2012TI杯元器件资料汇总

合集下载

SEMI 标准列表

SEMI 标准列表

标准名称编号标准化标准技术制图 图样画法 制图GB/T 17451-1998产品标准化大纲编制指南GJB/Z 114A-2005标准化评审GJB/Z 113-98新产品工艺标准化综合要求编写指南GJB/Z 106-98企业标准体系管理标准和工作标准体系GB/T 15498-2003企业标准体系 要求GB/T 15496-2003企业标准体系 评价与改进 GB/T 19273-2003军用标准文献分类法GJB/T 832-2005标准化工作导则 第一部分:标准的结构和编写规则GB/T 1.1-2000综合标准化工作导则 工业产品综合标准化一般要求GB/T 12366.2-90综合标准化工作导则原则与方法GB/T 12366.1-90标准化工作指南 第二部分:采用国际标准的规则GB/T 20000.2-2001标准编写规则 第三部分:信息分类编码GB/T 20001.3-2001标准编写规则 第四部分:化学分析方法GB/T 20001.4-2001标准体系表编写原则和要求GB/T 13016-91标准化和有关领域的通用术语 第一部分:通用术语GB/T 3935.1-1996消费品使用说明 总则GB 5296.1-1997电磁干扰和电磁兼容性术语GJB 72A-2002标准化工作指南第三部分:引用文件GB/T 20000.3-2003标准化工作指南第四部分:标准中涉及安全的内容GB/T 20000.4-2003环境检测分析方法标准制订技术导则HJ/T 168-2004GJB 0.1-2001军用标准文件编制工作导则 第一部分:军用标准和指导性技军用标准文件编制工作导则 第二部分:军用规范编写规定GJB 0.2-2001军用标准文件编制工作导则 第三部分:出版印刷规定GJB 0.3-2001说明书的编制 构成 内容和表示方法GB/T 19678-2005/IEC 62079:2001气体和超净标准、环保标准中国环境保护标准汇编 水质分析方法中国环境保护标准汇编 废气废水废渣分析方法中国环境保护标准汇编 大气质量分析方法气体中微量水分的测定 电解法GB 5832.1-86气体中微量水分的测定 露点法GB 5832.2-86气体中微量氧的测定 电化学法GB 6285-86氢气GB/T 3634-1995氮GB/T 3864-1996洁净厂房设计规范GB 50073-2001纯氢、高纯氢和超纯氢GB/T 7445-1995洁净室检测规范GB/T16292-1996电子级气体中颗粒和痕量杂质测定方法SJ2798~2807-87电子工业用气体GB/T 14600~14604-93电子工业用气体 氮GB/T 16944-1997大气污染物综合排放标准GB16297-1996微电子标准微电子器件试验方法和程序GJB 548B-2005半导体分立器件总规范GJB 33A-97半导体分立器件型号命名方法GB/T249-89半导体集成电路总规范GJB 597A-96混合集成电路通用规范GJB 2438A-2002半导体集成电路CMOS电路测试方法的基本原理SJ/T 10741-2000半导体分立器件包装规范GJB 3164-98电子产品防静电放电控制手册GJB/Z 105-98防静电包装手册GJB/Z 86-97印制板总规范GB/T 16261-1996集成电路A/D和 D/A转换器测试方法的基本原理SJ50597/37-95半导体集成电路JSC145152型CMOS并行输入锁相环4频率合成器膜集成电路和混合集成电路外形尺寸GB/T 15138-94计量校准及管理标准测量不确定度的表示及评定GJB 3756-99检测和校准实验室能力的通用要求GB/T 15481-2000测量管理体系测量过程和测量设备的要求GB/T 19022-2003测量设备的质量保证要求计量确认体系GJB 2712-96测试实验室和校准实验室通用要求GJB 2725A-2001测量设备的质量保证要求第一部分测量设备的计量确认体系GB/T 19022.1-1994测量设备的质量保证第二部分:测量过程控制指南GB/T 19022.2-2000抽样标准计数抽样检验程序及表GJB 179A-96周期检验计数抽样程序及表GB/T 2829-2002GB/T 2828.1-2003计数抽样检验程序 第一部分:按接收质量限(AQL)检索的逐军用电子元件失效率抽样方案和程序GJB 2649-96产品质量监督计数抽样程序及抽样表GB/T 14162-93光电类标准半导体光电模块总规范SJ 20642-97固体激光器总规范SJ 20027-92空间用单晶硅太阳能电池总规范GJB 1431-92固体激光器总规范GB/T 15490-1995红外探测器总规范GJB 1206-91红外探测器参数测试方法GB/T13584-92红外探测器外形尺寸系列GB/T13583-92半导体激光二极管空白详细规范GB/T 15649-1995半导体激光二极管总规范GJB3519-99固体激光器通用规范GJB 5849-2006大功率半导体激光二极管阵列通用规范SJ 20957-2006固体激光器测试方法GJB 5441-2005固体激光二极管测试方法SJ 2749-87太阳电池光谱响应测试方法GB 11009-89航天用标准太阳电池GB 6492-86航天用太阳电池标定的一般规定GB 6496-86航天用太阳电池电性能测试方法GB 6494-86太阳敏感电池通用规范GJB 2932-97太阳能电池温度系数测试方法SJ/T 10459-93太阳电池组件参数测试方法GB/T 14009-92光伏器件 第1部分:光伏电流-电压特性的测量GB/T 6495.1-1996光伏器件 第2部分:标准太阳电池的要求GB/T 6495.2-1996GB/T 6495.3-1996光伏器件 第3部分:地面用光伏器件的测量原理及标准光谱辐半导体光电组件总规范SJ 20786-2000 PIN、APD光电探测器总规范SJ 20644-97PIN、APD光电探测器通用规范GJB 5022-2003军用激光器辐射传输测试方法GJB 894A-99PIN、雪崩光电二极管测试方法SJ 2354.1-83激光产品的安全第1部分:设备分类、要求和用户指南GB 7247.1-2001纤维光学试验方法GJB 915A-97纤维光学转接器 第1部分:总规范GB/T 18308.1-2001GB/T 18310.4-2001纤维光学互连器件和无源器件基本试验和测量程序第2-4部分纤维光学互连器件和无源器件基本试验和测量程序第3-2部分GB/T 18311.2-2001GB/T 18311.3-2001纤维光学互连器件和无源器件基本试验和测量程序第3-3部分GB/T 18311.6-2001纤维光学互连器件和无源器件基本试验和测量程序第3-6部分GB/T 18310.18-2001纤维光学互连器件和无源器件基本试验和测量程序第2-18部热敏电阻总规范GJB 601A-98光纤总规范GJB 1427A-99光纤光缆连接器 第1部分:总规范GB/T 12507.1-2000光纤光缆连接器 第2部分:F-SMA型光缆连接器分规范.0地面用晶体硅光伏组件设计鉴定和定型GB/T 9535-1998激光辐射功率测试方法GB/T 13863-92激光辐射功率稳定度测试方法GB/T 13864-92红外探测器试验方法GJB 1788-93超辐射发光二极管组件测试方法SJ 20785-2000红外发射二极管总规发GJB 3930-2000半导体光电器件GR1325J型长波长发光二极管组件详细规范SJ 20642/7-2000激光辐射发散角测试方法GB/T 13740-92激光辐射光束直径测试方法GB/T 13741-92晶体硅光伏器件的I-V实测特性的温度和辐照度修正方法GB/T 6495.4-1996发光二极管固体显示器总规范GJB 2146-94固体激光器主要参数测试方法GB/T 15175-94军用激光测距仪通用规范SJ 20793-2000质量控制管理标准产品质量保证大纲要求GJB 1406A-2005产品质量标志和可追溯性要求GJB 726A-2004不合格控制指南SJ/T 10466.15-94军用电气和电子元器件的标志GJB 2118-94武器装备研制项目管理GJB 2993-97军工批次管理的质量控制要求GJB 1330-91合同中质量保证要求GJB 2102-94航天产品质量问题归零实施指南QJ 3183-2003军工产品的批次管理的质量控制要求GJB 1330-91关键件和重要件的质量控制GJB 909-2005产品质量评审GJB 907-90故障报告、分析和纠正措施系统GJB 841-90质量管理和质量保证军用标准GJB/Z 9000~9004-96电子行业质量管理和质量体系要素标准SJ/T 10466.1~10466.13-93质量管理和质量体系要素第4部分:质量改进指南GB/T 19004.1-1994航天产品设计文件管理制度QJ 1714.1~1714.8A-99QJ 1714.9A-99QJ 1714.10A~1714.12A-99电子元器件选用管理要求GJB 3404-98纠正措施指南SJ/T 10466.16-94产品包装、装卸、运输、贮存的质量管理要求GJB 1443-92质量经济性管理指南GB/Z 19024-2000电子元器件设计文件编制示例SJ/T 10718-1996质量成本管理指南GJB/Z4-88质量管理术语GJB 1405-92质量管理 技术状态管理指南GB/T 19017-1997质量管理体系要求GJB 9001A-2001质量管理体系标准GB/T 19000-2000GB/T 19001-2000GB/T 19004-2000质量改进指南SJ/T 10466.19-1995系统安全性通用大纲GJB 900-90技术状态管理GJB 3206-98设计文件管理制度 第1-3部分SJ/T 207.1-3-1999设计文件管理制度 第4部分:设计文件的编号SJ/T 207.4-1999设计文件管理制度 第5部分:设计文件的更改SJ/T 207.5-1999成套技术资料质量管理要求GJB 906-90设计评审GJB 1310A-2004设计质量控制指南SJ/T 10466.14-94外购器材的质量管理GJB 939-90人员培训和资格评定指南SJ/T 10466.21-1995包装储运图示标志GB 191-2000可靠性增长试验GJB 1407-92工艺设计评审指南SJ/T 10466.17-94厂际质量保证体系工作指南GJB/Z2-88不合格品管理GJB 571-88工艺评审GJB 1269A-2000工艺管理常用图形符号SJ/T 10462-93工序质量控制要求GJB 467-88工业产品保证文件GB/T 14436-93工艺文件标准汇编SJ/T 10375~10377-1993SJ/T 10531-1994SJ/T 10631-1995军工产品定型程序和要求GJB 1362-92军工产品质量管理要求与评定导则GJB/Z16-91接地、搭接和屏蔽设计的实施GJB 1210-91国防计量通用术语GJB 2715-96工艺文件完整性与工艺文件格式JB/T 9165.1~9165.4-1998武器装备研制项目管理GJB 2116-94装备维修性通用大纲GJB 368A-94特性分类GJB 190-86理化试验质量控制规范GJB 466-88器材供应单位质量保证能力评定GJB 1404-92装备可靠性维修性参数选择和指标确定要求总则GJB 1909-96金属镀覆和化学覆盖工艺质量控制要求GJB 480A-95焊接质量控制要求GJB 481-88故障树分析指南GJB/Z 768A-98故障模式、影响及危害性分析程序GJB 1391-92可靠性模型的建立和可靠性预计GJB 912-90装备综合保障通用要求GJB 3872-99装备质量与可靠性信息管理要求GJB 1686-93维修性试验与评定GJB 2072-94电子元器件统计过程控制体系GJB 3014-97电子元器件产品出厂平均质量水平评定方法GJB 2823-97电子工业用工艺装备分类编号SJ/T 10672-1995半导体分立器件结构相似性应用指南SJ 20756-1999电子元器件质量保证大纲GJB 546A-96中国国防科学技术报告编写规则GJB 567A-97大型试验质量管理要求GJB 1452A-2004维修性分配与预计手册GJB/Z 57-94电路容差分析指南GJB/Z 89-97熔模铸造工艺质量控制GJB 905-90技术文件使用与归档管理规定QJ 1089A~1092A-98产品质量信息管理指南SJ/T 10466.18-1995工艺文件格式的填写SJ/T 10375-93电子文件归档与管理规范GB/T 18894-2002质量手册编制指南GB/T 19023-1996多余物控制要求GJB 5296-2004军工产品售后技术服务GJB/Z 3-88装备可靠性工作通用要求GJB 450A-2004装备保障性分析GJB 1371-92电子设备可靠性预计手册GJB/Z 299B-98装备测试性大纲GJB 2547-95试验方法标准微电子器件试验方法标准-美国国防部标准(上、下)电子及电气元件试验方法GJB 360A-96半导体分立器件试验方法GJB 128A-97电子产品环境应力筛选方法GJB 1032-90无损检测质量控制规范 磁粉检验GJB 593.3-88元器件破坏性物理分析管理要求QJ 3179-2003电子产品制造与应用系统防静电检测通用规范SJ/T 10694-2006防静电工作区技术要求GJB 3007-97电子元器件制造防静电技术要求SJ/T 10630-1995半导体器件辐射加固试验方法中子辐照试验GJB 762.1-89半导体器件辐射加固试验方法γ总剂量辐照试验GJB 762.2-89半导体器件辐射加固试验方法γ瞬时辐照辐照试验GJB 762.3-89军用电子元器件破坏性物理分析方法GJB 4027-2000军用设备环境试验方法GJB 150.3-86半导体材料标准目录基础标准一、我国半导体材料标准1.基础标准锗晶体缺陷图谱GB/T 8756-1988掺硼掺磷硅单晶电阻率与掺杂剂浓度换算规程GB/T 13389-1992半导体材料术语GB/T 14264-1993半导体材料牌号表示方法GB/T 14844-1993晶片通用网络规范GB/T 16595-1996确定晶片坐标系规范GB/T 16596-1996硅材料原生缺陷图谱(原GBn 266-87)YS/T 209-1994 2.产品标准工业硅技术条件GB/T 2881-1991锗单晶GB/T 5238-1995高纯镓GB/T 101 18-1988高纯二氧化锗GB/T 1 1069-1989还原锗锭GB/T 1 1070-1989区熔锗锭GB/T 1 1071-1989锑化铟多晶、单晶及切割片GB/T 1 1072-1989液封直拉法砷化镓单晶及切割片GB/T 1 1093-1989水平法砷化镓单晶及切割片GB/T 1 1094-1989硅单晶GB/T 12962-1996硅多晶GB/T 12963-1996硅单晶抛光片GB/T 12964-2003硅单晶切割片和研磨片GB/T 12965-1996硅外延片GB/T 14139-1993锗单晶片GB/T 15713-1995高纯四氯化锗YS/T 13-1991硅片包装YS/T 28-1992高纯砷YS/T 43-1992高纯铟(原GB 8003-87)YS/T 264-1994霍尔器件和甘氏器件用砷化镓液相外延片(原GB 1 Ys/T 290-1994锗富集物(原zB H 31003-87)YS/T 300-1994 3.方法标准非本征半导体材料导电类型测试方法GB/T 1550-1997硅、锗单晶电阻率测定 直流两探针法GB/T 1551-1995硅、锗单晶电阻率测定 直排四探针法GB/T 1552-1995硅和锗体内少数载流子寿命测定光电导衰减法GB/T 1553-1997硅晶体完整性化学择优腐蚀检验方法GB/T 1554-1995半导体单晶晶向测定方法GB/T 1555-1997硅晶体中间隙氧含量的红外吸收测量方法GB/T 1557-1989硅中代位碳原子含量红外吸收测量方法GB/T 1558-1997硅抛光片氧化诱生缺陷的检验方法GB/T 4058-1995硅多晶气氛区熔磷检验方法GB/T 4059-1983硅多晶真空区熔基硼检验方法GB/T 4060-1983硅多晶断面夹层化学腐蚀检验方法GB/T 4061-1983半导体硅材料中杂质元素的活化分析方法GB/T 4298-1984非本征半导体单晶霍尔迁移率和霍尔系数测量方法GB/T 4326-1984锗单晶位错腐蚀坑密度测量方法GB/T 5252-1985半导体硅片电阻率及硅薄膜薄层电阻测定非接触涡流GB/T 6616-1995硅片电阻率测定扩展电阻探针法GB/T 6617-1995硅片厚度和总厚度变化测试方法GB/T 6618-1995硅片弯曲度测试方法GB/T 6619-1995 硅片翘曲度非接触式测试方法GB/T 6620-1995硅抛光片表面平整度测试方法GB/T 6621-1995硅抛光片表面质量目测检验方法GB/T 6624-1995砷化镓中载流子浓度等离子共振测量方法GB/T 8757-1988砷化镓外延层厚度红外干涉测量方法GB/T 8758-1988砷化镓单晶位错密度的测量方法GB/T 8760-1988砷化镓外延层载流子浓度电容一电压测量方法GB/T 11068-1989硅片径向电阻率变化的测量方法GB/T 11073-1989电子材料晶片参考面长度测量方法GB/T 13387-1992硅片参考面结晶学取向x射线测量方法GB/T 13388-1992硅片直径测量方法 光学投影法GB/T 14140.1-1993硅片直径测量方法 千分尺法GB/T 14140.2-1993 硅外延层、扩散层和离子注入层薄层电阻的测定直GB/T 1414l-1993硅外延层晶体完整性检验方法腐蚀法GB/T 14142-1993 300-900&m硅片间隙氧含量红外吸收测量方法GB/T 14143-1993硅晶体中间隙氧含量径向变化测量方法GB/T 14144-1993硅外延层堆垛层错密度测定干涉相衬显微镜法GB/T 14145-1993硅外延层载流子浓度测定汞探针电容一电压法GB/T 14146-1993重掺杂衬底上轻掺杂硅外延层厚度的红外反射测量方GB/T 14847-1993工业硅化学分析方法 1,10一二氮杂菲分光光度法GB/T 14849.1-1993工业硅化学分析方法 铬天青-S分光光度法测定铝量GB/T 14849.2-1993工业硅化学分析方法 钙量的测定GB/T 14849.3-1993硅片抗弯强度测试方法GB/T 15615-1995硅抛光片和外延片表面质量光反射测试方法GB/T 17169-1997非掺杂半绝缘砷化镓单晶深能级EL2浓度红外吸收测GB/T 17170-1997砷化镓单晶AB微缺陷检验方法GB/T 18032-2000半绝缘砷化镓单晶中碳浓度的红外吸收测试方法GB/T 19199-2003异质外延层和硅多晶层厚度的测量方法YS/T 14-1991硅外延层和扩散层厚度的测定 磨角染色法YS/T 15-1991硅外延层厚度测定 堆垛层错尺寸法YS/T 23-1992外延钉缺陷的检验方法YS/T 24-1992硅抛光表面清洗方法YS/T 25-1992硅片边缘轮廓检验方法YS/T 26-1992晶片表面上微粒沾污测量和计数的方法YS/T 27-1992高纯砷化学分析方法 孔雀绿分光光度法测定锑量YS/T 34.1-1992高纯砷化学分析方法 化学光谱法测定钴、锌、银、YS/T 34.2-1992高纯砷化学分析方法 极谱法测定硒量YS/T 34.3-1992高纯砷化学分析方法 极谱法测定硫量YS/T 34.4-1992高纯二氧化锗化学分析方法 硫氰酸汞分光光度法测YS/T 37.1-1992高纯二氧化锗化学分析方法 钼蓝分光光度法测定硅YS/T 37.2-1992高纯二氧化锗化学分析方法 石墨炉原子吸收光谱法YS/T 37.3-1992高纯二氧化锗化学分析方法化学光谱法测定铁、镁、YS/T 37.4-1992高纯镓化学分析方法 钼蓝分光光度法测定硅量YS/T 38.1-1992高纯镓化学分析方法 化学光谱法测定锰、镁、铬和YS/T 38.2-1992高纯镓化学分析方法 化学光谱法测定铅、镍、锡和YS/T 38.3-1992高纯铟中铝、镉、铜、镁、铅、锌量的测定 (化学YS/T 230.1-1994高纯铟中铁量的测定 (化学光谱法)(原GB 2594YS/T 230.2-1994高纯铟中砷量的测定 (二乙氨基二硫代甲酸银(A YS/T 230.3-1994高纯铟中硅量的测定 (硅钼蓝吸光光度法)(原G YS/T 230.4-1994高纯铟中硫量的测定 (氢碘酸、次磷酸钠谱法)(YS/T 230.5-1994高纯铟中鉈量的测定 (罗丹明B吸光光度法)(原YS/T 230.6-1994高纯铟中锡量的测定 (苯芴铜-溴代十六烷基三甲YS/T 230.7-1994 SEMI 标 准硅单晶抛光片规范SEMI M1-0302直径2inch硅单晶抛光片规格SEMI M1.1-89(重订本0299)直径3inch硅单晶抛光片规格SEMI M1.2-89(重订本0299)直径100mm硅单晶抛光片规格(厚度525μm)SEMI M1.5-89(重订本0699)直径100mm硅单晶抛光片规格(厚度625μm)SEMI M1.6-89(重订本0699)直径125mm硅单晶抛光片规格SEMI M1.7-89(重订本0699)直径150mm硅单晶抛光片规格SEMI M1.8-0669直径200mm硅单晶抛光片规格(切口)SEMI M1.9-0669直径200mm硅单晶抛光片规格(参考面)SEMI M1.10-0669直径100mm无副参考面硅单晶抛光片规格(厚度525μm)SEMI M1.11-90(重订本0299直径100mm无副参考面硅单晶抛光片规格 SEMI M1.12-90(重订本0299)直径150mm无副参考面硅单晶抛光片规格(厚度625μm)SEMI M1.13-0699直径350mm和400mm硅单晶抛光片指南SEMI M1.14-96直径300mm硅单晶抛光片规格(切口)SEMI M1.15-0302分立器件用硅外延片规范SEMI M2.0997蓝宝石单晶抛光衬底规范SEMI M3.12962inch蓝宝石衬底标准SEMI M3.2-913inch蓝宝石衬底标准SEMI M3.4-91100mm蓝宝石衬底标准SEMI M3.5-923inch回收蓝宝石衬底标准SEMI M3.6-88125mm蓝宝石衬底标准SEMI M3.6-88150mm蓝宝石衬底标准SEMI M3.8-91蓝宝石衬底上硅单晶(SOS)外延片规范SEMI M4-1296太阳能光电池用硅片规范SEMI M6-1000硅单晶抛光试验片规范SEMI M8-0301砷化镓单晶抛光片规范SEMI M9-0999电子器件用直径50.8mm砷化镓单晶圆形抛光片标准SEMI M9.1-96电子器件用直径76.2mm砷化镓单晶圆形抛光片标准SEMI M9.2-96 光电子用直径2inch砷化镓单晶圆形抛光片标准SEMI M9.3-89光电子用直径3inch砷化镓单晶圆形抛光片标准SEMI M9.4-89电子器件用直径100mm砷化镓单晶圆形抛光片标准SEMI M9.5-96直径125mm砷化镓单晶圆形抛光片标准SEMI M9.6-95直径150mm砷化镓单晶圆形抛光片(切口)规范SEMI M9.7-0200 鉴别砷化镓晶片上观察到的结构和特征的标准术语SEMI M10-1296集成电路用硅外延片规范SEMI M11-0301晶片正面系列字母数字标志规范SEMI M12-0998 硅片字母数字标志规范SEMI M13-0998半绝缘砷化镓单晶离子注入与激活工艺规范SEMI M14-89半绝缘砷化镓抛光片缺陷限度表SEMI M15-0298多晶硅规范SEMI M16-1296块状多晶硅标准SEMI M16.1-89晶片通用网格规范SEMI M17-0998硅片订货单格式SEMI M18-0302体砷化镓单晶衬底电学特性规范SEMI M19-91建立晶片坐标系的规范SEMI M20-0998地址分配到笛卡尔坐标系的矩形单元规范SEMI M21-0998介电绝缘(DI)晶片规范SEMI M22-1296磷化铟单晶抛光片规范SEMI M23-0302直径50mm磷化铟单晶圆形抛光片标准SEMI M23.1-06003inch(76.2mm)磷化铟单晶圆形抛光片标准SEMI M23.2-1000矩形磷化铟单晶抛光片标准SEMI M23.3-0600电子和光电子器件用100mm圆形磷化铟单晶抛光片规SEMI M23.4-0999电子和光电子器件用100mm圆形磷化铟单晶抛光片规SEMI M23.5-1000优质单晶抛光片规范SEMI M24-1101根据聚苯乙烯乳胶球直径校准光点缺陷硅片检验系统SEMI M25-95运输晶片用的片盒和花篮再使用指南SEMI M26-96确定测试仪器的精度与公差比(P/T)的规程SEMI M27-96开发中的直径300mm硅单晶抛光片规范SEMI M28-0997(1000撤回)直径300mm晶片传递盒规范SEMI M29-1296用傅立叶变换红外吸收光谱测量砷化镓中代位碳原子SEMI M30-0997用于300mm晶片传送和发货的正面打开的发货片盒暂SEMI M31-0999统计规范指南SEMI M32-0998用全反射X射线荧光光谱(TXRF)测定硅片表面残留SEMI M33-0998制定SIMOX硅片技术规范指南SEMI M34-0299开发自动检查方法测量硅片表面特征规范的指南SEMI M35-0299低位错密度砷化镓晶片腐蚀坑密度(EPD)的测试方SEMI M36-0699低位错密度磷化铟晶片中腐蚀坑密度(EPD)的测试SEMI M37-0699硅抛光回收片规范SEMI M38-1101半绝缘砷化镓单晶材料的电阻率、霍尔系数盒霍尔迁SEMI M39-0999关于硅片平坦表面的表面粗糙度的测量指南SEMI M40-0200功率器件、集成电路用绝缘体上硅(SOI)晶片的规SEMI M41-1101化合物半导体外延片规范SEMI M42-1000关于编制硅片纳米形貌报告的指南SEMI M43-0301硅中间隙氧的转换因子指南SEMI M44-0301 300mm晶片发货系统临时标准SEMI M45-0301用EVC剖面分布测量外延层结构中载流子浓度的测试SEMI M46-1101 CMOS LSI电路用绝缘体上硅(SOI)晶片规范SEMI M47-0302评价无图形硅衬底上薄膜的化学机械抛光工艺的指南SEMI M48-1101 用于130nm级工艺硅片几何尺寸测量设备的指南SEMI M49-1101 采用覆盖法确定表面扫描检查系统的捕获率和虚假计SEMI M50-1101 化合物半导体外延片规范SEMI M42-1000硅片背面条型代码标志规范SEMI T1-95带有二维矩阵代码符号的晶片标志规范SEMI T2-0298 晶片盒标签规范SEMI T3-0302 150mm和200mm晶片箱标志尺寸规范SEMI T4-0301 砷化镓圆形晶片字母数字刻码规范SEMI T5-96带二维矩阵代码符号的双面抛光晶片背面标志规范SEMI T7-030262079:200110466.13-93 714.12A-99165.4-1998(重订本0299)(重订本0299)(重订本0699)(重订本0699)(重订本0699)(重订本0299)90(重订本0299)撤回)。

