人教版七年级数学上册课后同步练习4.2 直线、射线、线段

合集下载

人教版数学七年级 上册 4.2直线、射线、 线段 同步练习(带答案)

人教版数学七年级 上册 4.2直线、射线、 线段 同步练习(带答案)

直线、射线、线段同步练习一、选择题1.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释正确的是A. 线段可以比较大小B. 线段有两个端点C. 两点之间线段最短D. 过两点有且只有一条直线【答案】C【解析】解:把一条弯曲的公路改成直道,可以缩短路程,其道理是两点之间线段最短,2.平面内四条直线最少有a个交点,最多有b个交点,则等于A. 6B. 4C. 2D. 0【答案】A【解答】解:交点个数最多时,,最少有0个.所以,,所以.故选A.3.木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这是因为A. 两点之间,线段最短B. 两点确定一条直线C. 过一点,有无数条直线D. 连接两点之间的线段叫做两点间的距离【答案】B【解析】解:在木板上画出两个点,然后过这两点弹出一条墨线,此操作的依据是两点确定一条直线.4.线段,C为直线AB上的点,且,M、N分别是AC、BC的中点,则MN的长度是A. 6cmB. 5cm或7cmC. 5cmD. 5cm或6cm【答案】C【解析】解:是线段AC的中点,,是线段BC的中点,.以下分2种情况讨论,如图1,当C在线段AB上时,;;如图2,当C在线段AB的延长线上时,;;综上所述,MN的长为5cm.5.如图,从A到B有,,三条路线,最短的路线是,其理由是A. 因为它最直B. 两点确定一条直线C. 两点间的距离的概念D. 两点之间,线段最短【答案】D【解析】解:从A到B有,,三条路线,最短的路线是,其理由是:两点之间,线段最短,6.如图,已知线段,M是AB中点,点N在AB上,,那么线段MN的长为A. 5cmB. 4cmC. 3cmD. 2cm【答案】C【解析】解:因为,M是AB中点,所以,又因为,所以.7.如图,把弯曲的河道改直,能够缩短航程.这样做根据的道理是A. 两点之间,线段最短B. 两点确定一条直线C. 两点之间,直线最短D. 两点确定一条线段【答案】A【解析】解:因为两点之间线段最短,把弯曲的河道改直,能够缩短航程.8.如图,有四个图形和每一个图形相应的一句描述,所有图形都画在同一个平面上.线段AB与射线MN不相交;点C在线段AB上;直线a和直线b不相交;延长射线AB,则会通过点C,其中正确的语句的个数有.A. 0个B. 1个C. 2个D. 3个【答案】B【解析】解:线段AB与射线MN不相交,根据图象可得出此选项正确;根据图象点C不在线段AB上,故此选项错误;根据图象可得出直线a和直线b会相交,故此选项错误;根据图象可得出应为延长线段AB,到点C,故此选项错误,故正确的语句的个数是1个.9.数轴上A,B,C三点所表示的数分别为a,b,c,且C在AB上.若,,则下列b,c的关系式,正确的是A. B. C. D.【答案】A解:如图:在AB上,,,又,,.故选A.10.已知线段,C为AB的中点,D是AB上一点,,则线段BD的长为A. 1cmB. 5cmC. 1cm或5cmD. 4cm 【答案】C详解解:线段,C为AB的中点,.当点D在C点左侧,如图1所示时,;当点D在C点右侧,如图2所示时,.线段BD的长为1cm或5cm.故选C.11.如图:长度为12cm的线段AB的中点为M,点C将线段MB分成了MC::2,则线段AC的长为A. 2cmB. 4cmC. 6cmD. 8cm 【答案】D【解析】解:线段AB的中点为M,设,则,,解得即..12.一辆客车往返于A,B两地之间,中途有三个停靠站,那么在A、B两地之间最多需要印制不同的车票有A. 10种B. 15种C. 18种D. 20种【答案】D解:根据线段的定义:可知图中共有线段有AC,AD,AE,AB,CD、CE、CB、DE、DB、EB共10条,因车票需要考虑方向性,如,“”与“”票价相同,但车票不同,故需要准备20种车票.故选D.13.已知线段AB,C是直线AB上的一点,,,点M是线段AC的中点,则线段AM的长为A. 2cmB. 4cmC. 2cm或6cmD. 4cm或6cm【答案】C【解答】解:如图,当点C在线段AB上时,由线段的和差,得,点M是AC的中点,;点C在线段BC的延长线上,由线段的和差,得,点M是AC的中点,;综上可得:AM长为2cm或6cm.故选C.14.如图,图中的线段共有条.A. 5B. 6C. 7D. 8【答案】B【解答】解:图中线段有AB、AD、AC、BD、DC、BC共6条线段.故选B.二、填空题(本大题共4小题,共12.0分)15.把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理是______.【答案】两点之间线段最短【解析】解:把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理是两点之间线段最短,16.火车往返于AB两个城市,中途经过4各站点共6个站点,不同的车站来往需要不同的车票,共有不同的车票______种.【答案】30【解析】解:如图:,车票:AC、CD、DE、EF、FB、AD、AE、AF、AB、CE、CF、CB、DF、DB、EB,BE、BD、FD、BC、FC、EC、BA、FA、EA、DA、BF、FE、ED、DC、CA.火车往返于A、B两个城市,中途经过4个站点共6个站点,不同的车站来往需要不同的车票,共有30种不同的车票.17.已知点O在直线AB上,且线段OA的长度为4 cm,线段OB的长度为6 cm,E、F分别为线段OA、OB的中点,则线段EF的长度为____cm.【答案】1或5【解答】解:当A,B在点O两侧时,如图,;当A,B在点O同侧时,如图,.故答案为1或5.18.如图所示,图中共有_________条直线,_________条射线,_________条线段.【答案】2,13,6.【解答】解:根据直线的定义及图形可得:图中共有2条直线,射线有13条,有6条线段,故答案为2,13,6.三、解答题19.如图,C是线段AB上一点,M是AC的中点,N是BC的中点.若,,求MN的长度;若,求MN的长度.【答案】解:是BC的中点,M是AC的中点,,,;是AC的中点,N是BC的中点,,.20.如图,平面上有四个点A、B、C、D,根据下列语句画图:画直线AB;作射线BC;画线段CD连接AD,并将线段AD反向延长至E,使;找到一点F,使点F到A、B、C、D四点的距离之和最短.【答案】解:直线AB、射线BC、线段CD如图所示;点E如图所示;连接AC、BD交于点F,点F即为所求.21.如图,已知三点A、B、C,请用尺规作图完成保留作图痕迹画直线AB;画射线AC;连接BC并延长BC到E,使得.【答案】解:画直线AB如图:;画射线AC如图;如图:CE即为所求.。

2020年人教版七年级数学上册同步练习:4.2 直线、射线、线段 含答案

2020年人教版七年级数学上册同步练习:4.2 直线、射线、线段   含答案

2020年人教版七年级数学上册同步练习:4.2 直线、射线、线段一.选择题1.手电筒发射出来的光线,类似于几何中的()A.线段B.射线C.直线D.折线2.如图,经过刨平的木板上的A,B两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.直线比曲线短3.直线AB,线段CD,射线EF的位置如图所示,下图中不可能相交的是()A.B.C.D.4.如图,已知三点A,B,C画直线AB,画射线AC,连接BC,按照上述语句画图正确的是()A.B.C.D.5.如图,用圆规比较两条线段AB和A′B′的长短,其中正确的是()A.A′B′>AB B.A′B′=ABC.A′B′<AB D.没有刻度尺,无法确定6.延长线段AB到C,使BC=AB,若AC=15,点D为线段AC的中点,则BD的长为()A.4.5B.3.5C.2.5D.1.57.如图,点C在线段AB上,点D是AC的中点,如果CD=4,AB=14,那么BC长度为()A.4B.5C.6D.6.58.如图,将一根绳子对折以后用线段AB表示,现从P处将绳子剪断,剪断后的各段绳子中最长的一段为60cm,若AP=PB,则这条绳子的原长为()A.100cm B.150cmC.100cm或150cm D.120cm或150cm二.填空题9.两地之间弯曲的道路改直,可以缩短路程,其根据的数学道理是.10.已知M是线段AB的中点,AM=6cm,则AB=cm.11.点M是线段AB上一点,且AM:MB=2:3,MB比AM长2cm,则AB长为.12.图中共有线段条.三.解答题13.在平面内有三点A,B,C,(1)当A,B,C三点不共线时,如图,画直线AC,线段BC,射线AB,在线段AB上任取一点D(不同于点A,B),连接CD,并数一数,此时图中共有多少条线段.(2)当A,B,C三点共线时,若AB=25cm,BC=16cm,点E,F分别是线段AB,BC 的中点,求线段EF的长.(画出图形并写出计算过程)14.如图:A、B、C、D四点在同一直线上.(1)若AB=CD.①比较线段的大小:AC BD(填“>”、“=”或“<”);②若BC=AC,且AC=12cm,则AD的长为cm;(2)若线段AD被点B、C分成了3:4:5三部分,且AB的中点M和CD的中点N之间的距离是16cm,求AD的长.15.如图,已知点C在线段AB上,点M,N分别在线段AC与线段BC上,且AM=2MC,BN=2NC.(1)若AC=9,BC=6,求线段MN的长;(2)若MN=5,求线段AB的长.16.如图,点C线段AB上,线段AC=8cm,BC=10cm,点M、N分别是线段AC、BC的中点.(1)求线段MN的长度;(2)根据(1)中计算的结果,设AC=m,BC=n,其他条件不变,你能猜想线段MN 的长度吗?(3)若题中的条件变为“点C在直线AB上”其它条件不变,则MN的长度会有变化吗?若有变化,请求出结果.参考答案一.选择题1.解:手电筒发射出来的光线,给我们的感觉是手电筒是射线的端点,光的传播方向是射线的方向,故给我们的感觉是射线.故选:B.2.解:∵经过两点有且只有一条直线,∴经过木板上的A、B两个点,只能弹出一条笔直的墨线.故选:A.3.解:A选项中,直线AB与线段CD无交点,符合题意;B选项中,直线AB与射线EF有交点,不合题意;C选项中,线段CD与射线EF有交点,不合题意;D选项中,直线AB与射线EF有交点,不合题意;故选:A.4.解:画直线AB,画射线AC,连接BC,如图所示:故选:A.5.解:由图可知,A′B′<AB;故选:C.6.解:设CB=x,则AB=4x,∴AC=AB+BC=x+4x=5x,∵AC=15,∴x=3,∴AB=12,∵D是AC的中点,∴AD=AC=×15=7.5,∴BD=AB﹣AD=12﹣7.5=4.5.故选:A.7.解:∵点D是AC的中点,如果CD=4,∴AC=2CD=8∵AB=14∴BC=AB﹣AC=6故选:C.8.解:当PB的2倍最长时,得PB=30cm,AP=PB=20cm,AB=AP+PB=50cm,这条绳子的原长为2AB=100cm;当AP的2倍最长时,得AP=30cm,AP=PB,PB=AP=45cm,AB=AP+PB=75cm,这条绳子的原长为2AB=150cm.故选:C.二.填空题9.解:将弯曲的公路改直,可以缩短路程,这是根据两点之间,线段最短.故答案为:两点之间,线段最短.10.解:∵M是线段AB的中点,AM=6cm,∴AB=2AM=2×6=12(cm),故答案为:12.11.解:设AM=2xcm,MB=3xcm,则AB=5xcm,∵MB比AM长2cm,∴BM﹣AM=3x﹣2x=x=2(cm),∴AB长为5x=10(cm),故答案为:10cm.12.解:由图得,图中的线段有:AB,BC,CD,DE,AC,BD,CE,BE,AD,AE一共10条.故答案为:10.三.解答题13.解:(1)作图如下:此时图中共有6条线段;(2)解:有两种情况:①当点C在线段AB的延长线上时,如图1:因为E,F分别是AB,BC的中点,AB=25cm,BC=16cm,所以,所以EF=EB+BF=+8=20.5(cm);②当点C在线段AB上时,如图2:根据题意,如图2,,,所以EF=BE﹣BF=12.5﹣8=4.5(cm),综上可知,线段EF的长度为20.5cm或4.5cm.14.解:(1)①∵AB=CD,∴AB+BC=CD+BC,即,AC=BD,故答案为:=;②∵BC=AC,且AC=12cm,∴BC=×12=9(cm),∴AB=CD=AC﹣BC=12﹣9=3(cm),∴AD=AC+CD=12+3=15(cm),故答案为:15;(2)如图,设每份为x,则AB=3x,BC=4x,CD=5x,AD=12x,∵M是AB的中点,点N是CD的中点N,∴AM=BM=x,CN=DN=x,又∵MN=16,∴x+4x+x=16,解得,x=2,∴AD=12x=24(cm),答:AD的长为24cm.15.解:(1)如图,AC=9,BC=6,∵AM=2MC,BN=2NC.∴MC=AC=3,NC=BC=2,∴MN=MC+NC=3+2=5,答:MN的长为5;(2)∵AB=AC+BC=9+6=15,由(1)得,MN═MC+NC=AC+BC=AB,若MN=5时,AB=3MN=15,答:AB的长为15.16.解:(1)∵点M、N分别是线段AC、BC的中点,∴AM=CM=AC,BN=CN=BC,∴;(2)由(1)可得;(3)有变化.理由如下:∵AC=8cm,BC=10cm,∴AB=2cm,∵点M、N分别是线段AC、BC的中点,∴CM=AM=4cm,BN=CN=5cm,∴AN=3cm,∴MN=AM﹣AN=4﹣3=1cm.当点C在AB的延长线上时,同法可得MN=1.。

