离散数学结构 习题13参考答案

合集下载

应用离散数学代数结构群题库试卷习题及答案

应用离散数学代数结构群题库试卷习题及答案

§4.3 群习题4.31. 设G 是所有形如⎪⎪⎭⎫ ⎝⎛001211a a 的矩阵组成的集合, *表示矩阵乘法。

试问>*<,G 是半群吗?是有么半群吗?这里1211a a 、是实数。

解 任取G 中的2个元素=A ⎪⎪⎭⎫ ⎝⎛001211a a 、=B ⎪⎪⎭⎫⎝⎛001211b b 、 ∵=*B A ⎪⎪⎭⎫ ⎝⎛001211a a ⎪⎪⎭⎫ ⎝⎛001211b b =⎪⎪⎭⎫⎝⎛0012111111b a b a G ∈ ∴ >*<,G 是一个代数系统。

且因为矩阵的乘法满足结合律,所以>*<,G 是半群。

又因为,只要11a =1,则=*B A ⎪⎪⎭⎫ ⎝⎛001211a a *⎪⎪⎭⎫ ⎝⎛001211b b =⎪⎪⎭⎫ ⎝⎛0012111111b a b a =⎪⎪⎭⎫⎝⎛001211b b B = 对任何的G B ∈成立,即⎪⎪⎭⎫⎝⎛00112a 是左单位元(不论12a 取什么值)。

但右单位元不存在,因为不论11b ,12b 取什么值,=*B A ⎪⎪⎭⎫ ⎝⎛001211a a ⎪⎪⎭⎫ ⎝⎛001211b b =⎪⎪⎭⎫ ⎝⎛0012111111b a b a =⎪⎪⎭⎫⎝⎛001111a a B = 不可能对任何的G A ∈成立。

所以单位元不存在(事实上,若单位元存在,则左、右单位元都存在且相等还唯一),所以>*<,G 不是有么半群。

2. 在自然数集合N 上定义运算∨和∧如下:}max{b a b a ,=∨,}min{b a b a ,=∧试问>∨<,N 和>∧<,N 是半群吗?是有么半群吗? 解>∨<,N 是半群,有单位元0,是有幺半群。

>∧<,N 是半群,没有单位元,不是有幺半群。

3. 设Z 为整数集合,在Z 上定义二元运算*如下:Z ∈∀-+=*y x y x y x ,,2问Z 关于运算*能否构成群?为什么? 解(1)整数集合Z 非空。

《离散的数学结构》课后习题答案

《离散的数学结构》课后习题答案

离散数学辅助教材概念分析结构思想与推理证明第一部分集合论刘国荣交大电信学院计算机系离散数学习题解答习题一(第一章集合)1. 列出下述集合的全部元素:1)A={x | x ∈N∧x是偶数∧x<15}2)B={x|x∈N∧4+x=3}3)C={x|x是十进制的数字}[解] 1)A={2,4,6,8,10,12,14}2)B=∅3)C={0,1,2,3,4,5,6,7,8,9}2. 用谓词法表示下列集合:1){奇整数集合}2){小于7的非负整数集合}3){3,5,7,11,13,17,19,23,29}[解] 1){n n∈I∧(∃m∈I)(n=2m+1)};2){n n∈I∧n≥0∧n<7};3){p p∈N∧p>2∧p<30∧⌝(∃d∈N)(d≠1∧d≠p∧(∃k∈N)(p=k⋅d))}。

3. 确定下列各命题的真假性:1)∅⊆∅2)∅∈∅3)∅⊆{∅}4)∅∈{∅}5){a,b}⊆{a,b,c,{a,b,c}}6){a,b}∈(a,b,c,{a,b,c})7){a,b}⊆{a,b,{{a,b,}}}8){a,b}∈{a,b,{{a,b,}}}[解]1)真。

因为空集是任意集合的子集;2)假。

因为空集不含任何元素;3)真。

因为空集是任意集合的子集;4)真。

因为∅是集合{∅}的元素;5)真。

因为{a,b}是集合{a,b,c,{a,b,c}}的子集;6)假。

因为{a,b}不是集合{a,b,c,{a,b,c}}的元素;7)真。

因为{a,b}是集合{a,b,{{a,b}}}的子集;8)假。

因为{a,b}不是集合{a,b,{{a,b}}}的元素。

4. 对任意集合A,B,C,确定下列命题的真假性:1)如果A∈B∧B∈C,则A∈C。

2)如果A∈B∧B∈C,则A∈C。

3)如果A⊂B∧B∈C,则A∈C。

[解] 1)假。

例如A={a},B={a,b},C={{a},{b}},从而A∈B∧B∈C但A∈C。

《离散数学》练习题和参考答案

《离散数学》练习题和参考答案

《离散数学》练习题和参考答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)⌝Q=>Q→P (2)⌝Q=>P→Q (3)P=>P→Q (4)⌝P∧(P∨Q)=>⌝P 答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→⌝R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q) 答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ⌝(P→Q)=>P (6) ⌝P∧(P∨Q)=>⌝P 答:(2),(3),(4),(5),(6)4、公式∀x((A(x)→B(y,x))∧∃z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。

答:x,y, x,z5、判断下列语句是不是命题。

若是,给出命题的真值。

( )北京是中华人民共和国的首都。

(2) 陕西师大是一座工厂。

(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。

(5) 前进! (6) 给我一杯水吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。

答:所有人都不是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为( )。

(1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校(3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校答:(1)PQ→⌝(2)QP⌝→(3)QP⌝↔(4)QP→⌝8、设个体域为整数集,则下列公式的意义是( )。

(1) ∀x∃y(x+y=0) (2) ∃y∀x(x+y=0)答:(1)对任一整数x存在整数 y满足x+y=0(2)存在整数y对任一整数x满足x+y=09、设全体域D是正整数集合,确定下列命题的真值:(1) ∀x∃y (xy=y) ( ) (2) ∃x∀y(x+y=y) ( )(3) ∃x∀y(x+y=x) ( ) (4) ∀x∃y(y=2x) ( )答:(1) F (2) F (3)F (4)T10、设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式∃x(P(x)∨Q(x))在哪个个体域中为真?( )(1) 自然数(2) 实数 (3) 复数(4) (1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是()。

