发展,又出现更大超声功率的磁致伸缩换能器,以及各种不同用途的电动型、电磁力型、静电型等多种超声换能器。

材料科学的发展,使得应用广泛的压电换能器也由天然压电晶体发展到机电耦合系数高、价格低廉、性能良好的压电瓷、人工压电单晶、压电半导体以及塑料压电薄膜(PVDF)[1]等。

产生和检测超声波的频率,也由几十千赫提高到上千兆赫。

产生和接收的波型也由单纯的纵波扩大为横波、扭转波、弯曲波、表面波等。

如频率为几十兆赫到上千兆赫的微型表面波都己成功地用于雷达、电子通信和成像技术等方面。

利用超声波作为定位技术是蝙蝠等一些无目视能力的生物作为防御及捕捉猎物生存的手段,也就是由生物体发射不被人们听到的超声波(20kHz以上的机械波),借助空气媒质传播由被待捕捉的猎物或障碍物反射回来的时间间隔长短与被反射的超声波的强弱判断猎物性质或障碍位置的方法。

由于超声波的速度相对于光速要小的多,其传播时间就比较容易检测,并且易于定向发射,方向性好,强度好控制,因而人类采用仿真技能利用超声波测距。

超声波测距是一种利用声波特性、电子计数、光电开关相结合来实现非接触式距离测量的方法。

它在很多距离探测应用中有很重要的用途,包括非损害测量、过程检测、机器人检测和定位、以及流体液面高度测量[2]等。

超声波测距仪论文

超声波测距仪论文

第一章导言1.1项目设计的目的和意义设计的目的随着科学技术的飞速发展,超声波将广泛应用于测距仪中。

母丹在技术层面之前,人们可以利用的测距技术还是很有限的。

所以这是一个正在蓬勃发展,前景无限的技术和产业领域。

展望未来,超声波测距仪作为一种新型的非常重要和有用的工具,在各方面都将有很大的发展空间,它将朝着定位和精度更高的方向发展,以满足日益增长的社会需求。

比如声纳的发展趋势基本是:发展定位精度更高的被动测距声纳,以满足水下武器全隐蔽攻击的需要;继续发展低频线谱探测的潜艇拖曳线列阵声呐,实现超远程被动探测识别;发展更适合浅水的潜艇声纳,特别是解决浅水中的目标识别问题;大力降低潜艇自噪声,改善潜艇声纳工作环境。

毫无疑问,未来的超声波测距仪将与自动化和智能化融为一体,并与其他测距仪集成在一起,形成多测距仪。

随着测距仪的技术进步,测距仪会从简单的判断功能发展到学习功能,最后发展到创造力。

在新世纪,新型测距仪将发挥更大的作用。

1.1.2设计的意义超声波测距系统主要应用于汽车倒车雷达、机器人自动避障行走、建筑工地以及一些工业现场如液位、井深、管道长度等。

因此,研究超声波测距系统的原理具有重要的现实意义。

本课题的研究和设计可以进一步提高电路设计水平,加深对单片机的理解和应用。

1.2超声波测距仪的设计思路超声波测距的原理发射器发射的超声波以速度υ在空气中传播,到达被测物体时被反射并返回,被接收器接收。

它的往返时间为t,被测物体的距离可由s=vt/2算出。

由于超声波也是一种声波,其声速V与温度有关。

下表列出了几种不同温度下的声速。

使用时,如果温度变化不大,可以认为声速基本不变。

如果测距精度很高,就要进行温度补偿修正。

表1-1超声波速度与温度的关系 温度(℃) -30 -20 -10 0 10 20 30 100声速(米/秒) 313 319 325 323 338 344 349 3861.2.2超声波测距仪的原理框图如下单片机发出40kHZ 的信号,经超声波发射器放大后输出。

超声波测距论文(含原理图、程序)

超声波测距论文(含原理图、程序)