(2020年秋)人教版七年级数学上册课后同步练习:4-2-直线、射线、线段

(2020年秋)人教版七年级数学上册课后同步练习:4-2-直线、射线、线段

人教版七年级数学上册课后同步练习(2020年秋)课后训练基础巩固1.如图所示,下列说法正确的是().A.直线OM与直线MN是同一条直线B.射线MO与射线MN是同一条射线C.射线OM与射线MN是同一条射线D.射线NO与射线MO是同一条射线2.下列说法正确的是().A.两点确定两条直线B.三点确定一条直线C.过一点只能作一条直线D.过一点可以作无数条直线3.M是线段AB上的一点,其中不能判定点M是线段AB中点的是().A.AM+BM=AB B.AM=BMC.AB=2BM D.AM=12 AB4.A,B两点的距离是().A.连接A,B两点的线段B.连接A,B两点的线段的长度C.过A,B两点的直线D.过A,B两点的线段5.若点B在线段AC上,AB=10 cm,BC=6 cm,则A,C两点的距离是().A.4 cm B.16 cmC.4 cm或16 cm D.不能确定6.如图所示,由A到B有(1),(2),(3)三条路线,最短的路线选(1)的理由是().A.因为它直B.两点确定一条直线C.两点间距离的定义D.两点之间,线段最短能力提升7.如图所示,AB=CD,则AC与BD的大小关系是().A.AC>BD B.AC<BDC.AC=BD D.无法确定8.C是线段AB的中点,D是线段BC上一点,则下列说法不正确的是().A.CD=AC-BD B.CD=12AB-BDC.CD=AD-BC D.CD=12 BC9.点C是线段AB延长线上的一点,点D是线段AB的中点,如果点B恰好是DC的中点,设AB=2 cm,则AC=__________cm.10.如图,AC=CD=DE=EB,图中和线段AD长度相等的线段是__________.以D 为中点的线段是__________.11.已知线段AB=7 cm,在直线AB上画线段BC=1 cm,那么线段AC=________.12.有条小河l,点A,B表示在河两岸的两个村庄,现在要建造一座小桥,请你找出造桥的位置,使得到A,B两村的路程最短,并说明理由.13.如图所示,已知线段AB=80厘米,M为AB的中点,P在MB上,N为PB的中点,且NB=14厘米,求PM的长.参考答案1答案:A点拨:射线只有端点相同,在同一条线上才相同,因此B、C、D都不正确.故选A.2答案:D点拨:过一点可以作无数条直线正确,故选D.3答案:A点拨:A不能判定,并且A中点M的位置都不确定.4答案:B点拨:距离是线段的长度,不是线段,所以B正确,故选B.5答案:B点拨:因为点B在线段AC上,所以只有一点,AC=AB+BC=16(cm).故选B.6答案:D7答案:C点拨:因为AB=CD,所以AB+BC=CD+BC,即AC=BD.8答案:D点拨:如图所示:CD=BC-BD=AC-BD=12AB-BD,CD=AD-AC=AD-BC,所以A、B、C都正确,因为D不是BC的中点,所以CD≠12BC,故选D.9答案:3点拨:B恰好是DC的中点,D是AB的中点,所以AD=DB,DB=BC,所以AD=DB=BC=12AB=1(cm),所以AC=3 cm.10答案:DB,CE AB,CE点拨:AD=2AC,只要是2段基本线段的和的线段都与AD的长度相等.11答案:6 cm或8 cm点拨:两种情况如图:AC=AB-BC=7-1=6(cm);AC=AB +BC=7+1=8(cm).12解:如图:过点A,B作线段AB,与直线l的交点P为所求的点,因为两点之间,线段最短.点拨:由“两点之间,线段最短”可知,到A,B两村的路程最短的点在AB上任一点都可,这点还要在直线l上,所以就是AB与l的交点.13解:∵N是BP中点,M是AB中点,∴PB=2NB=2×14=28(厘米),∵AM=MB=12AB=12×80=40(厘米),∴MP=MB-PB=40-28=12(厘米).答:PM的长为12厘米.点拨:根据NB=14厘米,N为PB的中点,求出PB,再根据AB=80厘米,M为AB 的中点,求出MB,由MP=MB-PB,求出PM.小结。

人教版七年级数学上册 4.2《直线、射线、线段》 一课一练 (含答案)

人教版七年级数学上册   4.2《直线、射线、线段》  一课一练 (含答案)

4.2《直线、射线、线段》习题一、选择题1.下列说法中,正确的是( ) A .延长射线OAB .作直线AB 的延长线C .延长线段AB 到C ,使BC=ABD .画直线AB=3cm2.下列说法正确的是( )A .经过三点中的每两个,共可以画三条直线B .射线AP 和射线PA 是同一条射线C .联结两点的线段,叫做这两点间的距离D .两条直线相交,只有一个交点 3.下列画图的画法语句正确的是( ) A .画直线5MN =厘米B .画射线4OA =厘米C .在射线OA 上截取2AB =厘米D .延长线段AB 到点C ,使BC AB = 4.根据下图,下列说法中不正确的是( )A .图①中直线l 经过点AB .图②中直线a ,b 相交于点AC .图③中点C 在线段AB 上D .图④中射线CD 与线段AB 有公共点5.A 、B 、C 是平面内任意三点、经过任意两点画直线,可以画出的直线有( ) A .1条B .3条C .1条或3条D .2条或3条6.如图,点C 是线段AB 的中点,点D 是线段BC 的中点,下列等式正确的是( )A .CD =AC -DB B .CD =AB -DBC .AD = AC -DBD .AD =AB -BC7.在下列生活、生产现象中,可以用基本事实“两点确定一条直线”来解释的是( ) ①把笔尖看成一个点,当这个点运动时便得到一条线; ②把弯曲的公路改直,就能缩短路程;③植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上. A .①B .②C .③D .②③8.如图,点C 是线段AB 的中点,点D 是线段CB 上任意一点,则下列表示线段关系的式子不正确的是( )A .AB=2ACB .AC+CD+DB=ABC .CD=AD-ABD .AD=(CD+AB) 9.如图,点C 在线段AB 上,点E 是AC 中点,点D 是BC 中点.若ED =6,则线段AB 的长为( )A .6B .9C .12D .1810.已知线段 AB ,延长 AB 到 C ,使 BC =2AB ,又延长 BA 到 D ,使DA= AB ,那么( )A .DA =BCB .DC =AB C .BD=AB D .BD=BC 11.观察下列图形,并阅读图形下面的相关文字,如图所示:两条直线相交,三条直线相交,四条直线相交,最多有一个交点,最多有三个交点;最多有6个交点,像这样,10条直线相交,最多交点的个数是( )A .40个B .45个C .50个D .55个12.数轴上点所表示的数是整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为18厘米的线段AB ,则线段AB 盖住的整点数是( ) A .17个或18个 B .17个或19个 C .18个或19个 D .18个或20个13.已知线段AB =4cm ,点C 是直线AB 上一点(不同于点A 、B ).下列说法:①若点C 为线段AB 的中点,则AC =2cm ;②若AC =1cm ,则点C 为线段AB 的四等分点;③若AC +BC =4cm ,则点C 一定在线段AB 上;④若AC +BC >4cm ,则点C 一定在线段AB 的延长线上;⑤若AC +BC =8cm ,则AC =2cm .其中正确的个数有()12121212124334A .1个B .2个C .3个D .4个14.如图,数轴上的点和点分别表示0和10,点是线段上一动点.点沿以每秒2个单位的速度往返运动1次,是线段的中点,设点运动时间为秒(不超过10秒).若点在运动过程中,当时,则运动时间的值为( )A .秒或秒B .秒或秒或或秒 C .3秒或7秒 D .3秒或或7秒或秒二、填空题15.如图所示,建筑工人砌墙时,经常在两个墙角的位置分别插一根小桩,然后拉一条直的参照线,可以这样做的数学道理_____________.16.将线段移到线段,使端点与重合,线段与叠合,如果点落在的延长线上,那么______.(填“”、“”或“”).17.如图,点A ,B ,C ,D ,E ,F 都在同一直线上,点B 是线段AD 的中点,点E 是线段CF 的中点,有下列结论:①AE =(AC +AF ),②BE =AF ,③BE =(AF ﹣CD ),④BC =(AC ﹣CD ).其中正确的结论是_____(只填相应的序号).18.点分线段为两部分,点分线段为两部分,已知,则的长为_______. 三、解答题 19.作图题(1)已知如图,平面上四点A 、B 、C 、D , ①画直线AD ;②画射线BC ,与AD 相交于O ;O A P OA P O A O →→B OA P t t P 2PB =t 32723272132172132172AB CD A C AB CD B CD AB CD ><=121212121P AB 5:72P AB 5:111210cm PP =AB cm③连接AC、BD相交于点F .(2)如图,已知线段a,b,用尺规作一条线段,使它等于2a-b .(不要求写作法,保留作图痕迹)20.小明同学对平面图形进行了自主探究;图形的顶点数A,被分成的区域数B,线段数C三者之间是否存在确定的数量关系.如图是他在探究时画出的5个图形.(1)根据图完成表格:之间的数量关系是;(3)计算:已知一个平面图形有24条线段,被分成9个区域,则这个平面图形的顶点有个.21.如图:(1)图中共有几条直线?请表示出来.(2)图中共有几条线段?写出以点B 为端点的所有线段.22.如图所示,A 、B 、C 三棵树在同一直线上,量得树A 与树B 的距离为4m ,树B 与树C 的距离为3m ,小亮正好在A 、C 两树的正中间O 处,请你计算一下小亮距离树B 多远?23.如图,点在线段上,点分别是的中点. (1)若,求线段MN 的长;(2)若为线段上任一点,满足,其它条件不变,你能求出的长度吗?请说明理由.(3)若在线段的延长线上,且满足分别为 AC 、BC 的中点,你能求出的长度吗?请画出图形,写出你的结论,并说明理由.24.如图所示,把一根细线绳对折成两条重合的线段,点在线段上,且.C AB ,M N AC BC 、9,6AC cm CB cm ==C AB AC CB acm +=MN C AB ,,AC BC bcm M N -=MN AB P AB :2:3AP BP=(l)若细线绳的长度是,求图中线段的长;(2)从点处把细线绳剪断后展开,细线绳变成三段,若三段中最长的一段为,求原来细线绳的长.25.如图,点在线段上,是线段的中点.(1)在线段上,求作点,使. (要求:尺规作图,不写作法保留作图痕迹) (2)在(1)的条件下,, ①若,求的长;②若点在线段上,且,请你判断点是哪条线段的中点,并说明理由.26.如图,线段AB 上有一点O ,AO =6㎝,BO =8㎝,圆O 的半径为1.5㎝,P 点在圆周上,且∠POB =30°.点C 从A 出发以m cm/s 的速度向B 运动,点D 从B 出发以n cm/s 的速度向A 运动,点E 从P 点出发绕O 逆时针方向在圆周上旋转一周,每秒旋转角度为60°,C 、D 、E 三点同时开始运动.(1)若m =2,n =3,则经过多少时间点C 、D 相遇;(2)在(1)的条件下,求OE 与AB 垂直时,点C 、D 之间的距离;(3)能否出现C 、D 、E 三点重合的情形?若能,求出m 、n 的值;若不能,说明理由.100cm AP P 60cm C AB OBC CO E 2CE AC =12AB =2BO EO =AC D BO 2912OD AC =-E答案一、选择题1.C.2.D.3.D.4.C.5.C.6.A.7.C.8.D.9.C.10.D11.B 12.C13.C14.B二、填空题15.两点确定一条直线16.>.17.①③④18.96.三、解答题19.解:(1)①②③作图如图所示:(2)依据分析,作图,如图所示:则线段OC=2a-b,20.(1)观察图形可知:平面图形(1)中顶点数A为4平面图形(2)中区域数B为4平面图形(3)中线段数C为15故答案为4、4、15;(2)由题(1)得到的结果,观察表格数据可知:+-=平面图形(1)中顶点数、区域数、线段数满足:4361平面图形(2)中顶点数、区域数、线段数满足: 平面图形(3)中顶点数、区域数、线段数满足:猜想:一个平面图形中顶点数A ,区域数B ,线段数C 之间的数量关系为 故答案为:;(3)已知一个平面图形有24条线段,被分成9个区域, 即,代入中 解得:则这个平面图形的顶点有16个 故答案为16.21.解:(1)图中共有4条直线;直线AB 直线AC 直线AD 直线BF ; (2)图中共有13条线段;其中以点B 为端点的线段有BA 、线段BE 、线段BF 、线段BC 、线段BD . 22.AC =AB +BC =7.设A ,C 两点的中点为O ,即AO =AC =3.5,则OB =AB ﹣AO =4﹣3.5=0.5.答:小亮与树B 的距离为0.5m .23.解:(1)点M 、N 分别是AC 、BC 的中点,∴CM=AC=4.5cm ,CN=BC=3cm , ∴MN=CM+CN=4.5+3=7.5cm . 所以线段MN 的长为7.5cm . (2)MN 的长度等于a , 根据图形和题意可得:MN=MC+CN=AC+BC=(AC+BC)=a ;(3)MN 的长度等于b , 5481+-=106151+-=1A B C +-=1A B C +-=24,9C B ==1A B C +-=16A =121212121212121212根据图形和题意可得: MN=MC-NC=AC-BC=(AC-BC)=b .24.解:(1)由题意得,所以图中线段的长为.(2)如图,当点A 为对折点时,最长的一段为PAP 段,,所以细线长为;如图,当点B 为对折点时,最长的一段为PBP 段,,所以细线长为,综合上述,原来细线绳的长为或. 25.(1)如图121212121100502AB cm =⨯=:2:3,AP BP AP BP AB =+=22023ABAP cm ∴=⨯=+AP 20cm 260,30AP cm AP cm ∴=∴=:2:3AP BP =303452BP cm ∴=⨯=304575AB AP BP cm ∴=+=+=2275150AB cm =⨯=260,30BP cm BP cm ∴=∴=:2:3AP BP =302203AP cm ∴=⨯=203050AB AP BP cm ∴=+=+=2250100AB cm =⨯=150cm 100cm(2)①∵是线段的中点 ∴∵, ∴ ∴ ∴ ∴ ∴ ②E 是线段CD 的中点,理由如下:∵ ∴ ∵ ∴ 即 ∵∴2()OD CE CE OE CE OE =-+=- ∴ 即∴E 是线段CD 的中点26.解:(1)设经过秒C 、D 相遇, 则有,, 解得:; 答:经过秒C 、D 相遇;O BC OB OC =2BO EO =2CE AC =22EO AC OE =+2EO AC =4OB OC AC ==912AB AC ==43AC=2912OD AC =-962OD AC =-12AB =9122OD AC AC OC =--4OD AC OC =-2CE AC =OD OE CE +=ED CE =x 23=14x x +14=5x 145(2)①当OE 在线段AB 上方且垂直于AB 时,运动了1秒, 此时,,②当OE 在线段AB 下方且垂直于AB 时,运动了4秒, 此时,;(3)能出现三点重合的情形;①当点E 运动到AB 上且在点O 左侧时,点E 运动的时间, ∴,; ②当点E 运动到AB 上且在点O 右侧时,点E 运动时间, ∴,.1421319CD cm =-⨯-⨯=1424346CD cm =-⨯-⨯=18030 2.560t -==6 1.592.55m -==8 1.5192.55n +==36030 5.560t -==6 1.5155.511m +==8 1.5135.511n -==。

