小学数学六年级比例的意义和基本性质课件
合集下载
11 (人教新课标)六年级数学下册课件 比例的意义和基本性质 8
比和比例有什么区别? 比和比例有什么区别? 比是表示两个数相除, 比是表示两个数相除,是一个式 只有两个项。 子,只有两个项。 比例是表示两个比相等的式子, 比例是表示两个比相等的式子, 是一个等式,有四个数。 是一个等式,有四个数。
例题
80 ∶ 2 = 200 ∶5
内项 外项
外项积是:80 × 5 = 400 外项积是: 内项积是: 内项积是: 2 × 200=400 = 2 × 200= 80 × 5 =
人教新课标六年级数学下册
<<比例的意义 比例的意义 和基本性质>> 和基本性质
教学目标
1.理解比例的意义和基本性质, 1.理解比例的意义和基本性质,掌握判定 理解比例的意义和基本性质 两个比是否能组成比例的一般方法。 两个比是否能组成比例的一般方法。 2.培养同学们探究式的学习态度。通过游 2.培养同学们探究式的学习态度。 培养同学们探究式的学习态度 戏锻炼同学们思维反应能力, 戏锻炼同学们思维反应能力,并培养合作 精神。 精神。 3.通过分组竞技的方式, 3.通过分组竞技的方式,增强同学们的集 通过分组竞技的方式 体荣誉感。 体荣誉感。
3:给出3,5,240,400四个数组成 :给出 , , , 四个数组成 不同的比例(不要求写全, 不同的比例(不要求写全,但写成比 的形式和分数形式)。 的形式和分数形式)。
活动三
规则: 请每位同学都想好一个比例,告诉老师其 规则 请每位同学都想好一个比例 告诉老师其
中的三项,老师能很快说出另外一项。 中的三项 老师能很快说出另外一项。 老师能很快说出另外一项
你发现了什么? 你发现了什么?
在比例里, 在比例里,两个内 项的积等于两个外项 的积,这叫做比例的 的积,这叫做比例的 基本性质。 基本性质。
小学数学六年级下册《比例的意义和基本性质》教学课件
3:8 = 15:40 3:15 = 8:40 • :8 = 15:3 40:15 = 8:3
:8 3 = 40:15 8:40 = 3:15 15:3 = 40:8 15:40 = 8:3
(2)2.5×0.4 = 0.5 ×2
第三十八页,共三十九页。
在括号(kuòhào)里填上适当的数:
5
()
1、 ( ) = 8
2 ∶3 = 4 ∶6
6 ∶4 = 3 ∶2
2 ∶4 = 3 ∶6
6 ∶3 = 4 ∶2
4 ∶2 = 6 ∶3
3 ∶6 = 2 ∶4
4 ∶6 = 2 ∶3
3 ∶2 = 6 ∶4
第二十五页,共三十九页。
判断下列(xiàliè)各组比能否组成比例:
⑴ 6 :12 和 4 8:
()
⑵ 24:8 和 0.6:2
2
40cm
第六页,共三十九页。
求出它们的比值,你发现(fāxiàn)了什么?
= 2.4︰1.6
60︰40
或
= 2 . 4
60
1 .6
40
表示两个(liǎnɡ ɡè)比相等的式子叫做比例。
在这四面国旗的尺寸中,你还能找出 哪些比可以组成比例?
第七页,共三十九页。
判断两个比能不能组成比例(bǐlì), 要看它们的比值是否相等。
第三十页,共三十九页。
根据比例的基本性质,如果已知 比例中的任何(rènhé)三项,就可以求 出这个比例中的另外一个未知项。
求比例(bǐlì)中的未知项,叫做解比例。
第三十一页,共三十九页。
例1法、国巴黎的埃菲尔铁塔高320m。北京的“世界(shìjiè)
公园”里有一座埃菲尔铁塔的模型,它的高度与原塔的高
人教版数学六年级下册-05比例-01比例的意义和基本性质-课件05
解:x=
2 3
(3)
12 2.4
=
3 x
解:x=0.6
2.餐馆给餐具消毒,要用100mL消毒液配成消毒水,如果消毒 液与水的比是1:150,应加入水多少毫升?
解:设应加入水x 毫升。 100 :x=1:150 x=150×100 x=15000
答:应加入水15000毫升。
3. 2013年5月22日,中华鲟纪念币和白鳍豚纪念币的价格比 是2:3,每枚中华鲟纪念币的价格是50元,每枚白鳍豚纪念 币的价格是多少元?