1 绪论之阿布丰王创作以后社会经济的不竭发展和工业科学技术的不竭提高,汽车已逐渐进入很多苍生家.汽车使用数量的不竭增加,从而由此招致的倒车交通平安问题也非常严重,路途交通压力增加,交通平安问题也是面临严峻挑战.在面临如此严峻的交通平安问题,许多涉及平安问题的汽车辅助系统也纷纷现世.而本设计就是利用单片机知识、传感器知识等,进行的汽车防撞装置的设计,在汽车倒车时,这种装置可以在驾驶员对车尾与障碍物体的距离远近无法目测和判断时进行报警.1.1 课题布景及意义我国社会经济的不竭发展,人们对汽车这种交通工具的依赖性也越来越年夜,招致了车辆的日益增加在给城市交通不竭施加压力的同时,也引发了非常多行车的平安问题.一些由驾驶员反应不够迅速而招致的汽碰擦,还有很多时候是由于驾驶员对离障碍物的距离判断禁绝确而造成的,如果驾驶员能提前知道障碍物的存在而且知道障碍物的距离,那么驾驶员就能及时地采用办法,从而能防止事故的发生.因此,许多平安系统也应运而生,诸如为了防止交通事故发生的主动平安系统和在发生事故时的防护平安的主动平安系统,而主动平安系统对汽车交通事故的发生能起到防止的作用,所以,主动平安系统的研究更为重要.随着汽车数量的增加,停车场的数量也急剧增加,停车车辆密集,停车人多,所以汽车碰撞亦逐渐增多.而本设计的汽车防撞装置就是主动平安系统,通过对汽车与障碍物之间距离的提示报警防止汽车与障碍物之间的擦碰.本设计要求设计的汽车防撞装置能减少驾驶员的驾驶压力和判断毛病,使驾驶员停车倒车更加平安方便,本设计将对提高交通平安起到重要作用.本设计基于单片机实现汽车防撞,将超声波测距和传感器联系在一起,利用单片机的实时控制和数据处置功能丈量并显示汽车与障碍物之间的距离,并在分歧距离利用蜂鸣器分歧频率发出分歧声音及时报警.这样驾驶员就能通过测距的显示甚至分歧的声音来直接判断汽车玉障碍物之间的距离.本设计的设计简易,虽然精度不高,还不能丈量过远的距离,但规模小,外围电路简单,调试也方便,本钱也不高,器件更换容易,灵活性高,而且能完全满足驾驶员停车时的需要,可以完全解除驾驶员在倒车过程中的顾虑和困扰,提高停车的平安.汽车防撞装置这种汽车平安辅助装置能年夜年夜减少汽车驾驶员在倒车的时候顾虑和对距离判断的失误,从而能够防止倒车的平安问题的发生,故此装置对提高交通平安将起到重要的作用.所以,本课题所要求设计的基于单片机的汽车防撞装置将具有极年夜的现实意义和市场.1.2 国内外研究现状本汽车防撞装置包括有单片机控制电路、超声波测距传感器、蜂鸣器报警电路及数码管显示部件等,装置将各部件有机地结合起来,实现超声波测距及蜂鸣器报警提示的功能.倒车雷达系统的开始是以蜂鸣器报警为标识表记标帜的.汽车离障碍物距离越近,蜂鸣器报警声越急,蜂鸣器报警虽然使驾驶员知道有障碍物的存在,但却不能确定汽车车尾离障碍物有多远,所以,蜂鸣器报警对驾驶员帮手不是很年夜;之后一个质的飞跃就是液晶屏显示的呈现,特别是液晶显示开始呈现静态显示系统,驾驶员就是只要发动车辆,而且不用挂倒挡,液晶显示器上就会呈现汽车图案以及汽车与周围的障碍物的距离,液晶显示是静态显示,液晶显示器的外表美观,显示的色彩也很清晰,而且可以直接粘贴在仪表盘上,装置也很方便[1].不外由于液晶显示的灵敏度比力高,而且它的抗干扰能力也不是很强,所以误报的情况也较多.现在市面上的魔幻镜倒车雷达应该算是比力先进的倒车雷达了,它结合了前几代产物的优点,并采纳了最新仿生超声雷达技术,并用高速电脑控制,可全天准确地进行探测2m以内的障碍物,并以分歧的声音提示和直观的距离显示来提醒驾驶员;魔幻镜倒车雷达把后视镜、倒车雷达、免提德律风、温度显示和车内空气温度显示等多项功能整合在一起[1],并设计了语音功能,因为其外形就是一块倒车镜,所以可以不占用车内空间,可以直接装置在车内倒视镜的位置,而且它样式种类繁多,可以依照个人需求和车内装饰选配,固然它的价格也是比力贵的[1].最新的一代倒车雷达是整合影音系统,除具备前几代倒车雷达的功能外还兼有影音系统[1].随着科学技术水平的迅速发展,相关电子技术也是飞跃前进,固然,汽车电子财富也获得飞速发展,电子财富的飞速发展使得车载电子平顺产物有很年夜的发展前景.倒车雷达固然是每辆车必备的电子平顺产物,如今市面上的主流的汽车倒车雷达基本都是以单片机芯片为控制核心的智能测距报警系统.这些的倒车雷达能够连续测距并显示汽车与障碍物之间的距离,而且采纳蜂鸣器的分歧频率的鸣叫声进行报警提示和距离显示提示,从而能够尽量不占用驾驶员的视觉空间[1].另外,汽车电子系统的网络化的发展还要求作为汽车行驶平安辅助系统的倒车雷达要具有通信功能,并能够把数据发送到汽车总线上去[2].就目前市面上的产物来讲,目前的汽车倒车雷达主要是具备数码管或者液晶屏的距离显示而且带有蜂鸣器的语音报警为主的汽车平安系统.这些系统主要采纳的是以单片机为控制核心的智能超声波测距传感器和蜂鸣器报警系统,这种汽车平安辅助系统廉价耐用,而且达到了汽车电子系统网络化的发展需求.1.3 课题研究内容及章节安插本文所介绍的超声波测距报警系统在测距的时候采纳的是两个超声波探头分别进行超声波发射和接收来进行距离的丈量的.本设计的汽车防撞系统能丈量出倒车方向的障碍物与汽车之间的距离, 并通过数码管显示单位模块显示两者之间的距离,然后通过蜂鸣器发出分歧频率的声响, 从而起到提示和报警的作用.本系统利用一片89S51单片机对超声波信号循环不竭地进行收集.系统包括超声波测距单位(超声波集成模块)、89S51单片机控制、蜂鸣器报警模块和数码管显示模块.这个设计的汽车倒车雷达要能够连续测距,数据经过单片机的处置后,用4位数码管显示所丈量获得的距离,并利用分歧频率使蜂鸣器发出分歧的鸣叫声进行语音报警.论文构成主要由以下部份组成:第1章主要介绍了本课题的布景意义和相关技术在国内外的研究现状.第2章介绍的是汽车防装系统的总体方案设计.首先介绍汽车防撞系统的设计要求,然后分别对测距传感器的选择和显示报警系统的方案设计做了介绍,最后提出本系统的总体的设计方案,为硬件系统的设计打下了基础.第3章对硬件系统的设计进行了介绍.首先对超声波传感器的工作原理进行了分析,然后具体讨论了超声波测距模块中的超声波发射电路和超声波接收电路的硬件设计,最后介绍了显示模块电路和蜂鸣器报警电路的设计.第4章主要是对系统的软件设计进行了介绍.在软件设计中采纳分歧模块分歧编程进行设计的,本设计分别对系统的主法式模块、中断子法式模块、超声波测距模块、蜂鸣器报警模块和数码管的显示模块的各个法式进行了设计.第5章是硬件的组装及其性能进行分析.首先对实物进行硬件排版组装和焊接,然后讨论了系统的性能发生的误差.第6章是对本设计的总结和展望.