2012TI天津市电子设计竞赛原件清单

2012TI天津市电子设计竞赛原件清单

2012年天津市“TI杯”大学生电子设计竞赛基本仪器、主要元器件和TI公司提供的元器件清单本次电子设计竞赛除实验室常备仪器及元器件之外,还需准备以下较特殊的元器件及相关仪器:
1、基本仪器清单
50MHz(以上)双通道数字示波器
双路可调直流稳压电源
函数信号发生器(0.1Hz~20MHz,具有外调制功能)
通用双踪示波器
秒表
10米卷尺
1米卷尺
4位半(以上)数字多用表
2、在竞赛中使用(或选用)的主要元器件清单
单片机最小系统板(仅含单片机芯片、键盘与显示装置、存储器、A/D、D/A)
Lauchpad (MSP430单片机开发板)为核心的最小系统( 请为Launchpad开发显示,和键盘模块)
坐标纸(500mm*350mm)
小型直流电机
波长600-1000nm的LED及相应光电接收元件
光敏元件
高亮度LED元件
无线通信模块(如CC11xx,CC24xx,CC25xx系列)
10pF以下小容量电容器
激光笔
摄像头
128*64以上分辨率的显示屏
2欧姆至10欧姆的20W以上的功率电阻
3、TI公司提供的供选用元器件清单
注意:
1.TI将至少按参赛队的50%比例发放上述芯片,并在25日将上述芯片送到各
赛区组委会。

各校前往赛区组委会领取,请联系各自赛区组委会。

2.目前,所有上述芯片中国样片库已经无存货。

我们将不再提供上述芯片的免
费样片。

所有申请上述芯片的订单将被拒绝。

3.若需购买上面芯片,我们今年和e络盟配合,开通了特价小批量销售通道。

如果还没有开通,请联系JLiu@开通。

2012TI杯芯片资料

2012TI杯芯片资料

1;TLV5616IDRTLV5616是一个12位的输出电压数字- 模拟转换器(DAC),具有灵活4线串行接口。

4线串行接口允许无缝接口的TMS320 ,SPI ,QSPI中,和Microwire串行端口。

TLV5616是编程一个16位串行包含字符串4控制和12位数据。

开发宽电源电压范围,可以在TLV5616采用2.7 V至5.5 V2;TPS5430DDA作为的SWIFT ™ DC / DC稳压器的家庭成员,TPS5430/TPS5431是一个高输出电流PWM转换器,集成了低阻抗高侧N通道MOSFET 。