解:设这座模型的高度是x m 可以列出式子: x∶320=1∶10
x∶320=1∶10,你能 试着计算出来吗?
怎样把比例式转化为方 程式?
根据比例的基本性质 转化。
解:设这座模型的高度是x m 可以列出式子: x∶320=1∶10
10x=320×1
这样解比例就变成解方程了,利 用以前学过的解方程的方法就可 以把方程解出来。
睨之
汝亦知射乎 语言 吾射不亦精乎
尔安敢轻吾射
动作 笑而遣之
无他,但手熟尔 以我酌油知之 我亦无他,惟手熟尔
释担而立 但微颔之
性格: 自矜(骄傲)
取置覆酌沥
对比
谦虚
道理: 熟能生巧,即使有什么长处也不必骄傲自满。
课外延伸
1、联系生活、学习,说说熟能生巧 的事例。
2、你认为一个人应该如何看待自己 的长处?又如何看待他人的长处?
训练才能有所收获,取得成效。
• 9、骄傲自大、不可一世者往往遭人轻视; • 10、智者超然物外
尺有所短;寸有所长。物有所不足;智有所不明。 —— 屈原
• 1、正视自己的长处,扬长避短, • 2、正视自己的缺点,知错能改, • 3谦虚使人进步, • 4、人应有一技之长, • 5、自信是走向成功的第一步, • 6强中更有强中手,一山还比一山高, • 7艺无止境 • 8、宝剑锋从磨砺出,梅花香自苦寒来,刻苦
比和比例(课件)-六年级数学下册人教版
答:需要糖0.1千克,水1.9千克。
➢ 用正、反比例的知识解决问题
甲工程队铺一条路,前5天 乙工程队铺路,原计划每天
铺了16千米,照这样的速度, 铺3.2千米,15天铺完。实
铺完这条路用了15天。这条 际每天铺4千米,实际需要
路长多少千米? 正比例
多少天铺完? 反比例
在练习本上解 答这两题。
➢ 用正、反比例的知识解决问题 • 解题步骤 ✓ 分析数量关系,判断成什么比例关系。 ✓ 找等量关系。若成正比例,则按“等比”找等量关系式; 若成反比例,则按“等积”找等量关系式。 ✓ 列比例。设未知数x,并代入等量关系式。 ✓ 解比例。 ✓ 检验写答。
=
5 32
前比 后
比
项号 项
值
3∶ 2 = 6 ∶4
内项 外项
➢ 比和比例的区别
• 基本性质
化简比 的根据
比的基本性质:比的前项和后项同时乘或除以 解比例 相同的数(0除外),比值相等。
的根据
比例的基本性质:在比例里,两个外项的积等于
两个内项的积。
➢ 比和比例的联系 • 比是比例的基础,比例是比的扩展; • 两个相等的比可以组成比例。
➢ 判断正、反比例的方法
一找:分析数量关系,确定哪两种量是相关联的量 二看:分析这两种相关联的量,看它们之间的关系是
乘积一定还是比值一定 三判断:如果乘积一定,成反比例
如果比值一定,成正比例 如果乘积和比值都不一定,不成比例
用比和比例的知识解决问题
➢ 按一定的比分配问题
一种糖水是糖与水按1∶19的比例配制而成的。要配制 这种糖水2千克,需要糖和水各多少千克?
成整数比再化简。 把比的前、后项同时乘分母的最小公倍数,转化成整 分数比 数比再化简。
六年级数学下册《比例》
练习1:
应用比例来解决一些实际问题
1
小红8分钟走了500米,照这样的速度,她从家里走到学校用了14分钟,小红家离学校大约多少米?
2
练习2: 比例的应用
01
解:设小红家离学校有x米。
02
=500×14
03
=500×14÷8
04
=875
05
答:小红家离学校有875米。
在太阳的照射下,测得某身高为1.75米人的影子长1米长,然后又测得某电线杆的影子长8米,问能求出电线杆的高吗?
4
1
4
10
2
1
4、根据要求写出一个比例式
1)两个外项分别是3和x,两和内项分别是9和12。 2)等号左边的比是x:5,右边比的比值是5。 3)使各项都是整数,且两个比的比值为0.8。
×
×
说说正比例和反比例的意义。
这两种量就叫做成正比例的量,它们的关系叫做正比例关系.