人教版数学七年级上册《4.2 直线、射线、线段》练习

人教版数学七年级上册《4.2 直线、射线、线段》练习

故答案为:=.
18.【答案】4; 【解析】解:如图折成 3 折,有两个拐点,而不是折叠三次, 故能得到 4 条绳子.
19.【答案】7cm; 【解析】解:∵D 是 BC 的中点,BC=6cm, ∴CD=3cm, ∴AD=AC+CD=7cm. 故答案为:7cm.
20.【答案】解:∵N 是 BP 中点,M 是 AB 中点 ∴PB=2NB=2×14=28cm ∴AP=AB-BP=80-28=52cm.; 【解析】N 为 PB 的中点,则有 PB=2NB,故 AP=AB-BP 可求.
1 2 CB=0.5cm. 故选 A.
14.【答案】C; 【解析】解:∵BC=2AB,AD=3AB ∴DC=AD+AB+BC=3AB+AB+2AB=6AB, 故选 C.
15.【答案】6;5; 【解析】解:线段:OA、OB、AB、OC、AC、BC 共 6 条, 射线:以 O 为端点的有 2 条, 以 A、B、C 为端点的射线分别有 1 条, 所以,共有射线 2+1+1+1=5 条. 故答案为:6;5.
为( )
A. 4,2
B. 10,10
C. 10,2
D. 10,5
12.如果线段 AB=5cm,BC=3cm,那么 A、C 两点间的距离是( )
A. 8cm
B. 2cm
C. 4cm
D. 不能确定
13.如图,线段 AB 长 4cm,C 为 AB 上一点,M 为 AC 中点,N 为 BC 中点,已知
AM=1.5cm,则 CN 的长为( )
A. 1 个
B. 2 个
C. 3 个
D. 4 个
2.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨

人教版数学七年级上册:4.2 直线、射线、线段 同步练习(附答案)

人教版数学七年级上册:4.2 直线、射线、线段  同步练习(附答案)

4.2直线、射线、线段第1课时直线、射线、线段1.可近似看作直线的是()A.绷紧的琴弦B.探照灯射出的光线C.孙悟空的金箍棒D.太阳光线2.下列对于如图所示直线的表示,其中正确的是()①直线A;②直线b;③直线AB;④直线Ab;⑤直线Bb.A.①③B.②③C.③④D.②⑤3.下列说法中,正确的是()A.点A在直线M上B.直线AB,CD相交于点MC.直线ab,cd相交于点MD.延长直线AB4.用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动,这说明;用两个钉子把细木条钉在木板上,就能固定细木条,这说明 .5.如图,完成下列填空:(1)直线a经过点,但不经过点;(2)点B在直线上,在直线外;(3)点A既在直线上,又在直线上.6.生活中我们看到手电筒的光线类似于()A.点B.直线C.线段D.射线7.如图所示,A,B,C是同一直线上的三点,下面说法正确的是()A.射线AB与射线BA是同一条射线B.射线AB与射线BC是同一条射线C.射线AB与射线AC是同一条射线D.射线BA与射线BC是同一条射线8.如图,能用O,A,B,C中的两个字母表示的不同射线有条.9.如图,在直线l上有A,B,C三点,则图中线段共有()A.1条B.2条C.3条D.4条10.如图所示,下列表述正确的是()A.射线ABB.延长线段ABC.延长线段BAD.反向延长线段BA11.经过任意三点中的两点共可以画出()A.一条直线B.一条或三条直线C.两条直线D.三条直线12.如图,对于直线AB,线段CD,射线EF,其中能相交的是()13.下列关于作图的语句中,正确的是()A.画直线AB=10 cmB.画射线OB=10 cmC.已知A,B,C三点,过这三点画一条直线D.画线段OB=10 cm14.直线a上有5个不同的点A,B,C,D,E,则该直线上共有条线段.15.已知平面上四点A,B,C,D,如图:(1)画直线AB,射线CD;(2)直线AB与射线CD相交于点E;(3)画射线AD,连接BC;(4)连接AC,BD相交于点F.16.如图,已知数轴上的原点为O,点A表示3,点B表示-1,回答下列问题:(1)数轴在原点O左边的部分(包括原点)是一条什么线?怎样表示?(2)射线OB上的点表示什么数?(3)数轴上表示不大于3且不小于-1的部分的数是什么图形?怎样表示?17.往返于甲、乙两地的客车,中途有三个站.其中每两站的票价不同.问:(1)要有多少种不同的票价?(2)要准备多少种车票?18.如图:(1)试验观察:如果每过两点可以画一条直线,那么:第①组最多可以画条直线;第②组最多可以画条直线;第③组最多可以画条直线;(2)探索归纳:如果平面上有n(n≥3)个点,且任意3个点均不在一条直线上,那么最多可以画条直线;(用含n的代数式表示)(3)解决问题:某班45名同学在毕业后的一次聚会中,如果每两人握1次手问好,那么共握次手.第2课时比较线段的长短1.尺规作图的工具是()A.刻度尺和圆规B.三角板和量角器C.直尺和量角器D.没有刻度的直尺和圆规2.作图:已知线段a,b,画一条线段使它等于2a+b.(要求:不写作法,保留作图痕迹)3.为了比较线段AB,CD的大小,小明将点A与点C重合使两条线段在一条直线上,结果点B在CD的延长线上,则()A.AB<CDB.AB>CDC.AB=CDD.无法确定4.已知线段AB和点P,如果PA+PB=AB,那么()A.点P为AB中点B.点P在线段AB上C.点P在线段AB外D.点P在线段AB的延长线上5.如图,C是线段AB上的一点,M是线段AC的中点,若AB=8 cm,MC=3 cm,则BC的长是( )A.2 cmB.3 cmC.4 cmD.6 cm 6.如图所示,则:(1)AC =BC + ; (2)CD =AD - ; (3)CD = -BC ; (4)AB +BC = -CD.7.在直线上顺次取A ,B ,C 三点,使得AB =5 cm ,BC =3 cm.如果O 是线段AC 的中点,那么线段OC 的长度是 .8.如图,AB =2,AC =5,延长BC 到D ,使BD =3BC ,则AD 的长为 .9.如图,已知O 是线段AB 的中点,C 是AB 的三等分点,AB =12 cm ,则OC = cm.10.如图,已知线段AB ,反向延长AB 到点C ,使AC =12AB ,D 是AC 的中点,若CD =2,求AB的长.11.已知A,B,C是直线MN上的点,若AC=8 cm,BC=6 cm,点D是AC的中点,则BD的长等于 .12.已知线段AB=2 cm,延长AB到C,使BC=AB,再延长BA到D,使BD=2AB,则线段DC 的长为()A.4 cmB.5 cmC.6 cmD.2 cm13.点A,B,C在同一条数轴上,其中点A,B表示的数分别为-3,1,若BC=2,则AC等于()A.3B.2C.3或5D.2或614.已知线段AB=10 cm,点C是直线AB上一点,BC=4 cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.7 cmB.3 cmC.7 cm或3 cmD.5 cm15.如图,点C,D,E都在线段AB上,已知AD=BC,E是线段AB的中点,则CE DE.(填“>”“<”或“=”)16.如图,已知线段a,b,c,用圆规和直尺画线段,使它等于2a+b-c.17.如图所示,点C,D为线段AB的三等分点,点E为线段AC的中点,若ED=9,求线段AB 的长度.18.线段AB上有两点P,Q,点P将AB分成两部分,AP∶PB=2∶3;点Q将AB也分成两部分,AQ∶QB=4∶1,且PQ=3 cm.求AP,QB的长.19.已知:如图,点C在线段AB上,且AC=6 cm,BC=14 cm,点M,N分别是AC,BC 的中点.(1)求线段MN的长度;(2)在(1)中,如果AC=a cm,BC=b cm,其他条件不变,你能猜测出MN的长度吗?请说出你发现的结论,并说明理由.第3课时关于线段的基本事实及两点的距离1.如图,为抄近路践踏草坪是一种不文明的现象.请你用数学知识解释出现这一现象的原因: .2.如图,我们可以把弯曲的河道改直,这样做的数学依据是 .改直后A,B两地间的河道长度会 .(填“变短”“变长”或“不变”),其原因是 .3.如图,A,B是公路l两旁的两个村庄,若两村要在公路上合修一个汽车站P,使它到A,B两村的距离之和最小,试在l上标注出点P的位置,并说明理由.4.下列说法正确的是()A.连接两点的直线的长度叫做这两点的距离B.画出A,B两点间的距离C.连接点A与点B的线段,叫A,B两点间的距离D.两点之间的距离是一个数,不是指线段本身5.若数轴上点A,B分别表示数2,-2,则A,B两点之间的距离可表示为()A.2+(-2)B.2-(-2)C.(-2)+2D.(-2)-26.如图,线段AB=8 cm,延长AB到C,若线段BC的长是AB长的一半,则A,C两点的距离为()A.4 cmB.6 cmC.8 cmD.12 cm7.若A,O,B三点在同一条直线上,OA=3,OB=5,则A,B两点的距离为()A.2B.8C.3D.8或28.如图所示,从A地到达B地,最短的路线是()A.A→C→E→BB.A→F→E→BC.A→D→E→BD.A→C→G→E→B9.如图,平面上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备修建一个蓄水池,不考虑其他因素,请你画出蓄水池P的位置,使它与4个村庄的距离之和最小.10.如图,一只壁虎要从圆柱体A点沿着表面爬到B点,因为B点处有它想吃的一只蚊子,而它饿得快不行了,怎样爬行路线最短?参考答案:4.2直线、射线、线段第1课时直线、射线、线段1.D2.B3.B4. 经过一点可以画无数条直线;明两点确定一条直线.5.(1)直线a经过点A,C,但不经过点B,D;(2)点B在直线b上,在直线a外;(3)点A既在直线a上,又在直线b上.6.D7.C8. 有7条.9.C10.C11.B12.B13.D14. 10.15.解:如图所示.16.解:(1)是一条射线,表示为射线OB. (2)负数和零(非正数). (3)线段,线段AB.17.解:根据线段的定义:可知图中线段有AC ,AD ,AE ,AB ,CD ,CE ,CB ,DE ,DB ,EB ,共10条.(1)有10种不同的票价.(2)因车票需要考虑方向性,如“A→C”与“C→A”票价相同,但方向不同,故需要准备20种车票.18.(1)试验观察:如果每过两点可以画一条直线,那么: 第①组最多可以画3条直线; 第②组最多可以画6条直线; 第③组最多可以画10条直线; (2)探索归纳:如果平面上有n(n≥3)个点,且任意3个点均不在一条直线上,那么最多可以画n (n -1)2条直线;(用含n 的代数式表示) (3)解决问题:某班45名同学在毕业后的一次聚会中,如果每两人握1次手问好,那么共握990次手.第2课时比较线段的长短1.D2.解:如图,AC即为所求线段.3.B4.B5.A6.(1)AC=BC+AB;(2)CD=AD-AC;(3)CD=BD-BC;(4)AB+BC=AD-CD.7.4__cm.8.11.9.210.解:因为D是AC的中点,所以AC=2CD.因为CD=2,所以AC=4.因为AC =12AB ,所以AB =2AC. 所以AB =2×4=8. 11.10__cm 或2__cm. 12. C 13.D 14.D 15.=16.解:(1)作射线AF ;(2)在射线AF 上顺次截取AB =BC =a ,CD =b ; (3)在线段AD 上截取DE =c.线段AE 即为所求.17.解:因为C ,D 为线段AB 的三等分点, 所以AC =CD =DB. 又因为点E 为AC 的中点, 所以AE =EC =12AC.所以CD +EC =DB +AE. 因为ED =EC +CD =9, 所以DB +AE =EC +CD =ED =9. 所以AB =2ED =18.18.解:画出图形,如图:设AP =2x cm ,PB =3x cm ,则AB =5x cm. 因为AQ∶QB=4∶1, 所以AQ =4x cm ,QB =x cm. 所以PQ =PB -QB =2x cm. 因为PQ =3 cm , 所以2x =3. 所以x =1.5.所以AP =3 cm ,QB =1.5 cm.19.解:(1)因为AC =6 cm ,BC =14 cm ,点M ,N 分别是AC ,BC 的中点, 所以MC =3 cm ,CN =7 cm. 所以MN =MC +CN =10 cm. (2)MN =12(a +b)cm.理由:因为AC =a cm ,BC =b cm ,点M ,N 分别是AC ,BC 的中点, 所以MC =12a cm ,CN =12b cm.所以MN =MC +CN =12(a +b)cm.第3课时 关于线段的基本事实及两点的距离1.两点之间,线段最短.2.两点确定一条直线. 变短. 两点之间,线段最短.3.解:点P的位置如图所示.作法:连接AB交l于点P,则P点即为汽车站位置.理由:两点之间,线段最短.4.D5.B6.D7.D8.B9.解:连接AC,BD,AC与BD的交点即为P点的位置,图略.10.解:将圆柱体的侧面展开,如图所示,连接AB,则线段AB是壁虎爬行的最短路线.。

人教版七年级上册数学 4.2直线、射线、线段 同步习题(含解析)

人教版七年级上册数学 4.2直线、射线、线段 同步习题(含解析)