基板与上市功能包括一个高性能电压误差放大器的瞬态条件下提供紧的电压调节精度;欠压锁定电路,以防止启动,直到输入电压达到5.5 V,内部设置的慢启动电路限制浪涌电流和电压前馈电路,以改善瞬态响应。

使用ENA的脚,关断电源电流降至18 μA的典型。

其他功能还包括高有效使能,过流限制,过压保护和热关断。

为了降低设计的复杂性和外部元件数量,的TPS5430/TPS5431反馈回路内部补偿。

TPS5431是打算从电源轨运行23五TPS5430的调节多种的动力源,包括24 V总线。

耐热增强,容易TPS5430/TPS5431器件采用8引脚SOIC的PowerPAD ™封装。

TI提供评估模块的SWIFT ™ Designer软件工具,以帮助快速实现高性能的电源设计,以满足积极的设备开发周期。

3;TPS5433IDR4;TPS60400DBVTTPS6040x是家庭的设备产生一个不受管制的负输出电压的输入电压范围从1.6 V至5.5 V的设备通常提供的5 V或3.3 V 由于preregulated供应铁路其宽输入电压范围,两个或三个镍镉电池,镍氢电池或碱性电池,以及一个锂离子电池功率他们。

只有三个外部1μF电容是需要建立一个完整的电荷泵DC / DC逆变器。

组装在5引脚SOT23封装,完整的转换器,可建一个50平方毫米的电路板面积。

SHU-1M2012-600中文资料

SHU-1M2012-600中文资料

Features1. Effective in suppressing noise at high frequencies.2. Suited for preventing the abnormal oscillation from high frequency amplifying circuits.3. Excellent solder heat resistance for soldering.4. High reliability in the circuits of high current.5. Lead Free (RoHS Compliance)Applications1. Noise suppression in digital equipments.2. Computers and peripheral devices, VCR and camera.3. Noise suppression in automotive electronic equipment, car stereo, car engine controller.4. Noise suppression for OA electronic instruments.Ordering InformationSHU - 1 M 2012 -121 J T(1) (2) (3) (4) (5) (6)Shape and Dimensions(1) SeriesSHU : For ultra high current(~6.0A)(4) Impedance (at 100MHz)First two digits are impedance values. Last digit is the number of zeros (2) Material & DesignB : For high speedM : For high impedance type T : For Low speed (3) DimensionFirst two digits : length (㎜) Last two digits : width (㎜)(5) Termination J : Nickel barrier(6) PackagingB : Bulk packageT : Tape & Reel (Φ178㎜ [ 7 inches ]) L : Tape & Reel (Φ254㎜ [ 10 inches ])Unit : mm [inches]TypeL W T C2.0±0.20 1.25±0.20 1.25±0.20 0.50±0.30 SHU-1□2012-〔.079±.008〕〔.049±.008〕(.049±.008)〔.020±.012〕3.2±0.20 1.6±0.20 1.3±0.20 0.50±0.30 SHU-1□3216-〔.126±.008〕〔.063±.008〕〔.051±.008〕 〔.020±.012〕4.5±0.25 1.6±0.20 1.3±0.20 0.50±0.30 SHU-1□4516-〔.177±.010〕〔.063±.008〕〔.051±.008〕 〔.020±.012〕4.5±0.25 3.2±0.25 1.3±0.25 0.70±0.40 SHU-1□4532-〔.177±.010〕〔.126±.010〕〔.051±.010〕 〔.027±.016〕5.7±0.30 5.0±0.30 1.6±0.25 0.80±0.50 SHU-1□5750-〔.225±.012〕〔.198±.012〕〔.063±.010〕 〔.031±.020〕Electrical ParameterslZl at 100MHz(Ω)Part No.Typ.min.DC Resistance (Ω) max. Rated current (mA) max. SHU-1M2012-400□□ 40 30 0.02 5000 SHU-1M2012-600□□ 60 45 0.02 4800 SHU-1M2012-800□□ 80 60 0.02 4500 SHU-1M2012-121□□ 120 90 0.03 4200 SHU-1T2012-330□□ 33 24 0.015 4000 SHU-1T2012-500□□ 50 370.0155000SHU-1T2012-101□□ 100 750.0204000SHU-1M3216-500□□ 50 37 0.01 4800 SHU-1M3216-121□□ 120 90 0.02 4600 SHU-1M4516-600□□ 60 45 0.015 5400 SHU-1B4532-681□□ 680 510 0.03 3800 SHU-1M4532-121□□ 120 90 0.02 4600 SHU-1M5750-401□□ 400300 0.03 5500※ Parts with other electrical characteristics available upon request. ※ Test equipment : HP4291 + HP16192AElectrical Characteristic Curves1M10M 100M 1G020406080100XRZHU-1M2012-400JI m p e d a n c e [Ω]Frequency [Hz]1M10M 100M 1G 020406080100XRZHU-1M2012-600JI m p e d a n c e [Ω]Frequency [Hz]1M10M 100M 1G50100150200XRZHU-1M2012-800JI m p e d a n c e [Ω]Frequency [Hz]1M10M100M1G050100150200XRZI m p e d a n c e [ Ω ]HU-1M2012-121J Frequency [Hz]1M10M100M1G020406080100XR ZHU-1T2012-500J I m p e d a n c e [Ω]Frequency [Hz]SSHU-1M3216-500JS S S SFrequency [Hz]1M 10M 100M 1GI m p e d a n c e [Ω]10080604020ZR X1M10M 100M 1G50100150200XR ZI m p e d a n c e [ Ω ]HU-1T2012-121JFrequency [Hz]1M10M 100M 1G050100150200XRZHU-1M4516-600JI m p e d a n c e [Ω]Frequency [Hz]1M10M 100M 1G02004006008001000XRZHU-1B4532-681JI m p e d a n c e [Ω]Frequency [Hz]1M10M100M1G50100150200250300XRZHU-1M4532-121J I m p e d a n c e [Ω]Frequency [Hz]1M10M 100M 1G0100200300400500XRZHU-1M5750-401JI m p e d a n c e [Ω]Frequency [Hz]S S S SS。

2012天津市TI杯电子设计竞赛实施过程说明

2012天津市TI杯电子设计竞赛实施过程说明

2012年天津市大学生电子设计竞赛实施过程说明来源:发布时间:2012-05-23 点击次数:2012年天津市大学生电子设计竞赛实施过程说明一、竞赛规则和操作方法1.参赛报名参赛队员必须是来自普通高等学校、军队院校、高等专科学校和高等职业学校的具有正式学籍的本科生或专科生。

参赛学校应在广泛开展校内培训与竞赛的基础上选拔出适当数量的优秀参赛队报名参赛。

正式进入赛场的每个参赛队由三名学生组成,该队正式的队员以开赛时填写的《2012年天津市大学生电子设计竞赛登记表》中填写的三名队员姓名为准。

参赛队员进入赛场时,应向赛场巡视员交验本人学生证,竞赛期间不得更换参赛队员。

2.参赛选题竞赛采用本科生组(甲组)和高职高专学生组(乙组)两套竞赛题目。

参赛的本科生限选甲组题目;高职高专学生原则上选择乙组题目,但也可选择甲组题目,并严格按甲组题目的标准进行评审。

只要参赛队中有本科生(含已专升本的学生),该队只能选择甲组题目,并严格按甲组题目的标准进行评审。

每个报名参赛队必须在赛区报名时按照规则确定本队参赛选题的组别(甲组或乙组),开始竞赛时不得更改。

凡不符合上述选题规定的作品均视为无效,赛区不予以评审。

3. 学校竞赛组织各参赛学校的组织工作由各校指定的部门(如:教务处)负责,应指定一名学校竞赛负责人。

本校参赛队所需竞赛设备和元器件等由参赛学校自行解决。

4. 竞赛组织形式竞赛采用“半封闭,相对集中”的组织方式。

“半封闭”是指赛期内,各参赛队必须独立完成竞赛题目的各项要求,不得与他人商量和交流,任何教师不得介入,但学生可以离开赛场查阅各种有关资料,可以在规定时间内用餐和休息;“相对集中”是指参赛学校安排本校所有参赛队集中在不超过三个实验室内完成全部竞赛任务,便于巡视员检查。

5. 关于巡视竞赛期间,竞赛组委会组织巡视检查赛场纪律,以保证竞赛公正进行。

6. 竞赛作品上交及包装密封要求2012年8月7日晚20:00竞赛结束时,参赛队需要上交的材料包括:①《设计报告》;②制作实物;③《2012天津市大学生电子设计竞赛登记表》,必须封入由各校自备的纸箱。

SMT元件大全

SMT元件大全

J
2021/9/17
41
42、贴片胆电容
1.元件代号: C 2.元件名称:贴片胆电容 3.元件丝印:106D 4.是否有极性或方向:有
2021/9/17
42
43、贴片电感
1.元件代号: L 2.元件名称:贴片电感 3.元件丝印:H022 4.是否有极性或方向:有
2021/9/17
43
44、贴片三极管
1.元件代号: D 2.元件名称:贴片玻璃二极管 3.元件丝印: 4.是否有极性或方向:有
D
2021/9/17
7
8、贴片保险管
1.元件代号: F 2.元件名称:贴片保险管 3.元件丝印:125V 4.是否有极性及方向:无
2021/9/17
8
9、贴片晶振
1.元件代号: X\Y 2.元件名称:贴片晶振 3.元件丝印:9.830 4.是否有极性或方向:无
1、排阻:82欧姆
1.元件代号: R 2.元件名称:贴片排阻 3.元件丝印:820 4.是否有极性或方向:无 5.元件阻值:82欧姆 6.元件基本单位:欧姆
2021/9/17
1
2、贴片电阻:
1.元件代号: R 2.元件名称:贴片电阻 3.元件丝印:331 4.是否有极性或方向:无 5.元件阻值:330欧姆
2021/9/17
33
34、贴片电阻
1.元件代号: R 2.元件名称:贴片电阻 3.元件丝印:750 4.是否有极性或方向:无 5.元件阻值:75欧姆
R
2021/9/17
34
35、贴片多层电容
1.元件代号: C 2.元件名称:贴片多层电容 3.元件丝印:无 4.是否有极性或方向:无
C
2021/9/17

实验一常用元器件简介

实验一常用元器件简介

例如:
103=10103pF,
223=22103pF
473=47103pF
479=4710 -1pF
479
=4.7pF
注意:如果第三位数值 是9,则表示是10 -1。
河南理工大学电工电子实验中心
电容器容量的读数
电容器的读数较为繁复,有各种不同 的标注方式,读起来较为费劲。
2、其它电容器
例如: 103K=10000pF10%
河南理工大学电工电子实验中心
二极管的测量
二极管在使用时必须先判别其性能的 优劣,然后判别“+”、“-”极引脚, 在接入电路时二极管引脚的极性是不能 接反的。
2、测量方法
(1)把万用表打至电阻档(档) 并 调到1 k 的量程上;
(2) 把红表笔 和 黑表笔分别与二 极管的两引脚连接,观察其阻值并记下; 然后把两表笔对调再与二极管两引脚连 接,再次观察并记录下阻值.
河南理工大学电工电子实验中心
4、二极管
• 常用的半导体的材料有硅、锗等半导体材料。半导 体二极管是一种工作在正向导通(即正向电阻小)反 向截止(反向电阻大 ) 的元器件,常用作整流、限幅、 保护、钳位等。
• 二极管的型号和标志法 • 二极管型号组成的意义及代号
主称(大写字母)
材料(字母) 分类(一般为数字)
2、其它电容器
(1) 数字加字母表示法 :此法最 常用,数字表示有效值,常为1-4 位,字母表示单位。另外用数值表示 时,不用小数点,而用R 表示或把单 位写在整数与小数之间.
例如:
7p5
7P5=7.5pF,
10n5=0.5nF,
47=4.7F=4R7
其中1F=103nF=106pF
微法 毫微法 微微法

TI SN74CBTLV3257-EP 低电压4位2选1 FET多路复用器 多路信号分离器说明书

TI SN74CBTLV3257-EP 低电压4位2选1 FET多路复用器 多路信号分离器说明书

PW PACKAGE Product Folder Order Now Technical Documents Tools &SoftwareSupport &CommunitySN74CBTLV3257-EPZHCSJO7A –MAY 2008–REVISED MAY 2019SN74CBTLV3257-EP 低电压4位2选1FET 多路复用器/多路信号分离器(1)组件资质符合JEDEC 和行业标准,确保在更宽泛的工作温度范围内可靠运行。

这包括但不限于高加速应力测试(HAST)或偏压85/85、温度循环、热压器或无偏压HAST 、电迁移、金属间键合寿命和模塑化合物寿命。

这些资质测试不能作为在超出额定性能和环境限制的条件下使用此组件的依据。

1特性•受控基线–一个组装地点–一个测试地点–一个制造地点•更宽泛的工作温度范围-55°C 至125°C •为制造资源减少(DMS)提供增强型支持•改进了产品变更通知•资质谱系(1)•两个端口间使用5Ω开关连接•支持在数据I/O 端口进行轨至轨开关•I off 支持局部断电模式运行•闩锁性能超过100mA ,符合JESD 78II 类规范•ESD 保护性能超过JESD 22规范要求–2000V 人体模型(A114-A)–200V 机器模型(A115-A)2应用•支持国防、航天和医疗应用3说明SN74CBTLV3257是一款4位2选1高速FET 多路复用器/多路信号分离器。

此开关具有低通态电阻,可以在最短传播延迟情况下建立连接。

选择(S)输入控制数据流。

当输出使能(OE)输入为高电平时,FET 多路复用器/多路解复用器被禁用。

该器件完全适用于I off 为了部分断电的应用。

I off 特性可确保在关断时防止损坏电流通过器件回流。

该器件可在关断时提供隔离。

为了确保加电或断电期间的高阻抗状态,OE 应通过一个上拉电阻器被连接至V CC ;该电阻器的最小值由驱动器的电流吸入能力来决定。

压力、液位、温度传感元件选型手册(2012版)

压力、液位、温度传感元件选型手册(2012版)

--您可信赖的传感技术专家!压力、液位、温度传感元件 Pressure、Liquid-level、Temperature Sensor & Transmitter选 型 手 册( 2012年版 )※压力传感器及变送器Pressure Sensor and Transmitter※液位测量变送器Liquid-level Measuring Transmitter※温度传感器及变送器Temperature Sensor and Transmitter宁 波 控 泰 电 气 有 限 公 司NINGBO CONTECH ELECTRIC CO,.LTD.公司简介宁波控泰电气有限公司是宁波宁兴国贸实业有限公司投资控股的集研发、制造、贸易于一体的高新技术企业。