最后一章对全文进行了总结,并指明了系统设计的缺乏之处,最后也对本系统的倒车雷达报警系统的发展前景进行了展望.2 总体方案论证本章从系统方案等一些方面来进行论证.本设计主要是进行距离的丈量和报警,设计中涉及到的内容较多,主要是将单片机控制模块、超声波测距模块、蜂鸣器报警模块、4位数码管显示模块这几个模块结合起来.而本设计的核心是超声波测距模块,其他相关模块都是在测距的基础上拓展起来的,测距模块是利用超声波传感器,之后选择合适单片机芯片,以下就是从相关方面来论述的. 2.1 设计方案论证2.1.1 测距传感器(1)激光测距传感器激光传感器利用激光的方向性强和传光性好的特点,它工作时先由激光传感器瞄准障碍物发射激光脉冲,经障碍物反射后向各个方向散射,部份散射光返回到接受传感器,能接受其微弱的光信号,从而记录并处置光脉冲发射到返回所经历的时间即可测定距离,即用往返时间的一半乘以光速就能获得距离.其优点是丈量的距离远、速度快、丈量精确度高、量程范围年夜,缺点是对人体存在平安问题,而且制作的难度年夜本钱也比力高[3].(2)红外线测距传感器红外线测距传感器利用的就是红外线信号在遇到障碍物其距离的分歧则其反射的强度也分歧,根据这个特点从而对障碍物的距离的远近进行丈量的.其优点是本钱昂贵,使用平安,制作简单,缺点就是丈量精度低,方向性也差,丈量距离近[3].(3)超声波传感器超声波是一种超越人类听觉极限的声波即其振动频率高于20kHz的机械波.超声波传感器在工作的时候就是将电压和超声波之间的互相转换,当超声波传感器发射超声波时,发射超声波的探头将电压转化的超声波发射出去,当接收超声波时,超声波接收探头将超声波转化的电压回送到单片机控制芯片.超声波具有振动频率高、波长短、绕射现象小而且方向性好还能够为反射线定向传布等优点,而且超声波传感器的能量消耗缓慢有利于测距[4].在中、长距离丈量时,超声波传感器的精度和方向性都要年夜年夜优于红外线传感器,但价格也稍贵.从平安性,本钱、方向性等方面综合考虑,超声波传感器更适合设计要求.根据对以上三种传感器性能的比力,虽然能明显看出来激光传感器是比力理想的选择,可是它的价格却比力高,而且平安度不够高.而且汽车在行驶的过程中超声波传感器测距时应具有较强的抗干扰能力和较短的响应时间,因此选用超声波传感器作为此设计方案的传感器探头.2.2 系统方案此方案选择51单片机作为控制核心,所测得的距离数值由4位共阳极数码管显示,与障碍物之间的分歧距离利用蜂鸣器频率的分歧报警声提示,超声波发射信号由51单片机的P0.1口送出到超声波发射电路,将超声波发送出去,超声波接收电路由CX20106A芯片和超声波接收探头组成的电路构成,报警系统由蜂鸣器电路构成.本设计中将收发超声波的探头分离这样不会使收发信号混叠,从而能防止干扰,可以很好的提高系统的可靠性.本设计的汽车防撞装置的系统框图如图2.1所示.图2.1 汽车防撞装置的系统框图本设计由Keil编程软件对51单片机进行编程,51单片机在执行法式后由P0.1端口发生40kHz的脉冲信号通过74LS04电路进行放年夜并送到到超声波发射探头,发生超声波.在超声波发射电路启动的同时单片机启动中断按时器,利用其计数的功能记录超声波发射超声波到接收到超声波回波的时间.当接收回射的超声波时,接收电路的输出端发生负跳变输出到单片机发生中断申请,执行外部中断子法式计算距离.结合各方面的因素考虑,依据设计的要求,查阅相关数据资料,选择了超声波测距传感器TR40-16Q(其中T暗示超声波发射探头,R暗示超声波接收探头),综合考虑设计的要求出于简便角度,选用了HC-SR04超声波集成模块.此超声波模块的最年夜探测距离为 5 m,精度可以达到0.3cm,盲区为2cm,而且发射扩散角不年夜于15°,更有利于测距的准确性.而且,此模块的工作频率范围为39 kHz~41 kHz左右,完全能在40 kHz工作频率工作.由于超声波的发射和接收是分开发送和接收的,所以发射探头和接收探头必需在同一条水平行直线上,这样才华准确地接收反射的回波.而由于丈量的距离分歧和发射扩散角所引起的误差以及超声波信号在空气中传布的过程中的超声波衰减问题,发射探头和接收探头距离不成以太远,而且还要防止发射探头对接收探头在接收信号时发生的干扰,所以二者又不能靠得太近.根据对相关资料查阅,将两探头之间的距离定在5cm~8cm最为合适.本设计所用的HC-SR04模块的超声波探头之间的距离年夜约在6 cm左右.3 硬件电路设计本设计的汽车防撞装置由51单片机、超声波发射探头、超声波接收探头、4位共阳极数码管、蜂鸣器组成.汽车防撞系统的测距是利用超声波测距的原理,在单片机内部法式的控制下,由超声波发射探头发射超声波,在超声波遇到障碍物时反射到超声波接收探头,由此回应到单片机,由单片机进行中断处置和数据的处置,计算出距离,由数码管显示距离,并由蜂鸣器报警提示.本设计的硬件电路分为五部份:单片机最小系统、超声波发射和接收电路、蜂鸣器报警电路和数码管显示电路.3.1 单片机系统设计3.1.1 单片机的选择一般在系统的设计傍边,能否完成设计任务最重要的就在于系统的核心器件是否选择合适,而单片机更是是系统控制的核心,所以对单片机的选择更是异常重要.如果选择了一个合适的单片机不单可以最年夜地简化系统的把持,而且其功能可能是最好的,可靠性也比力高,对整个系统来说更方便.目前,市面上的单片机的种类繁多,而且他们在功能方面也是各自有各自的特点.在一般的情况下来讲,在选择单片机时要需要考虑的几个方面有[5]:(1)单片机最基赋性能参数指标.例如:执行一条指令的速度、法式存储器的容量,I/O口的引脚数量等.(2)单片机的某些增强的功能.(3)单片机的存储介质.例如:对法式存储器来说,最好选用的是Flash的存储器.(4)单片机的封装形式.封装的形式多种多样,例如:双列直插封装、PLCC封装及概况贴附等.(5)单片机对工作的温度范围的要求.例如:在进行设计户外的产物时,就必需要选用工业级的芯片,以达到温度范围的要求.(6)单片机的功耗.例如,如果信号线取电只能提供几mA的电流,所以为了能满足低功耗的要求这个时候选用STC的单片机是最合适的.(7)单片机在市面上的销售渠道是否疏通、其价格是否廉价.(8)单片机技术的支持网站如何,卖家提供的芯片资料是否足够完善,是否包括了用户手册,设计方案举例,相关范例法式等.(9)单片机的保密性是否很好,单片机的抗干扰的性能如何等.51系列单片机它在指令系统、硬件结构和片内资源等方面与标准的52系列的单片机可以完全的兼容.51系列的单片机执行速率快(最高时钟频率为90MHz),功耗低,在系统、在应用可编程,不占用用户的资源[5].