线性方程组的矩阵求法

合集下载

如何利用数学中的矩阵进行线性方程组的求解

如何利用数学中的矩阵进行线性方程组的求解

如何利用数学中的矩阵进行线性方程组的求解线性方程组在数学中具有重要的应用价值,求解线性方程组是数学中的基本问题之一。

矩阵是求解线性方程组的有力工具,能够简化计算过程并提高求解效率。

本文将介绍如何利用数学中的矩阵进行线性方程组的求解。

一、矩阵的定义和基本性质矩阵是由数个数按一定规则排列形成的矩形数组。

矩阵可以表示为一个大写字母加上两个下标,例如A,其中A是矩阵的名称,下标表示矩阵的行数和列数。

矩阵的加法和乘法是指对应元素的加法和乘法运算。

矩阵加法要求两个矩阵具有相同的行数和列数;矩阵乘法要求第一个矩阵的列数等于第二个矩阵的行数。

二、线性方程组和矩阵表示线性方程组是一组线性等式的集合。

一个线性方程组可以用矩阵表示,其中系数矩阵是一个m行n列的矩阵,m表示方程组的数量,n 表示未知数的数量;向量b是一个m行1列的矩阵,称为常数向量;向量x是一个n行1列的矩阵,称为未知向量。

线性方程组可以写成Ax=b的形式。

三、矩阵求解线性方程组的方法1. 列主元高斯消元法列主元高斯消元法是一种求解线性方程组的基本方法。

具体步骤如下:(1) 首先将线性方程组写成增广矩阵的形式[A|b]。

(2) 选择第一列中绝对值最大的元素作为主元所在行,将该行与第一行交换。

(3) 将第一行乘以一个系数,使得主元所在列的其他元素都变为0。

(4) 重复第二步和第三步,直到将整个矩阵化为上三角矩阵。

(5) 从最后一行开始,倒序回代求解线性方程组。

2. 矩阵逆的方法如果矩阵A可逆,则可以用逆矩阵来求解线性方程组。

逆矩阵是指与原矩阵相乘得到单位矩阵的矩阵。

具体步骤如下:(1) 首先求出矩阵A的逆矩阵A^(-1)。

(2) 将线性方程组写成矩阵形式Ax=b。

(3) 两边同时左乘A^(-1),得到x=A^(-1)b。

3. 矩阵的LU分解LU分解是将矩阵A分解为两个矩阵L和U的乘积的过程。

L是一个下三角矩阵,U是一个上三角矩阵。

具体步骤如下:(1) 首先将矩阵A写成增广矩阵的形式[A|b]。

线性方程组的求解方法

线性方程组的求解方法

线性方程组的求解方法线性方程组是数学中的基础概念,广泛应用于各个领域,如物理、经济学、工程学等。

解决线性方程组的问题,对于推动科学技术的发展和解决实际问题具有重要意义。

本文将介绍几种常见的线性方程组的求解方法,包括高斯消元法、矩阵法和迭代法。

一、高斯消元法高斯消元法是求解线性方程组的经典方法之一。

它的基本思想是通过一系列的行变换将方程组化为阶梯形或行最简形,从而得到方程组的解。

首先,将线性方程组写成增广矩阵的形式,其中增广矩阵是由系数矩阵和常数向量组成的。

然后,通过行变换将增广矩阵化为阶梯形或行最简形。

最后,通过回代法求解得到方程组的解。

高斯消元法的优点是简单易懂,容易实现。

但是,当方程组的规模较大时,计算量会很大,效率较低。

二、矩阵法矩阵法是求解线性方程组的另一种常见方法。

它的基本思想是通过矩阵运算将方程组化为矩阵的乘法形式,从而得到方程组的解。

首先,将线性方程组写成矩阵的形式,其中矩阵是由系数矩阵和常数向量组成的。

然后,通过矩阵运算将方程组化为矩阵的乘法形式。

最后,通过求逆矩阵或伴随矩阵求解得到方程组的解。

矩阵法的优点是计算效率高,适用于方程组规模较大的情况。

但是,对于奇异矩阵或非方阵的情况,矩阵法无法求解。

三、迭代法迭代法是求解线性方程组的一种近似解法。

它的基本思想是通过迭代计算逐步逼近方程组的解。

首先,将线性方程组写成矩阵的形式,其中矩阵是由系数矩阵和常数向量组成的。

然后,选择一个初始解,通过迭代计算逐步逼近方程组的解。

最后,通过设定一个误差限,当迭代结果满足误差限时停止计算。

迭代法的优点是计算过程简单,适用于方程组规模较大的情况。

但是,迭代法的收敛性与初始解的选择有关,有时可能无法收敛或收敛速度较慢。

综上所述,线性方程组的求解方法有高斯消元法、矩阵法和迭代法等。

每种方法都有其适用的场景和特点,选择合适的方法可以提高计算效率和解决实际问题的准确性。

在实际应用中,根据问题的具体情况选择合适的方法进行求解,能够更好地推动科学技术的发展和解决实际问题。

线代矩阵求解题技巧

线代矩阵求解题技巧

线代矩阵求解题技巧线性代数是数学中的一个重要分支,广泛应用于科学和工程学科中。

矩阵求解是线性代数中的一个基本概念,它是解线性方程组、求特征值和特征向量等问题的重要工具。

下面将介绍一些线性代数矩阵求解的基本技巧。

1. 高斯消元法高斯消元法是求解线性方程组的常用方法之一。

该方法的基本思想是通过矩阵变换将线性方程组化为上三角形方程组或者行最简形式,从而得到方程组的解。

高斯消元法具体步骤如下:(1)将线性方程组写成增广矩阵的形式;(2)选取一个主元(通常选取主对角线上的元素),并通过一个变换将该元素下面的所有元素置零;(3)对主元元素下面的行执行类似的操作,直到所有元素都变为零或者上三角矩阵形式;(4)回代求解未知数。

2. LU分解LU分解是将一个矩阵分解为下三角矩阵L和上三角矩阵U的乘积的方法。

这个方法通常用于解决多次使用相同矩阵求解线性方程组的场景。

LU分解的具体步骤如下:(1)设一个n阶方阵A,将其分解为A=LU;(2)通过高斯消元法将A化为上三角矩阵U;(3)构造下三角矩阵L,使得A=LU成立。

3. 矩阵的逆和伴随矩阵对于一个可逆矩阵A,可以通过求解逆矩阵来求解线性方程组。

设A为n阶可逆方阵,若存在一个n阶矩阵B,满足AB=BA=I,那么B称为A的逆矩阵,记作A^(-1)。

逆矩阵可以通过伴随矩阵来求解。

对于n阶矩阵A,它的伴随矩阵记作adj(A),它的定义为adj(A)=det(A)·A^(-1),其中det(A)是A的行列式。

逆矩阵的求解可以通过以下步骤:(1)求解矩阵A的行列式det(A);(2)求解矩阵A的伴随矩阵adj(A);(3)求解矩阵A的逆矩阵A^(-1),即A^(-1)=adj(A)/det(A)。