公司以传感技术为核心专业从事压力传感器、温度传感器、高精度称重传感器、力传感器、称重计量控制系统、计算机测控系统、称重软件等的研发与制造。

公司有雄厚的资金后盾。

高、新、尖技术力量为核心,依托中科院、中国电子科技集团、航天科工等大型科研单位,技术力量雄厚,合作伙伴遍布全世界。

我们不仅与国内有实力的企业开展产业合作,更寻求与国际大型跨国公司强强联手,让我们的产品与服务昂首迈入国际化的水准。

产品出口东南亚、欧美市场。

在衡器、冶金、石化、环保、造纸、医疗、等领域拥有广泛的应用前景。

公司先后通过和取得了ISO9001-2008国际质量体系认证、CMC制造许可证、EX 防爆认证、TX特种设备认证。

拥有CAD与FEA技术研发中心和传感器实验室。

拥有一条现代化的传感器生产线,通过引进国外先进的技术工艺,结合先进的管理经念,制造品质一流的传感器。

控泰电气将在“互诚、互信、互利、互惠”的基础上为您提供“称心的售前服务、省心的售中服务、放心的售后服务”,共同创造和见证您我共同发展的辉煌历程!基于 MEMS技术的压力传感的优势Advantages of Pressure Sensor Based on the MEMS Technology领先的技术Leading Technology基于 MEMS(微机电)技术的压力传感器,它是建立在微米/纳米基础上,在单晶硅片上刻融制作惠斯登电桥(Wheatstone bridge)组成的硅应变计,具有输出灵敏度高,性能稳定,批量可靠性、重复性好等优点。

G102EI中文资料

G102EI中文资料

Key Features:• 1W Output Power • Compact “MiniDIP” Case • 3,000 VDC Isolation • UL Approved (File E245422)• Single & Dual Outputs • >3.5 MHour MTBF • 24 Standard Models • LOWEST COST!!G100EILow Cost, 1W MiniDIP High Isolation DC/DC Con v ert e rsSeriesMicroPower Direct292 Page Street Suite DStoughton, MA 02072USAT: (781) 344-8226F: (781) 344-8481E: sales@ W: RoHS CompliantElectrical Specifi cationsSpecifi cations typical @ +25°C, nominal input voltage & rated output current, unless otherwise noted. Specifi cations subject to change without notice.元器件交易网Derating CurveNotes:• All dimensions are typical in inches (mm)• Tolerance x.xx = ±0.01 (±0.25)• Pin 1 is marked by a “dot” or indentation on the side of the unitNotes:1. Output load regulation is specifi ed for a load change of 10% to 100%.2. T hese units should not be operated with a load under 10% of full load. Operation at no-load may cause damage to the unit.3. These converters will operate without external components. However, when measuring output ripple, it is recommended that an external ceramiceach output to common temperature and input line variations. Recommended capacitor values aregiven in the table above. For applications requiring very low output noise levels, a simple LC fi lter should be effective.4. D ual output units may be connected to provide a 10V, 18V, 24V or 30 VDC output. To do this, connect the load across the positive (+Vout) and negative (-Vout) outputs and fl oat the output common5. It is recommended that a fuse be used on the input of a power supply for protection. See the Model Selection table above for the correct rating.Other input/output combinations are available (i.e 3.3 VDC). Contact the factory for details at:sales@Model Selection GuideMechanical DimensionsMicroPower Direct292 Page Street Ste D Stoughton, MA 02072 • TEL: (781) 344-8226 • FAX: (781) 344-8481 • E-Mail: sales@元器件交易网。