4.2直线、射线、线段同步习题一.选择题1.平面上有不同的三个点,经过其中任意两点画直线,一共可以画()A.1条B.2条C.3条D.1条或3条2.下列四个生产生活现象,可以用公理“两点之间,线段最短”来解释的是()A.用两个钉子可以把木条钉在墙上B.植树时,只要定出两棵树的位置,就能使同一行树坑在一条直线上C.打靶的时候,眼睛要与枪上的准星、靶心在同一直线上D.为了缩短航程把弯曲的河道改直3.图中共有线段()A.4条B.6条C.8条D.10条4.已知线段AB=12cm,点C是直线AB上一点,BC=4cm,若点P是线段AB的中点,则线段PC的长度是()A.2cm B.2cm或10cm C.10cm D.2cm或8cm 5.已知点A,B,C在同一条直线上,若线段AB=5,BC=3,AC=2,则下列判断正确的是()A.点A在线段BC上B.点B在线段AC上C.点C在线段AB上D.点A在线段CB的延长线上6.如图,已知线段AB=12cm,M是AB中点,点N在AB上,NB=2cm,那么线段MN的长为()A.2cm B.3cm C.4cm D.5cm7.如图,C为AB的中点,D是BC的中点,则下列说法错误的是()A.CD=AC﹣BD B.CD=AB﹣BD C.CD=BC D.AD=BC+CD 8.在直线l上取三点A、B、C,使线段AB=8cm,AC=3cm,则线段BC的长为()A.5cm B.8cm C.5cm或8cm D.5cm或11cm 9.如图,将线段AB延长至点C,使BC=AB,D为线段AC的中点,若BD=2,则线段AB的长为()A.4B.6C.8D.1210.如图,线段CD在线段AB上,且CD=3,若线段AB的长度是一个正整数,则图中以A,B,C,D这四点中任意两点为端点的所有线段长度之和可能是()A.28B.29C.30D.31二.填空题11.两地之间弯曲的道路改直,可以缩短路程,其根据的数学道理是.12.如图,已知线段AB=8cm,M是AB的中点,P是线段MB上一点,N为PB的中点,NB=1.5cm,则线段MP=cm.13.已知,如图,在直线l的两侧有两点A,B.在直线上画出点P,使P A+PB最短..14.如图,已知CD=AD=BC,E、F分别是AC、BC的中点,且BF=40cm,则EF 的长度为cm.15.如图,点B在线段AC上,AB=4,BC=2,点M为线段AB中点,点N为线段BC中点,则线段MN的长度为.三.解答题16.如图,线段AB=20,BC=15,点M是AC的中点.(1)求线段AM的长度;(2)在CB上取一点N,使得CN:NB=2:3.求MN的长.17.如图,点C在线段AB上,线段AB=15cm,点M,N分别是AC,BC的中点,CN=3cm,求线段MC的长度.18.如图,已知线段AB=10cm,CD=2cm,点E是AC的中点,点F是BD的中点.(1)若AC=3cm,求线段EF的长度.(2)当线段CD在线段AB上从左向右或从右向左运动时,试判断线段EF的长度是否发生变化,如果不变,请求出线段EF的长度;如果变化,请说明理由.参考答案1.解:如图,经过其中任意两点画直线可以画3条直线或1条直线,故选:D.2.解:A、根据两点确定一条直线,故本选项不符合题意;B、确定树之间的距离,即得到相互的坐标关系,故本选项不符合题意;C、根据两点确定一条直线,故本选项不符合题意;D、根据两点之间,线段最短,故本选项符合题意.故选:D.3.解:图中的线段有AC、AD、AE、AB;CD、CE、CB;DE、DB;EB;共10条,故选:D.4.解:∵线段AB=12cm,点P是线段AB的中点,∴BP=AB=6(cm),如图1,线段BC不在线段AB上时,PC=BP+BC=6+4=10(cm),如图2,线段BC在线段AB上时,PC=BP﹣BC=6﹣4=2(cm),综上所述,线段PC的长度是10或2cm.故选:B.5.解:如图,∵点A,B,C在同一条直线上,线段AB=5,BC=3,AC=2,∴点A在线段BC的延长线上,故A错误;点B在线段AC延长线上,故B错误;点C在线段AB上,故C正确;点A在线段CB的反向延长线上,故D错误;故选:C.6.解:∵AB=12cm,M是AB中点,∴BM=AB=6cm,又∵NB=2cm,∴MN=BM﹣BN=6﹣2=4(cm).故选:C.7.解:∵C是AB的中点,D是BC的中点,∴AC=BC=AB,CD=BD=BC,∵CD=BC﹣BD∴CD=AC﹣BD,故A正确;∵CD=BC﹣DB,∴CD=AB﹣DB,故B正确;∴AD=AC+CD=BC+CD,故D正确;∵CD=BD=BC;故C错误;故选:C.8.解:当点C在线段AB上时,BC=AB﹣AC=8﹣3=5(cm);当点C在线段AB的延长线上时,BC=AB+AC=8+3=11(cm),所以线段AC的长为5cm或11cm.故选:D.9.解:∵BC=AB,∴BC=AC;∵D为线段AC的中点,∴CD=AC,∴BD=AC,∵BD=2,∴AC=2×6=12,∴AB=AD+BD=AC+BD=×12+2=8.故选:C.10.解:所有线段之和=AC+AD+AB+CD+CB+BD,∵CD=3,∴所有线段之和=AC+AC+3+AC+3+BD+3+3+BD+BD=12+3(AC+BD)=12+3(AB﹣CD)=12+3(AB﹣3)=3AB+3=3(AB+1),∵AB是正整数,∴所有线段之和是3的倍数,故选:C.11.解:将弯曲的公路改直,可以缩短路程,这是根据两点之间,线段最短.故答案为:两点之间,线段最短.12.解:∵M是AB的中点,AB=8cm,∴AM=BM=4cm,∵N为PB的中点,NB=1.5cm,∴PB=2NB=3cm,∴MP=BM﹣PB=4﹣3=1cm.故答案为1.13.解:如图所示:连结AB交l于P点.故答案为:连结AB交l于P点.14.解:∵点F是BC的中点,且BF=40cm,∴BC=2BF=80cm,∵CD=AD=BC,∴CD=×80=16cm,AD=64cm,∴AC=AD﹣CD=48cm,∵E、F分别是AC、BC的中点,∴CE=AC=24cm,CF=BF=40cm,∴EF的长度为CE+CF=64cm,故答案为:64.15.解:∵点M为线段AB中点,∴BM=AB,∵点N为线段BC中点,∴BN=BC,∵AB=4,BC=2,∴MN=MB+BN=AB+BC=2+1=3,故答案为3.16.解:(1)线段AB=20,BC=15,∴AC=AB﹣BC=20﹣15=5.又∵点M是AC的中点.∴AM=AC=×5=,即线段AM的长度是.(2)∵BC=15,CN:NB=2:3,∴CN=BC=×15=6.又∵点M是AC的中点,AC=5,∴MC=AC=,∴MN=MC+NC=,即MN的长度是.17.解:∵CN=3cm,点N是BC的中点;∴BC=2CN=2×3=6(cm),∵AB=15cm,∴AC=AB﹣BC=15﹣6=9(cm),又∵点M是AC的中点,∴(cm).18.解:(1)∵AC=3cm,CD=2cm,∴BD=AB﹣AC﹣CD=10﹣3﹣2=5(cm).∵点E是AC的中点,点F是BD的中点,∴,.∴.(2)线段EF的长度不发生变化.∵点E是AC的中点,点F是BD的中点,∴,,∴EF=AB﹣AE﹣BF====6(cm).11/ 11。

人教版七年级数学上册《4.2直线、射线、线段》同步练习题-含有答案

人教版七年级数学上册《4.2直线、射线、线段》同步练习题-含有答案

人教版七年级数学上册《4.2直线、射线、线段》同步练习题-含有答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列直线、射线、线段中,能相交的是()A.B.C.D.2.任意画三条不重合的直线,交点的个数是()A.1B.1或3C.0或1或2或3D.不能确定3.如图,用适当的语句表述图中点与直线的关系,错误..的是()A.点P在直线AB外B.点C在直线AB外C.直线AC不经过点M D.直线AC经过点B4.晚上,小明拿起手电筒射向远方,他发现电筒光线是一条()A.线段B.射线C.直线D.不能确定5.如图,下列不正确的说法是()A.直线AB与直线BA是同一条直线;B.射线OA与射线AB是同一条射线C.线段AB与线段BA是同一条线段;D.射线OA与射线OB是同一条射线6.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间,线段最短C.过一点有无数条直线D.线段是直线的一部分7.已知:A、B、C是同一直线上的三点,点D为AB的中点,若12AB=,BC=7,则CD的长为()A.1B.13C.13或1D.9.531二、填空题三、解答题15.如图,点C在线段上,,AC=12,点M,N分别是,的中点,点P在线段上,点Q为的中点.(1)分别求出、的长度;(2)若,求的长度.16.如图,点A,C,N,B在同一条直线上.(1)图中共有______条线段;(2)AB=______+______+______;(3)若点N是线段BC的中点,35cm=求线段AN的长.AB=,3AC CN参考答案:1.A2.C3.B4.B5.B6.A7.C8.D9.C10.2 直线上直线外直线外直线上11.312.AB13.314.3或1315.(1)CN=9 MN=6(2)AP=616.(1)6 (2)AC,CN,NB (3)28cm。

2020年秋人教版七年级上册同步练习:4.2《直线、射线、线段》 含答案

2020年秋人教版七年级上册同步练习:4.2《直线、射线、线段》  含答案

2020年人教版七年级上册同步练习:4.2《直线、射线、线段》一.选择题1.“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是()A.两点确定一条直线B.直线比曲线短C.两点之间直线最短D.两点之间线段最短2.如图,从A到B有三条路径,最短的路径是③,理由是()A.两点确定一条直线B.两点之间,线段最短C.过一点有无数条直线D.因为直线比曲线和折线短3.某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.经过直线外一点,有且只有一条直线与这条直线平行4.如图,线段AB=DE,点C为线段AE的中点,下列式子不正确的是()A.BC=CD B.CD=AE﹣AB C.CD=AD﹣CE D.CD=DE5.如图,一根长为10厘米的木棒,棒上有两个刻度,若把它作为尺子,量一次要量出一个长度,能量的长度共有()A.7个B.6个C.5个D.4个6.平面上有不同的三个点,经过其中任意两点画直线,一共可以画()A.1条B.2条C.3条D.1条或3条7.观察图形,下列说法正确的个数是()(1)直线BA和直线AB是同一条直线(2)射线AC和射线AD是同一条射线(3)AB+BD>AD(4)三条直线两两相交时,一定有三个交点.A.1个B.2个C.3个D.4个8.直线a上有5个不同的点A、B、C、D、E,则该直线上共有()条线段.A.8B.9C.12D.109.如图,下列说法正确的是()A.点O在射线AB上B.点B是直线AB的一个端点C.射线OB和射线AB是同一条射线D.点A在线段OB上10.由唐山开往石家庄的G6738次列车,途中有5个停车站,这次列车的不同票价最多有()A.21种B.10种C.42种D.20种11.已知线段AB=8cm,点C是直线AB上一点,BC=2cm,若M是AB的中点,N是BC 的中点,则线段MN的长度为()A.5cm B.5cm或3cm C.7cm或3cm D.7cm12.两根木条,一根长20cm,另一根长24cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.2cm B.4cm C.2cm或22cm D.4cm或44cm 二.填空题13.把一段弯曲的河流改直,可以缩短航程,其理由是.14.如图,是从甲地到乙地的四条道路,其中最短的路线是,理由是.15.如图,已知AB=8cm,BD=3cm,C为AB的中点,则线段CD的长为cm.16.如图,A,B,C,D,E,P,Q,R,S,T是构成五角星的五条线段的交点,则图中共有线段条.17.直线AB,BC,CA的位置关系如图所示,则下列语句:①点B在直线BC上;②直线AB经过点C;③直线AB,BC,CA两两相交;④点B是直线AB,BC的交点,以上语句正确的有(只填写序号)18.已知线段AB和BC在同一条直线上,若AC=6cm,BC=2cm,则线段AC和BC中点间的距离为.19.如图,若CB=4cm,DB=7cm,且D是AC的中点,则AC=cm.三.解答题20.如图,平面上有四个点A,B,C,D,根据下列语句画图:(1)画线段AC、BD交于E点;(2)作射线BC;(3)取一点P,使点P既在直线AB上又在直线CD上.21.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD的长度.22.如图,已知B是线段AC的中点,D是线段CE的中点,若AB=4,CE=AC,求线段BD的长.23.在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p.24.如图:A、B、C、D四点在同一直线上.(1)若AB=CD.①比较线段的大小:AC BD(填“>”、“=”或“<”);②若BC=AC,且AC=12cm,则AD的长为cm;(2)若线段AD被点B、C分成了3:4:5三部分,且AB的中点M和CD的中点N之间的距离是16cm,求AD的长.25.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置;(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM ﹣PN的值不变;②的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.参考答案一.选择题1.解:由线段的性质可知:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.故选:D.2.解:如图,最短路径是③的理由是两点之间线段最短,故B正确,故选:B.3.解:某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是两点之间线段最短.故选:A.4.解:因为点C为线段AE的中点,且线段AB=DE,则BC=CD,故本选项正确;B中CD=AC﹣AB=BC=CD,故本选项正确;C中CD=AD﹣BC﹣AB=CD,故本选项正确;D中CD≠DE则在已知里所没有的,故本选项错误;故选:D.5.解:∵图中共有3+2+1=6条线段,∴能量出6个长度,分别是:2厘米、3厘米、5厘米、7厘米、8厘米、10厘米.故选:B.6.解:如图,经过其中任意两点画直线可以画3条直线或1条直线,故选:D.7.解:(1)直线BA和直线AB是同一条直线,直线没有端点,此说法正确;(2)射线AC和射线AD是同一条射线,都是以A为端点,同一方向的射线,正确;(3)AB+BD>AD,三角形两边之和大于第三边,所以此说法正确;(4)三条直线两两相交时,一定有三个交点,错误,可能有1个交点的情况.所以共有3个正确.故选:C.8.解:根据题意画图:由图可知有AB、AC、AD、AE、BC、BD、BE、CD、CE、DE,共10条.故选:D.9.解:A、点O不在射线AB上,点O在射线BA上,故此选项错误;B、点B是线段AB的一个端点,故此选项错误;C、射线OB和射线AB不是同一条射线,故此选项错误;D、点A在线段OB上,故此选项正确.故选:D.10.解:根据题意知这次列车的不同票价最多有6+5+4+3+2+1=21(种),故选:A.11.解:如图1,由M是AB的中点,N是BC的中点,得MB=AB=4cm,BN=BC=1cm,由线段的和差,得MN=MB+BN=4+1=5cm;如图2,由M是AB的中点,N是BC的中点,得MB=AB=4cm,BN=BC=1cm,由线段的和差,得MN=MB﹣BN=4﹣1=3cm;故选:B.12.解:如图,设较长的木条为AB=24cm,较短的木条为BC=20cm,∵M、N分别为AB、BC的中点,∴BM=12cm,BN=10cm,∴①如图1,BC不在AB上时,MN=BM+BN=12+10=22cm,②如图2,BC在AB上时,MN=BM﹣BN=12﹣10=2cm,综上所述,两根木条的中点间的距离是2cm或22cm;故选:C.二.填空题13.解:把一段弯曲的河流改直,可以缩短航程,其理由是两点之间,线段最短,故答案为:两点之间,线段最短.14.解:由图可得,最短的路线为从甲经A到乙,因为两点之间,线段最短.故答案为:从甲经A到乙,两点之间,线段最短.15.解:∵C为AB的中点,AB=8cm,∴BC=AB=×8=4(cm),∵BD=3cm,∴CD=BC﹣BD=4﹣3=1(cm),则CD的长为1cm;故答案为:1.16.解:线段AC,BE,CE,BD,AD上各有另两个点,每条上有6条线段;所以共有6×5=30条线段.17.解:由图可得,①点B在直线BC上,正确;②直线AB不经过点C,错误;③直线AB,BC,CA两两相交,正确;④点B是直线AB,BC的交点,正确;故答案为:①③④.18.解:设AC、BC的中点分别为E、F,∵AC=6cm,BC=2cm,∴CE=AC=3cm,CF=BC=1cm,如图1,点B不在线段AC上时,EF=CE+CF=3+1=4(cm),如图2,点B在线段AC上时,EF=CE﹣CF=3﹣1=2(cm),综上所述,AC和BC中点间的距离为4cm或2cm.故答案为:4cm或2cm.19.解:CD=DB﹣BC=7﹣4=3cm,AC=2CD=2×3=6cm.故答案为:6.三.解答题20.解:(1)如图所示:;(2)如图所示,(3)如图所示,.21.解:∵AD=7,BD=5∴AB=AD+BD=12∵C是AB的中点∴AC=AB=6∴CD=AD﹣AC=7﹣6=1.22.解:∵点B、D分别是AC、CE的中点,∴BC=AB=AC,CD=DE=CE,∴BD=BC+CD=(AC+CE),∵AB=4,∴AC=8,∵CE=AC,∴CE=6,∴BD=BC+CD=(AC+CE)=(8+6)=7.23.解:(1)若以B为原点,则C表示1,A表示﹣2,∴p=1+0﹣2=﹣1;若以C为原点,则A表示﹣3,B表示﹣1,∴p=﹣3﹣1+0=﹣4;(2)若原点O在图中数轴上点C的右边,且CO=28,则C表示﹣28,B表示﹣29,A 表示﹣31,∴p=﹣31﹣29﹣28=﹣88.24.解:(1)①∵AB=CD,∴AB+BC=CD+BC,即,AC=BD,故答案为:=;②∵BC=AC,且AC=12cm,∴BC=×12=9(cm),∴AB=CD=AC﹣BC=12﹣9=3(cm),∴AD=AC+CD=12+3=15(cm),故答案为:15;(2)如图,设每份为x,则AB=3x,BC=4x,CD=5x,AD=12x,∵M是AB的中点,点N是CD的中点N,∴AM=BM=x,CN=DN=x,又∵MN=16,∴x+4x+x=16,解得,x=2,∴AD=12x=24(cm),答:AD的长为24cm.25.解:(1)根据C、D的运动速度知:BD=2PC ∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∴点P在线段AB上的处;(2)如图:∵AQ﹣BQ=PQ,∴AQ=PQ+BQ;又AQ=AP+PQ,∴AP=BQ,∴,∴.当点Q'在AB的延长线上时AQ'﹣AP=PQ'所以AQ'﹣BQ'=PQ=AB所以=1;(3)②.理由:当CD=AB时,点C停止运动,此时CP=5,AB=30①如图,当M,N在点P的同侧时MN=PN﹣PM=PD﹣(PD﹣MD)=MD﹣PD=CD﹣PD=(CD﹣PD)=CP =②如图,当M,N在点P的异侧时MN=PM+PN=MD﹣PD+PD=MD﹣PD=CD﹣PD=(CD﹣PD)=CP=∴==当点C停止运动,D点继续运动时,MN的值不变,所以,=.。