4. 特征值和特征向量特征值和特征向量在矩阵求解中起着重要作用。

设A 是一个n阶方阵,若存在一个非零向量X,满足AX=kX,其中k为常数,则k为A的一个特征值,X为对应的特征向量。

矩阵的求解方法和技巧

矩阵的求解方法和技巧

矩阵的求解方法和技巧矩阵的求解是线性代数中的一个重要问题,涉及到矩阵的性质、运算和解析方法等多个方面。

下面将介绍一些矩阵求解的常用方法和技巧。

1. 高斯消元法:高斯消元法是一种常用的线性方程组求解方法,适用于任意大小的方阵。

该方法的基本思想是通过矩阵的初等行变换,将方程组化为行最简的形式,从而求解出未知数的值。

具体操作步骤如下:1) 将方程组转化为增广矩阵形式;2) 选择一个主元(通常选择第一列的第一个非零元素);3) 将该主元所在的行除以主元得到1;4) 用主元所在行乘以矩阵的某一行,再与原行相减,使得该行的主元所在列的其他元素都为0;5) 选择下一个主元,重复步骤3和4,直至将方程组化为行最简的形式(即上三角形矩阵);6) 回代求解每个未知数的值。

2. 克拉默法则:克拉默法则适用于求解n元线性方程组(n个方程、n 个未知数),它是一种基于行列式的方法。

具体操作步骤如下:1) 将方程组转化为增广矩阵形式;2) 求出系数矩阵的行列式D;3) 分别将方程组的等号右边替换为未知数列矩阵,并求出每个矩阵列的行列式Dj;4) 利用克拉默法则的公式,未知数xi的值等于Dj除以D的商。

克拉默法则的优点是理论简单,适用于少数方程未知数的求解,但对于大规模的方程组来说,计算量较大。

3. LU分解法:LU分解是将矩阵按照一定的规则分解为一个下三角矩阵L和一个上三角矩阵U的乘积。

LU分解法适用于求解一大类线性方程组,对于已经进行了LU分解的矩阵,可以节省计算量,提高计算效率。

具体操作步骤如下:1) 对矩阵进行LU分解,得到下三角矩阵L和上三角矩阵U;2) 利用前代法(也称为Ly=b法)求解方程Ly=b,求出向量y;3) 利用回代法(也称为Ux=y法)求解方程Ux=y,求出向量x。

4. 矩阵的逆:矩阵的逆是指如果一个方阵存在逆矩阵,那么它和它的逆矩阵相乘得到一个单位矩阵。

矩阵的逆可以用来求解线性方程组的解。

具体操作步骤如下:1) 对矩阵A进行LU分解;2) 利用前代法求解方程Ly=b,求出向量y;3) 利用回代法求解方程Ux=y,求出向量x;4) 得到矩阵的逆矩阵A^-1。

矩阵的线性方程组解法

矩阵的线性方程组解法

矩阵的线性方程组解法线性方程组是数学中的重要概念,它描述了一组线性方程之间的关系。

而求解线性方程组的方法之一就是利用矩阵的运算进行计算。

本文将介绍几种常见的矩阵解法,以帮助读者更好地理解线性方程组求解的过程。

一、高斯消元法高斯消元法是求解线性方程组的基本方法之一。

它通过矩阵的行变换来简化系数矩阵,并最终将线性方程组化简为上三角形式。

步骤如下:1. 构建增广矩阵:将系数矩阵和常数向量合并成一个增广矩阵。

2. 初等行变换:利用加减乘除的运算,将增广矩阵化为上三角矩阵。

3. 回代求解:从方程组的最后一行开始,依次求解每个变量。

二、矩阵的逆解法对于非奇异矩阵(可逆矩阵),可以利用矩阵的逆求解线性方程组。

设线性方程组为Ax=b,其中A为系数矩阵,x为未知向量,b为常数向量。

解法如下:1. 判断A是否可逆:计算矩阵A的行列式,若不为零,则A可逆。

2. 计算逆矩阵:利用伴随矩阵法或初等变换法,求解A的逆矩阵A^-1。

3. 求解线性方程组:利用逆矩阵的性质,有 x=A^-1b。

三、克拉默法则克拉默法则是一种求解线性方程组的特殊方法,它通过计算行列式的比值来求解每个未知数的值。

步骤如下:1. 列出增广矩阵:将线性方程组化为增广矩阵形式。

2. 计算行列式:利用增广矩阵的系数部分,计算系数矩阵A的行列式det(A)。

3. 计算未知数:利用克拉默法则,有 xi=det(Ai)/det(A),其中Ai是用b替换第i列得到的矩阵。

四、LU分解法LU分解法是一种将矩阵A分解为下三角矩阵L和上三角矩阵U的方法。

通过LU分解后,可以利用前代法和回代法求解线性方程组。

步骤如下:1. 进行LU分解:将系数矩阵A分解为下三角矩阵L和上三角矩阵U,有 A=LU。

2. 利用前代法求解Ly=b:先解 Ly=b 得到y的值。

3. 利用回代法求解Ux=y:再解 Ux=y 得到x的值。

总结:本文介绍了矩阵的线性方程组解法,包括高斯消元法、矩阵的逆解法、克拉默法则和LU分解法。

矩阵与线性方程组求解

矩阵与线性方程组求解

矩阵与线性方程组求解在数学领域中,矩阵与线性方程组是非常重要的概念。

矩阵可以用来表示线性方程组,而线性方程组的求解则可以通过矩阵运算来实现。

本文将介绍矩阵与线性方程组的基本概念,并以实例演示如何使用矩阵来求解线性方程组。

一、矩阵的基本概念矩阵是由数个数按照一定的规则排列而成的矩形阵列。

一个矩阵通常用大写字母表示,例如A、B、C等。

矩阵中的每个数称为元素,用小写字母表示,例如a、b、c等。

矩阵的元素按照行和列的顺序排列,可以用下标表示。

例如,A的第i行第j列的元素可以表示为A[i,j]。

二、线性方程组的表示线性方程组是由一系列线性方程组成的方程集合。

每个线性方程可以表示为:a1x1 + a2x2 + ... + anxn = b其中,a1、a2、...、an是已知系数,x1、x2、...、xn是未知数,b是等号右侧的常数。