TPS7510XYYYZ中文资料

TPS7510XYYYZ中文资料

FEATURES DESCRIPTIONAPPLICATIONSV ENA V ENBV BATTTPS7510x YFF 9-Ball WCSP (T op View)TPS7510xSBVS080E–SEPTEMBER 2006–REVISED JANUARY 2008Low Dropout,Two-Bank LED Driver with PWM Brightness Control•Regulated Output Current with 2%LED-to-LED The TPS7510x linear low dropout (LDO)matching MatchingLED current source is optimized for low power keypad and navigation pad LED backlighting •Drives up to Four LEDs at 25mA Each in a applications.The device provides a constant current Common Cathode Topologyto up to four unmatched LEDs organized in two banks •28mV Typical Dropout Voltage Extends Usable of two LEDs each in a common-cathode topology.Supply Range in Li-Ion Battery Applications Without an external resistor,the current source •Brightness Control Using PWM Signals defaults to factory-programmable,preset current level with ±0.5%accuracy (typical).An optional external •Two 2-LED Banks with Independent Enable resistor can be used to set initial brightness to and PWM Brightness Control per Bankuser-programmable values with higher accuracy.•No Internal Switching Signals—Eliminates EMI Brightness can be varied from off to full brightness by •Default LED Current Eliminates External inputting a pulse width modulation (PWM)signal on each Enable pin.Each bank has independent enable Componentsand brightness control,but current matching is done –Default values from 3mA to 10mA (in 1mA to all four channels concurrently.The input supply increments)available using innovative range is ideally suited for single-cell Li-Ion battery factory EEPROM programmingsupplies and the TPS7510x can provide up to 25mA –Optional external resistor can be used for per LED.high-accuracy,user-programmable current No internal switching signals are used,eliminating •Over-Current and Over-Temperature troublesome electromagnetic interference (EMI).The ProtectionTPS7510x is offered in an ultra-small,9-ball,0.4mm ball-pitch wafer chip-scale package (WCSP),yielding •Available in Wafer Chip-Scale Packagea very compact total solution size ideal for mobile handsets and portable backlighting applications.The device is fully specified over T J =–40°C to +85°C.•Keypad and Display Backlighting •White and Color LEDs •Cellular Handsets•PDAs and SmartphonesPlease be aware that an important notice concerning availability,standard warranty,and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.All trademarks are the property of their respective owners.PRODUCTION DATA information is current as of publication date.Copyright ©2006–2008,Texas Instruments IncorporatedProducts conform to specifications per the terms of the Texas Instruments standard warranty.Production processing does not necessarily include testing of all parameters.ABSOLUTE MAXIMUM RATINGS (1)DISSIPATION RATINGSRECOMMENDED OPERATING CONDITIONSTPS7510xSBVS080E–SEPTEMBER 2006–REVISED JANUARY 2008This integrated circuit can be damaged by ESD.Texas Instruments recommends that all integrated circuits be handled with appropriate precautions.Failure to observe proper handling and installation procedures can cause damage.ESD damage can range from subtle performance degradation to complete device failure.Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.ORDERING INFORMATION (1)PRODUCT ID OPTIONS (2)TPS7510x yyyzX is the nominal default diode output current (for example,3=3mA,5=5mA,and 0=10mA).YYY is the package designator.Z is the reel quantity (R =3000,T =250).(1)For the most current package and ordering information see the Package Option Addendum at the end of this document,or see the TI web site at .(2)Default set 3mA to 10mA in 1mA increments are available through the use of innovative factory EEPROM programming.Minimum order quantities may apply.Contact factory for details and availability.Over operating temperature range (unless otherwise noted).PARAMETERVALUE V IN range–0.3V to +7.0V V ISET ,V ENA ,V ENB ,V DX range –0.3V to V INI DX for D1A,D2A,D1B,D2B35mA D1A,D2A,D1B,D2B short circuit duration Indefinite Continuous total power dissipation Internally limited Junction temperature (T J )–55°C to +150°C Storage temperature –55°C to +150°C(1)Stresses above these ratings may cause permanent damage.Exposure to absolute maximum conditions for extended periods may degrade device reliability.These are stress ratings only,and functional operation of the device at these or any other conditions beyond those specified is not implied.DERATING FACTORABOVE BOARD PACKAGER θJC R θJA T A =+25°CT A <+25°C T A =+70°C T A =+85°C Low-K(1)YFF 55°C/W 208°C/W 4.8mW/°C 480mW 264mW 192mW High-K (2)YFF55°C/W142°C/W7.0mW/°C704mW387mW282mW(1)The JEDEC low-K (1s)board used to derive this data was a 3inch ×3inch,two-layer board with 2ounce copper traces on top of the board.(2)The JEDEC high-K (2s2p)board used to derive this data was a 3inch ×3inch,multi-layer board with 1ounce internal power and ground planes and 2ounce copper traces on top and bottom of the board.PARAMETERMIN TYPMAX UNIT V IN Input voltage2.7 5.5V I DX Operating current per LED 325mA t PWM On-time for PWM signal33µs T J Operating junction temperature range–40+85°C2Submit Documentation FeedbackCopyright ©2006–2008,Texas Instruments IncorporatedProduct Folder Link(s):TPS7510xELECTRICAL CHARACTERISTICSTPS7510x SBVS080E–SEPTEMBER2006–REVISED JANUARY2008Over operating junction temperature range(T J=–40°C to+85°C),V IN=3.8V,DxA and DxB=3.3V,R SET=32.4kΩ,and ENA and ENB=3.8V,unless otherwise noted.Typical values are at T A=+25°C.PARAMETER TEST CONDITIONS MIN TYP MAX UNITI SHDN Shutdown supply current V ENA,B=0V,V DX=0V0.03 1.0µAI Q Ground current I SET=open,I DX=5mA,V IN=4.5V170200µAT A=+25°C024 Current matchingΔI D%(I DXMAX–I DXMIN/I DXMAX)×100%TA=–40°C to+85°C5ΔI DX%/ΔV IN Line regulation 3.5V≤V IN≤4.5V,I DX=5mA 2.0%/VΔI DX%/ΔV DX Load regulation 1.8V≤V DX≤3.5V,I DX=5mA0.8%/V Dropout voltage of any I DXnom=5mA28100 V DO DX current source mVI DXnom=15mA70(V DX at I DX=0.8×I DX,nom)V ISET Reference voltage for current set 1.183 1.225 1.257VI OPEN Diode current accuracy(1)I SET=open,V DX=V IN–0.2V0.53%I SET I SET pin current range 2.562.5µAk I SET to I DX current ratio(1)420V IH Enable high level input voltage 1.2V V IL Enable low level input voltage0.4VV ENA=3.8V 5.0 6.1I INA Enable pin A(V ENA)input currentµAV ENA=1.8V 2.2V ENB=3.8V 4.0 4.9I INB Enable pin B(V ENB)input currentµAV ENB=1.8V 1.8Delay from ENA and ENB=low tot SD Shutdown delay time reach shutdown current51330µs(I DX=0.1×I DX,nom)Shutdown,temp increasing+165 T SD Thermal shutdown temperature°CReset,temp decreasing+140 T J Operating junction temperature range–40+85°C (1)Average of all four I DX outputs.Copyright©2006–2008,Texas Instruments Incorporated Submit Documentation Feedback3Product Folder Link(s):TPS7510xTPS7510xSBVS080E–SEPTEMBER 2006–REVISED JANUARY 2008Table 1.Recommended (1%Tolerance)Set Resistor ValuesR SET (k Ω)I SET (µA)I DX (mA)(1)511 2.4 1.0255 4.8 2.01697.2 3.01279.6 4.110212.0 5.084.514.5 6.173.216.77.064.918.97.956.221.89.251.124.010.146.426.411.142.229.012.239.231.313.136.533.614.134.036.015.132.437.815.930.140.717.128.742.717.926.745.919.325.548.020.224.350.421.223.252.822.222.155.423.321.557.023.920.559.825.1(1)I DX =(V SET /R SET )×k.4Submit Documentation FeedbackCopyright ©2006–2008,Texas Instruments IncorporatedProduct Folder Link(s):TPS7510xPIN ASSIGNMENTSTPS7510x YFF 9-Ball WCSP (T op View)TPS7510xSBVS080E–SEPTEMBER2006–REVISED JANUARY 2008TERMINAL FUNCTIONSCopyright ©2006–2008,Texas Instruments Incorporated Submit Documentation Feedback5Product Folder Link(s):TPS7510xD1AD2AD1BD2BV IN ENBI SETENATPS7510xSBVS080E–SEPTEMBER 2006–REVISED JANUARY 2008FUNCTIONAL BLOCK DIAGRAM6Submit Documentation FeedbackCopyright ©2006–2008,Texas Instruments IncorporatedProduct Folder Link(s):TPS7510xTYPICAL CHARACTERISTICS0.5mA/div1V/divI OUTV IN20s/divm 30100102040Duty Cycle (%)I (m A )O U T 2520151050506070809020mA/div1V/divI OUTENA = ENB20s/divm 0.5mA/div1V/divI OUTV IN20s/divm 20mA/div1V/divI OUTENB20s/divm0.0600.200.020.040.08V V -(V)IN OUT I (m A )O U T 2520151050.100.120.140.160.18TPS7510xSBVS080E–SEPTEMBER 2006–REVISED JANUARY 2008Over operating junction temperature range (T J =–40°C to +85°C),V IN =3.8V,DxA and DxB =3.3V,R SET =32.4k Ω,and ENAand ENB =high,unless otherwise noted.Typical values are at T A =+25°C.LED CURRENT vs DUTY CYCLE (f =300Hz)LINE TRANSIENT (600mV Pulse)Figure 1.Figure 2.LINE TRANSIENT (300mV Pulse)DIMMING RESPONSE (Both Channels)Figure 3.Figure 4.DIMMING RESPONSE (Single Channel)OUTPUT CURRENT vs HEADROOM VOLTAGEFigure 5.Figure 6.Copyright ©2006–2008,Texas Instruments Incorporated Submit Documentation Feedback7Product Folder Link(s):TPS7510x1402042046050060100180R (k )W SET I (m A )O U T 28262422201816141210864202202603003403805020100304060R (k )W SET I (m A )O U T 28262422201816141210864207080904.02.55.53.03.54.5V (V)IN I (A )m Q 1801751701651601555.0+85C°+25C°-°40CI (m A )O U T V (V)IN 5.45.35.25.15.04.94.84.74.63.44.44.95.43.95.920-40-20040T emperature (C)°I (m A )O U T 5.45.35.25.15.04.94.84.74.66080851.54.00.51.02.0V (V)OUT I (m A )O U T 20181614121086422.53.03.5TPS7510xSBVS080E–SEPTEMBER 2006–REVISED JANUARY 2008TYPICAL CHARACTERISTICS (continued)Over operating junction temperature range (T J =–40°C to +85°C),V IN =3.8V,DxA and DxB =3.3V,R SET =32.4k Ω,and ENA and ENB =high,unless otherwise noted.Typical values are at T A =+25°C.OUTPUT CURRENT vs R SETOUTPUT CURRENT vs R SETFigure 7.Figure 8.TPS75105OUTPUT CURRENT vs INPUT VOLTAGEGROUND CURRENT vs INPUT VOLTAGER SET =OpenFigure 9.Figure 10.TPS75105OUTPUT CURRENT vs TEMPERATURER SET =OpenOUTPUT CURRENT vs OUTPUT VOLTAGEFigure 11.Figure 12.8Submit Documentation FeedbackCopyright ©2006–2008,Texas Instruments IncorporatedProduct Folder Link(s):TPS7510xAPPLICATIONS INFORMATIONLIMITATIONS ON LED FORWARD SETTING THE OUTPUT CURRENT LEVELR= ISET K V´ISETILED(1)USE OF EXTERNAL CAPACITORSUSE OF UNUSED OUTPUTS OR TYINGTPS7510xSBVS080E–SEPTEMBER2006–REVISED JANUARY2008VOLTAGESThe TPS7510x is a linear current sourceThe TPS7510x is a quad matched current source.implementing LDO regulator building blocks. Each of the four current source output levels is set byTherefore,there are some limitations to the forward a single reference current.An internal voltage(output)voltages that can be used while maintaining reference of1.225V(nominal)in combination with aaccurate operation.The first limitation is the resistor sets the reference current level.Thismaximum LED forward voltage.Because LDO reference current is then mirrored onto each of thetechnology is employed,there is the dropout voltage four outputs with a ratio of typically420:1.Theto consider.The TPS7510x is an ultra-low dropout resistor required to set the LED current is calculateddevice with typical dropouts in the range of30mV at using Equation1:5mA.Care must be taken in the design to ensure thatthe difference between the lowest possible inputvoltage(for example,battery cut-off)and the highestpossible forward voltage yields at least100mV of where:headroom.Headroom levels less than dropout •K is the current ratio decrease the accuracy of the current source(see •V ISET is the internal reference voltage Figure6).•I LED is the desired LED currentThe other limitation to consider is the minimum output For example,to set the LED current level to10mA,a voltage required to yield accurate operation.The resistor value of51.1kΩis required.This value sets current source employs NMOS MOSFETs,and a up a reference current of23.9µA(1.22V/51.1kΩ).In minimum forward LED voltage of approximately1.5V turn,this reference current is mirrored to each output on the output is required to maintain highest current source,resulting in an output current of10mA accuracy.The TPS7510x is ideal for white LEDs and (23.9µA×420).color LEDs with forward voltages greater than1.5V.This range includes red LEDs that have typical The TPS7510x offers two methods for setting theforward voltages of1.7V.output current levels.The LED current is set either byconnecting a resistor(calculated using Equation1)from the I SET pin to GND,or leaving I SETto employ the factory-programmed R SET resistance.The TPS7510x does not require the use of any The internal programmed resistance is implemented external capacitors for stable operation.Nominal using high-precision processing and yields a stray and/or power-supply decoupling capacitance on reference current accuracy of0.5%,nominal.the input is adequate for stable operation.Capacitors Accuracy using external resistors is subject to the are not recommended on the outputs because they tolerance of the external resistor and the accuracy of are not needed for stability.the internal reference voltage.The TPS7510x automatically detects the presence ofOUTPUTS TOGETHERan external resistor by monitoring the current out ofthe I SET pin.Current levels in excess of3µA signify Unused outputs may be left unconnected or tied tothe presence of an external resistor and the device the VIN supply.While open outputs are acceptable,uses the external resistor to set the reference current.tying unused outputs to the VIN supply increases ESDIf the current from I SET is less than3µA,the device protection.Connecting unused output to ground defaults to the preset internal reference set resistor.violates the minimum recommended output voltage, The TPS7510x is available with eight preset current results in current levels that potentially exceed the levels,from3mA to10mA(per output)in1mA set/preset LED current and should be avoided. increments.Solutions using the preset internalConnecting outputs in parallel is an acceptable way current level eliminate an external component,of increasing the amount of LED current drive.This thereby increasing accuracy and reducing cost.configuration is a useful trick when the higher currentlevel is a multiple of the preset value.Copyright©2006–2008,Texas Instruments Incorporated Submit Documentation Feedback9Product Folder Link(s):TPS7510xUSE OF ENABLE PINS FOR PWM DIMMINGLOAD REGULATIONLINE REGULATIONTPS7510xSBVS080E–SEPTEMBER 2006–REVISED JANUARY 2008The TPS7510x divides control of the LED outputs into The TPS7510x is designed to provide very tight load two banks of two current sources each.Each bank is regulation.In the case of a fixed current source,the controlled by the use of an independent,active-high output load change is a change in voltage.Tight load enable pin (ENA and ENB).The enable pin can be regulation means that output voltages (LED forward used for standard ON/OFF operation of the current voltages)with large variations can be used without source,driven by standard logic levels from impacting the fixed current being sourced by the processor GPIO pins,for example.Drive EN high to output or the output-to-output current matching.The turn on the bank of LEDs;drive EN low to turn off the permissible variation on the output not only allows for bank of LEDs.large variations in white LED forward voltages,but even permits the use of different color LEDs on Another use of the enable pin is for LED dimming.different outputs with minimal effect on output current.LED brightness is a function of the current level being driven across the diode and the time that current is being driven through the diode.The perceived brightness of an LED can be changed by either The TPS7510x is also designed to provide very tight varying the current level or,more effectively,by line regulation.This architecture allows for voltage changing the time in which that current is present.transient events to occur on the power supply When a PWM signal is input into the enable pin,the (battery)without impacting the fixed output current duty cycle (high or ON time)determines how long the levels or the output to output current matching.A fixed current is driven across the LEDs.Reducing or prime example of such a supply transient event is the increasing that duration has the effect of dimming or occurrence of a transmit pulse on the radio of a brightening the LED,without having to employ the mobile handset.These transient pulses can cause more complex method of varying the current level.variations of 300mV and 600mV on the supply to the This technique is particularly useful for reducing LED TPS7510x.The line regulation limitation is that the brightness in low ambient light conditions,where LED lower supply voltage level of the event does not brightness is not required,thereby decreasing current cause the input to output voltage difference to drop consumption.The enable pins can also be used for below the dropout voltage range.LED blinking,varying blink rates based on system status.Although providing many useful applications,PWM dimming does have a minimum duty cycle required to achieve the required current level.The recommended minimum on time of the TPS7510x is approximately 33µs.On times less than 33µs result in reductions in the output current by not allowing enough time for the output to reach the desired current level.Also,having both enables switching together,asynchronously,or having one enable on at all times,impacts the minimum recommended on time (see Figure 4and Figure 5).If one enable is already on,at other channel turns on is faster than if both channel were turning on together or if the other channel is off.Therefore,connecting one enable on Figure 13.Typical Application Diagramallows for approximately 10µs to 12µs shorter minimum on times of the switching enable channel.Unused enable pins can be left unconnected or connected to ground to minimize current consumption.Connecting unused enable pins to ground increases ESD protection.If connected to V IN ,a small amount of current drains through the enable input (see the Electrical Characteristics table).10Submit Documentation FeedbackCopyright ©2006–2008,Texas Instruments IncorporatedProduct Folder Link(s):TPS7510xTPS7510xSBVS080E–SEPTEMBER 2006–REVISED JANUARY 2008Figure 14.YFF Wafer Chip-Scale Package Dimensions (in mm)PACKAGING INFORMATIONOrderable Device Status (1)Package Type Package Drawing Pins Package Qty Eco Plan (2)Lead/Ball FinishMSL Peak Temp (3)TPS75103YFFR ACTIVE DSBGA YFF 93000Green (RoHS &no Sb/Br)SNAG Level-1-260C-UNLIM TPS75103YFFT ACTIVE DSBGA YFF 9250Green (RoHS &no Sb/Br)SNAG Level-1-260C-UNLIM TPS75105YFFR ACTIVE DSBGA YFF 93000Green (RoHS &no Sb/Br)Call TI Level-1-260C-UNLIM TPS75105YFFTACTIVEDSBGAYFF9250Green (RoHS &no Sb/Br)Call TILevel-1-260C-UNLIM(1)The marketing status values are defined as follows:ACTIVE:Product device recommended for new designs.LIFEBUY:TI has announced that the device will be discontinued,and a lifetime-buy period is in effect.NRND:Not recommended for new designs.Device is in production to support existing customers,but TI does not recommend using this part in a new design.PREVIEW:Device has been announced but is not in production.Samples may or may not be available.OBSOLETE:TI has discontinued the production of the device.(2)Eco Plan -The planned eco-friendly classification:Pb-Free (RoHS),Pb-Free (RoHS Exempt),or Green (RoHS &no Sb/Br)-please check /productcontent for the latest availability information and additional product content details.TBD:The Pb-Free/Green conversion plan has not been defined.Pb-Free (RoHS):TI's terms "Lead-Free"or "Pb-Free"mean semiconductor products that are compatible with the current RoHS requirements for all 6substances,including the requirement that lead not exceed 0.1%by weight in homogeneous materials.Where designed to be soldered at high temperatures,TI Pb-Free products are suitable for use in specified lead-free processes.Pb-Free (RoHS Exempt):This component has a RoHS exemption for either 1)lead-based flip-chip solder bumps used between the die and package,or 2)lead-based die adhesive used between the die and leadframe.The component is otherwise considered Pb-Free (RoHS compatible)as defined above.Green (RoHS &no Sb/Br):TI defines "Green"to mean Pb-Free (RoHS compatible),and free of Bromine (Br)and Antimony (Sb)based flame retardants (Br or Sb do not exceed 0.1%by weight in homogeneous material)(3)MSL,Peak Temp.--The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications,and peak solder temperature.Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided.TI bases its knowledge and beliefon information provided by third parties,and makes no representation or warranty as to the accuracy of such information.Efforts are underway to better integrate information from third parties.TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.TI and TI suppliers consider certain information to be proprietary,and thus CAS numbers and other limited information may not be available for release.In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s)at issue in this document sold by TI to Customer on an annual basis.PACKAGE OPTION ADDENDUM16-Jan-2008TAPE AND REEL BOX INFORMATIONDevice Package Pins SiteReel Diameter (mm)Reel Width (mm)A0(mm)B0(mm)K0(mm)P1(mm)W (mm)Pin1Quadrant TPS75105YFFR YFF 9SITE 1218081.34 1.340.8148Q1Device Package Pins Site Length(mm)Width(mm)Height(mm) TPS75105YFFR YFF9SITE12220.0220.034.0IMPORTANT NOTICETexas Instruments Incorporated and its subsidiaries(TI)reserve the right to make corrections,modifications,enhancements,improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty.Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty.Except where mandated by government requirements,testing of all parameters of each product is not necessarily performed.TI assumes no liability for applications assistance or customer product design.Customers are responsible for their products and applications using TI components.To minimize the risks associated with customer products and applications,customers should provide adequate design and operating safeguards.TI does not warrant or represent that any license,either express or implied,is granted under any TI patent right,copyright,mask work right, or other TI intellectual property right relating to any combination,machine,or process in which TI products or services are rmation published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement e of such information may require a license from a third party under the patents or other intellectual property of the third party,or a license from TI under the patents or other intellectual property of TI.Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties,conditions,limitations,and notices.Reproduction of this information with alteration is an unfair and deceptive business practice.TI is not responsible or liable for such altered rmation of third parties may be subject to additional restrictions.Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice.TI is not responsible or liable for any such statements.TI products are not authorized for use in safety-critical applications(such as life support)where a failure of the TI product would reasonably be expected to cause severe personal injury or death,unless officers of the parties have executed an agreement specifically governing such use.Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications,and acknowledge and agree that they are solely responsible for all legal,regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications,notwithstanding any applications-related information or support that may be provided by TI.Further,Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or"enhanced plastic."Only products designated by TI as military-grade meet military specifications.Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk,and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS16949requirements.Buyers acknowledge and agree that,if they use any non-designated products in automotive applications,TI will not be responsible for any failure to meet such requirements.Following are URLs where you can obtain information on other Texas Instruments products and application solutions:Products ApplicationsAmplifiers AudioData Converters AutomotiveDSP BroadbandClocks and Timers Digital ControlInterface MedicalLogic MilitaryPower Mgmt Optical NetworkingMicrocontrollers SecurityRFID TelephonyRF/IF and ZigBee®Solutions Video&ImagingWirelessMailing Address:Texas Instruments,Post Office Box655303,Dallas,Texas75265Copyright©2008,Texas Instruments Incorporated。

2012TI杯(湖北赛区)电子设计大赛

2012TI杯(湖北赛区)电子设计大赛

40 41 42 43 44 45 46 47 48 49 50 51 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
D D D D D D D D D D D D E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E
胡泽鑫 王 琦 宫世佳 高 诗 万 路 张振洋 李 宁 王永超 韩 莹 朱信鹏 叶秀丽 姚金肖 韦李军 伏 健 文超炜 向昀龙 施玮辰 田欣欣 田 健 陈星宇 郝冲冲 陈嘉华 胡 成 汤义程 郑国安 曹祥杨 杨 义 常远瞩 刘 成 覃怀玉 徐 进 张 易 梁 粤 胡胜寒 夏 航 邓 宏 卜耘秋 耿 冰 杨 波 叶玉婷 周 旭 向 云 李桂玲 王 超 胡 广 艾鹏程 江凌云
田林虎 宋双洋 胡 榜 潘 琪 牛博耸 陈振华 陈坦德 李 治 黄 思 彭抑尘 张小满 张 纯 黄亚新 高 敏 黄 灏 杨海鹏 陈荣玲 罗 欢 钱 超 李 林 马作伟 严旭东 蔡 磊 付 勇 孙顺全 桂 鹏 詹昌满 张宏广 郑宜嘉 韩 韬 张梦阳 詹传明 王明亮 吴 冕 黄小帅 董杰楚 吴 勇 毛 桦 黄忠言 吕博文 姜宗健 默 涛 王佳华 李志强 伏潇斌 田 文 赵王义
陆青翠 曾柏伟 纪彬彬 邓辉超 江 帆 王义嘉 张小宇 肖 亮 腾 捷 金红阳 尹志杰 丁文东 喻 毅 熊春晓 向 楠 王青爽 黄理志 钱 涛 黄佑吉 李 运 田建华 吴佳乐 谢简策 周 明 王 栋 刘泳庭 俞梦溪 张天石 孙文强 张 勇 邵 成 戴忆龙 陆 昊 王志明 郑天宇 汪元红 罗 俊 张 斌 丰 坤 高紫枫 钟佳盛 乔 宁 肖 伟 陈 皓 唐 虎 王一夫 程振洪