(完整版)离散数学题目及答案

(完整版)离散数学题目及答案

数理逻辑习题判断题1.任何命题公式存在惟一的特异析取范式 ( √ ) 2. 公式)(q p p →⌝→是永真式 ( √ ) 3.命题公式p q p →∧)(是永真式 ( √ ) 4.命题公式r q p ∧⌝∧的成真赋值为010 ( × ) 5.))(()(B x A x B x xA →∃=→∀ ( √ )6.命题“如果1+2=3,则雪是黑的”是真命题 ( × ) 7.p q p p =∧∨)( ( √ )8.))()((x G x F x →∀是永真式 ( × ) 9.“我正在撒谎”是命题 ( × ) 10. )()(x xG x xF ∃→∀是永真式( √ )11.命题“如果1+2=0,则雪是黑的”是假命题 ( × ) 12.p q p p =∨∧)( ( √ )13.))()((x G x F x →∀是永假式 ( × )14.每个命题公式都有唯一的特异(主)合取范式 ( √ ) 15.若雪是黑色的:p ,则q →p 公式是永真式 ( √ ) 16.每个逻辑公式都有唯一的前束范式 ( × ) 17.q →p 公式的特异(主)析取式为q p ∨⌝ ( × ) 18.命题公式 )(r q p →∨⌝的成假赋值是110 ( √ ) 19.一阶逻辑公式)),()((y x G x F x →∀是闭式( × )单项选择题1. 下述不是命题的是( A )A.花儿真美啊! B.明天是阴天。

C.2是偶数。

D.铅球是方的。

2.谓词公式(∀y)(∀x)(P(x)→R(x,y))∧∃yQ(x,y)中变元y (B)A.是自由变元但不是约束变元B.是约束变元但不是自由变元C.既是自由变元又是约束变元D.既不是自由变元又不是约束变元3.下列命题公式为重言式的是( A )A.p→ (p∨q)B.(p∨┐p)→qC.q∧┐q D.p→┐q4.下列语句中不是..命题的只有(A )A.花儿为什么这样红?B.2+2=0C.飞碟来自地球外的星球。

离散数学习题答案解析

离散数学习题答案解析

离散数学习题答案解析(总16页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--离散数学习题答案习题一及答案:(P14-15)14、将下列命题符号化:(5)李辛与李末是兄弟解:设p:李辛与李末是兄弟,则命题符号化的结果是p(6)王强与刘威都学过法语∧解:设p:王强学过法语;q:刘威学过法语;则命题符号化的结果是p q(9)只有天下大雨,他才乘班车上班→解:设p:天下大雨;q:他乘班车上班;则命题符号化的结果是q p (11)下雪路滑,他迟到了解:设p:下雪;q:路滑;r:他迟到了;则命题符号化的结果是()∧→p q r 15、设p:2+3=5.q:大熊猫产在中国.r:太阳从西方升起.求下列复合命题的真值:(4)()(())∧∧⌝↔⌝∨⌝→p q r p q r解:p=1,q=1,r=0,∧∧⌝⇔∧∧⌝⇔,p q r()(110)1p q r⌝∨⌝→⇔⌝∨⌝→⇔→⇔(())((11)0)(00)1∴∧∧⌝↔⌝∨⌝→⇔↔⇔()(())111p q r p q r19、用真值表判断下列公式的类型:(2)()→⌝→⌝p p q解:列出公式的真值表,如下所示:由真值表可以看出公式有3个成真赋值,故公式是非重言式的可满足式。

20、求下列公式的成真赋值: (4)()p q q ⌝∨→解:因为该公式是一个蕴含式,所以首先分析它的成假赋值,成假赋值的条件是:()10p q q ⌝∨⇔⎧⎨⇔⎩⇒0p q ⇔⎧⎨⇔⎩ 所以公式的成真赋值有:01,10,11。

习题二及答案:(P38)5、求下列公式的主析取范式,并求成真赋值: (2)()()p q q r ⌝→∧∧解:原式()p q q r ⇔∨∧∧q r ⇔∧()p p q r ⇔⌝∨∧∧()()p q r p q r ⇔⌝∧∧∨∧∧37m m ⇔∨,此即公式的主析取范式, 所以成真赋值为011,111。

*6、求下列公式的主合取范式,并求成假赋值: (2)()()p q p r ∧∨⌝∨解:原式()()p p r p q r ⇔∨⌝∨∧⌝∨∨()p q r ⇔⌝∨∨4M ⇔,此即公式的主合取范式, 所以成假赋值为100。

离散数学习题与参考答案

离散数学习题与参考答案

习题二谓词逻辑一、选择题1、下列哪个式子不是谓词演算的合式公式( )A. (x)(A(x,2)∧B(y))B. (x)(A(x)∧B(x,y))C. ((x)∧(y))→(A(x,y)∧B(x,y))D. (x)(A(x)→B(y))2、设个体域是整数集,则下列命题的真值为真的是()A.∀x∃y (xy=1)B. ∃x∀y(x+y=y)C.∃x∀y(x+y=x)D. ∀x∃y(y=2x)3、设B是不含变元x的公式,谓词公式(x)(A(x)→B)等价于( )A.(x)A(x)→BB. (x)A(x)→BC. A(x)→BD.(x)A(x)→(x)B4、谓词公式(x)(P(x)∨(y)R(y))→Q(x)中的x( ).A.只是约束变元B.只是自由变元C.既非约束变元又非自由变元D.既是约束变元又是自由变元5、谓词公式(x)P(x,y)∧(x)(Q(x,z)→(x)(y)R(x,y,z))中量词x的辖域是().A.(x)Q(x,z)→(x)(y)R(x,y,z))B.Q(x,z)→(y)R(x,y,z)C.Q(x,z)→(x)(y)R(x,y,z)D.Q(x,z)6、在论域D={a,b}中与公式()A(x)等价的不含存在量词的公式是()A. B.C. D.7、设M(x):x是人;F(x):x要吃饭.用谓词公式表达下述命题:所有的人都要吃饭,其中错误的表达式是().A.B.C.D.8、设个体域A={a,b},公式xP(x)∧xS(x)在A中消去量词后应为().A.P(x)∧S(x) B.P(a)∧P(b)∧(S(a)∨S(b))C.P(a)∧S(b) D.P(a)∧P(b)∧S(a)∨S(b)9、按照约束变元的改名规则,∀xP(x) →∃yR(x,y)不可改写成(). A.∀mP(m) →∃yR(x,y) B.∀xP(x) →∃zR(x,z)C.∀xP(x) →∃xR(x,x) D.∀xP(x) →∃nR(x,n)10、∀ x∀y(P(x,y)∧Q(y,z))∧(∃x)p(x,y),下面的描述中错误的是()A.(∀ x)的辖域是(∀ y)(P(x,y)∧Q(y,z))B.z是该谓词公式的约束变元C.(∃ x)的辖域是P(x,y)D. x是该谓词公式的约束变元二、填空题1、设P(x):x非常聪明;Q(x):x非常能干;a:小李;则命题“小李非常聪明和能干”的为谓词表达式为_______.2、使公式(x)( y)(A(x)∧B(y))(x)A(x)∧(y)B(y)成立的条件是______不含有y,______不含有x.3、公式(x)A(x)→B(y)的前束范式为______.4、公式x(P(x)→Q(x,y)∨zR(y, z))→S(x)中的自由变元为________________,约束变元为________________.5、令R(x):x是实数,Q(x):x是有理数。