线性方程组可以用矩阵表示,形式为AX = B,其中A是系数矩阵,X是未知数矩阵,B是常数矩阵。

三、矩阵的运算1. 矩阵的加法:对应位置的元素相加。

2. 矩阵的减法:对应位置的元素相减。

3. 矩阵的数乘:矩阵中的每个元素乘以一个常数。

4. 矩阵的乘法:矩阵乘法是指两个矩阵相乘的运算,它的定义是:若A是m行n列的矩阵,B是n行p列的矩阵,则A与B的乘积C是一个m行p列的矩阵,其中C[i,j]等于A的第i行与B的第j列对应元素乘积的和。

四、矩阵的逆若一个n阶矩阵A存在一个n阶矩阵B,使得AB=BA=I,其中I是单位矩阵,则称矩阵A是可逆的,矩阵B称为A的逆矩阵。

逆矩阵的存在性是一个重要的性质,可以用来求解线性方程组。

五、使用矩阵求解线性方程组的步骤1. 将线性方程组转化为矩阵形式AX = B,其中A是系数矩阵,X是未知数矩阵,B是常数矩阵。

2. 判断矩阵A是否可逆,若不可逆则无解,若可逆则继续下一步。

3. 计算A的逆矩阵A^-1。

4. 将方程组转化为X = A^-1B的形式,即X = A^-1B。

矩阵的线性方程组解集求解

矩阵的线性方程组解集求解

矩阵的线性方程组解集求解线性方程组是线性代数中的重要概念,而解线性方程组就是求解方程组中未知数的解集。

在矩阵的线性方程组中,我们利用矩阵的运算和变换来求解线性方程组的解集。

本文将介绍矩阵的线性方程组求解的基本方法和步骤。

首先,我们来回顾一下线性方程组的定义:线性方程组是由多个线性方程组成的集合,其中每个方程都是线性的。

线性方程组的一般形式可以表示为:a1x1 + a2x2 + ... + anxn = b其中,a1, a2, ..., an 是系数,x1, x2, ..., xn 是未知数,b 是常数。

对于一个含有 m 个方程和 n 个未知数的线性方程组,可以使用矩阵的形式来表示:AX = B其中,A 是一个 m×n 矩阵,X 是一个 n×1 矩阵(列向量),B 是一个 m×1 矩阵(列向量)。

在这个形式下,我们的目标是求解 X 的取值。

下面,我们将介绍两种常见的矩阵的线性方程组求解方法:高斯消元法和矩阵的逆。

1. 高斯消元法高斯消元法是一种基本的矩阵求解方法,其基本思想是通过矩阵的初等行变换将线性方程组转化为上三角形式,从而求解未知数的值。

具体步骤如下:(1)将线性方程组的系数矩阵 A 与常数矩阵 B 合并为增广矩阵[A|B]。

(2)利用矩阵的初等行变换,将增广矩阵化为上三角形式。

(3)反向替换,从最后一行开始,求解每一个未知数的值。

(4)得到线性方程组的解集。

2. 矩阵的逆矩阵的逆是线性方程组求解的另一种方法。

对于方阵 A,如果存在一个方阵 B,使得 A×B = B×A = I,其中 I 是单位矩阵,则称矩阵 A 是可逆的,B 是 A 的逆矩阵。

利用矩阵的逆矩阵,我们可以通过以下方式求解线性方程组。

具体步骤如下:(1)对于矩阵 A,若 A 可逆,则将方程组 AX = B 两边同时左乘A 的逆矩阵 A^(-1),得到 X = A^(-1)B。

(2)计算矩阵 A 的逆矩阵 A^(-1)。

矩阵求解技巧

矩阵求解技巧

矩阵求解技巧矩阵是线性代数中的一个重要概念,矩阵求解是线性方程组求解的一种常见方法。

本文将介绍一些常用的矩阵求解技巧。

1. 矩阵的基本运算:加法和乘法是矩阵的两个基本运算。

矩阵的加法满足交换律和结合律,即(A+B)+C=A+(B+C)和A+B=B+A。

矩阵的乘法不满足交换律,但满足结合律,即A(BC)=(AB)C。

矩阵乘法有着广泛的应用,可以用来解决线性方程组和矩阵方程等问题。

2. 矩阵的转置:矩阵的转置是将矩阵的行和列对调得到的新矩阵。

设A为m×n的矩阵,其转置矩阵记作A^T,其为n×m的矩阵,且满足(A^T)ij=Aji。

转置矩阵具有一些重要的性质,如(A^T)^T=A,(A+B)^T=A^T+B^T,和(A×B)^T=B^T×A^T。

转置矩阵可以用来求解线性方程组的转置方程组,即将线性方程组的系数矩阵转置后进行求解。

3. 矩阵的行列式:矩阵的行列式是一个数值,它用来判断方阵是否可逆以及计算矩阵的逆。

矩阵的行列式具有一些重要的性质,如交换行(列)互换行列式的值不变,行(列)线性相关则行列式的值为0,两行(列)互换行列式的值取负等。

行列式可以通过展开定理来计算,即将矩阵按某一行(列)展开成若干个元素的代数和,再逐行(列)计算这些代数和。

4. 矩阵的逆:对于一个可逆矩阵A,可以求出其逆矩阵A^-1,满足A×A^-1=I,其中I为单位矩阵。

矩阵的逆可以通过行列式和伴随矩阵来计算,即A^-1=adj(A)/|A|,其中adj(A)为矩阵A的伴随矩阵,|A|为矩阵A的行列式。

求解矩阵的逆可以用来解决线性方程组的解。

5. 高斯消元法:高斯消元法是一种用来求解线性方程组的常见方法。

通过一系列的行变换,可以将方程组化为上三角形或者对角形的形式,进而求解出方程组的解。

高斯消元法的基本思想是将方程组的系数矩阵化为上三角矩阵,然后逐行回代求解出未知数的值。

6. 初等变换法:初等变换法是求解线性方程组的另一种方法。

使用矩阵运算解决线性方程组问题

使用矩阵运算解决线性方程组问题

使用矩阵运算解决线性方程组问题线性方程组是数学中重要的概念,它涉及到多个未知量之间的关系,因此在科学研究和工程应用中经常出现。

当未知量的个数增加,手动计算线性方程组就变得繁琐和复杂。

fortunately,我们可以使用矩阵运算解决这个问题。

矩阵是一个二维数组,其中包含数或变量。

我们可以用矩阵来表示线性方程组中的系数和解向量。

例如,下面是一个包含3个方程和3个未知量的线性方程组:2x + y + z = 83x + 2y + z = 11x + y + z = 6如果我们将系数和解向量系数放入矩阵中,我们可以得到以下矩阵:[2, 1, 1 [83, 2, 1 * x = 111, 1, 1] 6]在上面的矩阵中,第一个矩阵包含了线性方程组的系数,第二个矩阵包含了解向量。