控制系统元器件明细表

控制系统元器件明细表

控制系统元器件明细表《工厂电气控制技术课程设计》实训报告内容:卧式车床电气控制电路设计专业班级:12供电2班学号:120217259学生姓名:张晓曼起止时间:2013.01.13—01.17附件一:控制系统元器件明细表符号元件名称型号规格件数作用QS 组合开关HZ10-25/3 三级、500A、25A 1 电源总开关FR1 热继电器JR0-40 热元件额定电流25A、整定电流22.6A4 过载保护FR2 热继电器JR0-40 热元件额定电流0.64A、整定电流0.43A1 过载保护KM 交流接触器CJ20-40 40A、线圈电压127V1接通或断开主电路KM1、KM2、KM3 交流接触器JZ7-445A、线圈电压127V3FU1 熔断器RL1-15 500V、熔体10A 1 短路保护FU2、FU3 熔断器RC1-15 500V、熔体2A 2 短路保护SB3、SB4、SB5、SB6、SB7控制按钮直径25黑色220V、5A 5 点动按钮SB1、SB2、SB8控制按钮直径25红色220V、5A 3 停止按钮SB9 控制按钮直径25绿色220V、5A 1 开启按钮HL2 指示灯ZSD-0 6.3V、0.25A 1 工作指示HL1 指示灯ZSD-0 6.3V、0.25A 1 停止指示EL 照明灯36V、40W 1PA 交流电流表62、T2 0~50A、直接接入 1 电流监控T 控制变压器BK-100100V/A、380V/127V/36V、6.3V1附件二:电气控制线路图的设计一、电动机容量的选择电动机的容量反映了它的负载能力,它与电动机的过载能力有关。

电动机容量的选择有俩种方法:一种是调查统计类比法;一种是分析计算法。

调查统计类比法是在不断总结经验的基础上,选择电动机容量的一种方法,此法比较简单。

卧式车床加工工件的最大直径为630mm。

所以:由统计分析法公式P = 36.5D54.1得;P = 36.5×0.6354.1=11KW一般情况下,普通车床选用同步转速为1500r/min的电动机。

2012电赛工作报告(赵茂泰)

2012电赛工作报告(赵茂泰)

一、2011年电子设计竞赛基本情况
2011年全国各赛区成绩(一等奖总数前12位)
赛区 四川 参赛队 763 获奖队 52 一等奖 23
江苏
湖北 湖南 广西 河南 浙江 陕西
628
525 265 428 421 623 470
59
43 26 33 32 42 31
19
18 12 12 11 9 7
广东
实际证明,非竞赛年的竟赛不仅扩大了受益面,而且对来年
全国竞赛成绩有很大影响。许多学校将派出10级同学参赛。
竞赛1:“TI杯” 湖北省大学生电子设计竞赛
2012年是非全国竞赛年,湖北赛区将与 TI 公司合作举办省 级电子设计竞赛(TI杯)。今年共有15个省市与 TI 公司合作。
时间安排
5月18日,组委会发布了“关于举办2012年全国大学生电子 设计竞赛“TI杯”湖北赛区竞赛的通知”; 6月初,在东湖学院举行TI器件培训会;(提供有关器件) 开赛时间:8月5日~ 7日(三天); 8月8日~15日在空军雷达学院进行现场评审工作;
D5
D6 D7
二等奖
13
淘(初) 29 淘(初) 23
D8
淘(复) 13
二等奖 20 淘(初) 9 淘(初) 13
二等奖 21 淘(初) 7 淘(初) 17
题意理解应该引起高度关注;
高职高专综测成 综测成绩偏低,且测试成绩也偏低的作 绩普遍较低; 品易在初评时淘汰; F2队的测试成绩 个别情况下,综测成绩偏低的作品一旦 原为全国最高。 进入复测,易取得好成绩。
瑞萨公司还对使用瑞萨电子开发板参加竞赛并获得好成绩 的队设立2个“瑞萨特别奖”,和37个“瑞萨纪念奖”。
“瑞萨特别奖” 均由湖北赛区的武汉大学和三峡大学2个队 获得,除此之外华中农业大学还有2个队获得“瑞萨纪念奖”