离散数学答案第二版-高等教育出版社课后答案

离散数学答案第二版-高等教育出版社课后答案

第二版高等教育出版社课后答案第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。

(1)p∨(q∧r)⇔0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。

并且,如果3是无理数,则2也是无理数。

另外6能被2整除,6才能被4整除。

”答:p: π是无理数 1q: 3是无理数0r: 2是无理数 1s:6能被2整除 1t: 6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。

19.用真值表判断下列公式的类型:(4)(p→q) →(⌝q→⌝p)(5)(p∧r) ↔(⌝p∧⌝q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式(3)P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)⇔(p→(q∧r))(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)证明(2)(p→q)∧(p→r)⇔ (⌝p∨q)∧(⌝p∨r)⇔⌝p∨(q∧r))⇔p→(q∧r)(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨(⌝p∧q)) ∧(⌝q∨(⌝p∧q)⇔(p∨⌝p)∧(p∨q)∧(⌝q∨⌝p) ∧(⌝q∨q)⇔1∧(p∨q)∧⌝(p∧q)∧1⇔(p∨q)∧⌝(p∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔ (⌝p ∧⌝q)∨(⌝q ∧p)∨(⌝q ∧⌝p)∨(p ∧q)∨(p ∧⌝q)⇔ (⌝p ∧⌝q)∨(p ∧⌝q)∨(p ∧q)⇔320m m m ∨∨⇔∑(0,2,3)主合取范式:(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔(⌝p ∨(⌝q ∨p))∧(⌝q ∨(⌝q ∨p))⇔1∧(p ∨⌝q)⇔(p ∨⌝q) ⇔ M 1⇔∏(1)(2) 主合取范式为:⌝(p →q)∧q ∧r ⇔⌝(⌝p ∨q)∧q ∧r⇔(p ∧⌝q)∧q ∧r ⇔0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取范式为 0(3)主合取范式为:(p ∨(q ∧r))→(p ∨q ∨r)⇔⌝(p ∨(q ∧r))→(p ∨q ∨r)⇔(⌝p ∧(⌝q ∨⌝r))∨(p ∨q ∨r)⇔(⌝p ∨(p ∨q ∨r))∧((⌝q ∨⌝r))∨(p ∨q ∨r))⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为 1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14. 在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p(3)⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q) ⑤置换⑦(q→t)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r∨q 前提引入⑤¬r ④化简律⑥r∧¬s 前提引入⑦r ⑥化简律⑧r∧﹁r ⑤⑦合取由于最后一步r∧﹁r 是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意x,均有2=(x+)(x).(2) 存在x,使得x+5=9.其中(a)个体域为自然数集合.(b)个体域为实数集合.解:F(x): 2=(x+)(x).G(x): x+5=9.(1)在两个个体域中都解释为)∀,在(a)中为假命题,在(b)中为真命题。

大学离散数学课后习题答案

大学离散数学课后习题答案

大学离散数学课后习题答案大学离散数学课后习题答案离散数学是大学数学中的一门重要课程,它主要研究离散结构及其运算规则,是计算机科学、信息技术等领域的基础。

在学习离散数学的过程中,课后习题是巩固知识、提高能力的重要途径。

然而,由于离散数学的题目种类繁多、难度不一,学生在解题过程中常常会遇到困难。

为了帮助同学们更好地学习离散数学,我整理了一些常见习题的答案,并将其按照不同章节进行分类。

1. 命题逻辑命题逻辑是离散数学中的基础内容,它研究命题的真假和推理的规则。

在命题逻辑中,常见的习题类型包括真值表、命题公式的等值变换等。

下面是一道典型的命题逻辑习题及其答案:习题:给定命题P: "如果我明天考试及格,那么我会去图书馆。

" 命题Q: "我没有去图书馆。

" 请判断以下命题的真假:(1) 如果我明天考试及格,那么我没有去图书馆。

(2) 如果我没有去图书馆,那么我明天考试不及格。

答案:根据题意可知,P是一个条件命题,Q是其否定。

根据条件命题的真值定义可知,当P为真,Q为假时,命题(1)为假;当P为假,Q为真时,命题(2)为真。

因此,命题(1)为假,命题(2)为真。

2. 集合论集合论是离散数学中的另一个重要内容,它研究集合的性质和运算规则。

在集合论中,常见的习题类型包括集合的运算、集合关系的判断等。

下面是一道典型的集合论习题及其答案:习题:设A={1,2,3,4,5},B={3,4,5,6,7},C={4,5,6,7,8},求(A∪B)∩C的元素。

答案:首先,求A和B的并集,得到A∪B={1,2,3,4,5,6,7};然后,求A∪B和C 的交集,得到(A∪B)∩C={4,5}。

因此,(A∪B)∩C的元素为4和5。

3. 关系与函数关系与函数是离散数学中的另一个重要内容,它研究元素之间的关系和映射规则。

在关系与函数中,常见的习题类型包括关系的性质判断、函数的图像和原像等。

下面是一道典型的关系与函数习题及其答案:习题:设关系R={(1,2),(2,3),(3,4),(4,5)},请判断以下命题的真假:(1) R是自反关系。

离散数学(刘任任版)习题13

离散数学(刘任任版)习题13

9
8.标记过程停止的充要条 件是 : f x , y ≥ C (K min )
'
证明 : 仿最大流最小割定理的证明方法, 假设 标记过程已停止, 如下定义顶点的子集V1 1). x ∈ V1 ; 2).若vi ∈ V1 , C (i, j ) > f (i, j ) 或 f ( j , i ) > 0, 则 v j ∈ V1 ; 标记过程停止有两种情形 : 情形1 : y被标识, 于是V1 = V , V = φ
( ) ( ) C (T , T ) ≤ C (S Ι T , S Ι T )
( ) ( )
(1) ( 2)
T a b c d
e
S
C S ΥT , S ΥT ≤ C S, S + C T , T − C S Ι T , S Ι T
(
) ( ) ( ) ( ≤ C(S, S )
)
3
由此得:
C S Υ T,S Υ T = C S,S
离散数学
习题集
十三 网络最大流
1
1. 证明 : 对网络N中的任意一个流f 和S ⊆ V ( N ), 均有
∑ [ f (v,V ) − f (V , v )] = f (S , S ) − f (S ,S )
v∈S
⎛ ⎞ 证明: 左式= ∑⎜ ∑ f (v, u) − ∑ f (u, v)⎟ v∈S ⎝ u∈ V u∈ V ⎠ ⎛ ⎞ = ∑⎜ ∑ f (v, u) + ∑ f (v, u) − ∑ f (u, v) − ∑ f (u, v)⎟ ⎜ ⎟ v∈S ⎝ u∈S u∈S u∈S u∈S ⎠ = ∑∑ f (v, u) − ∑∑ f (u, v)
因此,
(