如果我们用[A]表示系数矩阵,[X]表示解矩阵,那么我们可以将线性方程组写成一般的矩阵乘法形式:[A] * [X] = [B]现在的问题是如何求解[x]。

我们可以使用矩阵代数的方法来解决这个问题。

具体来说,我们可以将[A]的逆矩阵乘以[B],得到[X]的表达式:[X] = [A] ^ (-1) * [B]其中,[A] ^ (-1)表示[A]的逆矩阵,它是一个矩阵,与[A]的乘积将得到一个单位矩阵。

如果[A]没有逆矩阵,那么我们将无法使用这种方法来求解[X]。

现在,让我们看看如何使用Python代码来解决线性方程组。

```Pythonimport numpy as np# 定义系数矩阵A和解向量矩阵BA = np.array([[2,1,1], [3,2,1], [1,1,1]])B = np.array([8, 11, 6])# 计算逆矩阵并求解XA_inv = np.linalg.inv(A)X = np.dot(A_inv, B)# 打印求解结果print(X)```上面的代码使用NumPy库中的linalg模块计算了[A]的逆矩阵,并求解了[X]。

矩阵运算与线性方程组的解法

矩阵运算与线性方程组的解法

矩阵运算与线性方程组的解法在数学中,矩阵运算是一种重要的工具,它与线性方程组的解法密切相关。

矩阵可以看作是一个由数字组成的矩形阵列,而矩阵运算则是对这些数字进行加减乘除等操作的过程。

线性方程组则是由一系列线性方程组成的方程组,其中每个方程都是关于未知数的线性函数。

通过矩阵运算,我们可以有效地解决线性方程组,并得到方程组的解。

首先,我们来介绍一些基本的矩阵运算。

矩阵的加法和减法是最简单的运算,它们的规则与普通的加法和减法类似,只需要对应位置上的数字相加或相减即可。

例如,对于两个相同大小的矩阵A和B,它们的加法可以表示为A + B = C,其中C的每个元素都是A和B对应位置上元素的和。

同样地,矩阵的减法也是类似的,只需将对应位置上的元素相减即可。

另一种常见的矩阵运算是矩阵的乘法。

矩阵乘法的定义相对复杂一些,需要注意一些规则。

对于两个矩阵A和B,它们的乘法可以表示为A * B = C,其中C的每个元素都是A的对应行与B的对应列的乘积之和。

具体来说,如果A是一个m行n列的矩阵,B是一个n行p列的矩阵,那么C就是一个m行p列的矩阵。

在进行矩阵乘法时,我们需要确保第一个矩阵的列数与第二个矩阵的行数相等,否则乘法将无法进行。

矩阵乘法的应用非常广泛,特别是在线性方程组的解法中。

线性方程组可以用矩阵的形式表示为Ax = b,其中A是一个m行n列的矩阵,x是一个n行1列的列向量,b是一个m行1列的列向量。

如果我们已知A和b,那么我们可以通过求解x来得到线性方程组的解。

这就涉及到了矩阵的逆和矩阵的转置。

矩阵的逆是一个非常重要的概念,它表示一个矩阵与其逆矩阵相乘等于单位矩阵。

单位矩阵是一个对角线上的元素都为1,其它元素都为0的矩阵。

如果一个矩阵存在逆矩阵,那么我们可以通过乘以该逆矩阵来解线性方程组。

具体来说,如果A的逆矩阵存在,那么方程组的解可以表示为x = A^(-1) * b。

然而,不是所有的矩阵都存在逆矩阵,只有满足一定条件的矩阵才能求逆。

矩阵与方程组的解法

矩阵与方程组的解法

矩阵与方程组的解法在线性代数中,矩阵与方程组是重要的研究对象。

矩阵可以被用来表示一组线性方程,而方程组则是由多个线性方程组成的系统。

解决方程组的一个基本方法是使用矩阵运算。

本文将介绍几种常见的矩阵与方程组的解法。

一、高斯消元法高斯消元法是一种基本的线性方程组求解方法。

它通过一系列的行变换将方程组转化为简化行阶梯形式。

具体步骤如下:1. 将方程组的系数矩阵与常数矩阵合并为增广矩阵。

2. 通过行变换,将矩阵转化为上三角形矩阵,即每一行从左至右的第一个非零元素为1,其它元素均为0。

3. 从最后一行开始,逐行用“倍加”法将每一行的首个非零元素化为1,同时将其它行的相应元素消为0。

通过高斯消元法,可以得到简化行阶梯形矩阵,从而求得方程组的解。

二、矩阵求逆法对于方程组AX=B,其中A为系数矩阵,X为未知数矩阵,B为常数矩阵,如果A可逆,则可以通过以下公式求解:X = A^-1 * B其中A^-1为A的逆矩阵。

为了求得逆矩阵,可以使用伴随矩阵法或初等变换法。

伴随矩阵法:1. 求得矩阵A的伴随矩阵Adj(A),即将A中每个元素的代数余子式按一定次序排成一个矩阵。

2. 计算A的行列式det(A)。

3. 若det(A)不等于0,则A可逆,将伴随矩阵Adj(A)除以det(A),即可得到逆矩阵A^-1。

初等变换法:1. 构造一个n阶单位矩阵I,将A和I相连接成增广矩阵(A|I)。

2. 通过初等行变换将矩阵A转化为上三角矩阵。

3. 继续进行初等行变换,将上三角矩阵转化为单位矩阵。

4. 此时,矩阵I右侧的矩阵即为矩阵A的逆矩阵A^-1。

三、克拉默法则对于n个未知数和n个线性方程的齐次线性方程组,克拉默法则提供了一种求解方法。

该方法通过计算每个未知数的系数矩阵的行列式来求解。

设方程组AX=B,其中A为系数矩阵,X为未知数矩阵,B为常数矩阵。

如果矩阵A的行列式det(A)不为0,则可以通过以下公式求解:X_i = det(A_i) / det(A)其中X_i为方程组的第i个未知数,A_i是将A矩阵中第i列替换为常数矩阵B后得到的矩阵。

矩阵解方程组的方法

矩阵解方程组的方法

矩阵解方程组的方法全文共四篇示例,供读者参考第一篇示例:矩阵是线性代数中的重要概念,而矩阵解方程组也是线性代数中的基础内容之一。

在实际应用中,往往会遇到包含多个未知数和多个方程的方程组,如何通过矩阵的方法来高效地解决这些方程组成了一项重要的技能。

本文将介绍矩阵解方程组的方法,包括高斯消元法、矩阵求逆法以及克拉默法则等。

一、高斯消元法高斯消元法是解线性方程组的一种基本方法。

它的基本思想是通过对方程组进行一系列的行变换,将其转化为简化的阶梯形或行最简形,从而得到方程组的解。

下面通过一个具体的例子来说明高斯消元法的应用。

考虑如下的线性方程组:\begin{cases}2x + 3y - z = 1 \\3x + 2y + z = 3 \\x - y + 2z = 9\end{cases}首先将上述的方程组写成增广矩阵的形式:然后通过一系列的行变换,将增广矩阵转化为简化的阶梯形:\begin{bmatrix}1 & -1 &2 & | & 9 \\0 & 5 & -5 & | & -10 \\0 & 0 & 1 & | & 0\end{bmatrix}最后通过反向代入法,可以求得方程组的解为x=2, y=-2, z=0。