人教版数学七年级上《4.2直线、射线、线段》同步练习(含答案)

人教版数学七年级上《4.2直线、射线、线段》同步练习(含答案)

4.2 直线射线线段2一、单选题1.已知线段AB=5,C是直线AB上一点,BC=2,则线段AC长为( )A.3 B.7 C.3或7D.以上都不对2.A,B,C三个车站在东西方向笔直的一条公路上,现要建一个加油站使其到三个车站的距离和最小,则加油站应建在( )A.在A的左侧B.在AB之间C.在BC之间D.B处3.如果线段AB=5cm,BC=4cm,且A,B,C在同一条直线上,那么A,C两点的距离是()A.1cm B.9cmC.1cm或9cm D.以上答案都不正确4.如果一条直线上得到10条不同的线段,那么在这条直线上至少有点()A.20个B.10个C.7个D.5个5.下列说法错误的是()A.两点之间的所有连线中,线段最短B.经过一点有且只有一条直线与已知直线平行C.如果两条直线都与第三条直线平行,那么这两条直线也互相平行D.经过一点有且只有一条直线与已知直线垂直6.在图中,线段的条数为( )A.9B.10 C.13D.157.如图,C 是AB 的中点,D 是BC 的中点,则下列等式不成立的是( ,A . CD,AD -ACB . CD,21AB,BDC . CD,41ABD . CD=31AB 8.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是( )A . 171B . 190C . 210D . 3809.如图,从A 地到B 地有多条道路,一般地,为了省时人们会走中间的一条直路而不会走其它的路,其理由是( )A . 两点确定一条直线B . 垂线段最短C . 两点之间,线段最短D . 两点之间,直线最短10.如图所示的图形表示正确的有( )A . 3个B . 4个C . 5个D . 6个11.下列说法:,两点之间的所有连线中,线段最短;,在数轴上与表示﹣1的点距离是3的点表示的数是2,,连接两点的线段叫做两点间的距离;,射线AB和射线BA是同一条射线;,若AC=BC,则点C是线段AB的中点;,一条射线把一个角分成两个相等的角,这条射线是这个角的平分线,其中错误的有()A.2个B.3个C.4个D.5个二、填空题12.点C在线段AB上,下列条件中:①AC=BC②AC=2AB③AB=2BC④AC=0.5AB。

人教版数学七年级上册 第4章 4.2直---4.3同步练习题含答案

人教版数学七年级上册 第4章 4.2直---4.3同步练习题含答案

4.2直线、射线、线段一.选择题1.如图,点C在线段AB上,点D是AC的中点,如果CD=3,AB=10,那么BC长度为()A.3B.3.5C.4.5D.42.已知线段AB,在AB的延长线上取一点C,使BC=2AB,若AC=9cm,则线段AB的长度为()A.4.5cm B.4cm C.3cm D.2cm3.如图,已知AB=10cm,M是AB中点,N在AB的延长线上,若NB=MB,则MN的长为()A.7.5cm B.10cm C.5cm D.6cm4.已知线段AB=6cm,点C在直线AB上,且线段AC=1cm,则线段BC的长为()A.5cm B.7cm C.5cm或7cm D.以上均不对5.如图,下列说法错误的是()A.直线AC与射线BD相交于点AB.BC是线段C.直线AC经过点AD.点D在直线AB上6.如图,小明同学用剪刀沿着虚线将一张圆形纸片剪掉一部分,发现剩下纸片的周长比原来的周长要小,能正确解释这一现象的数学知识是()A.两点之间,直线最短B.经过一点,有无数条直线C.两点确定一条直线D.两点之间,线段最短7.已知点C在线段AB上,下列各式中:①AC=AB;②AC=CB;③AB=2AC;④AC+CB=AB,能说明点C是线段AB中点的有()A.①B.①②C.①②③D.①②③④8.如图所示,某工厂有三个住宅区,A,B,C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点在同一直线上),已知AB=300米,BC=600米.为了方便职工上下班,该厂的接送车打算在此路段只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.AB之间D.BC之间9.判断下列语句,①一根拉紧的细线就是直线;②点A一定在直线AB上;③过三点可以画三条直线;④两点之间,线段最短.正确的有几个()A.1B.2C.3D.410.如图,建筑工人砌墙时,经常用细绳在墙的两端之间拉一条参照线,使砌的每一层砖在一条直线上,这样做的依据是()A.直线比曲线短B.两点之间,线段最短C.两点确定一条直线D.垂线段最短二.填空题11.点M是线段AB上一点,且AM:MB=2:3,MB比AM长2cm,则AB长为.12.把一根木条钉在墙上使其固定,至少需要个钉子,其理由是.13.如图已知线段AD=16cm,线段AC=BD=10cm,E,F分别是AB,CD的中点,则EF 长为cm.14.如图,射击运动员在瞄准时,总是用一只眼瞄准准星和目标,这种现象用数学知识解释为.15.已知A、B、C三站在一条东西走向的马路边,小马现在A站,小虎现在B站,两人分别从A、B两站同时出发,约定在C站会面商议事宜.若小马的行驶速度是小虎的行驶速度的,两人同时到达C站,且A、B两站之间的距离为8km,求C站与A、B两站之间的距离之和是.三.解答题16.如图,点C是线段AB上一点,点M、N、P分别是线段AC、BC、AB的中点,AC=3cm,CP=1cm,求:(1)线段AM的长;(2)线段PN的长.17.如图,点P是线段AB上的一点,点M、N分别是线段AP、PB的中点.(1)如图1,若点P是线段AB的中点,且MP=4cm,求线段AB的长;(2)如图2,若点P是线段AB上的任一点,且AB=12cm,求线段MN的长.18.已知:四点A、B、C、D的位置如图所示,根据下列语句,画出图形.(1)画直线AD、直线BC相交于点O;(2)画射线AB.19.如图,已知线段AB=60,点C、D分别是线段AB上的两点,且满足AC:CD:DB=3:4:5,点K是线段CD的中点,求线段KB的长.解:设AC=3x,则CD=4x,DB=,∵AB=AC+CD+DB=60∴AB=(用含x的代数式表示)=60.∴x=.∵点K是线段CD的中点.∴KD==.∴KB=KD+DB=.参考答案与试题解析一.选择题(共10小题)1.【解答】解:∵点D是AC的中点,∴AC=2CD=2×3=6,∴BC=AB﹣AC=10﹣6=4.故选:D.2.【解答】解:如图,∵BC=2AB、AC=9cm,∴AB=AC=3cm,故选:C.3.【解答】解:∵AB=10cm、M为AB的中点,∴AM=MB=AB=5cm,又∵NB=MB,∴NB=2.5cm,则MN=MB+BN=5+2.5=7.5(cm),故选:A.4.【解答】解:①点C在A、B中间时,BC=AB﹣AC=6﹣1=5(cm).②点C在点A的左边时,BC=AB+AC=6+1=7(cm).∴线段BC的长为5cm或7cm.故选:C.5.【解答】解:A、直线AC与射线BD相交于点A,说法正确,故本选项错误;B、B、C是两个端点,则BC是线段,说法正确,故本选项错误;C、直线AC经过点A,说法正确,故本选项错误;D、如图所示,点D在射线BD上,说法错误,故本选项正确.故选:D.6.【解答】解:能正确解释这一现象的数学知识是两点之间,线段最短.故选:D.7.【解答】解:∵点C在线段AB上,∴当①AC=AB或②AC=CB或③AB=2AC时,点C是线段AB中点;当④AC+CB=AB时,点C不一定是线段AB中点;故选:C.8.【解答】解:①以点A为停靠点,则所有人的路程的和=15×300+10×900=13500(米),②以点B为停靠点,则所有人的路程的和=30×300+10×600=15000(米),③以点C为停靠点,则所有人的路程的和=30×900+15×600=36000(米),④当在AB之间停靠时,设停靠点到A的距离是m,则(0<m<300),则所有人的路程的和是:30m+15(300﹣m)+10(900﹣m)=13500+5m>13500,⑤当在BC之间停靠时,设停靠点到B的距离为n,则(0<n<600),则总路程为30(300+n)+15n+10(600﹣n)=15000+35n>13500.∴该停靠点的位置应设在点A;故选:A.9.【解答】解:①一根拉紧的细线就是直线,说法错误;②点A一定在直线AB上,说法正确;③过三点可以画三条直线,说法错误;④两点之间,线段最短,说法正确;正确的说法有2个,故选:B.10.【解答】解:建筑工人砌墙时,经常用细绳在墙的两端之间拉一条参照线,使砌的每一层砖在一条直线上,这样做的依据是:两点确定一条直线.故选:C.二.填空题(共5小题)11.【解答】解:设AM=2xcm,MB=3xcm,则AB=5xcm,∵MB比AM长2cm,∴BM﹣AM=3x﹣2x=x=2(cm),∴AB长为5x=10(cm),故答案为:10cm.12.【解答】解:∵两点确定一条直线,∴将一根细木条固定在墙上时,我们至少需要两个钉子.13.【解答】解:由图可知BC=AC+BD﹣AD=10+10﹣16=4cm,∵E,F分别是AB,CD的中点,∴EB+CF=0.5(AB+CD)=0.5(AD﹣BC)=0.5(16﹣4)=6cm,∴EF=BE+CF+BC=6+4=10cm.14.【解答】解:∵准星与目标是两点,∴利用的数学知识是:两点确定一条直线.故答案是:两点确定一条直线.15.【解答】解:相同的时间内,小马行驶路程是小虎行驶路程的,设小马行驶路程为3x,即AC=3x,小虎行驶路程为5x,即BC=5x,(1)当C在线段AB反向延长线上时(如图1)AC+AB=BC,则3x+8=5x,解得x=4,∴AC=12,BC=20;∴C站与A、B两站之间的距离之和是32;(2)当C在线段AB上时(上图2),AC=3,BC=5;∴C站与A、B两站之间的距离之和是8;(3)当C在线段AB的延长线上时,可知不符合实际情况,不可能.故答案为:32或8.三.解答题(共4小题)16.【解答】解:(1)∵M为AC中点,∴AM=AC=cm;(2)∵AP=AC+CP,CP=1cm,∴AP=4cm,∵P为AB的中点,∴线段AB=2AP=8 cm,∵CB=AB﹣AC,AC=3cm,∴线段CB=5cm,∵N为CB的中点,∴CN=BC=cm,∴PN=CN﹣CP=cm,答:(1)线段AM的长为cm,(2)线段PN的长为cm.17.【解答】解:(1)∵M是线段AP的中点,MP=4cm,∴AP=2MP=2×4=8(cm),又∵点P是线段AB的中点,∴AB=2AP=2×8=16(cm).(2)∵点M是线段AP的中点,点N是线段PB的中点,∴MP=AP,PN=PB,∴MN=MP+PN=AP+PB=(AP+PB)=AB,∵AB=12cm,∴MN=12÷2=6(cm).18.【解答】解:如图所示:19.【解答】解:设AC=3x,则CD=4x,DB=5x,∵AB=AC+CD+DB=60∴AB=3x+4x+5x(用含x的代数式表示)=60.∴x=5.∵点K是线段CD的中点.∴KD=CD=10.∴KB=KD+DB=35.故答案为:5x;3x+4x+5x;5;CD,10;35.4.3 《角》一.选择题1.用度、分、秒表示21.24°为()A.21°14'24″B.21°20'24″C.21°34'D.21°2.已知∠A=30°45',∠B=30.45°,则∠A()∠B.(填“>”、“<”或“=”)A.>B.<C.=D.无法确定3.下列说法正确的是()A.一个角的补角必是钝角B.两个锐角一定互为余角C.直角没有补角D.钝角没有余角4.若∠A与∠B互为补角,则∠A+∠B=()A.60°B.90°C.120°D.180°5.25°的补角是()A.155°B.145°C.55°D.65°6.下列四个角中,有可能与70°角互补的角是()A.B.C.D.7.已知∠1和∠2互为余角,且∠2与∠3互补,∠1=60°,则∠3为()A.120°B.60°C.30°D.150°8.一个角的余角是44°,这个角的补角是()A.134°B.136°C.156°D.146°9.如果一个角的度数比它补角的2倍多30°,那么这个角的度数是()A.50°B.70°C.130°D.160°10.若α=27°25',则α的余角等于()A.62°25'B.62°35'C.152°25'D.152°35'二.填空题11.如图,点O在直线AB上,OC是∠AOD的平分线.若∠BOD=50°,则∠AOC的度数为.12.已知∠AOB=40°,OC是∠AOB的平分线,则∠AOC等于.13.钟表上显示的时间是12:30,此时时针与分针的夹角是.14.若此时时钟表上的时间是8:20分,则时针与分针的夹角为度.15.如图,∠BOC=90°,∠COD=45°,则图中互为补角的角共有对.三.解答题(共3小题)16.计算:(1)131°28′﹣51°32′15″(2)58°38′27″+47°42′40″(3)34°25′×3+35°42′17.一个锐角的补角比它的余角的4倍小30°,求这个锐角的度数.18.如图,点A,O,B在同一条直线上,射线OD和射线OE分别平分∠AOC和∠BOC,若∠BOE=21°,求∠AOE及∠COD的度数.参考答案一.选择题1.解:21.24°=21°+0.24×60′=21°+14′+0.4×60″=21°14′24″,故选:A.2.解:30.45°=30°+0.45×60′=30°27′,∵30°45′>30°27′,∴30°45'>30.45°,∴∠A>∠B,故选:A.3.解:A.一个钝角的补角为锐角,故原说法错误;B.两个锐角的和为90°时,这两个角一定互余,故原说法错误;C.直角的补角依然是直角,故原说法错误;D.和为90°的两个角互余,所以钝角没有余角,故原选项正确.故选:D.4.解:∵∠A与∠B互为补角,∴∠A+∠B=180°.故选:D.5.解:25°的补角是:180°﹣25°=155°.故选:A.6.解:根据互补的性质得,70°角的补角为:180°﹣70°=110°,是个钝角;∵答案A、B、C都是锐角,答案D是钝角;∴答案D正确.故选:D.7.解:∵∠1和∠2互为余角,∠1=60°,∴∠2=90°﹣∠1=90°﹣60°=30°,∵∠2与∠3互补,∴∠3=180°﹣∠2=180°﹣30°=150°.故选:D.8.解:∵一个角的余角是44°,∴这个角的度数是:90°﹣44°=46°,∴这个角的补角是:180°﹣46°=134°.故选:A.9.解:设这个角是x°,根据题意,得x=2(180﹣x)+30,解得:x=130.即这个角的度数为130°.故选:C.10.解:α的余角=90°﹣α=90°﹣27°25'=62°35'.故选:B.二.填空题11.解:∵点O在直线AB上,∴∠AOD+∠BOD=180°,∵∠BOD=50°,∴∠AOD=180°﹣∠BOD=180°﹣50°=130°,∵OC是∠AOD的平分线,∴∠AOC=∠AOD=×130°=65°,故答案为:65°.12.解:∵OC是∠AOB的平分线,∠AOB=40°,∴∠AOC=∠AOB=×40°=20°,故答案为:20°.13.解:12:30时,时针与分针相距5.5份,夹角为30°×5.5=165°,故选:165°.14.解:∵时针在钟面上每分钟转0.5°,分针每分钟转6°,∴钟表上8点20分,时针与分针的夹角可以看成30°×4+0.5°×20=130°.故答案为:130.15.解:∵∠BOC=90°,∴∠AOC=∠BOC=90°,∴∠AOC与∠BOC互为补角;∵∠BOD+∠AOD=180°,∴∠AOD与∠BOD互为补角;∵∠COD=45°,∴∠BOD=45°,∴∠AOD与∠COD互为补角;∴图中互为补角的角共有3对,故答案为:3.三.解答题(共3小题)16.解:(1)131°28′﹣51°32′15″=79°55′45″;(2)58°38′27″+47°42′40″=106°21′7″;(3)34°25′×3+35°42′=103°15′+35°42′=138°57′.17.解:设这个锐角为x度,得:180﹣x=4(90﹣x)﹣30,解得x=50.答:这个锐角的度数为50°.18.解:∵∠BOE=21°,∴∠AOE=180°﹣∠BOE=159°,∵射线OE平分∠BOC,∴∠BOC=2∠BOE=42°,∴∠AOC=180°﹣∠BOC=138°,∵OD平分∠AOC,∴∠COD=AOC=69°.。