《离散数学》课后习题答案

《离散数学》课后习题答案

1-1,1-2(1)解:a)是命题,真值为T。

b)不是命题。

c)是命题,真值要根据具体情况确定。

d)不是命题。

e)是命题,真值为T。

f)是命题,真值为T。

g)是命题,真值为F。

h)不是命题。

i)不是命题。

(2)解:原子命题:我爱北京天安门。

复合命题:如果不是练健美操,我就出外旅游拉。

(3)解:a)(┓P ∧R)→Qb)Q→Rc)┓Pd)P→┓Q(4)解:a)设Q:我将去参加舞会。

R:我有时间。

P:天下雨。

Q (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。

b)设R:我在看电视。

Q:我在吃苹果。

R∧Q:我在看电视边吃苹果。

c) 设Q:一个数是奇数。

R:一个数不能被2除。

(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。

(5) 解:a)设P:王强身体很好。

Q:王强成绩很好。

P∧Qb)设P:小李看书。

Q:小李听音乐。

P∧Qc)设P:气候很好。

Q:气候很热。

P∨Qd)设P: a和b是偶数。

Q:a+b是偶数。

P→Qe)设P:四边形ABCD是平行四边形。

Q :四边形ABCD的对边平行。

P Qf)设P:语法错误。

Q:程序错误。

R:停机。

(P∨ Q)→ R(6) 解:a)P:天气炎热。

Q:正在下雨。

P∧Qb)P:天气炎热。

R:湿度较低。

P∧Rc)R:天正在下雨。

S:湿度很高。

R∨Sd)A:刘英上山。

B:李进上山。

A∧Be)M:老王是革新者。

N:小李是革新者。

M∨Nf)L:你看电影。

M:我看电影。

┓L→┓Mg)P:我不看电视。

Q:我不外出。

R:我在睡觉。

P∧Q∧Rh)P:控制台打字机作输入设备。

Q:控制台打字机作输出设备。

P∧Q1-3(1)解:a)不是合式公式,没有规定运算符次序(若规定运算符次序后亦可作为合式公式)b)是合式公式c)不是合式公式(括弧不配对)d)不是合式公式(R和S之间缺少联结词)e)是合式公式。

(2)解:a)A是合式公式,(A∨B)是合式公式,(A→(A∨B))是合式公式。

离散数学考试题目及答案

离散数学考试题目及答案

离散数学考试题目及答案1. 试述命题逻辑中的等价关系和蕴含关系。

答案:命题逻辑中的等价关系是指两个命题在所有可能的真值赋值下都具有相同的真值。

若命题P和Q等价,则记作P⇔Q。

蕴含关系是指如果命题P为真,则命题Q也为真,但Q为真时P不一定为真。

若命题P蕴含Q,则记作P→Q。

2. 证明:若集合A和B的交集非空,则它们的并集包含A和B。

答案:设x属于A∩B,即x同时属于A和B。

根据并集的定义,若元素属于A或B,则它属于A∪B。

因此,x属于A∪B。

由于x是任意属于A∩B的元素,所以A∩B≠∅意味着A∪B至少包含A∩B中的所有元素,即A∪B包含A和B。

3. 给定一个有向图G,如何判断G中是否存在环?答案:判断有向图G中是否存在环,可以采用深度优先搜索(DFS)算法。

在DFS过程中,记录每个顶点的访问状态,如果遇到一个已访问过的顶点,且该顶点不是当前路径的直接前驱,则表示存在环。

4. 描述有限自动机的组成部分及其功能。

答案:有限自动机由以下几部分组成:输入字母表、状态集合、转移函数、初始状态和接受状态集合。

输入字母表定义了自动机可以接收的符号集合;状态集合包含了自动机所有可能的状态;转移函数定义了在给定输入符号和当前状态的情况下,自动机如何转移到下一个状态;初始状态是自动机开始工作时的状态;接受状态集合包含了所有使自动机接受输入字符串的状态。

5. 什么是图的连通分量?如何确定一个无向图的连通分量?答案:图的连通分量是指图中最大的连通子图。

在一个无向图中,如果两个顶点之间存在路径,则称这两个顶点是连通的。

确定无向图的连通分量可以通过深度优先搜索(DFS)或广度优先搜索(BFS)算法。

从任一顶点开始搜索,搜索过程中访问的所有顶点构成一个连通分量。

重复此过程,直到所有顶点都被访问过,即可确定图中所有连通分量。

离散数学试题及答案解析

离散数学试题及答案解析

离散数学试题及答案解析一、选择题1. 在集合{1,2,3,4}中,含有3个元素的子集有多少个?A. 4B. 8C. 16D. 32答案:B解析:含有3个元素的子集可以通过组合数公式C(n, k) = n! / [k!(n-k)!]来计算,其中n为集合的元素个数,k为子集中的元素个数。

在本题中,n=4,k=3,所以C(4, 3) = 4! / [3!(4-3)!] = 4。

2. 下列哪个命题是真命题?A. 所有偶数都是整数。

B. 所有整数都是偶数。

C. 所有整数都是奇数。

D. 所有奇数都是整数。

答案:A解析:偶数是指能被2整除的整数,因此所有偶数都是整数,选项A是真命题。

选项B、C和D都是错误的,因为并非所有整数都是偶数或奇数。

二、填空题1. 逻辑运算符“非”(NOT)的真值表是:当输入为真时,输出为______;当输入为假时,输出为真。

答案:假解析:逻辑运算符“非”(NOT)是一元运算符,它将输入的真值取反。

如果输入为真,则输出为假;如果输入为假,则输出为真。

2. 命题逻辑中,合取词“与”(AND)的真值表是:当两个命题都为真时,输出为真;否则输出为______。

答案:假解析:合取词“与”(AND)是二元运算符,只有当两个命题都为真时,输出才为真;如果其中一个或两个命题为假,则输出为假。

三、简答题1. 解释什么是等价关系,并给出一个例子。

答案:等价关系是定义在集合上的一个二元关系,它满足自反性、对称性和传递性。

例如,考虑整数集合上的“同余”关系。

对于任意整数a,b,如果a和b除以同一个正整数n后余数相同,则称a和b模n同余。

这个关系是自反的(a同余a),对称的(如果a同余b,则b同余a),并且是传递的(如果a同余b且b同余c,则a同余c)。

2. 什么是图的连通性?一个图是连通的需要满足什么条件?答案:图的连通性是指在无向图中,任意两个顶点之间都存在一条路径。

一个图是连通的需要满足以下条件:图中的任意两个顶点v和w,都可以通过图中的边相互到达。

离散数学课后习题参考答案(可编辑)