BQ2012资料

BQ2012资料

1Features➤Conservative and repeatable measurement of available charge in rechargeable batteries ➤Charge control output➤Designed for battery pack inte-gration-120µA typical standby current (self-discharge estimation mode)-Small size enables imple-mentations in as little as 12square inch of PCB➤Integrate within a system or as a stand-alone device-Display capacity via single-wire serial communication port or direct drive of LEDs➤Measurements compensated for current and temperature ➤Self-discharge compensation us-ing internal temperature sensor ➤16-pin narrow SOICGeneral DescriptionThe bq2012Gas Gauge IC is in-tended for battery-pack or in-system installation to maintain an accurate record of available battery charge.The IC monitors a voltage drop across a sense resistor connected in series between the negative battery terminal and ground to determine charge and discharge activity of the battery .Self-discharge of NiMH and NiCd batteries is estimated based on an internal timer and temperature pensations for battery tem-perature and rate of charge or dis-charge are applied to the charge,discharge,and self-discharge calcu-lations to provide available charge information across a wide range of operating conditions.Battery capac-ity is automatically recalibrated,or “learned,”in the course of a dis-charge cycle from full to empty .The bq2012includes a charge con-trol output that,when used with other full-charge safety termination methods,can provide a cost-effectivemeans of controlling charge based on the battery's charge state.Nominal available charge may be di-rectly indicated using a five-or six-segment LED display.These seg-ments are used to graphically indi-cate nominal available charge.The bq2012supports a simple single-line bidirectional serial link to an external processor (common ground).The bq2012outputs battery information in response to external commands over the serial link.Internal registers include available charge,temperature,capacity ,battery ID,battery status,and programming pin settings.To support subassembly testing,the outputs may also be con-trolled.The external processor may also overwrite some of the bq2012gas gauge data registers.The bq2012may operate directly from three or four cells.With the REF output and an external transis-tor,a simple,inexpensive regulator can be built to provide V CC across a greater number of cells.LCOMLED common outputSEG 1/PROG 1LED segment 1/program 1input SEG 2/PROG 2LED segment 2/program 2input SEG 3/PROG 3LED segment 3/program 3input SEG 4/PROG 4LED segment 4/program 4input SEG 5/PROG 5LED segment 5/program 5input SEG 6/PROG 6LED segment 6/program 6input1PN201201.eps16-Pin Narrow SOIC234 5678161514131211109LCOMSEG 1/PROG 1SEG 2/PROG 2SEG 3/PROG 3SEG 4/PROG 4SEG 5/PROG5SEG 6/PROG 6V SSV CC REF CHG DQ EMPTY SB DISP SRREF V oltage reference output CHG Charge control output DQ Serial communications input/outputEMPTY Empty battery indicator outputSB Battery sense input DISP Display control input SR Sense resistor input V CC 3.0–6.5V V SSSystem groundPin Connections Pin Namesbq2012Gas Gauge IC With Slow-Charge Control9/96 BPin DescriptionsLCOM LED common outputOpen-drain output switches V CC to sourcecurrent for the LEDs.The switch is off dur-ing initialization to allow reading of the softpull-up or pull-down program resistors.LCOM is also high impedance when the dis-play is off.SEG1–SEG6LED display segment outputs(dual func-tion with PROG1–PROG6)Each output may activate an LED to sink the current sourced from LCOM.PROG1–PROG2Programmed full count selection inputs (dual function with SEG1–SEG2)These three-level input pins define the pro-grammed full count(PFC)thresholds de-scribed in Table2.PROG3–PROG4Gas gauge rate selection inputs(dual function with SEG3–SEG4)These three-level input pins define the scale factor described in Table2.PROG5Self-discharge rate selection(dual func-tion with SEG5)This three-level input pin defines the selfdis-charge compensation rate shown in Table1. PROG6Display mode selection(dual function with SEG6)This three-level pin defines the display op-eration shown in Table1.CHG Charge control outputThis open-drain output becomes active lowwhen charging is allowed.Valid chargingconditions are described in the Charge Con-trol section.SR Sense resistor inputThe voltage drop(V SR)across the sense re-sistor R S is monitored and integrated overtime to interpret charge and discharge activ-ity.The SR input is tied to the high side ofthe sense resistor.V SR<V SS indicates dis-charge,and V SR>V SS indicates charge.Theeffective voltage drop(V SRO)as seen by thebq2012is V SR+V OS(see Table5).DISP Display control inputDISP high disables the LED display.DISPtied to V CC allows PROG X to connect directlyto V CC or V SS instead of through a pull-up orpull-down resistor.DISP floating allows theLED display to be active during a validcharge or during discharge if the NAC regis-ter is updated at a rate equivalent to V SRO≤-4mV.DISP low activates the display.SeeTable1.SB Secondary battery inputThis input monitors the single-cell voltagepotential through a high-impedance resis-tive divider network for end-of-dischargevoltage(EDV)thresholds,maximum chargevoltage(MCV),and battery removed.EMPTY Battery empty outputThis open-drain output becomes high-impedance on detection of a valid end-of-discharge voltage(V EDVF)and is low followingthe next application of a valid charge.DQ Serial I/O pinThis is an open-drain bidirectional pin.REF Voltage reference output for regulatorREF provides a voltage reference output foran optional micro-regulator.V CC Supply voltage inputV SS Ground2bq2012Functional DescriptionGeneral OperationThe bq2012determines battery capacity by monitoring the amount of charge input to or removed from a re-chargeable battery.The bq2012measures discharge and charge currents,estimates self-discharge,monitors the battery for low-battery voltage thresholds,and compen-sates for temperature and charge/discharge rates.The charge measurement is made by monitoring the voltage across a small-value series sense resistor between the negative battery terminal and ground.The available battery charge is determined by monitoring this voltage over time and correcting the measurement for the envi-ronmental and operating conditions.Figure1shows a typical battery pack application of the bq2012using the LED display capability as a charge-state indicator.The bq2012can be configured to display capacity in either a relative or an absolute display mode.The relative display mode uses the last measured dis-charge capacity of the battery as the battery“full”refer-ence.The absolute display mode uses the programmed full count(PFC)as the full reference,forcing each seg-ment of the display to represent a fixed amount of charge.A push-button display feature is available for momentarily enabling the LED display.The bq2012monitors the charge and discharge currents as a voltage across a sense resistor(see R S in Figure1).A filter between the negative battery terminal and theSR pin may be required if the rate of change of the bat-tery current is too great.3bq2012Figure 1. Battery Pack Application Diagram—LED DisplayVoltage ThresholdsIn conjunction with monitoring V SR for charge/discharge currents,the bq2012monitors the single-cell battery po-tential through the SB pin.The single-cell voltage po-tential is determined through a resistor/divider network per the following equation:RB RB N 121=−where N is the number of cells,RB 1is connected to the positive battery terminal,and RB 2is connected to the negative battery terminal.The single-cell battery volt-age is monitored for the end-of-discharge voltage (EDV)and for maximum cell voltage (MCV).EDV threshold levels are used to determine when the battery has reached an “empty”state,and the MCV threshold is used for fault detection during charging.Two EDV thresholds for the bq2012are fixed at:EDV1(early warning)=1.05V EDVF (empty)=0.95VIf V SB is below either of the two EDV thresholds,the as-sociated flag is latched and remains latched,independ-ent of V SB ,until the next valid charge.During discharge and charge,the bq2012monitors V SR for various thresholds.These thresholds are used to compensate the charge and discharge rates.Refer to the count compensation section for details.EDV monitoring is disabled if V SR ≤-250mV typical andresumes sec-ond after V SR >-250mV .EMPTY OutputThe EMPTY output switches to high impedance when V SB <V EDF and remains latched until a valid charge oc-curs.The bq2012also monitors V SB relative to V MCV ,2.25V .V SB falling from above V MCV resets the device.ResetThe bq2012recognizes a valid battery whenever V SB is greater than 0.1V typical.V SB rising from below 0.25V or falling from above 2.25V resets the device.Reset can also be accomplished with a command over the serial port as described in the Register Reset section.TemperatureThe bq2012internally determines the temperature in 10°C steps centered from -35°C to +85°C.The tempera-ture steps are used to adapt charge and discharge rate compensations,self-discharge counting,and available charge display translation.The temperature range isavailable over the serial port in 10°C increments as shown below:Layout ConsiderationsThe bq2012measures the voltage differential between the SR and V SS pins.V OS (the offset voltage at the SR pin)is greatly affected by PC board layout.For optimal results,the PC board layout should follow the strict rule of a single-point ground return.Sharing high-current ground with small signal ground causes undesirable noise on the small signal nodes.Additionally:IThe capacitors (SB and V CC ) should be placed asclose as possible to the SB and V CC pins, respectively,and their paths to V SS should be as short as possible.A high-quality ceramic capacitor of 0.1µf is recommended for V CC .IThe sense resistor (R S ) should be as close as possible to the bq2012.IThe R-C on the SR pin should be located as close as possible to the SR pin. The maximum R should not exceed 100K.4bq2012TMPGG (hex)Temperature Range0x < -30°C 1x -30°C to -20°C 2x -20°C to -10°C 3x -10°C to 0°C 4x 0°C to 10°C 5x 10°C to 20°C 6x 20°C to 30°C 7x 30°C to 40°C 8x 40°C to 50°C 9x 50°C to 60°C Ax 60°C to 70°C Bx 70°C to 80°C Cx> 80°CGas Gauge OperationThe operational overview diagram in Figure2illustrates the operation of the bq2012.The bq2012accumulates a measure of charge and discharge currents,as well as an estimation of self-discharge.Charge and discharge cur-rents are temperature and rate compensated,whereas self-discharge is only temperature compensated.The main counter,Nominal Available Charge(NAC), represents the available battery capacity at any given time.Battery charging increments the NAC register, while battery discharging and self-discharge decrement the NAC register and increment the DCR(Discharge Count Register).The Discharge Count Register(DCR)is used to update the Last Measured Discharge(LMD)register only if a complete battery discharge from full to empty occurs without any partial battery charges.Therefore,the bq2012adapts its capacity determination based on the actual conditions of discharge.The battery’s initial capacity is equal to the programmed full count(PFC)shown in Table2.Until LMD is up-dated,NAC counts up to but not beyond this threshold during subsequent charges.This approach allows the gas gauge to be charger-independent and compatible with any type of charge regime.st Measured Discharge(LMD)or learnedbattery capacity:LMD is the last measured discharge capacity of thebattery.On initialization(application of V CC or bat-tery replacement),LMD=PFC.During subsequentdischarges,the LMD is updated with the latestmeasured capacity in the Discharge Count Register(DCR)representing a discharge from full to belowEDV1.A qualified discharge is necessary for a ca-pacity transfer from the DCR to the LMD register.The LMD also serves as the100%reference thresh-old used by the relative display mode.2.Programmed Full Count(PFC)or initial bat-tery capacity:The initial LMD and gas gauge rate values are pro-grammed by using PROG1–PROG4.The PFC alsoprovides the100%reference for the absolute dis-play mode.The bq2012is configured for a given ap-plication by selecting a PFC value from Table2.The correct PFC may be determined by multiplyingthe rated battery capacity in mAh by the sense re-sistor value:Battery capacity (mAh)*sense resistor (Ω) =PFC (mVh)Selecting a PFC slightly less than the rated capac-ity for absolute mode provides capacity above thefull reference for much of the battery’s life.5bq2012Figure 2. Operational OverviewExample:Selecting a PFC Value Given:Sense resistor =0.1ΩNumber of cells =6Capacity =2200mAh,NiCd battery Current range =50mA to 2A Absolute display mode Serial port only Self-discharge=Voltage drop resistor =5mV to 200mV Therefore:2200mAh *0.1Ω=220mVhSelect:PFC =33792counts or 211mVh PROG 1=float PROG 2=float PROG 3=float PROG 4=low PROG 5=float PROG 6=floatThe initial full battery capacity is 211mVh (2110mAh)until the bq2012“learns”a new capac-ity with a qualified discharge from full to EDV1.6bq2012PROG x ProgrammedFull Count (PFC)PROG 4= L PROG 4= ZUnits 12PROG 3= HPROG 3= Z PROG 3= L PROG 3= H PROG 3= ZPROG 3= L ---Scale =1/80Scale =1/160Scale =1/320Scale =1/640Scale =1/1280Scale =1/2560mVh/count H H 4915261430715476.838.419.2mVh H Z 4505656328214170.435.217.6mVh H L 4096051225612864.032.016.0mVh Z H 3686446123011557.628.814.4mVh Z Z 3379242221110653.026.413.2mVh Z L 3072038419296.048.024.012.0mVh L H 2764834617386.443.221.610.8mVh L Z 2560032016080.040.020.010.0mVh LL2252828214170.435.217.68.8mVh V SR is equivalent to 2counts/sec.(nom.)904522.511.255.562.8mVTable 2. bq2012 Programmed Full Count mVh SelectionsNote:PROG 5and PROG 6states are independent.Table 1. bq2012 Programming3.Nominal Available Charge(NAC):NAC counts up during charge to a maximum value of LMD and down during discharge and self-discharge to0.NAC is reset to0on initializa-tion(PROG6=Z or low)and on reaching EDV1.NAC is set to PFC on initialization if PROG6=high.To prevent overstatement of charge during periods of overcharge,NAC stops incrementing when NAC= LMD.4.Discharge Count Register(DCR):The DCR counts up during discharge independent of NAC and could continue increasing after NAC has decremented to0.DCR stops counting when EDV1is reached.Prior to NAC=0(empty battery), both discharge and self-discharge increment the DCR.After NAC=0,only discharge increments the DCR.The DCR resets to0when NAC=LMD.The DCR does not roll over but stops counting when it reaches FFFFh.The DCR value becomes the new LMD value on the first charge after a valid discharge to V EDV1if:No valid charge initiations(charges greater than 256NAC counts;where V SRO>V SRQ)occurred dur-ing the period between NAC=LMD and EDV1de-tected.The self-discharge count is not more than4096 counts(8%to18%of PFC,specific percentage threshold determined by PFC).The temperature is≥0°C when the EDV1level is reached during discharge.The valid discharge flag(VDQ)indicates whether the present discharge is valid for LMD update. Charge CountingCharge activity is detected based on a positive voltage on the V SR input.If charge activity is detected,the bq2012increments NAC at a rate proportional to V SRO (V SR+V OS)and,if enabled,activates the LED display if the rate is equivalent to V SRO>4mV.Charge actions in-crement the NAC after compensation for charge rate and temperature.The bq2012determines charge activity sustained at a continuous rate equivalent to V SRO>V SRQ.A valid charge equates to sustained charge activity greater than 256NAC counts.Once a valid charge is detected,charge counting continues until V SRO falls below V SRQ.V SRQ is a programmable threshold as described in the Digital Magnitude Filter section.The default value for V SRQ is 375µV.Charge ControlCharge control is provided by the CHG output.This output is asserted continuously when:NAC<0.94*LMD and0.95V<V SB<2.25V and0°C<Temp<50°C andBRM=0This output is asserted atduty cycle(low for0.5sec and high for7.5sec)when above conditions are not met and:NAC<LMD and0.95V<V SB<2.25V andTemp<50°C andBRM=0This output is also asserted atduty cycle(low for0.5sec and high for7.5sec)for a period after:NAC=LMD andTemp<50°C and0.95V<V SB<2.25V andBRM=0This output is inactive when:NAC=LMD(after a2-hour top-off period)orTemp>50°C orV SB<0.95V orV SB>2.25V orBRM=1The top-off timer(2hours)is reset to allow another top-off after the battery is discharged to0.8*LMD(PROG6 =L)or0.8*PFC(PROG6=Z or H).Caution:The charge control output should be used with other forms of charge termination such as∆T/∆t and-∆V.If charge terminates due to maximum temperature,the battery temperature must fall typically10°C below50°C before the charge output becomes active again. Discharge CountingAll discharge counts where V SRO<V SRD cause the NAC register to decrement and the DCR to increment.Ex-ceeding the fast discharge threshold(FDQ)if the rate is equivalent to V SRO<-4mV activates the display,if en-abled.The display becomes inactive after V SRO rises above-4mV.V SRD is a programmable threshold as described in the Digital Magnitude Filter section.The default value for V SRD is-300µV.7bq2012Self-Discharge EstimationThe bq2012continuously decrements NAC and increments DCR for self-discharge based on time and temperature.The self-discharge count rate is programmed to be a nomi-nal *NACor *NAC per day or disabled as selected by 5.the rate for a battery whose tempera-ture is between 20°–30°C.The NAC register cannot be decremented below 0.Count CompensationsThe bq2012determines fast charge when the NAC up-dates at a rate of ≥2counts/sec.Charge and discharge are compensated for temperature and charge/discharge rate before updating the NAC and/or DCR.Self-dis-charge estimation is compensated for temperature be-fore updating the NAC or DCR.Charge CompensationTwo charge efficiency compensation factors are used for trickle charge and fast charge.Fast charge is defined as a rate of charge resulting in ≥2NAC counts/sec (≥0.15C to 0.32C depending on PFC selections;see Table 2).The compensation defaults to the fast charge factor until the actual charge rate is determined.Temperature adapts the charge rate compensation factors over three ranges between nominal,warm,and hot tem-peratures.The compensation factors are shown below .Discharge CompensationCorrections for the rate of discharge are made by adjusting an internal discharge compensation factor.The discharge factor is based on the dynamically measured V SR .The compensation factors during discharge are:Temperature compensation during discharge also takes place.At lower temperatures,the compensation factor increases by 0.05for each 10°C temperature range below 10°C.Compensation factor = 1.0 + (0.05*N)Where N =Number of 10°C steps below 10°C and -150mV <V SR <0.For example:T >10°C :Nominal compensation,N =00°C <T <10°C:N =1(i.e.,1.0becomes 1.05)-10°C <T <0°C:N =2(i.e.,1.0becomes 1.10)-20°C <T <-10°C:N =3(i.e.,1.0becomes 1.15)-20°C <T <-30°C:N =4(i.e.,1.0becomes 1.20)Self-Discharge CompensationThe self-discharge compensation is programmed for a nominal rateof *NACor *NAC per day .This is the rate for a 20–30°C temperature range (TMPGG =6x).This rate varies across 8ranges from <10°C to >70°C,doubling with each higher tem-perature step (10°C).See Table 3.Digital Magnitude FilterThe bq2012has a programmable digital filter to eliminate charge and discharge counting below a set threshold.The de-fault setting is -0.30mV for V SRD and +0.38mV for V SRQ .The proper digital filter setting can be calculated using the following equation.Table 4shows typical digital filter settings.V SRD (mV) = -45 / DMF V SRQ (mV) = -1.25*V SRD8bq2012Table 3. Self-Discharge CompensationCharge TemperatureTrickle Charge CompensationFast Charge Compensation<30°C 0.800.9530–40°C 0.750.90> 40°C0.650.80Approximate V SR Threshold Discharge CompensationFactorEfficiency V SR > -150 mV 1.00100%V SR < -150 mV1.0595%DMF DMF Hex.V SRD (mV)V SRQ (mV)754B -0.600.7510064-0.450.56150 (default)96-0.300.38175AF -0.260.32200C8-0.230.28Table 4. Typical Digital Filter SettingsError SummaryCapacity InaccurateThe LMD is susceptible to error on initialization or if no updates occur.On initialization,the LMD value in-cludes the error between the programmed full capacity and the actual capacity.This error is present until a valid discharge occurs and LMD is updated(see DCR de-scription).The other cause of LMD error is battery wear-out.As the battery ages,the measured capacity must be adjusted to account for changes in actual battery capacity.A Capacity Inaccurate counter(CPI)is maintained and incremented each time a valid charge occurs(qualified by NAC;see the CPI register description)and is reset whenever LMD is updated from the DCR.The counter does not wrap around but stops counting at255.The ca-pacity inaccurate flag(CI)is set if LMD has not been up-dated following64valid charges.Current-Sensing ErrorTable5illustrates the current-sensing error as a func-tion of V SR.A digital filter eliminates charge and dis-charge counts to the NAC register when V SRO(V SR+ V OS)is between V SRQ and V SRD. Communicating With the bq2012The bq2012includes a simple single-pin(DQ plus re-turn)serial data interface.A host processor uses the in-terface to access various bq2012registers.Battery char-acteristics may be easily monitored by adding a single contact to the battery pack.The open-drain DQ pin on the bq2012should be pulled up by the host system,or may be left floating if the serial interface is not used.The interface uses a command-based protocol,where the host processor sends a command byte to the bq2012. The command directs the bq2012to either store the next eight bits of data received to a register specified by the command byte or output the eight bits of data specified by the command byte.The communication protocol is asynchronous mand and data bytes consist of a stream of eight bits that have a maximum transmission rate of333 bits/sec.The least-significant bit of a command or data byte is transmitted first.The protocol is simple enough that it can be implemented by most host processors using either polled or interrupt processing.Data input from the bq2012may be sampled using the pulse-width capture timers available on some microcontrollers.Communication is normally initiated by the host proces-sor sending a BREAK command to the bq2012.A BREAK is detected when the DQ pin is driven to a logic-low state for a time,t B or greater.The DQ pin should then be returned to its normal ready-high logic state for a time,t BR.The bq2012is now ready to receivea command from the host processor.The return-to-one data bit frame consists of three dis-tinct sections.The first section is used to start the transmission by either the host or the bq2012taking the DQ pin to a logic-low state for a period,t STRH,B.The next section is the actual data transmission,where the data should be valid by a period,t DSU,after the negative edge used to start communication.The data should be held for a period,t DV,to allow the host or bq2012to sample the data bit.The final section is used to stop the transmission by return-ing the DQ pin to a logic-high state by at least a period, t SSU,after the negative edge used to start communication.The final logic-high state should be held until a period,t SV,to allow time to ensure that the bit transmission was stopped properly.The timings for data and break communication are given in the serial communication timing specification and illustration sections.Communication with the bq2012is always performed with the least-significant bit being transmitted first.Figure3shows an example of a communication se-quence to read the bq2012NAC register.bq2012 RegistersThe bq2012command and status registers are listed in Table6and described in the following sections.9bq2012Symbol Parameter Typical Maximum Units NotesINL Integrated non-linearityerror±2±4%Add 0.1% per °C above or below 25°Cand 1% per volt above or below 4.25V.INR Integrated non-repeatability error±1±2%Measurement repeatability givensimilar operating conditions.Table 5. Current-Sensing Error as a Function of V SRbq2012Symbol RegisterNameLoc.(hex)Read/WriteControl Field7(MSB)6543210(LSB)CMDR Commandregister00h Write W/R AD6AD5AD4AD3AD2AD1AD0FLGS1Primarystatus flagsregister01h Read CHGS BRP BRM CI VDQ CHG EDV1EDVFTMPGG Temperatureand gas gaugeregister02h Read TMP3TMP2TMP1TMP0GG3GG2GG1GG0NACH Nominalavailablecharge highbyte register03h R/W NACH7NACH6NACH5NACH4NACH3NACH2NACH1NACH0NACL Nominalavailablecharge lowbyte register17h Read NACL7NACL6NACL5NACL4NACL3NACL2NACL1NACL0BATID Batteryidentificationregister04h R/W BATID7BATID6BATID5BATID4BATID3BATID2BATID1BATID0LMD Last meas-ured dis-charge regis-ter05h R/W LMD7LMD6LMD5LMD4LMD3LMD2LMD1LMD0FLGS2Secondarystatus flagsregister06h Read CR DR2DR1DR0n/u n/u n/u OVLDPPD Program pinpull-downregister07h Read n/u n/u PPD6PPD5PPD4PPD3PPD2PPD1PPU Program pinpull-up regis-ter08h Read n/u n/u PPU6PPU5PPU4PPU3PPU2PPU1CPI Capacityinaccuratecount register09h Read CPI7CPI6CPI5CPI4CPI3CPI2CPI1CPI0DMF Digital mag-nitude filterregister0ah R/W DMF7DMF6DMF5DMF4DMF3DMF2DMF1DMF0RST Reset register39h Write RST0000000 Note:n/u = not usedTable 6. bq2012 Command and Status Registers10Command Register(CMDR)The write-only CMDR register is accessed when eight valid command bits have been received by the bq2012. The CMDR register contains two fields:I W/R bitI Command addressThe W/R bit of the command register is used to select whether the received command is for a read or a write function.The W/R values are:Where is:0The bq2012 outputs the requested registercontents specified by the address portion ofCMDR.1The following eight bits should be writtento the register specified by the address por-tion of CMDR.The lower seven-bit field of CMDR contains the address portion of the register to be accessed.Attempts to write to invalid addresses are ignored.Primary Status Flags Register(FLGS1)The read-only FLGS1register(address=01h)contains the primary bq2012flags.The charge status flag(CHGS)is asserted when a valid charge rate is detected.Charge rate is deemed valid when V SRO>V SRQ.A V SRO of less than V SRQ or discharge activity clears CHGS.The CHGS values are:Where CHGS is:0Either discharge activity detected or V SRO<V SRQ1V SRO>V SRQThe battery replaced flag(BRP)is asserted whenever the potential on the SB pin(relative to V SS),V SB,falls from above the maximum cell voltage,MCV(2.25V),or rises above0.1V.The BRP flag is also set when the bq2012is reset(see the RST register description).BRP is reset when either a valid charge action increments NAC to be equal to LMD,or a valid charge action is de-tected after the EDV1flag is asserted.BRP=1signifies that the device has been reset.The BRP values are:Where BRP is:0Battery is charged until NAC=LMD or dis-charged until the EDV1 flag is asserted1V SB dropping from above MCV,V SB risingfrom below 0.1V,or a serial port initiatedreset has occurred11bq2012FLGS1 Bits76543210 CHGS-------FLGS1 Bits76543210-BRP------CMDR Bits76543210-AD6AD5AD4AD3AD2AD1AD0 (LSB)CMDR Bits76543210 W/R-------TD201201.epsDQ Break000000101001Written by Host to bq2012CMDR = 03hReceived by Host to bq2012NAC = 65hLSB MSB LSB MSB1110Figure 3. Typical Communication With the bq2012。