二、矩阵求逆法A = \begin{bmatrix}1 &2 \\2 & 1\end{bmatrix},X = \begin{bmatrix}x \\y\end{bmatrix},B = \begin{bmatrix}3 \\4\end{bmatrix}然后求解系数矩阵A 的逆矩阵A^{-1}:最后通过矩阵乘法,可以求得方程组的解为X = A^{-1}B =\begin{bmatrix}1 \\1\end{bmatrix}。

三、克拉默法则首先求解系数矩阵A 的行列式|A|:然后求解系数矩阵A 分别替换成结果矩阵B 的行列式|B_x| 和|B_y|:最后通过克拉默法则,可以求得方程组的解为x = \frac{|B_x|}{|A|} = \frac{-5}{-3} = \frac{5}{3},y = \frac{|B_y|}{|A|} = \frac{-2}{-3} = \frac{2}{3}。

线性代数方程组求解

线性代数方程组求解

线性代数方程组求解线性代数方程组是线性代数中一个重要的概念,它描述了一组线性方程的集合。

求解线性代数方程组是线性代数中的一项基本任务,它对于解决实际问题和数学推理都具有重要意义。

本文将介绍线性代数方程组的求解方法,包括矩阵消元法和矩阵的逆。

矩阵消元法矩阵消元法是求解线性代数方程组的一种常用方法。

它通过消元和回代两个步骤来求解方程组。

具体步骤如下:1.构造增广矩阵:将线性方程组的系数矩阵和常数向量按列合并,得到增广矩阵。

2.初等行变换:对增广矩阵进行初等行变换,将其转化为阶梯形矩阵或行最简形矩阵。

3.回代求解:从最后一行开始,逐步代入求解未知数,得到方程组的解。

矩阵消元法的优点是简单直观,容易理解和实现。

然而,当矩阵的行数和列数较大时,矩阵消元法的计算复杂度会很高,需要消耗大量的时间和计算资源。

矩阵的逆除了矩阵消元法,我们还可以使用矩阵的逆来求解线性代数方程组。

矩阵的逆是一个与原矩阵相乘后得到单位矩阵的矩阵。

对于给定的线性方程组Ax=b,我们可以通过以下步骤求解:1.计算矩阵A的逆矩阵A^-1。

2.将方程组转化为x=A^-1b。

3.计算x的值。

求解矩阵的逆的方法有多种,包括伴随矩阵法和初等变换法等。

其中,伴随矩阵法是一种常用的求解逆矩阵的方法。

它通过求解伴随矩阵和矩阵的行列式来计算矩阵的逆。

使用矩阵的逆求解线性代数方程组的优点是计算速度快,尤其适用于行数和列数较大的情况。

然而,矩阵的逆并不是所有矩阵都存在,如果矩阵不存在逆矩阵或逆矩阵存在但计算困难,则无法使用矩阵的逆求解方程组。

小结线性代数方程组的求解是线性代数中的一个重要问题,涉及到实际问题的解决和数学推理。

本文介绍了两种求解线性代数方程组的方法:矩阵消元法和矩阵的逆。

矩阵消元法通过消元和回代的过程来求解方程组,简单直观但计算复杂度较高;矩阵的逆通过求解矩阵的逆矩阵来求解方程组,计算速度快但存在逆矩阵不存在的情况。

根据具体问题的需求和矩阵性质的条件,选择合适的方法来求解线性代数方程组是十分重要的。

线性方程组的解法与矩阵表示

线性方程组的解法与矩阵表示

线性方程组的解法与矩阵表示线性方程组是数学中常见的问题,它涉及到多个线性方程的同时求解。

求解线性方程组的方法有很多,其中一种常用的方法是矩阵表示法。

本文将介绍线性方程组的基本概念,不同的解法以及如何使用矩阵表示来求解线性方程组。

一、线性方程组的基本概念线性方程组是由多个线性方程组成的方程集合。

一般来说,线性方程组可以表示为:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ = b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ = b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ = bₙ其中,a₁₁, a₁₂, ..., aₙₙ是线性方程组的系数,x₁, x₂, ..., xₙ是待求解的变量,b₁, b₂, ..., bₙ是常数。

二、线性方程组的解法1. 列主元消元法:列主元消元法是一种常用的求解线性方程组的方法。

其基本思想是通过消元将方程组转化为上三角矩阵的形式,进而求解待求变量的值。

步骤如下:1)将方程组的系数以及常数列成矩阵形式(增广矩阵)。

2)通过初等行变换将增广矩阵化为上三角矩阵。

3)从最后一行开始,依次求解各个变量的值。

2. 矩阵求逆法:矩阵求逆法是另一种常用的求解线性方程组的方法。

其基本思想是通过求解矩阵的逆矩阵,进而得到线性方程组的解。

步骤如下:1)将方程组的系数矩阵以及常数列形成增广矩阵。

2)求解系数矩阵的逆矩阵。

3)将逆矩阵与常数列相乘,得到待求变量的值。

3. 克莱姆法则:克莱姆法则是一种基于行列式的方法,适用于二元线性方程组的求解。

对于一个包含n个未知数的线性方程组,克莱姆法则指出,如果系数矩阵的行列式不等于零,则线性方程组有唯一解。

否则,如果系数矩阵的行列式等于零,则线性方程组无解或有无穷多解。

四、矩阵表示法求解线性方程组使用矩阵表示法来求解线性方程组可以简化计算过程。

将线性方程组的系数矩阵记为A,待求变量的列向量记为X,常数列向量记为B,那么线性方程组可以用矩阵表示为AX=B。

用矩阵求解线性方程组

用矩阵求解线性方程组

用矩阵求解线性方程组在数学中,线性方程组是描述多个未知量和它们之间关系的方程组。

如果未知量数目等于方程数目,并且每个方程都是线性的,则方程组称为“线性方程组”。

解决线性方程组的常用方法之一是使用矩阵。

在本文中,我们将讨论使用矩阵求解线性方程组的方法。

1. 线性方程组和矩阵线性方程组可以用矩阵形式表示。

例如,以下线性方程组:2x + 3y - z = 1x - y + 2z = 3x + 2y - z = 0可以表示为矩阵方程:\begin{bmatrix} 2 & 3 & -1 \\ 1 & -1 & 2 \\ 1 & 2 & -1 \end{bmatrix}\begin{bmatrix} x \\ y \\ z \end{bmatrix}=\begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix}其中,矩阵\begin{bmatrix} 2 & 3 & -1 \\ 1 & -1 & 2 \\ 1 & 2 & -1 \end{bmatrix}称为系数矩阵,向量\begin{bmatrix} x \\ y \\ z \end{bmatrix}称为未知向量,向量\begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix}称为常向量。

2. 矩阵求解线性方程组的基本思路将线性方程组转换为矩阵方程后,可以使用矩阵的逆来求解未知向量。

具体来说,对于实数域上的矩阵方程AX = B如果矩阵A可逆,则可以将等式两边左乘A的逆矩阵A^-1,得到X = A^(-1)B其中,X和B都是列向量,A^-1是A的逆矩阵。