如果这两种量中相对应的两个数的积一定,
梳理相关联的两种量。
判断相关联的两种量成什么比例,
写出关系式。
写“解”,设未知数。
按两种相关联的量所成的比例关系
列出比例式。
解比例。
用自己熟练的方法检验结果是否正
确是否符合题意。
作答。
5、说一说用比例解决问题的步骤:
01
02
03
甲乙两地相距2千米,画在一幅
图上的距离是5厘米,求这幅图
的比例尺。
0.9∶0.6=9∶( ) =3∶( )
6
2
在比例里,两个内项的积等于两个外项的积.
5∶6 = 20∶24
( )×( )=( )×( )
6
20
5
六年级上册数学课件-2.3 比例的意义和基本性质
如果你想喝一杯果珍,比他们的果珍甜一些, 可以放多少克果珍粉和多少克水?
感 谢 收 看!
成功的道路上充满荆棘,苦战方能成功。 你既然认准一条道路,何必去打听要走多久。 我们确实有如是的优点,但也要隐藏几分,这个叫做涵养。 稗子享受着禾苗一样的待遇,结出的却不是谷穗。 每一种创伤,都是一种成熟。 少而好学,如日出之阳;壮而好学,如日中之光;志而好学,如炳烛之光。——刘向 生活若剥去了理想、梦想、幻想,那生命便只是一堆空架子。 今天不为学习买单,未来就为贫穷买单。
身体健康, 我为你今天的表现感到骄傲。
多一点思考,少一份遗憾。——杨建 世上的事,不如己意者,那是当然的。 不要对挫折叹气,姑且把这一切看成是在你成大事之前,必须经受的准备工作。
当你手中抓住一件东西不放时,你只能拥有这件东西,如果你肯放手,你就有机会选择别的。人的心若死执自己的观念,不肯放下,那么他的 智慧也只能达到某种程度而已。 勇敢地迎接逆境,即使不能实现最初的梦想,也会打开另一扇梦想的大门。 有两种人是忘不了的,一种是你爱的人,再就是你恨的人,不过往往他们是同一个人。 你有你的生命观,我有我的生命观,我不干涉你。只要我能,我就感化你。如果不能,那我就认命。
320 :240=4 :3
生活中 的比例
国旗
人 体
健 康
我们的国旗
国旗长5m,宽 10m
3
国旗长2.4m,宽 1.6m。
国旗长60cm,宽 40cm。
人口比例: 指男、女人口总数的比例, 人口比例失调将导致社会稳定、出生 人口萎缩以及老龄化等等问题。
身体质量指数(简称
BMI): 是用体重公斤数 除以身高米数平方得 出的数字,是目前国 际上常用的衡量人体 胖瘦程度以及是否健 康的一个标准的指标
感 谢 收 看!
成功的道路上充满荆棘,苦战方能成功。 你既然认准一条道路,何必去打听要走多久。 我们确实有如是的优点,但也要隐藏几分,这个叫做涵养。 稗子享受着禾苗一样的待遇,结出的却不是谷穗。 每一种创伤,都是一种成熟。 少而好学,如日出之阳;壮而好学,如日中之光;志而好学,如炳烛之光。——刘向 生活若剥去了理想、梦想、幻想,那生命便只是一堆空架子。 今天不为学习买单,未来就为贫穷买单。
身体健康, 我为你今天的表现感到骄傲。
多一点思考,少一份遗憾。——杨建 世上的事,不如己意者,那是当然的。 不要对挫折叹气,姑且把这一切看成是在你成大事之前,必须经受的准备工作。
当你手中抓住一件东西不放时,你只能拥有这件东西,如果你肯放手,你就有机会选择别的。人的心若死执自己的观念,不肯放下,那么他的 智慧也只能达到某种程度而已。 勇敢地迎接逆境,即使不能实现最初的梦想,也会打开另一扇梦想的大门。 有两种人是忘不了的,一种是你爱的人,再就是你恨的人,不过往往他们是同一个人。 你有你的生命观,我有我的生命观,我不干涉你。只要我能,我就感化你。如果不能,那我就认命。
320 :240=4 :3
生活中 的比例
国旗
人 体
健 康
我们的国旗
国旗长5m,宽 10m
3
国旗长2.4m,宽 1.6m。
国旗长60cm,宽 40cm。
人口比例: 指男、女人口总数的比例, 人口比例失调将导致社会稳定、出生 人口萎缩以及老龄化等等问题。
身体质量指数(简称
BMI): 是用体重公斤数 除以身高米数平方得 出的数字,是目前国 际上常用的衡量人体 胖瘦程度以及是否健 康的一个标准的指标
小学六年级数学下册教学课件《整理和复习2》
1.一箱啤酒有12瓶。
(1)请完成下表。
24 36 48
(2)根据表中数据, 在图中描出箱数和 总瓶数对应的点, 再把它们按顺序连 接起来。
(3)根据图象判断,啤酒的总瓶数和箱数成 什么比例关系?为什么?