离散数学课后习题参考答案(可编辑)

习题参考解答习题1.11、(3)P:银行利率降低Q:股价没有上升P∧Q(5) P:他今天乘火车去了北京Q:他随旅行团去了九寨沟(7) P:不识庐山真面目Q:身在此山中Q→P,或 ~P→~Q(9) P:一个整数能被6整除Q:一个整数能被3整除R:一个整数能被2整除T:一个整数的各位数字之和能被3整除P→Q∧R ,Q→T2、(1)T (2)F (3)F (4)T (5)F(6)T (7)F (8)悖论习题 1.31(3)(4)2、不, 不, 能习题 1.4主合取范式主析取范式3、解:根据给定的条件有下述命题公式:(A→(CD))∧~(B∧C)∧~(C∧D)(~A∨(C∧~D)∨(~C∧D))∧(~B∨~C)∧(~C∨~D) ((~A∧~B)∨(C∧~D∧~B)∨(~C∧D∧~B)∨(~A∧~C)∨(C∧~D∧~C)∨(~C∧D∧~C))∧(~C∨~D) ((~A∧~B)∨(C∧~D∧~B)∨(~C∧D∧~B)∨(~A∧~C)∨(~C∧D∧~C)) ∧(~C∨~D)(~A∧~B∧~C)∨(C∧~D∧~B∧~C)∨(~C∧D∧~B∧~C)∨ (~A∧~C∧~C)∨(~C∧D∧~C∧~C)∨(~A∧~B∧~D)∨(C∧~D∧~B∧~D)∨(~C∧D∧~B∧~D)∨(~A∧~C∧~D)∨(~C∧D∧~C∧~D)(由题意和矛盾律)(~C∧D∧~B)∨(~A∧~C)∨(~C∧D)∨(C∧~D∧~B)(~C∧D∧~B∧A)∨ (~C∧D∧~B∧~A)∨ (~A∧~C∧B)∨(~A∧~C∧~B)∨ (~C∧D∧A)∨ (~C∧D∧~A)∨(C∧~D∧~B∧A)∨(C∧~D∧~B∧~A)(~C∧D∧~B∧A)∨ (~A∧~C∧B∧D)∨ (~A∧~C∧B∧~D)∨(~A∧~C∧~B∧D)∨ (~A∧~C∧~B∧~D)∨(~C∧D∧A∧B)∨ (~C∧D∧A∧~B)∨ (~C∧D∧~A∧B)∨ (~C∧D∧~A∧~B)∨(C∧~D∧~B∧A)∨(C∧~D∧~B∧~A) (~C∧D∧~B∧A)∨ (~A∧~C∧B∧D)∨ (~C∧D∧A∧~B)∨(~C∧D∧~A∧B) ∨(C∧~D∧~B∧A)(~C∧D∧~B∧A)∨ (~A∧~C∧B∧D)∨(C∧~D∧~B∧A) 三种方案:A和D、 B和D、A和C习题 1.51、 (1)需证为永真式(3)需证为永真式为永真式。

离散数学习题答案精选全文完整版

离散数学习题答案精选全文完整版

可编辑修改精选全文完整版离散数学习题答案习题一:P121.判断下列句子哪些是命题?在是命题的句子中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道?(1)中国有四大发明。