七年级上册数学人教版课时练《4.2 直线、射线、线段》01(含答案解析)

七年级上册数学人教版课时练《4.2 直线、射线、线段》01(含答案解析)

人教版七年级数学上册第四章几何图形初步《4.2 直线、射线、线段》课时练一、单选题1.下列三种现象中,可用“两点之间线段最短”来解释的现象是()(1)用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动;(2)过马路时,行人选择横穿马路而不走人行天桥;(3)工人砌砖前需要固定两点,牵上线,才开始砌砖.A.(1)B.(2)C.(2)(3)D.都不可以2.如图,12AD CB=,则DB的长度AB=,C为AB的中点,点D在线段AC上,且:1:3为()A.4B.6C.8D.103.如图,经过刨平的木板上的A,B两点,只能弹出一条笔直的墨线,能解释这一实际应用的数学知识是()A.两点之间,线段最短B.一条线段等于已知线段C.两点确定一条直线D.两点之间线段的长度,叫做这两点之间的距离4.为了让一队学生站成一条直线,先让两名学生站好不动,其他学生依次往后站,要求目视前方只能看到各自前面的那名学生,这种做法依据的几何知识应是()A.两点确定一条直线B.两点之间,线段最短C.射线只有一个端点D.两直线相交只有一个交点5.已知线段AB=10cm,点C是线段AB上一点,BC=4cm,点M和点N分别是线段AB和线段BC的中点,则线段MN的长度是()A.8cm B.7cm C.5cm D.3cm6.图中,AB、AC是射线,图中共有()条线段.A .7B .8C .9D .117.图中的直线a 、射线b 、线段c 可以相交的是( )A .B .C .D .8.一条铁路上有10个站,则共需要制( )种火车票.A .45B .55C .90D .1109.下列说法中正确的有( ).(1)线段有两个端点,直线有一个端点;(2)由两条射线组成的图形叫角(3)角的大小与我们画出的角的两边的长短无关;(4)线段上有无数个点;(5)两个锐角的和必定是直角或钝角;(6)若AOC ∠与AOB ∠有公共顶点,且AOC ∠的一边落在AOB ∠的内部,则AOB AOC ∠>∠.( )A .1个B .2个C .3个D .4个10.已知:①AB =2AM ;①BM =12AB ;①AM =BM ;①AM +BM =AB ,其中能够得到M 是线段AB 的中点的有( )个.A .0B .1C .2D .311.下列语句正确的是( )A .画直线AB =5cmB .过任意三点A 、B 、C 画直线AB C .两点之间,直线最短D .画线段AB =3cm12.七年级共有14个班,要组织篮球单循环赛,共需要安排( )场比赛.A.182B.91C.28D.14等于()13.平面内两两相交的6条直线,交点个数最少为m个,最多为n个,则m nA.12B.16C.20D.2214.如图,下列说法正确的是()A.点O在线段AB上B.点B是直线AB的一个端点C.射线OB和射线AB是同一条射线D.图中共有3条线段15.一只小虫子欲从A点不重复经过图中的点或者线段,而最终到达目的地E,这只小虫子的不同走法共有()A.12种B.13种C.14种D.15种二、填空题16.如图,以图中的A,B,C,D,E为端点的线段共有__________条.17.如图是小刚家与学校附近的主要街道分布示意图,小刚上学放学一般都走①号路线,用几何知识解释其道理应是:________.18.如图,点P在直线AB______;点Q在直线AB______,也在射线AB______,但在线段AB的______上.19.如图,点A、B在直线l上,点C是直线l外一点,可知CA CB AB+>,其依据是______.20.已知:线段a,作一条线段AB,使AB=_______作法:(1)用直尺画射线AC.(2)用圆规在射线AC上截取.① 线段AB为所求.三、解答题21.如图,在四边形ABCD内找一点O、使它到四边形四个顶点的距离的和OA OB OC OD+++最小,并说出你的理由.由本题你得到什么数学结论?举例说明它在实际中的应用.22.分别比较图(1)(2)(3)中各条线段的长短:23.在一张零件图中,已知76mm,70mm,19mm AD BD CD ===,求AB 和BC 的长.参考答案1.B2.D 3.C 4.A 5.D 6.C 7.D 8.C 9.C 10.A11.D12.B 13.B 14.D 15.C 16.1017.两点之间,线段最短18.外 上 上 延长线19.两点之间,线段最短.20.a21.当点O 是四边形对角线的交点时,数学结论:四边形对角线交点到四个顶点的距离之和最小,见解析 OA OB OC OD +++AC BD ≥+,根据“两点的所有连线中,线段最短”的性质,当,,A O C 和,,B O D 共线时,即当点O 是四边形对角线的交点时,它到四个顶点的距离之和最小.数学结论:四边形对角线交点到四个顶点的距离之和最小.应用举例,,,,A B C D 分别为四个村庄,在村庄附近修建一个车站,要求所选地点到每个村庄的距离和最小,则修建地点应该选在四边形对角线的交点位置.22.(1)线段AB 比CD 短;(2)线段AB 比CD 短;(3)从短到长依次为线段CD 、线段AD 、线段BC 、线段AB解:根据度量法,用刻度尺量得:(1)<AB CD ,线段AB 比CD 短;(2)<AB CD ,线段AB 比CD 短;(3)CD AD BC AB <<<,从短到长依次为线段CD 、线段AD 、线段BC 、线段AB ; 23.6mm,51mm AB BC ==76706AB AD BD =-=-=(mm ).701951BC BD CD =-=-=(mm ).。

人教版七年级数学上册4.2 直线、射线、线段同步测试(含试题答案和解析)

 人教版七年级数学上册4.2 直线、射线、线段同步测试(含试题答案和解析)