根据本系统设计的实际要求,选择AT89S51单片机做为本设计的单片机使用,它是由ATMEL公司生产的高性能、低功耗的CMOS 8位单片机.89S51单片机具有以下几个性能特点:4 k字节的闪存片内法式存储器,128字节的数据存储器,32个外部输入和输出口,2个全双工串行通信口,看门狗电路,5个中断源,2个16位可编程按时计数器,片内震荡和时钟电路且全静态工作并由低功耗的闲置和失落电模式[5].单片机的引脚功能图如图3.1所示.图3.151单片机的引脚功能图3.1.2 单片机引脚功能(1)电源引脚Vcc(40脚):正电源的引脚,工作电压是5V.GND(20脚):接地端.(2)时钟电路的引脚XTAL1和XTAL2为了发生时钟信号,在89S51单片机的芯片内部已经设置了一个反相放年夜器,其中XTAL1端口就是片内反相放年夜器的输入端,XTAL2端则是片内振荡器反相放年夜器的输出端 [5].单片机使用的工作方式是自激振荡的方式,XTAL1和XTAL2外接的是12MHz 的石英晶振,使内部振荡器依照石英晶振的频率频率进行振荡,从而就可以发生时钟信号.时钟信号电路如图3.2所示.图3.2 时钟信号电路(3)复位RST(9脚)当振荡器运行时,只要有有两个机器周期即24个振荡周期以上的高电平在这个引脚呈现时,那么就将会使单片机复位,如果将这个引脚坚持高电平,那么51单片机芯片就会循环不竭地进行复位[5].复位后的P0口至P3口均置于高电平,这时法式计数器和特殊功能寄存器将全部清零[5].本课题设计的单片机复位电路如图3.3所示.图3.3 单片机复位电路图(4)输入输出口(I/O口)引脚P0口是一个三态的双向口,既可以作为数据和地址的分时复用口,又可以作为通用输入输出口[5].P0口在有外部扩展存储器时将会被作为地址/数据总线口,此时P0口就是一个真正的双向口;而在没有外部扩展存储器时,P0口也可以作为通用的I/O接口使用,但此时只是一个准双向口;另外,P0口的输出级具有驱动8个LSTTL负载的能力即输出电流不小于800uA[5].P1口是一个带内部上拉电阻的8位双向I/O口,而P1口只有通用I/O接口一种功能,而且P1口能驱动4个LSTTL负载;在使用时通常不需要外接上拉电阻就能够直接驱动发光二极管;在端口置1时,其内部上拉电阻将端口拉到高电平,作输入端口用[5].对输出功能,在单片机工作的时候,可以通过用法式指令控制单片机引脚输出高电平或低电平[5].例如:指令CLR是清零的意思,CLR P1.0的意思就是让单片机的P1.0端口输出低电平;而指令SETB是置1的意思,SETB P1.0的意思就是让单片机P1.0端口输出高电平[5].P2口是一个带内部上拉电阻的8位双向I/O口,而且P2口具有驱动4个LSTTL负载的能力[5].P2端口置1时,内部上拉电阻将端口的电位拉到高电平,作为输入口使用;在对内部的Flash法式存储器编程时,P2口接收高8位地址和控制信息,而在访问外部法式和16位外部数据存储器时,P2口就送出高8位地址[5].在访问8位地址的外部数据存储器时,P2引脚上的内容在此期间不会改变[5].P3口也是一个带内部上拉电阻的8位双向I/O口,P3口能驱动4个LSTTL负载,这8个引脚还用于专门的第二功能[5].P3口作为通用I/O口接口时,第二功能输出线为高电平.P3口置1时,内部上拉电阻将端口电位拉到高电平,作输入口使用;在对内部Flash法式存储器编程时,此端接控制信息[5].P3口的第二功能,如表3.1所示[5].表3.1 P3口第二功能表(5)其它控制或复用引脚(a)ALE/PROG(30脚):地址锁存有效信号输出端.在访问片外存储器时,ALE(地址锁存允许)以每机器周期两次进行信号输出,其下降沿用于控制锁存P0口输出的低8位地址;在不访问片外存储器的时候,ALE端仍以不变的频率输出脉冲信号(此频率是振荡器频率的1/6),而在访问片外数据存储器时,ALE脉冲会跳空一个,此时是不成以做为时钟输出[5].对片内含有EPROM的机型在编程时,这个引脚用于输入编程脉冲/PROG的输入端[5].(b)/PSEN(29脚):片外法式存储器读选通信号输出端,低电平时有效.当89S51从外部法式存储器取指令或常数时,每个机器周期内输出2个脉冲即两次有效,以通过数据总线P0口读回指令或常数.但在访问片外数据存储器时,/PSEN将不会有脉冲输出[5].(c)/EA/Vpp(31脚):/EA为片外法式存储器访选用端.当该引脚访问片外法式存储器时,应该输入的是低电平,要使89S51只访问片外法式存储器,这时该引脚必需坚持低电平;而在对Flash存储器编程时,用于施加Vpp编程电压[5].3.1.3单片机最小系统单片机最小系统是其他拓展系统的最基本的基础,单片机最小系统是指一个真正可用的单片机最小配置系统即单片机能工作的系统.对80S51单片机,由于片内已经自带有了法式存储器,所以只要单片机外接时钟电路和复位电路就可以组成了单片机的最小系统了.单片机的最小系统如图3.4所示.图3.4 单片机最小系统原理图3.2 超声波发射和接收电路设计超声波是一种振动频率超越20 kHz的机械波,它可以沿直线方向传布,而且传布的方向性好,传布的距离也较远,在介质中传布时遇到障碍物在入射到它的反射面上就会发生反射波[6].由于超声波的以上几个特点,所以超声波被广泛地应用于物体距离的丈量、厚度等方面[6].而且,超声波的丈量是一种比力理想的的非接触式的测距方法[6].当进行距离的丈量时,由装置在同一水平线上的超声波发射器和接收器完成超声波的发射与接收,而且同时启动按时器进行计数[7].首先由超声波发射探头向倒车的方向发射超声波并同时启动按时器计时,超声波在空气中传布的途中一旦遇到障碍物后就会被反射回来,当接收探头收到反射波后就会给负脉冲到单片机使其立刻停止计时[6.7].这样,按时器就能够准确的记录下了超声波发射点至障碍物之间往返传布所用的时间t(s)[7].由于在常温下超声波在空气中的传布速度年夜约为340m/s[7],所以障碍物到发射探头之间的距离为:S=340×t/2=170×t因为单片机内部按时器的计时实际上就是对机器周期T的计数,而本设计中时钟频率fosc取12MHz,设计数值N,则:T=12/f osc=1μst=N×T=N×0.000001(s)S=170×N×T=170×N/1000000(m)在法式中按式S=170×N×T=170×N/1000000计算距离.3.2.1 超声波发射电路设计超声波发射电路是由超声波探头和超声波放年夜器组成.超声波探头将电信号转换为机械波发射出去,而单片机所发生的40 kHz的方波脉冲需要进行放年夜才华将超声波探头驱动将超声波发射出去,所以发射驱动实际上就是一个信号的放年夜电路,本设计选用74LS04芯片进行信号放年夜,超声波发射电路如图3.5所示.图3.5 超声波发射电路。