啤酒的总瓶数和箱数成正比例关系,因
为
啤酒的总瓶数 箱数 =12
,即它们的比值一定。
(4)8箱啤酒有多少瓶? 144瓶啤酒可以装 多少箱?
按将实际距离缩小还是放大分,可以 分为缩小比例尺和放大比例尺。
图形按比放大或缩小,放大或缩小后 的图形大小变了,形状不变。
4.填空。【教材P64 练习十二 第1题】 (1)一幅地图中两地的图上距离是5cm,它们之间的实 际距离是15km,这幅地图的比例尺是( 1∶300000 )。 (2)大小两个圆的半径之比是5∶3。它们的直径之比是 ( 5∶3 ),周长之比是( 5∶3 ),面积之比是( 25∶9 )。 (3)把一个长5cm、宽3cm的长方形按3∶1放大,得到 的图形的面积是( 135 )cm2。
速度/(千米/时) 40 50 60 80 100
时间/时
6 4.8 4 3 2.4
速度×时间=路程 路程一定,汽车行驶的速度与时间成反比例关系。
3.下面每个表中的两个量,哪些成比例关系?成正比例 关系还是反比例关系?哪些不成比例关系?【教材P63 第3题】 (2)圆锥的高是30cm,它的底面积与体积如下表。
(2)解:设如果要榨油25.2t,需要 y t油菜籽。
32 = 25.2 y 63 80 y
答:需要63 t油菜籽。
3.一些货车运一批水泥,如果每次运16.5t,18次 可以运完。如果每次运27t,多少次可以运完?
解:设x次可以运完。 27x=16.5×18 x=11
(1)请完成下表。
24 36 48
(2)根据表中数据, 在图中描出箱数和 总瓶数对应的点, 再把它们按顺序连 接起来。
(3)根据图象判断,啤酒的总瓶数和箱数成 什么比例关系?为什么?
啤酒的总瓶数和箱数成正比例关系,因
为
啤酒的总瓶数 箱数 =12
,即它们的比值一定。
(4)8箱啤酒有多少瓶? 144瓶啤酒可以装 多少箱?
按将实际距离缩小还是放大分,可以 分为缩小比例尺和放大比例尺。
图形按比放大或缩小,放大或缩小后 的图形大小变了,形状不变。
4.填空。【教材P64 练习十二 第1题】 (1)一幅地图中两地的图上距离是5cm,它们之间的实 际距离是15km,这幅地图的比例尺是( 1∶300000 )。 (2)大小两个圆的半径之比是5∶3。它们的直径之比是 ( 5∶3 ),周长之比是( 5∶3 ),面积之比是( 25∶9 )。 (3)把一个长5cm、宽3cm的长方形按3∶1放大,得到 的图形的面积是( 135 )cm2。
速度/(千米/时) 40 50 60 80 100
时间/时
6 4.8 4 3 2.4
速度×时间=路程 路程一定,汽车行驶的速度与时间成反比例关系。
3.下面每个表中的两个量,哪些成比例关系?成正比例 关系还是反比例关系?哪些不成比例关系?【教材P63 第3题】 (2)圆锥的高是30cm,它的底面积与体积如下表。
(2)解:设如果要榨油25.2t,需要 y t油菜籽。
32 = 25.2 y 63 80 y
答:需要63 t油菜籽。
3.一些货车运一批水泥,如果每次运16.5t,18次 可以运完。如果每次运27t,多少次可以运完?
解:设x次可以运完。 27x=16.5×18 x=11
人教版六年级下册数学第四单元-1.比例的意义和基本性质-第2课时 比例的基本性质课件
12:16=9:6.75 或
16:12=6.75:9
知识总结
你学 会了吗? 1、组成比例的四个数叫做比例的项,两端的 两项叫做比例的外项,中间的两项叫做比例的 内项。 2、在比例里,两个外项的积等于两个内项的 积。这叫做比例的基本性质。
课后作业
1、根据6a=7b,那么a:b=( ) 2、根据8×9=3×24,写出比例( ) 3、在一个比例中,两个外项分别是 12和8,两个比的比值是3/4,写出这个 比例( ) 4、从24的约数中选出4个约数,组 成两个比例式是( )
或
那么:ɑd=bc
如果: a = c bd
那么:ɑd=bc
你能用字母表示分数的 基本性质吗?