(2)5是无理数。

(3)3是素数或4是素数。

(4)x2+3<5,其中x是任意实数。

(5)你去图书馆吗?(6)2与3都是偶数。

(7)刘红与魏新是同学。

(8)这朵玫瑰花多美丽呀!(9)吸烟请到吸烟室去!(10)圆的面积等于半径的平方乘π。

(11)只有6是偶数,3才能是2的倍数。

(12)8是偶数的充分必要条件是8能被3整除。

(13)2025年元旦下大雪。

1、2、3、6、7、10、11、12、13是命题。

在上面的命题中,1、2、7、10、13是简单命题;1、2、10是真命题;7的真值现在还不知道。

2.将上题中是简单命题的命题符号化。

(1)p:中国有四大发明。

(2)q:5是无理数。

(7)r:刘红与魏新是同学。

(10)s:圆的面积等于半径的平方乘π。

(1)t:2025年元旦下大雪。

3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值。

“5是有理数”的否定式是“5不是有理数”。

解:原命题可符号化为:p:5是有理数。

其否定式为:非p。

非p的真值为1。

4.将下列命题符号化,并指出真值。

(1)2与5都是素数。

(2)不但π是无理数,而且自然对数的底e也是无理数。

(3)虽然2是最小的素数,但2不是最小的自然数。

(4)3是偶素数。

(5)4既不是素数,也不是偶数。

a:2是素数。

b:5是素数。

c:π是无理数。

d:e是无理数。

f:2是最小的素数。

g:2是最小的自然数。

h:3是偶数。

i:3是素数。

j:4是素数。

k:4是偶数。

解:(1)到(5)的符号化形式分别为a∧b,c∧d,f∧非g,h∧i,非j∧非k。

这五个复合命题的真值分别为1,1,1,0,0。

5.将下列命题符号化,并指出真值。

a:2是偶数。

b:3是偶数。

c:4是偶数。

离散数学课后习题答案

离散数学课后习题答案

离散数学课后习题答案离散数学课后习题答案离散数学是计算机科学中的一门重要课程,它涵盖了诸多数学概念与技巧,为计算机科学的理论基础打下了坚实的基础。

在学习离散数学的过程中,课后习题是巩固知识、提高能力的重要途径。

然而,有时候我们会遇到一些难以解答的问题,需要参考一些答案来进行思考与学习。

本文将为大家提供一些离散数学课后习题的答案,希望能对大家的学习有所帮助。

一、集合论1. 设A={1,2,3},B={2,3,4},求A∪B和A∩B的结果。

答案:A∪B={1,2,3,4},A∩B={2,3}。

2. 证明:任意集合A和B,有(A-B)∪(B-A)=(A∪B)-(A∩B)。

答案:首先,对于任意元素x,如果x属于(A-B)∪(B-A),那么x属于A-B或者x属于B-A。

如果x属于A-B,那么x属于A∪B,但x不属于A∩B;如果x属于B-A,同样有x属于A∪B,但x不属于A∩B。

所以(A-B)∪(B-A)属于(A∪B)-(A∩B)。

另一方面,对于任意元素x,如果x属于(A∪B)-(A∩B),那么x属于A∪B,但x不属于A∩B。

所以x属于A或者x属于B。

如果x属于A,但x不属于B,那么x属于A-B;如果x属于B,但x不属于A,那么x属于B-A。

所以x属于(A-B)∪(B-A)。

所以(A∪B)-(A∩B)属于(A-B)∪(B-A)。

综上所述,(A-B)∪(B-A)=(A∪B)-(A∩B)。

证毕。

二、逻辑与证明1. 证明:如果p为真命题,那么¬p为假命题。

答案:根据命题的定义,命题要么为真,要么为假,不存在其他情况。

所以如果p为真命题,那么¬p为假命题。

2. 证明:对于任意整数n,如果n^2为偶数,则n为偶数。

答案:假设n为奇数,即n=2k+1(k为整数)。

那么n^2=(2k+1)^2=4k^2+4k+1=2(2k^2+2k)+1。

根据偶数的定义,2(2k^2+2k)为偶数,所以n^2为奇数。

离散数学课后习题答案高等教育出版社

离散数学课后习题答案高等教育出版社

离散数学课后习题答案高等教育出版社【篇一:离散数学答案屈婉玲版第二版高等教育出版社课后答案】>第二版高等教育出版社课后答案第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。

(1)p∨(q∧r)? 0∨(0∧1) ?0(2)(p?r)∧(﹁q∨s) ?(0?1)∧(1∨1) ?0∧1?0.(3)(?p∧?q∧r)?(p∧q∧﹁r) ?(1∧1∧1) ? (0∧0∧0)?0(4)(?r∧s)→(p∧?q) ?(0∧1)→(1∧0) ?0→0?117.判断下面一段论述是否为真:“?是无理数。

并且,如果3是无理数,则2也是无理数。

另外6能被2整除,6才能被4整除。

”答:p: ?是无理数 1q: 3是无理数 0r: 2是无理数 1s: 6能被2整除 1t: 6能被4整除 0命题符号化为: p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。