逆矩阵的定义是,如果存在一个矩阵A^-1,使得A^-1A = I其中,I是单位矩阵,则称A是可逆的,A^-1是A的逆矩阵。

对于实数域上的矩阵,如果矩阵的行列式不为0,则该矩阵可逆。

如何用矩阵解决线性方程组

如何用矩阵解决线性方程组

如何用矩阵解决线性方程组矩阵是解决线性方程组的强大工具,其在数学和工程领域中被广泛应用。

本文将介绍如何使用矩阵解决线性方程组的步骤和方法,以及说明其在实际问题中的应用。

一、什么是线性方程组线性方程组是由多个线性方程组成的方程系统。

一个线性方程的一般形式可以表示为:a₁x₁ + a₂x₂ + ... + aₙxₙ = b。

其中,a₁, a₂, ...,aₙ是常数,x₁, x₂, ..., xₙ是待解变量,b是常数项。

二、使用矩阵表示线性方程组为了使用矩阵求解线性方程组,我们可以将线性方程组的系数矩阵、变量矩阵和常数矩阵表示为如下形式:[A] * [X] = [B]其中,[A]是一个m×n的矩阵,[X]是一个n×1的列向量,[B]是一个m×1的列向量。

m代表方程的个数,n代表变量的个数。

三、高斯消元法高斯消元法是解决线性方程组的一种常用方法。

它通过矩阵的行变换来化简方程组,使得方程组的解更易求得。

1. 构建增广矩阵为了使用高斯消元法,我们需要将线性方程组的系数矩阵和常数矩阵合并成一个增广矩阵。

增广矩阵的形式如下:[A | B]2. 初等行变换通过初等行变换,我们可以将增广矩阵化简为一个上三角矩阵或者行最简形矩阵。

初等行变换包括以下三种操作:a) 交换两行b) 用一个非零常数乘以某一行c) 将某一行的倍数加到另外一行上通过不断进行初等行变换,我们可以将增广矩阵化简为上三角矩阵。

上三角矩阵的解非常容易求得。

3. 回代求解根据上三角矩阵的特点,我们可以从最后一行开始,逐个求解变量的值。

通过回代法,我们可以求得线性方程组的解。

四、使用逆矩阵求解除了高斯消元法,我们还可以使用逆矩阵来求解线性方程组。

逆矩阵的定义为:若矩阵A与其逆矩阵A⁻¹相乘后等于单位矩阵I,则称A 为可逆矩阵。

使用逆矩阵求解线性方程组的步骤如下:1. 求解逆矩阵首先,我们需要求解系数矩阵[A]的逆矩阵[A⁻¹]。

线性方程组的消元法与矩阵法

线性方程组的消元法与矩阵法

线性方程组的消元法与矩阵法线性方程组是数学中的一个重要概念,它广泛应用于物理、经济、金融等领域中。

在解决实际问题中,我们通常采用消元法和矩阵法来求解线性方程组。

一、线性方程组消元法消元法是一种代数方法,可以用来解决线性方程组。

这种方法的基本思想是先通过一系列等式变形,消去某些未知数,以便求出其他未知数。

这样,我们就能逐步减少未知数的数量,最终得出一个或多个未知数的值。

以三元一次方程组为例:$$\begin{cases}2x+3y-4z=9\\3x-2y+z=-6\\x+4y-3z=5\end{cases}$$消元法的一般步骤如下:1. 将方程组写成增广矩阵的形式。

$$ \begin{bmatrix} 2 & 3 & -4 & | & 9 \\ 3 & -2 & 1 & | & -6 \\ 1 & 4 & -3 & | & 5 \end{bmatrix} $$2. 选取一行或一列作为基准行或基准列,并通过列运算或行运算将其他行或列化成与之相似的形式。

3. 重复第2步,逐步消去所有未知数。

在这个例子中,我们选取第一行第一列的元素2作为基准元。

我们可以将第二行的第一列元素3变为0,通过将第二行乘以$-\frac{3}{2}$,再加到第一行上。

$$ \begin{bmatrix} 2 & 3 & -4 & | & 9 \\ 0 & -\frac{13}{2} &\frac{11}{2} & | & -\frac{33}{2} \\ 1 & 4 & -3 & | & 5 \end{bmatrix} $$然后,我们可以选取第二行第二列的元素$-\frac{13}{2}$作为基准元,将第三行的第二列元素4变为0,通过将第三行乘以$-\frac{1}{13}$,再加到第二行上。

线性方程组的矩阵求法

线性方程组的矩阵求法

线性方程组的矩阵求法摘要:关键词:第一章引言矩阵及线性方程组理论是高等代数的重要容, 用矩阵方法解线性方程组又是人们学习高等代数必须掌握的根本技能,本文将给出用矩阵解线性方程组的几种方法,通过对线性方程组的系数矩阵〔或增广矩阵〕进展初等变换得到其解,并列举出几种用矩阵解线性方程组的简便方法。

第二章用矩阵消元法解线性方程组第一节预备知识定义1:一个矩阵中不等于零的子式的最大阶数叫作这个矩阵的秩。

定理1:初等变换把一个线性方程组变为一个与它同解的线性方程组。

定义2:定义假设阶梯形矩阵满足下面两个条件:〔1〕B的任一非零行向量的第一个非零分量〔称为的一个主元〕为1;〔2〕B中每一主元是其所在列的唯一非零元。

则称矩阵为行最简形矩阵。

第二节1.对一个线性方程组施行一个初等变换,相当于对它的增广矩阵施行一个对应的行初等变换,而化简线性方程组相当于用行初等变换化简它的增广矩阵,因此,我们将要通过花间矩阵来讨论化简线性方程组的问题。

这样做不但讨论起来比拟方便,而且能给我们一种方法,就一个线性方程组的增广矩阵来解这个线性方程组,而不必每次都把未知量写出来。

下面以一般的线性方程组为例,给出其解法:〔1〕11112211 211222221122,,.n nn nm m mn n m a x a x a x ba x a x a x ba x a x a x b+++=+++=+++=根据方程组可知其系数矩阵为:〔2〕111212122212nn m m mna a aa a aa a a⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭其增广矩阵为:〔3〕11121121222212nnm m mn m a a a ba a ab a a a b ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭根据〔2〕及矩阵的初等变换我们可以得到和它同解的线性方程组,并很容易得到其解。

定理2:设A是一个m行n列矩阵A=111212122212nn m m mna a aa a aa a a⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭通过行初等变换和第一种列初等变换能把A化为以下形式〔4〕1*****01****0001**0000⎛⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎝⎭进而化为〔5〕1,112,12,11000010000010000r nr nr r rnc cc cc c+++⎛⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎝⎭这里r≥0,r≤m,r≤n,*表示矩阵的元素,但不同位置上的*表示的元素未必相等。