练习巩固
应用比例的基本性质,判断下面哪组中的两个比 可以组成比例。
(1) 6:3和8:5
(2) 0.2:2.5和4:50
(3) 1
3
:
1 6
和
1 2
:
1 4
(4)1.2: 3
4
和
4 5
:5
因为0.2×50=2.5×4,所以 0.2:2.5=4:50
人教版小学数学六年级
比例的基本性质
激趣导入
老师昨天测量了米尺在太阳下影子的长度 是0.5米,同时测得旗杆的影子的长度是5米, 你能帮老师算出旗杆的长度吗?
提示:米尺和影子
的长度比与旗杆和
影子的长度比是成
? m
比例的关。
1m
0.5m
5m
知识讲解
米尺: 1:0.5=2 旗杆: ?:5=2 旗杆的长度=10(米)
你能写出米尺和它的影子的 比与旗杆和影子比的比例式吗?
知识讲解
1:0.5 = 10: 5
人教版六年级数学上册《比的意义》课件
比的后项相当于除法 的除数:比的后项在 除法中表示除数。
比的前项相当于除法 的被除数:比的前项 在除法中表示被除数 。
比与分数的关系
比的前项相当于分数的分子: 比的前项在分数中表示分子。
比的后项相当于分数的分母: 比的后项在分数中表示分母。
比值相当于分数值:比值等于 前项除以后项,与分数的值相 同。
02
比的表示方法
分数形式的比
总结词
分数形式是比的一种常见表示方法,能够直观地展示两个数 量之间的关系。
详细描述
在分数形式的比中,通常将两个数的商表示为一个分数,分 子表示第一个数,分母表示第二个数。例如,如果A与B的比 是3:4,则可以表示为分数形式的比3/4。
比例形式的比
总结词
比例形式是另一种常见的比的表现方式,它更注重于展示数量之间的相对大小关系。
综合练习题
总结词
检验学生对比的综合掌握程度。
详细描述
设计一些涉及多个知识点的题目,如结合其他数学概念或实际情境的题目,让学生综合 运用比的知识解决问题,提高其分析和解决问题的能力。
06
总结与回顾
本节课的重点回顾
掌握如何求比值
通过将前项除以后项来求得比值。
理解比与除法、分数之间 的关系
比的前项相当于被除数,后项相当于除数, 比值相当于商。比也可以写成分数的形式。
相似图形
在几何学中,两个图形被 称为相似的,如果它们可 以按照一定的比例放大或 缩小。
在科学中的比
化学反应速率
在化学反应中,反应速率通常表示为 反应物的消耗速率与反应时间的比值 。
生物种群密度
物理中的速度与加速度
在物理学中,速度是位移与时间的比 值,而加速度是速度的变化量与时间 的比值。
西师大版六年级_三单元_第1课_比例的意义和基本性质-课件
因为2:3 =
2 3
,
6:9 = 2
3
,所以2:3=6:9
因为6:9=
, 所以6:9=8:12
因为8:12= 2 ,10:15= 2 所以8:12=10:15
3
3
像这样的:2:3=6:9 6:9=8:12 8: 12=10:15 …… 两个相等的比组成的式子 叫比例。那么什么是比例呢?
1.2:3.6 = x : 6
x:61.2:3.6 x:1.26:3.6
6: x = 3.6 : 1.2
1.2: x = 3.6: 6
3.6:1.26:x 3.6:61.2:x
练习4: 解比例.
⑴ x : 21=6:14
解:14 x =21×6
x =9
⑵ 4:0.3 = x :1.8
解:0.3x =4×1.8 x =24
表示两个比相等的式子叫比例。
在比例里,两外项的积等于两内项的积,这 叫做比例的基本性质。
You made my day!
数阅 学读 使使 人人 精充 细实 ;; 博会 物谈 使使 人人 深敏 沉捷 ;; 伦写 理作 使与 人笔 庄记 重使 ;人 逻精 辑确 与; 修史 辞鉴 使使 人人 善明 辩智 。;
西师大版小学数学六年级下册
比例的意义和基本性质
复习准备: (1)一辆汽车4时行160 km,路程和时间的
比是多少?这个比的比值表示什么?