19.用真值表判断下列公式的类型:(4)(p→q) →(?q→?p)(5)(p∧r) ?(?p∧?q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ?q?p?q→?p (p→q)→(?q→?p) 0 01 111 1 0 11 011 1 1 00 100 1 1 11 001 1所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ?(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)?(?p∨(p∨q))∨(?p∨r)??p∨p∨q∨r?1 所以公式类型为永真式(3) p qr p∨q p∧r (p∨q)→(p∧r)0 0000 10 0100 10 1010 00 1110 010 010 010 111 111 010 011 111 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)?(p→(q∧r))(4)(p∧?q)∨(?p∧q)?(p∨q) ∧?(p∧q)证明(2)(p→q)∧(p→r)? (?p∨q)∧(?p∨r)??p∨(q∧r))?p→(q∧r)(4)(p∧?q)∨(?p∧q)?(p∨(?p∧q)) ∧(?q∨(?p∧q)?(p∨?p)∧(p∨q)∧(?q∨?p) ∧(?q∨q)?1∧(p∨q)∧?(p∧q)∧1?(p∨q)∧?(p∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(?p→q)→(?q∨p)(2)?(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(?p→q)→(?q?p)??(p?q)?(?q?p)?(?p??q)?(?q?p)? (?p??q)?(?q?p)?(?q??p)?(p?q)?(p??q)? (?p??q)?(p??q)?(p?q)?m0?m2?m3?∑(0,2,3)主合取范式:(?p→q)→(?q?p)??(p?q)?(?q?p)?(?p??q)?(?q?p)?(?p?(?q?p))?(?q?(?q?p))?1?(p??q)?(p??q) ? m1?∏(1)(2) 主合取范式为:?(p→q)?q?r??(?p?q)?q?r?(p??q)?q?r?0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)(3)主合取范式为:(p?(q?r))→(p?q?r)??(p?(q?r))→(p?q?r)?(?p?(?q??r))?(p?q?r)?(?p?(p?q?r))?((?q??r))?(p?q?r))?1?1?1所以该式为永真式.永真式的主合取范式为 1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14. 在自然推理系统p中构造下面推理的证明: (2)前提:p?q,?(q?r),r结论:?p(4)前提:q?p,q?s,s?t,t?r结论:p?q证明:(2)①?(q?r) 前提引入②?q??r ①置换③q??r②蕴含等值式④r前提引入⑤?q ③④拒取式⑥p?q前提引入⑦¬p(3)⑤⑥拒取式证明(4):①t?r 前提引入②t①化简律③q?s 前提引入④s?t 前提引入⑤q?t ③④等价三段论⑥(q?t)?(t?q) ⑤置换⑦(q?t)⑥化简⑧q ②⑥假言推理⑨q?p前提引入⑩p⑧⑨假言推理(11)p?q ⑧⑩合取15在自然推理系统p中用附加前提法证明下面各推理: (1)前提:p?(q?r),s?p,q结论:s?r证明①s附加前提引入②s?p前提引入③p ①②假言推理④p?(q?r) 前提引入⑤q?r③④假言推理⑥q 前提引入⑦r⑤⑥假言推理16在自然推理系统p中用归谬法证明下面各推理:(1)前提:p??q,?r?q,r??s结论:?p证明:①p结论的否定引入②p?﹁q 前提引入③﹁q ①②假言推理④¬r?q 前提引入⑤¬r ④化简律⑥r?¬s 前提引入⑦r⑥化简律⑧r?﹁r ⑤⑦合取由于最后一步r?﹁r 是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命【篇二:最新离散数学_屈婉玲_耿素云_张立昂_主编_高等教育出版社_课后最全答案_文档】xt>课后练习题答案1.将下列命题符号化,并指出真值:(1)p∧q,其中,p:2是素数,q:5是素数,真值为1;(2)p∧q,其中,p:是无理数,q:自然对数的底e是无理数,真值为1;(3)p∧┐q,其中,p:2是最小的素数,q:2是最小的自然数,真值为1;(4)p∧q,其中,p:3是素数,q:3是偶数,真值为0;(5)┐p∧┐q,其中,p:4是素数,q:4是偶数,真值为0.2.将下列命题符号化,并指出真值:(1)p∨q,其中,p:2是偶数,q:3是偶数,真值为1;(2)p∨q,其中,p:2是偶数,q:4是偶数,真值为1;(3)p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;(4)p∨q,其中,p:3是偶数,q:4是偶数,真值为1;(5)┐p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;3.(1)(┐p∧q)∨(p∧┐q),其中,小丽从筐里拿一个苹果,q:小丽从筐里拿一个梨;(2)(p∧┐q)∨(┐p∧q),其中,p:刘晓月选学英语,q:刘晓月选学日语;.4.因为p与q不能同时为真.5.设p:今天是星期一,q:明天是星期二,r:明天是星期三:(1)p→q,真值为1(不会出现前件为真,后件为假的情况);(2)q→p,真值为1(也不会出现前件为真,后件为假的情况);(3)pq,真值为1;(4)p→r,若p为真,则p→r真值为0,否则,p→r真值为1.第二章命题逻辑等值演算本章自测答案5.(1):∨∨,成真赋值为00、10、11;(2):0,矛盾式,无成真赋值;(3):∨∨∨∨∨∨∨,重言式,000、001、010、011、100、101、110、111全部为成真赋值;返回7.(1):∨∨∨∨?∧∧;(2):∨∨∨?∧∧∧;8.(1):1?∨∨∨,重言式;(2):∨?∨∨∨∨∨∨;(3):∧∧∧∧∧∧∧?0,矛盾式.11.(1):∨∨?∧∧∧∧;(2):∨∨∨∨∨∨∨?1;(3):0?∧∧∧.12.a?∧∧∧∧?∨∨.第三章命题逻辑的推理理论本章自测答案6.在解本题时,应首先将简单陈述语句符号化,然后写出推理的形式结构*,其次就是判断*是否为重言式,若*是重言式,推理就正确,否则推理就不正确,这里不考虑简单语句之间的内在联系(1)、(3)、(6)推理正确,其余的均不正确,下面以(1)、(2)为例,证明(1)推理正确,(2)推理不正确(1)设p:今天是星期一,q:明天是星期三,推理的形式结构为(p→q)∧p→q(记作*1)在本推理中,从p与q的内在联系可以知道,p与q的内在联系可以知道,p与q不可能同时为真,但在证明时,不考虑这一点,而只考虑*1是否为重言式.可以用多种方法(如真值法、等值演算法、主析取式)证明*1为重言式,特别是,不难看出,当取a为p,b为q时,*1为假言推理定律,即(p→q)∧p→q ? q(2)设p:今天是星期一,q:明天是星期三,推理的形式结构为(p→q)∧p→q(记作*2)可以用多种方法证明*2不是重言式,比如,等值演算法、主析取范式(主和取范式法也可以)等(p→q)∧q→p?(┐p∨q) ∧q →p?q →p?┐p∨┐q??∨∨从而可知,*2不是重言式,故推理不正确,注意,虽然这里的p与q同时为真或同时为假,但不考虑内在联系时,*2不是重言式,就认为推理不正确.9.设p:a是奇数,q:a能被2整除,r:a:是偶数推理的形式结构为(p→q┐)∧(r→q)→(r→┐p) (记为*)可以用多种方法证明*为重言式,下面用等值演算法证明:(p→┐q)∧(r→q)→(r→┐p)?(┐p∨┐q) ∨(q∨┐r)→(┐q∨┐r)(使用了交换律)?(p∨q)∨(┐p∧r)∨┐q∨┐r?(┐p∨q)∨(┐q∧┐r)?┐p∨(q∨┐q)∧┐r?110.设p:a,b两数之积为负数,q:a,b两数种恰有一个负数,r:a,b都是负数.推理的形式结构为(p→q)∧┐p→(┐q∧┐r)【篇三:离散数学_屈婉玲_耿素云_张立昂_主编_高等教育出版社_课后最全答案_文档(最新)】章命题逻辑基本概念课后练习题答案1.将下列命题符号化,并指出真值:(1)p∧q,其中,p:2是素数,q:5是素数,真值为1;(2)p∧q,其中,p:是无理数,q:自然对数的底e是无理数,真值为1;(3)p∧┐q,其中,p:2是最小的素数,q:2是最小的自然数,真值为1;(4)p∧q,其中,p:3是素数,q:3是偶数,真值为0;(5)┐p∧┐q,其中,p:4是素数,q:4是偶数,真值为0.2.将下列命题符号化,并指出真值:(1)p∨q,其中,p:2是偶数,q:3是偶数,真值为1;(2)p∨q,其中,p:2是偶数,q:4是偶数,真值为1;(3)p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;(4)p∨q,其中,p:3是偶数,q:4是偶数,真值为1;(5)┐p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;最新精品推荐。

离散数学结构 习题13参考答案

离散数学结构 习题13参考答案
布尔格:(1),(2),(5) 分配格:(1),(2),(3),(4),(5),(6),(7),(8) 有补格:(1),(2),(5),(9),(10)
16.设<B,∧,∨,‘,0,1>是'∧y) 问<B, >能否构成代数系统?如果能,指出是哪一种代数系 统。为什么?
答:(1) a∨(a∧b) a
(2) a∧(b∨c) (a∧b)∨(a∧c)
(3) b∧(c∨a) (b∧c)∨a
6.设L是格,a,b,c∈L,且a b c,证明
a∨b=b∧c
证明: a∨b=b
b∧c=b
∴ a∨b=b∧c
7.针对图13.10中的格L1,L2和L3,求出他们的所有子格。
解:L1的子格:{a},{b},{c},{d},{a,b},{a,c},{a,d}, {b,d},{c,d},{a,b,d},{a,c,d},L1
L2的子格:{a1},{d1},L2 L3的子格:{a2},{b2},{c2},{d2},{a2,b2},{a2,c2},
{a2,d2},{b2,c2},{b2,d2},{c2,d2},{a2,b2,c2}, {a2,b2,d2},{a2,c2,d2},{b2,c2,d2},L3
15.对于n=1,...,5,给出所有不同构的n元格,并说明哪些是分 配格、有补格和布尔格。
答案:构成群,运算封闭。任取a,b,c
同理有 易见结合律成立。 0为单位元。 a为本身的逆元。 命题得证。
(1) L={1,2,3,4,5} (2) L={1,2,3,6,12} (3) L={1,2,3,4,6,9,12,18,36} (4) L={1,2,22,...,2n},n∈Z+
答:(1)不是格,其他都是。

离散数学试题与参考答案

离散数学试题与参考答案

《离散数学》试题及答案一、选择题:本题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 命题公式Q Q P →∨)(为 ( )(A) 矛盾式 (B) 可满足式 (C) 重言式 (D) 合取范式2.设P 表示“天下大雨”, Q 表示“他在室内运动”,则命题“除非天下大雨,否则他不在室内运动”符号化为( )。