(完整word版)超声波测距外文翻译文献(word文档良心出品)

(完整word版)超声波测距外文翻译文献(word文档良心出品)

超声波测距毕业论文中英文对照资料外文翻译文献超声测距技术在工业现场、车辆导航、水声工程等领域都具有广泛的应用价值,目前已应用于物位测量、机器人自动导航以及空气中与水下的目标探测、识别、定位等场合。

因此,深入研究超声的测距理论和方法具有重要的实践意义。

为了进一步提高测距的精确度,满足工程人员对测量精度、测距量程和测距仪使用的要求,本文研制了一套基于单片机的便携式超声测距系统。

1随着技术的发展,人们生活水平的提高,城市发展建设加快,城市给排水系统也有较大展,其状况不断改善。

但是,由于历史原因合成时间住的许多不可预见因素,城市给排水系统,特别是排水系统往往落后于城市建设。

因此,经常出现开挖已经建设好的建筑设施来改造排水系统的现象。

城市污水给人们带来了困扰,因此箱涵的排污疏通对大城市给排水系统污水处理,人们生活舒适显得非常重要。

而设计研制箱涵排水疏通移动机器人的自动控制系统,保证机器人在箱涵中自由排污疏通,是箱涵排污疏通机器人的设计研制的核心部分。

控制系统核心部分就是超声波测距仪的研制。

因此,设计好的超声波测距仪就显得非常重要了。

2 波测距原理2.1压电式超声波发生器原理压电式超声波发生器实际上是利用压电晶体的谐振来工作的。

超声波发生器内部结构,它有两个压电晶片和一个共振板。

当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。

反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。

测量脉冲到达时间的传统方法是以拥有固定参数的接收信号开端为基础的。

这个界限恰恰选于噪音水平之上,然而脉冲到达时间被定义为脉冲信号刚好超过界限的第一时刻。

一个物体的脉冲强度很大程度上取决于这个物体的自然属性尺寸还有它与传感器的距离。

进一步说,从脉冲起始点到刚好超过界限之间的时间段随着脉冲的强度而改变。

超声波测距报警器文献综述

超声波测距报警器文献综述

超声波测距报警器的设计与实现摘要:本系统采用了单片机最小系统、超声波模块、显示模块、报警模块等。

超声波测距作为一种传统且使用的非接触测量方法,与激光、无线电测距方法相比,不易受外界光及电磁场等因素的影响,结构简单,成本低,在恶劣环境下也有一定的适应能力,因此在工业控制、建筑测量、机器人避障等方面得到了广泛应用。