矩阵求方程的解

矩阵求方程的解

矩阵求方程的解
矩阵可以被用来求解线性方程组。

线性方程组可以表示为以下形式:
A * x = b
其中,A 是一个系数矩阵,x 是未知向量,b 是已知向量。

矩阵求解线性方程组主要有两种方法:逆矩阵法和高斯消元法。

1.逆矩阵法:如果矩阵A 是可逆的(即行列式不等于零),
则可以通过以下公式求解线性方程组的解:
x = A⁻¹ * b
其中,A⁻¹ 表示矩阵 A 的逆矩阵,* 表示矩阵的乘法运算。

2.高斯消元法:高斯消元法是通过变换线性方程组的形式,
将其转化为上三角形式或者简化行阶梯形式。

然后,可以
通过回代的方式求解线性方程组的解。

具体步骤如下:
•用初等行变换将矩阵A 转化为上三角形式(或简化行阶梯形式)。

•根据变换后的矩阵形式,可以直接得到解的结果或通过回代得到解。

需要注意的是,在实际应用中,矩阵方程的求解可能会遇到多解、无解或条件问题等情况。

因此,在使用矩阵求解线性方程组时,需要对方程组的性质进行仔细分析,并进行适当的处理。

矩阵求方程组的解

矩阵求方程组的解

要求解一个线性方程组,可以使用矩阵来表示。

假设我们有以下形式的线性方程组:
Ax = b
其中A是一个m×n的系数矩阵,x是一个n维列向量(未知数向量),b是一个m维列向量(常数向量)。

要求解这个方程组,可以采用以下步骤:
1.确定系数矩阵A和常数向量b的维度。

2.如果A是一个方阵且可逆,即det(A) ≠0,则可以通过求解x = A^(-1) b来计算未知数
向量x。

其中A^(-1)是A的逆矩阵。

3.如果A不是方阵或不可逆,那么可以使用线性代数的其他方法来求解方程组,如高斯
消元法、LU分解、QR分解等。

●高斯消元法:通过将方程组转化为上三角矩阵形式,然后回代求解未知数。

●LU分解:将系数矩阵A分解为一个下三角矩阵L和一个上三角矩阵U,然后利用
LU分解的性质求解方程组。

●QR分解:将系数矩阵A分解为一个正交矩阵Q和一个上三角矩阵R,然后通过QR
分解的性质求解方程组。

这些方法可以根据具体的情况和计算要求选择使用。

需要注意的是,当方程组存在无穷多解或没有解时,矩阵求解可能会得到特殊结果,如最小二乘解等。

总之,通过将线性方程组转化为矩阵形式,并应用逆矩阵、高斯消元法、LU分解、QR分解等方法,我们可以求解线性方程组并得到未知数向量x的解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性方程组的矩阵求法摘要:关键词:第一章引言矩阵及线性方程组理论是高等代数的重要内容, 用矩阵方法解线性方程组又是人们学习高等代数必须掌握的基本技能,本文将给出用矩阵解线性方程组的几种方法,通过对线性方程组的系数矩阵(或增广矩阵)进行初等变换得到其解,并列举出几种用矩阵解线性方程组的简便方法。

第二章用矩阵消元法解线性方程组第一节预备知识定义1:一个矩阵中不等于零的子式的最大阶数叫作这个矩阵的秩。

定理1:初等变换把一个线性方程组变为一个与它同解的线性方程组。

定义2:定义若阶梯形矩阵满足下面两个条件:(1)B的任一非零行向量的第一个非零分量(称为的一个主元)为1;(2)B中每一主元是其所在列的唯一非零元。

则称矩阵为行最简形矩阵。

第二节1.对一个线性方程组施行一个初等变换,相当于对它的增广矩阵施行一个对应的行初等变换,而化简线性方程组相当于用行初等变换化简它的增广矩阵,因此,我们将要通过花间矩阵来讨论化简线性方程组的问题。

这样做不但讨论起来比较方便,而且能给我们一种方法,就一个线性方程组的增广矩阵来解这个线性方程组,而不必每次都把未知量写出来。

下面以一般的线性方程组为例,给出其解法:(1)11112211 211222221122,,.n nn nm m mn n m a x a x a x ba x a x a x ba x a x a x b+++=+++=+++=根据方程组可知其系数矩阵为:(2)111212122212nn m m mna a aa a aa a a⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭其增广矩阵为:(3)11121121222212nnm m mn m a a a ba a ab a a a b ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭根据(2)及矩阵的初等变换我们可以得到和它同解的线性方程组,并很容易得到其解。

定理2:设A是一个m行n列矩阵A=111212122212nn m m mna a aa a aa a a⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭通过行初等变换和第一种列初等变换能把A化为以下形式(4)1*****01****0001**0000⎛⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎝⎭进而化为(5)1,112,12,11000010000010000r nr nr r rnc cc cc c+++⎛⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎝⎭这里r≥0,r≤m, r≤n ,*表示矩阵的元素,但不同位置上的*表示的元素未必相等。

即任何矩阵都可以通过初等变换化为阶梯形,并进而化为行最简形现在考察方程组(1)的增广矩阵(3),由定理2我们可以对(1)的系数矩阵(2)施行一次初等变换,把它化为矩阵(5),对增广矩阵(3)施行同样的初等变换,那么(3)可以化为以下形式:(6)1,1112,122,111000010000010000r n r n r r rn r r m c c d c c d c c d d d ++++⎛⎫⎪⎪⎪⎪⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭与(6)相当的线性方程组是:(7)112111,1112,122,11,,,0,0,r n r n rr n i r i n i i r i n i i r r i rn i r r m x c x c x d x c x c x d x c x c x d d d ++++++++++=+++=+++=== 这里1i ,2i ,…,n i 是1,2,…,n 的一个排列,由于方程组(7)可以由方程组(1)通过方程组的初等变换以及交换未知量的位置而得到,所以由定理1,方程组(7)与方程组(1)同解。