S1KL资料

S1KL资料
元器件交易网
S1AL THRU S1ML
1.0 AMP. Surface Mount Rectifiers
Voltage Range 50 to 1000 Volts Current 1.0 Ampere
Features
For surface mounted application Glass passivated junction chip. Low-PROFILE PACKAGE Ideal for automated placement Low power loss, high efficiency High temperature soldering: 260oC / 10 seconds at terminals
Symbol S1AL S1BL S1DL S1GL S1JL S1KL S1ML Units VRRM VRMS VDC I(AV) IFSM VF IR RθJL RθJA Cj TJ
50 35 50
100 70 100
200 140 200
400 280 400 1.0 30 1.1 5 50
100 Tj=25 0C f=1.0MHz Vsig=50mVp-p
JUNCTION CAPACITANCE.(pF)
50
20 10
5
2 1 0.01 1.0 REVERSE VOLTAGE. (V) 10 100
0.1
- 481 -
Type Number
Maximum Recurrent Peak Reverse Voltage Maximum RMS Voltage Maximum DC Blocking Voltage Marking Code (Note 3) Maximum Average Forward Rectified Current @TL =110℃ Peak Forward Surge Current, 8.3 ms Single Half Sine-wave Superimposed on Rated Load (JEDEC method ) Maximum Instantaneous Forward Voltage @ 1.0A Maximum DC Reverse Current @ TA =25℃ at Rated DC Blocking Voltage @ TA=125℃ Typical Thermal Resis tance (Note 2) Typical Junction Capacitance ( Note 1 ) Operating Temperature Range

TRSL-8120BWG资料

TRSL-8120BWG资料

Optoway TRSL-8120WG**********************************************************************************************************************************************************************************************************************************************************************************************************************************************OPTOWAY TECHNOLOGY INC. No .38, Kuang Fu S. Road, Hu Kou, Hsin Chu Industrial Park, Hsin Chu, Taiwan 303Tel: 886-3-5979798 Fax: 886-3-59797371TRSL-8120WG / TRSL-8120BWG (RoHS Compliant)3.3V / 1310 nm /4.25 Gbps Digital Diagnostic LC SFP SINGLE-MODE TRANSCEIVER ***********************************************************************************************************************************************************************FEATURESl Up to 4.25 Gbps Bi-directional Data Links l Duplex LC Single Mode Transceiverl Fibre Channel FC-PI 400/200/100-SM-LC-L Compliant l IEEE 802.3z 1000BASE-LX Compliantl Small Form-Factor, RJ-45 size, 2×7 pin Package l SFF-8472 Digital Diagnostic Function l 1310 nm DFB LD Transmitterl AC/AC Coupling according to MSA l Up to 20 km at 4.25 Gb/sl LVTTL Transmitter Disable Input l LVTTL Signal Detect Output l Single +3.3 V Power Supply l RoHS Compliantl 0 to 70o C Operating : TRSL-8120WG l -10 to 85o C Operating : TRSL-8120BWGl Class 1 Laser International Safety Standard IEC-60825 CompliantAPPLICATIONSl Tri-rate 1.063/2.125/4.25 Gb/s Fibre Channel l 1.25 Gb/s 1000 BASE-LX EthernetDESCRIPTIONThe TRSL-8120WG series single mode transceiver is smallform factor, low power, high performance module for bi-directional serial optical data communications such as 4x/2x/1x Fibre Channel and 1000BASE-LX Ethernet. This 2×7 pin SFF transceiver comply with the 2×5 standard package defined by the SFF MSA with the exception of four extra pins for real-time digital diagnostics and transmitter fault indication. Digital diagnostic functions are available via the 2-wire serial interface defined in the SFF-8472 MSA. This module is designed for single mode fiber and operates at a nominal wavelength of 1310 nm. The transmitter section uses a 1310 nm multiple quantum well DFB laser and is a class 1 laser compliant according to International Safety Standard IEC-60825. The receiver section uses an integrated InGaAs detector preamplifier (IDP) mounted in an optical header and a limiting post-amplifier IC.LASER SAFETYThis single mode transceiver is a Class 1 laser product. It complies with IEC-60825 and FDA 21 CFR 1040.10 and 1040.11. The transceiver must be operated within the specified temperature and voltage limits. The optical ports of the module shall be terminated with an optical connector or with a dust plug.ORDER INFORMATIONP/No.Bit Rate (Gb/s) FC-PI Distance (km) Wavelength (nm) PackageTemp. (o C)TX Power (dBm) RX Sens. (dBm) RoHS Compliant TRSL-8120WG4 / 2 / 1 400/200/100 20 1310 DFB 2×7 LC with DMI 0 to 70 0 to -5 -18 Yes TRSL-8120BWG4 / 2 / 1400/200/100201310 DFB 2×7 LC with DMI -10 to 850 to -5-18YesAbsolute Maximum RatingsParameterSymbol Min Max Units NotesStorage Temperature Tstg -40 85 o COperating Case Temperature Topr 0 -10 70 85 oCTRSL-8120WG TRSL-8120BWG Power Supply VoltageVcc-0.53.6VRecommended Operating ConditionsParameterSymbol Min Typ Max Units / NotesPower Supply Voltage Vcc 3.13 3.3 3.47 VOperating Case Temperature Topr 0 -10 70 85 oC / TRSL-8120WG oC / TRSL-8120BWGPower Supply Current I CC (TX+RX)200 250 mA Data Rate1.06254.25Gb/s**********************************************************************************************************************************************************************OPTOWAY TECHNOLOGY INC. No .38, Kuang Fu S. Road, Hu Kou, Hsin Chu Industrial Park, Hsin Chu, Taiwan 303Transmitter Specifications (0o C < Topr < 70o C, 3.13V < Vcc < 3.47V)ParameterSymbolMinTypMaxUnits Notes OpticalOptical Transmit Power Po -5 --- 0 dBm 1 Optical Modulation Amplitude@4.25 Gb/sOMA 500µWOutput Center Wavelength λ 1260 1310 1360 nmOutput Spectrum Width ∆λ --- 1 nm -20 dB width Side Mode Suppression Ratio SMSR 30 dBOptical Rise Time t r / t f 90 ps 20% to 80% Values Relative Intensity Noise RIN -118 dB/HzElectricalData Input Current – Low I IL -350 µA Data Input Current – High I IH 350 µADifferential Input Voltage V IH - V IL 0.5 2.4 V Peak-to-PeakTX Disable Input Voltage – Low T DIS, L 0 0.5 V 2 TX Disable Input Voltage – High T DIS, H 2.0 Vcc V 2 TX Disable Assert Time T ASSERT 10 µs TX Disable Deassert Time T DEASSERT 1 ms TX Fault Output Voltage -- Low T FaultL 0 0.5 V 3 TX Fault Output Voltage -- High T FaultH 2.0 Vcc+0.3 V31. Output power is power coupled into a 9/125 µm single mode fiber.2. There is an internal 4.7K to 10K ohm pull-up resistor to VccTX.3. Open collector compatible,4.7K to 10K ohm pull-up to Vcc (Host Supply Voltage).Receiver Specifications (0o C < Topr < 70o C, 3.13V < Vcc < 3.47V)ParameterSymbol Min Typ Max Units NotesOpticalSensitivity @4.25Gb/sSens129 -18 µW dBm 4 5 Maximum Input Power Pin 0 dBmSignal Detect -- Asserted Pa --- -18 dBm Transition: low to high Signal Detect -- Deasserted Pd -30 --- --- dBm Transition: high to low Signal detect -- Hysteresis 1.0 --- dBWavelength of Operation 1260 --- 1600nmElectricalDifferential Output Voltage V OH – V OL 0.6 2.0 V Output LOS Voltage -- Low V OL 0 0.5 V 6 Output LOS Voltage -- High V OH 2.0 Vcc+0.3 V 6 4. Measured at PRBS 2-1 at BER 1E-12.5. Represents sensitivity based on OMA spec, as corrected to incoming Extinction Ratio of 9 dB. For example, an OMA of 29 µW is approximately equal to an average power of -17.3 dBm, average with an Extinction ratio of 9 dB.6. Open collector compatible, 4.7K to 10K ohm pull-up to Vcc (Host Supply Voltage).CONNECTION DIAGRAMPIN Signal Name Description PIN Signal Name DescriptionC N/C Not ConnectedD TX_Fault Transmitter Fault IndicationA SDA Data line of two wire serial interfaceB SCL Clock line of two wire serial interface1 VeeRx Rreceiver ground 10 TD- Transmitter Data In Bar2 VccRx Receiver Power – 3.3V±5% 9 TD+ Transmitter Data In3 SD Signal Detect Output 8 TX_Disable Logic low to enable TXoutput4 RD- Receiver Data Out Bar 7 VeeTx Transmitter ground5 RD+ Receiver Data Out6 VccTx Transmitter Power – 3.3V±5%MS MSMounting Studs. Connect to ChassisGroundModule DefinitionModule DefinitionMOD-DEF2PIN AMOD-DEF1PIN BMOD-DEF0Interpretation by Host4 SDA SCL Serial module definition protocolModule Definition 4 specifies a serial definition protocol. For this definition, upon power up, MOD-DEF(1:2) appear as no connector (NC) and MOD-DEF(0) is TTL LOW. When the host system detects this condition, it activates the serial protocol. The protocol uses the 2-wire serial CMOS E2PROM protocol of the ATMEL AT24C01A/02/04 family of components.PACKAGE DIAGRAM (Units in mm)Note: Specifications subject to change without notice.********************************************************************************************************************************************************************** OPTOWAY TECHNOLOGY INC. No.38, Kuang Fu S. Road, Hu Kou, Hsin Chu Industrial Park, Hsin Chu, Taiwan 303。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

INA282AIDR 电流Байду номын сангаас联监控器 宽共模范围 太阳能逆变器
双向,高准确度电流并联监控器 电源功率管理
电源:–14V to 80V
0.005%/°C Gain Drift (Max增益漂移)
有效增益:50V/V
增益带宽:8MHz 运算放大
压摆率:2.3V/us
SETTLING TIME(稳定时间): 5us
OPA2340PA 单电源双路CMOS运放 单电源:2.7V to 5.5V 驱动ad转换器 引脚与opa2134相同 轨对轨 轨对轨输入 数据采集
电源:0.9 V to 5.5 V
90%效率同步开关调节
可调输出电压最大到5.5v
关机时负载未连接
具有节电模式
TPS60400DBVT 可变频率的60mA充电泵 电源:1.6 V to 5.5 V
电压反相器(正变负) 外接3个陶瓷电容
具有节电模式
TPS61070DDCR DC-DC开关调节器
LP2950-33LPRE3 电压转换芯片 3.3V输出
TLV5616IDR 12位-DAC转换芯片 极低功耗
电源:2.7 V to 5.5 V.
SPI Serial
轨对轨输出输入
增益带宽:6.4MHz
压摆率:1.6V/us
ADS1115IDGSR 16位adc 集成MUX(多路复用) ad转换
I2C接口 可编程速率(8SPS to 860SPS)
慢速 可编程比较器
掉电模式
可编程速率
TPS5430DDA 开关电源芯片 单电源:5.5 V to 36 V
降压转换器 高效率95%效率
最低输出1.2v 1.5%误差
固定500k的开关速率
高开环增益:120dB (600Ω) 前置放大
极低失真: 0.00008%
OPA2227PA 高精度低噪声运放 双电源:±2.5v~±18v 数据采集
引脚与opa2134相同 低噪声: 3nV/√Hz TELECOM EQUIPMENT(通信设备)
低失真:0.0005% at f = 1kHz
OPA2134PA 高性能音频运放 双电源:±2.5v~±18v 专业音频放大
压摆率:20V/us LINE DRIVERS(线路驱动)
带宽:8MH LINE RECEIVERS(接收)
内部振荡器
内部参考电压
单电源:3V to 5.5V
FOUR SINGLE-ENDED(4路单通道变成选择)
TWO DIFFERENTIAL INPUTS (两路差分)
CSD17505Q5A 晶体管 30V,N-通道MOSFET晶体管
轨对轨输出((within 1mV)) 过程控制
增益带宽:5.5MHz
压摆率:6V/us
TLV2460IP 微功耗(可软件控制) 微功耗Micropower Shutdown Mode
0.3 μA/Channel 运放
轨对轨 单电源:3V to 5.5V
电流到3A最大连续可输出4A峰值电流
TPS5433IDR 开关电源芯片 电源:3.5V to 28V 电源
ECO-MODE 输出电压最低到0.8v 5V, 12V and 24V 分布电源
降压 固定570k开关速率
支持最大3A电流输出
器件名称 中文名称 主要参数 主要用途
INA2134PA 音频差动线路接收机 双电源:±4v~±18v 音频差动线路接收机
2134为两个134 压摆率:14V/us 加法运放
固定增益:1 电压控制电流源
INA333AIDGKR 仪表放大器 低功耗 RFI FILTERED INPUTS(过滤输入)
低功耗 单电源:1.8V ≤ VS ≤ 5.5V
轨对轨
G = 1 + (100kΩ/RG).
相关文档
最新文档