而且超声波指向性强,能量消耗慢,在介质中传播距离远,利用超声波检测距离,设计方面,计算处理简单,并在测量精度方面也能达到工业要求。

关键词:单片机/超声波模块/报警电路关于单片机控制超声波测距报警器的设计与实现有很多方案,我也看了不少。

为了能设计出较好的报警系统,在过去的几个星期,我在校内图书馆查阅了大量的资料,在学校数字图书馆下载很多的论文期刊,这些理论资料给了我很大的帮助,简要的重要结果如下:文献[1]中讲述了检测系统的发展及重要应用,检测是利用各种物理、化学效应,选择合适的方法与装置,将生产、科研、生活等各方面的有关信息通过检测与测量的方法赋予定性的或不定性结果的过程。

能够自动地完成整个检测处理过程的技术称为自动检测技术。

检测技术是现代化领域中很有发展前途的技术,它在国民经济中起着极其重要的作用。

其中检测系统最主要的就是传感器,把非电量转换成电量,然后经过一系列的处理,将非电量参数显示出来。

文献[2]中讲述了随着传感器和单片机控制技术的不断发展,非接触式检测技术已被广泛应用于多个领域。

目前,典型的非接触式测距方法有超声波测距、CCD 探测、雷达测距、激光测距等。

其中,CCD 探测具有使用方便、无需信号发射源、同时获得大量的场景信息等特点,但视觉测距需要额外的计算开销。

雷达测距具有全天候工作,适合于恶劣的环境中进行短距离、高精度测距的优点,但容易受电磁波干扰。

激光测距具有高方向性、高单色性、高亮度、测量速度快等优势,尤其是对雨雾有一定的穿透能力,抗干扰能力强,但其成本高、数据处理复杂。

与前几种测距方式相比,超声波测距可以直接测量近距离目标,纵向分辨率高,适用范围广,方向性强,并具备不受光线、烟雾、电磁干扰等因素影响,且覆盖面较大等优点。

超声波测距外文文献加中文翻译毕业设计

超声波测距外文文献加中文翻译毕业设计

附录A 英文原文ULTASONIC RANGING IN AIRG. E. Rudashevski and A. A. GorbatovOne of the most important problems in instrumentation technology is the remote,contactless measurement of distances in the order of 0.2 to 10 m in air.Such a problem occurs,for instance,when measuring the relativethre edimensional position of separate machine members or structural units.Interesting possibilities for its solution are opened up by utilizing ultrasonic vibrations as an information carrier.The physical properties of air,in which the measurements are made,permit vibrations to be employed at frequencies up to 500 kHz for distances up to 0.5 m between a member and the transducer,or up to 60 kHz when ranging on obstacles located at distances up to 10 m.The problem of measuring distances in air is somewhat different from other problems in the a -pplication of ultrasound.Although the possibility of using acoustic ranging for this purpose has been known for a long time,and at first glance appears very simple,nevertheless at the present time there are only a small number of developments using this method that are suitable for practical purposes.The main difficulty here is in providing a reliable acoustic three-dimensional contact with the test object during severe changes in the air's characteristic.Practically all acoustic arrangements presently known for checking distances use a method of measuring the propagation time for certain information samples from the radiator to the reflecting member and back.The unmodulated acoustic(ultrasonic)vibrations radiated by a transducer are not in themselves a source of information.In order to transmit some informational communication that can then be selected at the receiving end after reflection from the test member,the radiated vibrations must be modulated.In this case the ultrasonic vibrations are the carrier of the information which lies in the modulation signal,i.e.,they are the means for establishing the spatial contact between the measuring instrument and the object being measured.This conclusion,however,does not mean that the analysis and selection of parameters for the carrier vibrations is of minor importance.On the contrary,the frequency of the carrier vibrations is linked in a very close manner with the coding method for the informational communication,with the passband of the receiving and radiating elements in the apparatus,with the spatial characteristics of the ultrasonic communication channel,and with the measuring accuracy.Let us dwell on the questions of general importance for ultrasonic ranging in air,namely:on the choice ofa carrier frequency and the amount of acoustic power received.An analysis shows that with conical directivity diagrams for the radiator and receiver,and assuming thatthe distance between radiator and receiver is substantially smaller than the distance to the obstacle,theamount of acoustic power arriving at the receiving area Pr for the case of reflection from an ideal planesurface located at right angles to the acoustic axis of the transducer comes towhere Prad is the amount of acoustic power radiated,B is the absorption coefficient for a plane wave inthe medium,L is the distance between the electroacoustic transducer and the test me -mber,d is the diameterof the radiator(receiver),assuming they are equal,and c~is the angle of the directivity diagram for theelectroacoustic transducer in the radiator.Both in Eq.(1)and below,the absorption coefficient is dependent on the amplitude and not on theintensity as in some works[1],and therefore we think it necessary to stress this difference.In the various problems of sound ranging on the test members of machines and structures,therelationship between the signal attenuations due to the absorption of a planewave and due to thegeometrical properties of the sound beam are,as a rule,quite different.It must be pointed out that the choiceof the geometrical parameters for the beam in specific practical cases is dictated by the shape of thereflecting surface and its spatial distortion relative to some average position.Let us consider in more detail the relationship betweenthe geometric and the power parameters ofacoustic beams for the most common cases of ranging on plane and cylindrical structural members.It is well known that the directional characteristic W of a circular piston vibrating in an infinite baffle is afunction of the ratio of the piston's diameter to the wavelength d/λ as found from the following expression:(2)where Jl is a Bessel function of the first order and α is the angle between a normal to the piston and aline projected from the center of the piston to the point of observation(radiation).From Eq.(2)it is readily found that a t w o-t o-o n e reduction in the sensitivity of a radiator with respectto sound pressure will occur at the angle(3)For angles α≤20.Eq.(3)can be simplified to(4) where c is the velocity of sound in the medimaa and f is the frequency of the radiated vibrations.It follows from Eq.