人教版七年级数学上册4.2 直线、射线、线段同步测试一.选择题(共8小题)1.下列数学语言,不正确的是()A.画直线MN,在直线MN上任取一点PB.以点M为端点画射线MAC.直线a,b相交于点mD.延长线段MN到点P,使NP=MN2.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.两点之间直线最短3.如图,C,D,E是线段AB的四等分点,下列等式不正确的是()A.AB=4AC B.CE=AB C.AE=AB D.AD=CB4.下列说法正确的有()①过两点只能画一条直线;②过两点只能画一条射线;③过两点只能画一条线段.A.1个B.2个C.3个D.0个5.经过平面上的三点中的任两点可以画直线()A.3条B.1条C.1条或3条D.以上都不对6.如图,点A,B,C,D在同一条直线上,如果AB=CD,那么比较AC与BD的大小关系为()A.AC>BD B.AC<BD C.AC=BD D.不能确定7.如图,下列关于图中线段之间的关系一定正确的是()A.x=2x+2b﹣c B.c﹣b=2a﹣2b C.x+b=2a+c﹣b D.x+2a=3c+2b8.已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.7cm B.3cm C.7cm或3cm D.5cm二.填空题(共6小题)9.在同一个平面内任意的四个点,可以确定条直线.10.直线AB,BC,CA的位置关系如图所示,则下列语句:①点B在直线BC上;②直线AB经过点C;③直线AB,BC,CA两两相交;④点B是直线AB,BC的交点,以上语句正确的有(只填写序号)11.已知线段AB和BC在同一条直线上,若AC=6cm,BC=2cm,则线段AC和BC中点间的距离为.12.已知线段AB,延长AB到C,使BC=AB,D为AC的中点,若AB=9cm,则DC的长为.13.如图所示,在一条笔直公路l的两侧,分别有A、B两个小区,为了方便居民出行,现要在公路l上建一个公共自行车存放点,使存放点到A、B小区的距离之和最小,你认为存放点应该建在处(填“C”“E”或“D”),理由是.14.点A、B、C在直线l上,AB=4cm,BC=6cm,点E是AB中点,点F是BC的中点,EF=.三.解答题(共4小题)15.(1)如图1,已知三点A,B,C,按要求画图:画直线AB;画射线AC;画线段BC.(2)如图2,用适当的语句表述点A,P与直线l的关系.16.已知,点A、B、C在同一条直线上,点M为线段AC的中点、点N为线段BC的中点(1)如图,当点C在线段AB上时:①若线段AC=8,BC=6,求MN的长度②若AB=a,求MN的长度(2)若AC=m,BC=n,求M的长度(m>n用含mn的代数式表示)17.如图,延长AB至D,使B为AD的中点,点C在BD上,CD=2BC.(1)AB=AD,AB﹣CD=;(2)若BC=3,求AD的长.18.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.你能用一句简洁的话描述你发现的结论吗?(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.参考答案与试题解析一.选择题(共8小题)1.下列数学语言,不正确的是()A.画直线MN,在直线MN上任取一点PB.以点M为端点画射线MAC.直线a,b相交于点mD.延长线段MN到点P,使NP=MN解:A、画直线MN,在直线MN上任取一点P,正确;B、以点M为端点画射线MA,正确;C、直线a,b相交于点M,故错误;D、延长线段MN到点P,使NP=MN,正确;故选:C.2.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.两点之间直线最短解:把一根木条固定在墙面上,至少需要两枚钉子,是因为两点确定一条直线.故选:B.3.如图,C,D,E是线段AB的四等分点,下列等式不正确的是()A.AB=4AC B.CE=AB C.AE=AB D.AD=CB 解:由C,D,E是线段AB的四等分点,得AC=CD=DE=EB=AB,选项A,AC=AB⇒AB=4AC,选项正确选项B,CE=2CD⇒CE=AB,选项正确选项C,AE=3AC⇒AE=AB,选项正确选项D,因为AD=2AC,CB=3AC,所以AD=,选项错误故选:D.4.下列说法正确的有()①过两点只能画一条直线;②过两点只能画一条射线;③过两点只能画一条线段.A.1个B.2个C.3个D.0个解:①过两点只能画一条直线,故正确;②过两点可以画2条射线,故错误;③过两点只能画一条线段,故正确.综上所述,正确的结论有2个.故选:B.5.经过平面上的三点中的任两点可以画直线()A.3条B.1条C.1条或3条D.以上都不对解:当三点在同一直线上时经过此三点可以画一条直线,当三点不在同一直线上时经过此三点可以画三条直线,所以经过三点中的任两点可以画1或3条直线,故选:C.6.如图,点A,B,C,D在同一条直线上,如果AB=CD,那么比较AC与BD的大小关系为()A.AC>BD B.AC<BD C.AC=BD D.不能确定解:根据题意和图示可知AB=CD,而CB为AB和CD共有线段,故AC=BD.故选:C.7.如图,下列关于图中线段之间的关系一定正确的是()A.x=2x+2b﹣c B.c﹣b=2a﹣2b C.x+b=2a+c﹣b D.x+2a=3c+2b解:∵x﹣c+2b=2a,∴x+2a=2x+2b﹣c,故选项A错误;∵2a﹣2b=x﹣c,故选项B错误;∵x+b=2a+c﹣b,故选项C正确;∵2a﹣2b=x﹣c,∴﹣x+2a=﹣c+2b,故选项D错误,故选:C.8.已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.7cm B.3cm C.7cm或3cm D.5cm解:(1)当点C在线段AB上时,则MN=AC+BC=AB=5cm;(2)当点C在线段AB的延长线上时,则MN=AC﹣BC=7﹣2=5cm.综合上述情况,线段MN的长度是5cm.故选:D.二.填空题(共6小题)9.在同一个平面内任意的四个点,可以确定1或4或6条直线.解:如图所示:(1)四点在一条直线上,1条,如图1;(2)三点在一条直线上,4条,如图2;(3)两点在一条直线上,6条,如图3;故答案为:1或4或6.10.直线AB,BC,CA的位置关系如图所示,则下列语句:①点B在直线BC上;②直线AB经过点C;③直线AB,BC,CA两两相交;④点B是直线AB,BC的交点,以上语句正确的有①③④(只填写序号)解:由图可得,①点B在直线BC上,正确;②直线AB不经过点C,错误;③直线AB,BC,CA两两相交,正确;④点B是直线AB,BC的交点,正确;故答案为:①③④.11.已知线段AB和BC在同一条直线上,若AC=6cm,BC=2cm,则线段AC和BC中点间的距离为4cm或1cm.解:设AC、BC的中点分别为E、F,∵AC=6cm,BC=2cm,∴CE=AC=3cm,CF=BC=1cm,如图1,点B不在线段AC上时,EF=CE+CF=3+1=4(cm),如图2,点B在线段AC上时,EF=CE﹣CF=3﹣1=1(cm),综上所述,AC和BC中点间的距离为4cm或1cm.故答案为:4cm或1cm.12.已知线段AB,延长AB到C,使BC=AB,D为AC的中点,若AB=9cm,则DC的长为6cm.解:∵BC=AB,AB=9cm,∴BC=3cm,AC=AB+BC=12cm,又因为D为AC的中点,所以DC=AC=6cm.故答案为:6cm.13.如图所示,在一条笔直公路l的两侧,分别有A、B两个小区,为了方便居民出行,现要在公路l上建一个公共自行车存放点,使存放点到A、B小区的距离之和最小,你认为存放点应该建在E 处(填“C”“E”或“D”),理由是两点之间线段最短.解:公共自行车存放点应该建在E处,理由是两点之间线段最短.故答案为:E,两点之间线段最短.14.点A、B、C在直线l上,AB=4cm,BC=6cm,点E是AB中点,点F是BC的中点,EF=5cm 或1cm.解:如图,∵AB=4cm,BC=6cm,点E是AB中点,点F是BC的中点,∴BE=AB=2cm,BF=BC=3cm,①点B在A、C之间时,EF=BE+BF=2+3=5cm;②点A在B、C之间时,EF=BF﹣BE=3﹣2=1cm.∴EF的长等于5cm或1cm.故答案为:5cm或1cm.三.解答题(共4小题)15.(1)如图1,已知三点A,B,C,按要求画图:画直线AB;画射线AC;画线段BC.(2)如图2,用适当的语句表述点A,P与直线l的关系.解:(1)如图所示:(2)点A在直线l上,点P在直线l外.16.已知,点A、B、C在同一条直线上,点M为线段AC的中点、点N为线段BC的中点(1)如图,当点C在线段AB上时:①若线段AC=8,BC=6,求MN的长度②若AB=a,求MN的长度(2)若AC=m,BC=n,求M的长度(m>n用含mn的代数式表示)解:(1)当C在线段AB上时①∵点M、N分别是AC、BC的中点,AC=8,BC=6∴CM=AC=4,CN=BC=3∴MN=CM+CN=4+3=7;②∵点M、N分别是AC、BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN=AC+BC=(AC+BC)=AB=a;(2)当点C在线段AB上时,MN=m n,当点C在线段AB的延长线时,MN=m﹣n,当点C在线段BA的延长线时,MN=n﹣m.17.如图,延长AB至D,使B为AD的中点,点C在BD上,CD=2BC.(1)AB=AD,AB﹣CD=BC;(2)若BC=3,求AD的长.解:(1)因为B为AD的中点,所以AB=BD=AD,所以AB﹣CD=BD﹣CD=BC,故答案为:,BC.(2)因为BC=3,CD=2BC,所以CD=2BC=6,所以BD=BC+CD=3+6=9因为B是AD中点,∴AB=BD=9,∴AD=AB+BD=9+9=18,即AD的长是18.18.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.你能用一句简洁的话描述你发现的结论吗?(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.解:(1)∵AC=9cm,点M是AC的中点,∴CM=0.5AC=4.5cm,∵BC=6cm,点N是BC的中点,∴CN=0.5BC=3cm,∴MN=CM+CN=7.5cm,∴线段MN的长度为7.5cm,(2)MN=a,当C为线段AB上一点,且M,N分别是AC,BC的中点,则存在MN=a,(3)当点C在线段AB的延长线时,如图:则AC>BC,∵M是AC的中点,∴CM=AC,∵点N是BC的中点,∴CN=BC,∴MN=CM﹣CN=(AC﹣BC)=b.。

人教版七年级数学上册课后同步练习4.2 直线、射线、线段

人教版七年级数学上册课后同步练习4.2 直线、射线、线段

课后训练1.如图所示,下列说法正确的是().A.直线OM与直线MN是同一条直线B.射线MO与射线MN是同一条射线C.射线OM与射线MN是同一条射线D.射线NO与射线MO是同一条射线2.下列说法正确的是().A.两点确定两条直线B.三点确定一条直线C.过一点只能作一条直线D.过一点可以作无数条直线3.M是线段AB上的一点,其中不能判定点M是线段AB中点的是().A.AM+BM=AB B.AM=BMC.AB=2BM D.AM=12 AB4.A,B两点的距离是().A.连接A,B两点的线段B.连接A,B两点的线段的长度C.过A,B两点的直线D.过A,B两点的线段5.若点B在线段AC上,AB=10 cm,BC=6 cm,则A,C两点的距离是().A.4 cm B.16 cmC.4 cm或16 cm D.不能确定6.如图所示,由A到B有(1),(2),(3)三条路线,最短的路线选(1)的理由是().A.因为它直B.两点确定一条直线C.两点间距离的定义D.两点之间,线段最短能力提升7.如图所示,AB=CD,则AC与BD的大小关系是().A.AC>BD B.AC<BDC.AC=BD D.无法确定8.C是线段AB的中点,D是线段BC上一点,则下列说法不正确的是().A.CD=AC-BD B.CD=12AB-BDC.CD=AD-BC D.CD=12 BC9.点C是线段AB延长线上的一点,点D是线段AB的中点,如果点B恰好是DC的中点,设AB=2 cm,则AC=__________cm.10.如图,AC=CD=DE=EB,图中和线段AD长度相等的线段是__________.以D 为中点的线段是__________.11.已知线段AB=7 cm,在直线AB上画线段BC=1 cm,那么线段AC=________.12.有条小河l,点A,B表示在河两岸的两个村庄,现在要建造一座小桥,请你找出造桥的位置,使得到A,B两村的路程最短,并说明理由.且NB=14厘米,求PM的长.。

人教版七级上《4.2直线、射线、线段》同步练习含解析

人教版七级上《4.2直线、射线、线段》同步练习含解析

人教版数学七年级上册第4章 4.2直线、射线与线段同步练习一、单选题(共10题;共20201、线段AB=5cm,BC=2cm,则线段AC的长度是( )A、3cmB、7cmC、3cm或7cm2、两条相交直线与另一条直线在同一平面,它们的交点个数是( )A、1B、2C、3或2D、1或2或33、平面上有四点,经过其中的两点画直线最多可画出( )A、三条B、四条C、五条D、六条4、以下条件能确定点C是AB中点的条件是( )A、AC=BCB、C、AB=2CBD、AB=2AC=2CB5、平面内四条直线最少有a个交点,最多有b个交点,则a+b=( )A、6B、4C、2D、06、如图,直线l与∠O的两边分别交于点A、B,则图中以O、A、B为端点的射线的条数总和是( )A、5B、6C、7D、87、平面上有四个点,经过其中的两点画直线最少可画a条直线,最多可画b条直线,那么a+b的值为( )A、4B、5C、6D、78、下列说法中正确的是( )A、两点之间线段最短B、若两个角的顶点重合,那么这两个角是对顶角C、一条射线把一个角分成两个角,那么这条射线是角的平分线D、过直线外一点有两条直线平行于已知直线9、下列说法:①平角就是一条直线;②直线比射线线长;③平面内三条互不重合的直线的公共点个数有0个、1个、2个或3个;④连接两点的线段叫两点之间的距离;⑤两条射线组成的图形叫做角;⑥一条射线把一个角分成两个角,这条射线是这个角的角平分线,其中正确的有( )A、0个B、1个C、2个D、3个10、如图,点A,B在直线m上,点P在直线m外,点Q是直线m上异于点A,B的任意一点,则下列说法或结论正确的是( )A、射线AB和射线BA表示同一条射线B、线段PQ的长度就是点P到直线m的距离C、连接AP,BP,则AP+BP>ABD、不论点Q在何处,AQ=AB-BQ或AQ=AB+BQ二、填空题(共5题;共11分)11、往返于甲,乙两地的客车,中途停靠3个车站(来回票价一样)准备________种车票.12、线段有________个端点,射线有________个端点,直线有________个端点.13、如图所示,共有线段________条,共有射线________条.14、如图,A,B,C,D是一直线上的四点,则________ +________=AD﹣AB,AB+CD =________﹣________.15、往返于两个城市的客车,中途停靠三个站,且任意两站间的票价都不同,则共有________种不同票价.三、作图题(共1题;共5分)16、按下列要求画出图形(在原图上画)如图,平面上有三点A,B,C ①画直线AB ②画射线BC③画线段AC.四、解答题(共5题;共25分)17、已知AB=10cm,点C在直线AB上,如果BC=4cm,点D是线段AC的中点,求线段BD的长度.18、如图,已知AB:BC:CD=2:3:4,E、F分别为AB、CD中点,且EF=15.求线段AD的长.19、如图,点D为线段CB的中点,AD=8cm,AB=10cm,求CB的长度.2020知C,D两点将线段AB分为三部分,且AC:CD:DB=2:3:4,若AB的中点为M,BD的中点为N,且MN=5cm,求AB的长.21、如图,M是线段AC中点,B在线段AC上,且AB=2cm、BC=2AB,求BM长度.答案解析部分一、单选题1、【答案】C【考点】两点间的距离【解析】【解答】解:如图(一)所示,当点C在线段AB外时,AC=AB+BC=5+2=7cm;如图(二)所示,当点C在线段AB内时,AC=AB﹣BC=5﹣2=3cm.故选C【分析】根据题意画出图形,由于点C与线段AB的位置不能确定,所以应分点C在AB外和在AB之间两种情况进行讨论.2、【答案】D【考点】直线、射线、线段【解析】【解答】解:当另一条直线与两条相交直线交于同一点时,交点个数为1;当另一条直线与两条相交直线中的一条平行时,交点个数为2;当另一条直线分别与两条相交直线相交时,交点个数为3;故它们的交点个数为1或2或3.故选D.【分析】本题中直线的位置关系不明确,应分情况讨论,包括两条相交直线是否是另一条直线平行、相交或交于同一点.3、【答案】D【考点】直线、射线、线段【解析】【解答】解:如图,最多可画6条直线.,故选D.【分析】画出图形即可确定最多能画的直线的条数.4、【答案】D【考点】直线、射线、线段【解析】【解答】解:AC=BC,AC= AB,AC=2CB都不能说明点A、B、C三点共线,由AB=2AC=2CB可知A、B、C三点共线,且AC=BC,所以,点C是AB中点.故选D.【分析】根据线段中点的定义确定出点A、B、C三点共线的选项即为正确答案.5、【答案】A【考点】直线、射线、线段【解析】【解答】解:交点个数最多时, = =6,最少有0个.所以b=6,a=0,所以a+b=6.故选:A.【分析】当所有直线两两平行时交点个数最少;交点最多时根据交点个数公式代入计算即可求解;依此得到a、b的值,再相加即可求解.6、【答案】D【考点】直线、射线、线段【解析】【解答】解:以O为端点的射线有2条,以A为端点的射线有3条,以B为端点的射线有3条,共有2+3+3=8条.故选D.【分析】根据射线的定义,分别数出以O、A、B为端点的射线的条数,再相加即可解得.7、【答案】D【考点】直线、射线、线段【解析】【解答】解:如图所示:平面上有四个点最少画1条直线,最多画6条直线.故a=1,b=6.则a+b=1+6=7.故选:D.【分析】当四点在一条直线上时,可画1条,当任意三点不在同一条直线上时可画出6条直线,1+6=7.8、【答案】A【考点】线段的性质:两点之间线段最短,角平分线的定义,对顶角、邻补角,平行公理及推论【解析】【解答】解:A、两点之间线段最短,是线段的性质公理,故本选项正确;B、应为若两个角的顶点重合且两边互为反向延长线,那么这两个角是对顶角,故本选项错误;C、应为一条射线把一个角分成两个相等的角,那么这条射线是角的平分线,故本选项错误;D、应为过直线外一点有且只有一条直线平行于已知直线,故本选项错误.故选A.【分析】根据线段的性质,对顶角的定义,角平分线的定义,平行公理对各选项分析判断后利用排除法求解.9、【答案】B【考点】直线、射线、线段,角的概念,角平分线的定义【解析】【解答】解:①平角就是一条直线,错误;②直线比射线线长,错误;③平面内三条互不重合的直线的公共点个数有0个、1个、2个或3个,正确;④连接两点的线段叫两点之间的距离,错误;⑤两条射线组成的图形叫做角,错误;⑥一条射线把一个角分成两个角,这条射线是这个角的角平分线,错误;其中正确的有1个.故选:B.【分析】分别利用直线、射线、线段的定义以及角的概念和角平分线的定义分析得出即可.10、【答案】C【考点】直线、射线、线段,点到直线的距离,三角形三边关系【解析】【解答】解:A. 射线AB和射线BA表示不同的射线,故A不符合题意;B. PQ⊥AB时,线段PQ的长度就是点P到直线m的距离,故B不符合题意;C. 连接AP,BP,则AP+BP>AB,故C符合题意;D. Q在A的右边时,不满足AQ=AB-BQ或AQ=AB+BQ,故D不符合题意;故选:C.【分析】二、填空题11、【答案】2020【考点】直线、射线、线段【解析】【解答】解:此题相当于一条线段上有3个点,有多少种不同的票价即有多少条线段:4+3+2+1=10;∴有10种不同的票价;∵有多少种车票是要考虑顺序的,∴需准备2020票,故答案为:2020【分析】先求出线段条数,一条线段就是一种票价,车票是要考虑顺序,求解即可.12、【答案】2;1;0【考点】直线、射线、线段【解析】【解答】解:根据线段、射线、直线的定义即可得出: 线段有2个端点,射线有1个端点,直线有0个端点.故答案为:2,1,0.【分析】根据线段、射线、直线的定义即可得出其顶点的个数,此题得解.13、【答案】6;5【考点】直线、射线、线段【解析】【解答】解:图中线段有:ED、EC、EB、DC、DB、CB共6条,射线有:ED、EB、CD、CB、BE共5条,故答案为:6,5.【分析】根据直线、射线、线段的概念进行判断即可.14、【答案】BC;CD;AD;BC【考点】直线、射线、线段【解析】【解答】解:∵AD=AB+BC+CD,∴BC+CD=AD﹣AB;∵AB+CD+BC=AD,∴AB+CD=AD﹣BC;∵AD=AB+BC+CD,∴AB+BC=AD﹣CD.故答案为BC;CD;AD;BC【分析】根据图中给出A,B,C,D4个点的位置,根据两点间距离的计算即可解题.15、【答案】10【考点】直线、射线、线段【解析】【解答】解:根据题意得: =10,则共有10种不同票价,故答案为:10【分析】根据在一条直线上n个点连为条线段规律,计算即可得到结果.三、作图题16、【答案】解:如图所示: .【考点】直线、射线、线段【解析】【分析】根据直线、射线、线段的定义画出即可.四、解答题17、【答案】解:∵AB=10cm,BC=4cm,点C在直线AB上,∴点C在线段AB上或在线段AB的延长线上.①当点C在线段AB上时,如图①,则有AC=AB﹣BC=10﹣4=6.∵点D是线段AC的中点,∴DC= AC=3,∴DB=DC+BC=3+4=7;②当点C在线段AB的延长线上时,如图②,则有AC=AB+BC=10+4=14.∵点D是线段AC的中点,∴DC= AC=7,∴DB=DC﹣BC=7﹣4=3.综上所述:线段BD的长度为7cm或3cm.【考点】两点间的距离【解析】【分析】由于AB>BC,点C在直线AB上,因此可分点C在线段AB上、点C在线段AB的延长线上两种情况讨论,只需把BD转化为DC与BC的和或差,就可解决问题.18、【答案】解:设AB=2x,BC=3x,CD=4x,∵E、F分别是AB和CD的中点,∴BE= AB=x,CF= CD=2x,∵EF=15cm,∴BE+BC+CF=15cm,∴x+3x+2x=15,解得:x= ,∴AD=AB+BC+CD=2x+3x+4x=9x= cm【考点】两点间的距离【解析】【分析】根据题意可设AB=2x,然后根据图形列出方程即可求出AD的长度.19、【答案】解:由线段的和差,得DB=AB﹣AD=2cm,由线段中点的性质,得BC=2BD=4cm.【考点】两点间的距离【解析】【分析】根据线段的和差,可得DB的长,根据线段中点的性质,可得答案.2020答案】解:设AC=2x,CD=3x,DB=4x,∴AB=AC+CD+DB=9x,∵AB的中点为M,∴MB= AB=4.5x,∵N是DB的中点,∴NB= DB=2x,∴MB﹣NB=MN,∴4.5x﹣2x=5,∴2.5x=5,∴x=2,∴AB=9x=18cm【考点】两点间的距离【解析】【分析】根据AC:CD:DB=2:3:4,可设AC=2x,然后根据条件列出方程即可求出AB的长度.21、【答案】解:∵AB=2cm,BC=2AB,∴BC=4cm,∴AC=AB+BC=2+4=6cm,∵M是线段AC中点,∴AM= AC=3cm,∴BM=AM﹣AB=3﹣2=1cm.故BM长度是1cm.【考点】两点间的距离【解析】【分析】先根据AB=2cm,BC=2AB求出BC的长,进而得出AC的长,由M是线段AC中点求出AM,再由BM=AM﹣AB即可得出结论.。