因此,要求方程组(1),只需解方程组(7),但方程组(7)是否有解以及有怎样的解很容易看出:情形(1),r<m,而1r d +,…, m d 不全为零,这时方程组(7)无解,因为它的后m-r 个方程中至少有一个无解。

因此方程组(1)也无解。

情形(1),r=m 或r<m 而1r d +,…, m d 全为零,这时方程组(7)与方程组(8)112111,1112,122,1,,r n r n r r n i r i n i i r i n i i r r i rn i rx c x c x d x c x c x d x c x c x d +++++++++=+++=+++= 同解。

当r=n 时,方程组(8)有唯一解,就是ti x =td ,t=1,2,…,n.这也是方程组(1)的唯一解当r<n 时方程组(8)可以改写为(9)1121111,1122,12,1,,r n r n r r ni r i n i i r i n i i r r r i rn i x d c x c x x d c x c x x d c x c x ++++++=---=---=---于是,给予未知量1r i x +,…,ni x 以任意一组数值1r i k +,…ni k ,就得到(8)的一个解:1111111,11,1,,,.r n r r n r r n n i r i n i i r r r i rn i i i i i x d c k c k x d c k c k x k x k ++++++=---=---==这也是(1)的一个解。

由于1r i k +,…ni k 可以任选,用这一方法可以得到(1)的无穷多解。

另一方面,由于(8)的任一解都必须满足(9),所以(8)的全部解,亦即(1)的全部解都可以用以上方法得到。

例1:解线性方程组123412412341234235,243,2328,29521.x x x x x x x x x x x x x x x +++=+-=---++=+--=-解:方程组的增广矩阵是123152401312328129521⎛⎫⎪-- ⎪⎪--⎪---⎝⎭ 进行初等行变换可得到矩阵最简形131222113001260000000000⎛⎫-- ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪⎝⎭ 0 对应的线性方程组是124341322211326x x x x x +-=-+=把移到右边作为自由未知量,得原方程组的一般解12434312,22131.62x x x x x =--+=-第三章 用初等变换解线性方程组定义2:设B 为m ⨯n 行最简形矩阵, 按以下方法作s ⨯n 矩阵C:对任一i : 1i s ≤≤, 若有B 的某一主元位于第i 列, 则将其所在行称为C 的第i 行, 否则以n 维单位向量(0,,0,1,0,0)i e =-作为C 的第i行, 称C为B的s⨯n单位填充矩阵(其中1i s≤≤).显然, 单位填充矩阵的主对角线上的元素只能是“1”或“ -1” , 若主对角线上某一元素为“-1” , 则该元素所在列之列向量称为C的“ J一列向量”。

定义3:设B为行最简形矩阵, 若B的单位填充矩阵C的任一“ J一列向量”均为以B为系数矩阵的齐次线性方程组:(1)1111221211222211220,0,0.n nn nm m mn nb x b x b xb x b x b xb x b x b x+++=+++=+++=(1)的解向量,则陈C与B是匹配的(也说B与C是匹配的)。

引理1:设B为行最简形矩阵,若将B的第i列与第j列交换位置所得矩阵仍为行最简形矩阵,则:(Ⅰ)将的单位填充矩阵的第行与第行交换位置,第列与第列交换位置所得矩阵为单位填充矩阵,其中(Ⅱ)若C与B是匹配的,则'C与'B也是匹配。

证明:结论(Ⅰ)显然成立,下证(Ⅱ),因为C与B是匹配的,故C只能是n⨯n矩阵, 从而'C也是n⨯n矩阵, 设以B为系数矩阵的方程组为(1), 以'B为系数矩阵的方程组为(1),以'B为系数矩阵的方程组为:'''1111221'''2112222'''11220,0,0.n nn nm m mn nb x b x b xb x b x b xb x b x b x+++=+++=+++=(2)则由B与'B的关系可知对方程组(1)进行变量代换。

11,,j j n nx y x y x y ===就得到方程组(2), 于是方程组(1)的任一解向量交换i 、j 两个分量的位置后就是方程组(2)的一个解向量, 又从C 与'C 的关系可知, 'C 的任一“ J 一列向量”均可由C 的某一“ J 一列向量”交换i 、j 两个分量的位置后得到, 从而由C 与B 匹配知'C 与'B 也是匹配的。

引理2:任一m ⨯n 行最简形矩阵与其n ⨯n 单位填充矩阵C 是匹配的。

证明:1设1,11,212,12,22,1,2100010010*******0r r n r r n r r r r rn n nb b b b b b B b b b ++++++⨯⎛⎫⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ (3) 则以为系数矩阵的齐次线性方程组为:11,111,22122,112,222,11,220,0,0r r r r n n r r r r n n r r r r r r r mn n x b x b x b x x b x b x b x x b x b x b x ++++++++++++++++=++++=++++= (4)而B 的单位填充矩阵为:1,11,212,12,22,1,2100010010*******1r r n r r n r r r r rn n nb b b b b b C b b b ++++++⨯⎛⎫⎪ ⎪ ⎪ ⎪= ⎪ ⎪- ⎪ ⎪ ⎪ ⎪-⎝⎭ (5) 其所有J 一列向量为11,1,121,2,21,,(,,1,0,0)(,,0,1,0)(,,0,0,1)r r r r r r r r n nr n b b b b b b ηηη++++++=-=-=-显然它们都是方程组(4)的解, 即B 与C 是匹配的.2,一般形式的行最简形矩阵B 显然总可以通过一系列的第二类初等列变换(变换两列的位置)化为(3)的形式, 从而B 的单位填充矩阵C 通过相应的初等行、列变换就变成矩阵(5), 由于这种变换是可递的, 据引理2及引理1(Ⅱ) 知B 与C 是匹配的。

定理3:设齐次线性方程组1111221211222211220,0,0.n n n n m m mn n a x a x a x a x a x a x a x a x a x +++=+++=+++= (6)的系数矩阵A 经一系列初等行变换化为行最简形矩阵B, 则B 的n ⨯n 单位填充矩阵C 的所有“ J 一列向量”构成方程组(6)的一个基础解系。

相关文档
最新文档