(4)that when radiating into air where c=330 m/s e c,the necessary diameter of the radiator for a spedfied angle of the directivity diagram at the 0.5 level of pressure taken with respect to the fdc 76.05.0≈αaxis can befound to be(5)where disincm,f is in kHz,and α is in degrees of angle.Curves are shown in Fig.1 plotted from Eq.(5)for six angles of a radiator's directivity diagram.The directivity diagrm needed for a radiator is dictated by the maximum distance to be measured and bythe spatial disposition of the test member relative to the other structural members.In order to avoid theincidence of signals reflected from adjacent members onto the acoustic receiver,it is necessary to provide asmall angle of divergence for the sound beam and,as far as possible,a small-diameter radiator.These tworequirements are mutually inconsistent since for a given radiation frequency a reduction of the beam'sdivergence angle requires an increased radiator diameter.In fact,the diameter of the"sonicated"spot is controlled by two variables,namely:the diameter of theradiator and the divergence angle of the sound beam.In the general case the minimum diameter ofthe"sonicated"spot Dmin on a plane surface normally disposed to the radiator's axis is given by(6)where L is the least distance to the test surface. The specified value of Dmin corresponds to a radiator with a diameter(7)As seen from Eqs.(,6)and(7),the minimum diameter of the"sonieated"spot at the maximum requireddistancecannot be less than two radiator diameters.Naturally,with shorter distances to the obstacle the sizeof the"sonicated" surface is less.Let us consider the case of sound ranging on a cylindrically shaped object of radius R.The problem is to measure the distance from the electroacoustic transducer to the side surface of the cylinderwith its various possible displacements along the X and Y axes.The necessary angleαof the radiator'sdirectivity diagram is given in this case by the expression(8) whereα is the value of the angle for the directivity diagram,Ymax is the maximum displacement of the cylinder's center from the acoustic axis,and Lmin is the minimum distance from the center of theelectroacoustic transducer to the reflecting surface measured along the straight line connecting the center ofthe m e m b e r with the center of the transducer.It is clear that when measuring distance,the"running"time of the information signal is controlled by thefd α1400≈fcL d 5.1=fcLD 6min =min maxarcsinL R y +≥αlength of the path in a direction normal to the cylinder's surface,or in other words,the measure distance isalways the shortest one.This statement is correct for all cases of specular reflection of the vibrations from thetest surface.The simultaneous solution of Eqs.(2)and(8)when W=0.5 leads to the following expression:(9) In the particular case where the sound ranging takes place in air having c=330 m/sec,and on theasstunption that L min <<R,the necessary d i a m e t e r of a unidirectional piston radiator d can be found fromthe fomula (10) where d is in cm and f is in kHz. Curves are shown in Fig.2 for determining the necessary diameter of the radiator as a function of theratio of the cylinder's radius to the maximum displacement from the axis for four radiation frequencies.Alsoshown in this figure is the directivity diagram angle as a function of R and Y rnax for four ratios of m i n i m u mdistance to radius.The ultrasonic absorption in air is the second factor in determining the resolution of ultrasonic rangingdevices and their range of action.The results of physical investigations concerning the measurement ofultrasonic vibrations air are given in[1-3].Up until now there has been no unambiguous explanation of thediscrepancy between the theoretical and expe -rimental absorption results for ultrasonic vibrations inair.Thus,for frequencies in the order of 50 to 60 kHz at a temperature of+25oC and a relative humidity of37%the energy absorption coefficient for a plane wave is about 2.5dB/m while the theoretical value is 0.3 dB/m.The absorption coefficient B as a function of frequency for a temperature of+25o Cand a humidity of37%according to the data in[2]can be described by Table 1.The absorption coefficient depends on the relative humidity.Thus,for frequencies in the order of 10 to20kHz the highest value of the absorption coefficient occurs at 20%humidity[3],and at 40%humidity theabsorption is reduced by about two to one.For frequencies in the order of 60 kHz the maximum absorptionoccurs at 30.7o humidity,dropping when it is increased to 98% or lowered to 10%by a factor of approximatelyfour to one.The air temperature also has an appreciable effect on the ultrasonic absorption[1].When thetemperature of the medium is increased from+10 to+30,the absorption for frequencies between 30 and 50kHz increases by about three to one.Taking all the factors noted above into account we arrive at the following approximate values for theabsorption coefficient:at a frequency of 60 kHz /3min =0.15 m -1 and~max=0.5-1;at a frequency of 200 ()maxmin 76.0y L R d +=λmax25fy R d ≈kHz/~min=0.6 m -1 and B max =2 m -1.(11)The values for the minimum~min and rnaxil-num~max"transmittance"coefficients were obtained in thea bsence of aerosols and rain.Their difference is the result of the possible variations in temperature over therange from -3 0 to+50~and in relative hmnidity over the range from 10 to 98%.The overall value ofthe"transmittance"is obtained by multiplying the values of g and 0 for given values of L,f,and d.L I T E R A T U R E C I T E DMoscow(1957).Moscow(1960).附录B 中文翻译在空气中超声测距G. E. Rudashevski and A. A. Gorbatov在仪器技术中远程是最重要的一个问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文献综述:
超声波测距仪设计
1.前言
超声测距指的是利用超声波的反射特性进行距离测量,在车辆自动导航、
机器入的定位和对象识别、海洋水声以及工业距离的测量方面具有重要意义。

常见的测距原理和方法主要有脉冲回波法和相位差法两种。

相位差法与脉冲回波法的不同体现在对回波的处理方式上,由超声波换能
器接收端获得调制声波的回波,经放大电路转换后,得到与放大的相位完全相
同的电信号,此电信号放大后与光源的驱动电压相比较,测得两个正弦电压的
相位差,根据所测相位差就可算得所测距离。