七年级上册数学人教版课时练《4.2 直线、射线、线段》03 试卷含答案

七年级上册数学人教版课时练《4.2 直线、射线、线段》03 试卷含答案

人教版七年级数学上册第四章几何图形初步《4.2直线、射线、线段》课时练一、选择题1.下列各图中,表示“射线CD”的是()A.B.C.D.2.如图,在直线l上的点是()A.点A B.点B C.点C D.点D3.下列写法正确的是()A.直线AB、CD交于点m B.直线a、b交于点mC.直线a、b交于点M D.直线ab、cd交于点M4.根据直线、射线、线段的性质,图中的各组直线、射线、线段一定能相交的是()A.B.C.D.5.下列说法正确的是()A.若AC=BC,则点C为线段AB中点B.用两个钉子把木条固定在墙上,数学原理是“两点之间,线段最短”C.已知A,B,C三点在一条直线上,若AB=5,BC=3,则AC=8D.已知C,D为线段AB上两点,若AC=BD,则AD=BC6.如图,下列说法中不能判断点C是线段AB中点的是()A.AC=CB B.AB=2AC C.AC+CB=AB D.7.分别在线段AB的延长线和线段AB的反向延长线上取点C、D,使BC=AB,AD=2AB,则AC:BD等于()A.B.C.D.8.如图,已知点C为线段AB的中点,D为CB上一点,下列关系表示错误的是()A.CD=AC﹣DB B.BD+AC=2BC﹣CDC.2CD=2AD﹣AB D.AB﹣CD=AC﹣BD二、填空题9.如图,从A地到B地有①,②,③三条线路,最短的线路是.(填序号)10.若平面内有点A、B、C、D,过其中任意两点画直线,可以画条直线.11.延长线段AB到C,使BC=2AB,则AC:BC=.12.如图,已知点C为AB上一点,AC=12cm,CB=AC,D,E分别为AC,AB的中点,则DE的长为cm.13.已知A,B,C为直线l上的三点,如果线段AB=3cm,BC=6cm,那么A,C两点间的距离为.14.已知点A,B,P在一条直线上且不重合,则下列等式中:①AP=BP;②BP=AB;③AB=2AP;④AP+PB=AB,不能判断点P是线段AB中点的有.(填序号)三、解答题15.问题:如图,点C是线段AB的中点,点D在线段CB上,点E是线段AD的中点.若EC=3,求线段DB的长.请补全以下解答过程.解:∵点C是线段AB的中点,,∴AB=2AC,AD=2AE∵DB=AB﹣,∴DB=﹣2AE=2(AC﹣AE)=2EC.∵EC=3,∴DB=.16.如图,平面上有A、B、C、D四个点,请根据下列语句作图.(1)画直线AC;(2)线段AD与线段BC相交于点O;(3)射线AB与射线CD相交于点P.17.如图,点C为线段AB的中点,点E为线段AB上的点,点D为线段AE的中点,若AB =15,CE=4.5,求出线段AD的长度.18.如图,直线AB上有一点P,点M,N分别为线段P A,PB的中点,AB=14.(1)若点P在线段AB上,且AP=8,求线段MN的长度;(2)若点P在直线AB上运动,设AP=x,BP=y,请分别计算下面情况时MN的长度:①当P在AB之间;②当P在A左边;③当P在B右边;你发现了什么规律?19.如图,已知线段AB=24cm,延长AB至C,使得BC=AB,(1)求AC的长;(2)若D是AB的中点,E是AC的中点,求DE的长.20.如图,点C在线段AB上,AC=6cm,CB=4cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC=acm,CB=bcm,点M、N分别是AC、BC的中点,猜想:MN=cm.(3)若C在线段AB的延长线上,且满足AC=acm,CB=bcm(a>b),点M、N分别为AC、BC的中点,猜想:MN=cm.参考答案一、选择题1.B2.B3.C4.C5.D6.C7.C8.D二、填空题9.①.10.1或4或6.11.3:2.12.3.13.3cm或9cm.14.②③④.三、解答题15.解:∵点C是线段AB的中点,点E是线段AD的中点,∴AB=2AC,AD=2AE∵DB=AB﹣AD,∴DB=2AC﹣2AE=2(AC﹣AE)=2EC.∵EC=3,∴DB=6.故答案为:点E是线段AD的中点,AD,2AC,6.16.解:(1)直线AC如图所示.(2)线段AD与线段BC相交于点O,如图所示.(3)射线AB与射线CD相交于点P,如图所示.17.解:∵点C为线段AB的中点,AB=15,∴,∴BE=BC﹣CE=7.5﹣4.5=3,AE=AB﹣BE=15﹣3=12,∵点D为线段AE的中点,∴.18.解:(1)当P在线段AB上,如图1,∵AP=8,点M是AP中点,∴MP=AP=4,∵AP=8,AB=14,∴BP=AB﹣AP=6,又∵点N是PB中点,∴PN=PB=3,∴MN=MP+PN=7;(2)①点P在AB之间,∵M是AP的中点,N是PB的中点,∴MP=AP,PN=PB,∴MN=PM+PN=P A+PB=AB=(x+y)=;②点P在A的左边时,如图2,∵M是AP的中点,N是PB的中点,∴MP=AP,PN=PB,∴MN=PN﹣PM=PB﹣P A=y﹣x==AB;③点P在B的右边时,如图3,∵M是AP的中点,N是PB的中点,∴MP=AP,PN=PB,∴MN=PM﹣PN=P A﹣PB=x﹣y==AB;发现规律:当P在直线AB上时,MN=AB.19.解:(1)∵BC=AB,AB=24cm,∴BC=×24cm=12cm,∴AC=AB+BC=36cm;(2)∵D是AB的中点,E是AC的中点,∴AD=AB=12cm,AE=AC=18cm,∴DE=18cm﹣12cm=6cm.20.解:(1)∵AC=6cm,点M是AC的中点,∴CM=AC=3cm,∵CB=4cm,点N是BC的中点,∴CN=BC=2cm,∴MN=CM+CN=5cm,∴线段MN的长度为5cm;(2)∵AC=acm,点M是AC的中点,∴CM=AC=acm,∵CB=bcm,点N是BC的中点,∴CN=BC=bcm,∴MN=CM+CN=a+b=(a+b)cm,∴线段MN的长度为(a+b)cm,故答案为:(a+b);(3)当点C在线段AB的延长线时,如图:则AC>BC,∵M是AC的中点,∴CM=AC=acm,∵点N是BC的中点,∴CN=BC=bcm,∴MN=CM﹣CN=(AC﹣BC)=(a﹣b)cm,故答案为:(a﹣b).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课后训练
基础巩固
1.如图所示,下列说法正确的是().
A.直线OM与直线MN是同一条直线
B.射线MO与射线MN是同一条射线
C.射线OM与射线MN是同一条射线
D.射线NO与射线MO是同一条射线
2.下列说法正确的是().
A.两点确定两条直线B.三点确定一条直线
C.过一点只能作一条直线D.过一点可以作无数条直线
3.M是线段AB上的一点,其中不能判定点M是线段AB中点的是().A.AM+BM=AB B.AM=BM
C.AB=2BM D.AM=1
2 AB
4.A,B两点的距离是().
A.连接A,B两点的线段B.连接A,B两点的线段的长度
C.过A,B两点的直线D.过A,B两点的线段
5.若点B在线段AC上,AB=10 cm,BC=6 cm,则A,C两点的距离是().A.4 cm B.16 cm
C.4 cm或16 cm D.不能确定
6.如图所示,由A到B有(1),(2),(3)三条路线,最短的路线选(1)的理由是().
A.因为它直B.两点确定一条直线
C.两点间距离的定义D.两点之间,线段最短
能力提升
7.如图所示,AB=CD,则AC与BD的大小关系是().
A.AC>BD B.AC<BD
C.AC=BD D.无法确定
8.C是线段AB的中点,D是线段BC上一点,则下列说法不正确的是().
A.CD=AC-BD B.CD=1
2
AB-BD
C.CD=AD-BC D.CD=1
2 BC
9.点C是线段AB延长线上的一点,点D是线段AB的中点,如果点B恰好是DC的中点,设AB=2 cm,则AC=__________cm.
10.如图,AC=CD=DE=EB,图中和线段AD长度相等的线段是__________.以D 为中点的线段是__________.
11.已知线段AB=7 cm,在直线AB上画线段BC=1 cm,那么线段AC=________.
12.有条小河l,点A,B表示在河两岸的两个村庄,现在要建造一座小桥,请你找出造桥的位置,使得到A,B两村的路程最短,并说明理由.
且NB=14厘米,求PM的长.
参考答案
1答案:A点拨:射线只有端点相同,在同一条线上才相同,因此B、C、D都不正确.故选A.
2答案:D点拨:过一点可以作无数条直线正确,故选D.
3答案:A点拨:A不能判定,并且A中点M的位置都不确定.
4答案:B点拨:距离是线段的长度,不是线段,所以B正确,故选B.
5答案:B点拨:因为点B在线段AC上,所以只有一点,AC=AB+BC=16(cm).故选B.
6答案:D
7答案:C点拨:因为AB=CD,所以AB+BC=CD+BC,即AC=BD.
8答案:D点拨:如图所示:CD=BC-BD=AC-BD=1
2
AB-BD,CD=AD-AC
=AD-BC,所以A、B、C都正确,因为D不是BC的中点,所以CD≠1
2
BC,故选D.
9答案:3点拨:B恰好是DC的中点,D是AB的中点,所以AD=DB,DB=BC,
所以AD=DB=BC=1
2
AB=1(cm),所以AC=3 cm.
10答案:DB,CE AB,CE点拨:AD=2AC,只要是2段基本线段的和的线段都与AD的长度相等.
11答案:6 cm或8 cm点拨:两种情况如图:AC=AB-BC=7-1=6(cm);AC=AB +BC=7+1=8(cm).
12解:如图:过点A,B作线段AB,与直线l的交点P为所求的点,因为两点之间,线段最短.
点拨:由“两点之间,线段最短”可知,到A,B两村的路程最短的点在AB上任一点都可,这点还要在直线l上,所以就是AB与l的交点.
13解:∵N是BP中点,M是AB中点,
∴PB=2NB=2×14=28(厘米),
∵AM=MB=1
2
AB=
1
2
×80=40(厘米),
∴MP=MB-PB=40-28=12(厘米).
答:PM的长为12厘米.
点拨:根据NB=14厘米,N为PB的中点,求出PB,再根据AB=80厘米,M为AB 的中点,求出MB,由MP=MB-PB,求出PM.。

相关文档
最新文档