(A). P Q →; (B).P Q ∧; (C).P Q ⌝→⌝; (D).P Q ⌝∨.3.设集合A ={{1,2,3}, {4,5}, {6,7,8}},则下式为真的是( )(A) 1∈A (B) {1,2, 3}⊆A(C) {{4,5}}⊂A (D) ∅∈A4. 设A ={1,2},B ={a ,b ,c },C ={c ,d }, 则A ×(B ⋂C )= ( )(A) {<1,c >,<2,c >} (B) {<c ,1>,<2,c >} (C) {<c ,1><c ,2>,} (D) {<1,c >,<c ,2>}5. 设G 如右图:那么G 不是( ). (A)哈密顿图; (B)完全图;(C)欧拉图; (D) 平面图.二、填空题:本大题共5小题,每小题4分,共206. 设集合A ={∅,{a }},则A 的幂集P (A )=7. 设集合A ={1,2,3,4 }, B ={6,8,12}, A 到B 的关系R =},,2,{B y A x x y y x ∈∈=><,那么R -1=8. 在“同学,老乡,亲戚,朋友”四个关系中_______是等价关系.9. 写出一个不含“→”的逻辑联结词的完备集 .10.设X ={a ,b ,c },R 是X 上的二元关系,其关系矩阵为 M R =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001001101,那么R 的关系图为三、证明题(共30分)11. (10分)已知A 、B 、C 是三个集合,证明A ∩(B ∪C)=(A ∩B)∪(A ∩C)12. (10分)构造证明:(P →(Q →S))∧(⌝R ∨P)∧Q ⇒R →S13.(10分)证明(0,1)与[0,1),[0,1)与[0,1]等势。

慕课离散结构习题答案

慕课离散结构习题答案

慕课离散结构习题答案慕课离散结构习题答案离散结构是计算机科学中的一门重要课程,它涉及到了离散数学的基本概念和应用。

在学习离散结构的过程中,做习题是非常重要的一部分。

通过做习题,我们可以加深对知识点的理解,提高解决问题的能力。

然而,有时候我们会遇到一些难题,无法找到正确的答案。

本文将为大家提供一些慕课离散结构习题的答案,希望能够帮助大家更好地学习和理解离散结构。

一、集合论1. 设A={1,2,3,4,5},B={3,4,5,6,7},求A∪B的结果。

答案:A∪B={1,2,3,4,5,6,7}2. 设A={1,2,3,4,5},B={3,4,5,6,7},求A∩B的结果。

答案:A∩B={3,4,5}3. 设A={1,2,3,4,5},B={3,4,5,6,7},求A-B的结果。

答案:A-B={1,2}二、逻辑与证明1. 证明下列命题:若A∪B=A∩B,则A=B。

证明:假设A∪B=A∩B,即对于任意的x,x∈A∪B当且仅当x∈A∩B。

根据集合的定义,x∈A∪B表示x属于A或者属于B,而x∈A∩B表示x既属于A 又属于B。

由于A∪B=A∩B,所以对于任意的x,x属于A或者属于B等价于x 既属于A又属于B。

因此,A=B。

2. 证明下列命题:对于任意的正整数n,如果n是偶数,则n^2是偶数。

证明:假设n是偶数,即存在正整数k,使得n=2k。

那么n^2=(2k)^2=4k^2=2(2k^2),其中2k^2也是一个正整数,所以n^2是偶数。

三、图论1. 给定一个无向图G=(V,E),其中V={1,2,3,4,5},E={(1,2),(2,3),(3,4),(4,5),(5,1)},求图G的邻接矩阵。

答案:1 2 3 4 51 0 1 0 0 12 1 0 1 0 03 0 1 0 1 04 0 0 1 0 15 1 0 0 1 02. 给定一个有向图G=(V,E),其中V={1,2,3,4,5},E={(1,2),(2,3),(3,4),(4,5),(5,1)},求图G的邻接矩阵。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13章习题 参考答案
13.1 图13.9中给出六个偏序集的哈斯图。判断其中哪些是 格。如果不是格,说明理由。
图13.9 答: (1),(3),(6)是格。(2)中的{e,d}没有最大下界。(4)中的{d,e}没有
最大下界。(5)中的{a,b}没有最大下界。
2.下列各集合对于整除关系都构成偏序集,判断哪些 偏序集是格。
布尔格:(1),(2),(5) 分配格:(1),(2),(3),(4),(5),(6),(7),(8) 有补格:(1),(2),(5),(9),(10)
16.设<B,∧,∨,‘,0,1>是布尔代数,在B上定义二元运算 , x,y∈B x y= (x∧y')∨(x'∧y) 问<B, >能否构成代数系统?如果能,指出是哪一种代数系 统。为什么?
答案:构成群,运算封闭。任取a,b,c
同理有 易见结合律成立。 0为单位元。 a为本身的逆元。 命题得证。
其运算表如表11.3所示。 表11.3
3. (1)画出Klein四元群的子群格。 (2)画出模12的整数群Z12的子群格。 (3)画出3元对称群S3的子群格。
4.设L是格,求以下公式的对偶式:
(1) a∧(a∨b) a
(2) a∨(b∧c) (a∨b)∧(a∨c)
(3) b∨(c∧a) (b∨c)∧a
L2的子格:{a1},{d1},L2 L3的子格:{a2},{b2},{c2},{d2},{a2,b2},{a2,c2},
{a2,d2},{b2,c2},{b2,d2},{c2,d2},{a2,b2,c2}, {a2,b2,d2},{a2,c2,d2}出所有不同构的n元格,并说明哪些是分 配格、有补格和布尔格。
答:(1) a∨(a∧b) a
(2) a∧(b∨c) (a∧b)∨(a∧c)
(3) b∧(c∨a) (b∧c)∨a
6.设L是格,a,b,c∈L,且a b c,证明
a∨b=b∧c
证明: a∨b=b
b∧c=b
∴ a∨b=b∧c
7.针对图13.10中的格L1,L2和L3,求出他们的所有子格。
解:L1的子格:{a},{b},{c},{d},{a,b},{a,c},{a,d}, {b,d},{c,d},{a,b,d},{a,c,d},L1
(1) L={1,2,3,4,5} (2) L={1,2,3,6,12} (3) L={1,2,3,4,6,9,12,18,36} (4) L={1,2,22,...,2n},n∈Z+
答:(1)不是格,其他都是。
五.n元置换群及其实例(2)
例11.32 设S={1,2,3},则3元对称群 S3={(1),(1 2),(1 3),(2 3),(1 2 3),(1 3 2)}
相关文档
最新文档