由于采用的是相位比较,使得测
距精确度大大提高,但这种方法本身存在明显的缺陷。

由于相位测量存在以2n
为周期的多值解,从而容易造成解的不确定性。

为了消除多解,常常需要引入
包络检测和采用发射多种不同频率波的方式减小不确定度,这就使得该方法的
实现复杂化。

2.主题
2.1超声波测距仪原理
单片机发出超声波测距是通过不断检测超声波发射后遇到障碍物所反射的
回波,从而测出发射和接收回波的时间差Tr,然后求出距离S=CTr/2,式中
的C为超声波波速。

限制该系统的最大可测距离存在4个因素:超声波的幅度、反射的质地、
反射和入射声波之间的夹角以及接收换能器的灵敏度。

接收换能器对声波脉冲
的直接接收能力将决定最小的可测距离。

为了增加所测量的覆盖范围、减小测
量误差,可采用多个超声波换能器分别作为多路超声波发射/接收的设计方法。

由于超声波属于声波范围,其波速C与温度有关。

单片机发出40kHZ的信号,经放大后通过超声波发射器输出;超声波接收器将接收到的超声波信号经放大器放大,用锁相环电路进行检波处理后,启动单片机中断程序,测得时间为t,再由软件进行判别、计算,得出距离数并送LED显示。

超声波测距原理图
超声传感器是一种将其他形式的能转变为所需频率的超声能或是把超声能转变为同频率的其他形式的能的器件。

目前常用的超声传感器有两大类,即电声型与流体动力型。

2.2系统的硬件结构设计
硬件电路的设计主要包括单片机系统及显示电路、超声波发射电路和超声波检测接收电路三部分。

单片机采用AT89C51或其兼容系列。

采用12MHz高精度的晶振,以获得较稳定时钟频率,减小测量误差。

单片机用P1.0端口输出超声波换能器所需的40kHz的方波信号,利用外中断0口监测超声波接收电路输出的返回信号。

显示电路采用简单实用的4位共阳LED数码管,段码用
74LS244驱动,位码用PNP三极管8550驱动。

2.1基于AT89C51单片机的超声波测距仪
超声波测距仪主要以单片机AT89C51为核心,其发射器是利用压电晶体的谐振带动周围空气振动来工作的。

超声波发射器向某一方向发射超声波,在发射的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器接收到反射波就立即停止计时。

一般情况下,超声波在空气中的传播速度为340m/ s,根据计时器记录的时间t ,就可以计算出发射点距障碍物的距离S,即S=340×t/2,这就是常用的时差法测距。

在测距计数电路设计中,采用了相关计数法,其主要原理是:测量时单片
机系统先给发射电路提供脉冲信号,单片机计数器处于等待状态,不计数;当
信号发射一段时间后,由单片机发出信号使系统关闭发射信号,计数器开始计数,实现起始时的同步;当接收信号的最后一个脉冲到来后,计数器停止计数。

双向超声波测距仪的系统主要有几下部分组成(如图2所示): LED显示
模块,AT89C51芯片,超声波发射模块,超声波接收模块,电源模块等五大模
块组成。

系统设计总体框图
3.结束语
以上介绍了超声波测距系统, 通过发射和接受超声波, 使用单片机计算距离, 并加入了温度补偿电路, 提高了距离计算的精度。

该系统可满足大多数场
合的测距要求。

由于该系统中锁相环锁定需要一定时间。

测得的距离有误差。

在汽车雷达应用中此误差可忽略不计;但在精度要求较高的工业领域如机器人
自动测距等方面。

此误差不能忽略。

只有通过改变一些硬件的应用实现对超声
波的快速锁定。

参考文献:
[2] 刘国钧,王连成.图书馆史研究[M].北京:高等教育出版社,1979:15-18,31.
[1] 孔雅琼. 基于单片机的超声测距仪研究与开发[]]. 国防科学技术大学
[2] 张芬. 基于C8051F320单片机的超声波测距仪[J].中国地质大学(武汉)机械与电子信
息学院,仪表技术与传感器,09年12期
[3] 李为民. 基于stc89单片机的超声波测距仪[M].陕西师范大学学报,第33卷
[4] 胡福云. 基于单片机的超声波测距仪[M].湖北工业大学,科技视野
[5] 陈莹. 基于单片机的超声测距系统[M].华中科技大学
[6] 符艳辉. 基于单片机控制的超声波测距仪的设计[M].吉林省农业机械研究院,农业与
技术,08年2月28卷
[7] 谭洪涛. 单片机设计测距仪原理及其简单应用[M].重庆通信学
[8] 曾毓敏. 基于80C552单片机的驾斐蹙蜜型题仪[J].南京师范大学物理系
[9] 安宗权. 基于ATmega8单片机的超声波测距仪[M]. 安徽工业大
[10] 刘凤然. 基于单片机的超声波测距系统[J].传感器世界.2001,5:29-32
[11] 葛健强. 基于CPLD的超声波测距仪研制[M]. 无锡商业职业技术学院学
报.2004,4(3):8-10
[12] 何希才. 薛永毅.传感器及其应用实例[J].机械工业出版社,2004:138-152
胡汉才.单片机原理及其接口技术.清华大学出版社,2004:27-46
[13] 吴斌方,刘民,熊海斌.超声波测距传感器的研制[M].湖北工学院学报.2004,19(6):26-28
[14]谭洪涛,张学平.单片机设计测距仪原理及其简单应用[M].现代电子技术.2004,18:94-96
[15]赵占林,刘洪梅.超声波测距系统误差分析及修正[J].科技情报开发与经
济.2002,12(6):144-145
[16]苏炜,龚壁建,潘笑.超声波测距误差分析[J].传感器技术.2004,23(6):8-11
[17]罗忠辉,黄世庆.提高超声测距精度的方法[J]. 机械设计与制造.2005,1:109
[18]秦旭.用LM92温度传感器补偿的高精度超声波测距仪[M].电子产品世界.2003,6:58-59。

相关文档
最新文档