160:4=40 (这个比的比值表示速度)
(2)求下面各比的比值,你发现了什么?
12∶16
=3
4
4.5∶2.7 =
5 3
=
34∶18 10∶6
=
=
5 3
1
7 9
小学六年级上学期数学《按比例分配问题》优质课PPT课件
1,你是怎么理解“按1:2:3涂成红色、 黄色、绿色三种颜色”这句话的?
2,算一算红、黄、绿三种颜色各应涂多少格?
学校合唱队有48人,其中男生和女生人数的 比是1:3。男、女生各有多少人?
蓓蕾幼儿园大班有35人,中班有31人,小班 有24人.张阿姨准备把180块巧克力按班级人 数的比分给三个班.每班各应分得多少块?
小学数学苏教版ቤተ መጻሕፍቲ ባይዱ材第十一册
按比例分配问题
学习目标
1、理解按比例分配实际问题的意义。
2、通过运用比的意义和基本性质解
答有关按比例分配的实际问题。
填空
已知六年级1班男生人数和女生人数的比是:3:2。 (1)男生人数是女生人数的( ) (2)女生人数是男生人数的( ),女生人数和男生人数的比是( ) (3)男生人数占全班人数的( ),男生人数和全班人数的比是( ) (4)全班人数是男生人数的( ),全班人数和男生人数的比是( ) (5)女生人数占全班人数的( ),女生人数和全班人数的比是( ) (6)全班人数是女生人数的( ),全班人数和女生人数的比是( )
某单位将这些奖金按3:2:1分 发给一、二、三等奖获得者。
例11 给30个方格分别涂上红色和黄色,使红色和
黄色方格数的比是3:2 ,红色和黄色各应涂多 少格?
1、你是怎么理解“红色与黄色方格数的比是3:2”这句话的? 2、算一算红色方格与黄色方格各应涂多少格?
想一想:
如果把上图的30个方格按1:2:3涂成红、 黄、绿三种颜色,你能算出三种颜色各应 涂多少格吗?
在日常生活中,很多分配问题都不是平均分配, 那么,你们想知道还可以按照什么分配吗? 今天我们继续研究分配问题.
1
足球的表面是按照黑 色五边形与白色六边 形个数的比3:5来设 计的。
小学六年级数学总复习-比、比例
按2:1画出下面图形放大后的图形.
按2:1放大也就是各 边放大到原来的2倍.
按2:1画出下面图形放大后的图形.
三角形的两条直角边放大 到原来的2倍后,斜边是否 也变为原来的2倍呢?
观察一下,放大后的图形与原 来的图形相比,有什么相同的 地方?有什么不同的地方?
如果把放大后的三个图形的各边按1:3缩小, 图形又发生了什么变化?画画看.
0 20 40 60千米
线段比例尺可以改写成数值比例尺,用1厘米比它所代表的实 际距离, 即: 1厘米:20千米﹦1厘米:2000000厘米 ﹦1: 2000000
这些比例尺分别表示什么?
1:5000000 表示图上1 厘米相当于实际的 5000000厘米( 即: 50千米)
1 30000000
计划在景观大道种800棵观赏树,前8天种了200 棵。照这样计算,要完成任务,还要多少天?
解:设还要X天。 200 800-200 = 8 X 200X=8×600 X=24
一堆煤,原计划每天烧12吨,可以烧45天;实 际每天比计划节约25%,实际烧了多少天?
解:设实际烧了X天。 12×(1-25%)×X=12×45
3
学校要建一个长80m、宽60m的长方形操场, 画出操场的平面图。 比例尺 1:1000
(1)把数值比例尺变为线段比例尺: 1000cm=10m
0 10m
(2)求长的图上距离:
80÷10 = 8(cm) (3)求宽的图上距离: 60÷10 = 6(cm)
3
学校要建一个长80m、宽60m的长方形操场, 画出操场的平面图。
因为图上距离和实际距离的单位不同,所以必须化成同级单位。
10米=1000厘米 1 或 - 1 ∶ 100 10∶1000= 100 10厘米 ∶ 10米 = 10厘米∶ 1000厘米 = 1∶ 100
比例课件
3 1 : 4 4
在比例里,两个外项的积等于两个内 项的积,这叫做比例的基本性质。
下面哪组中的两个比可以组成比例? (1)6:3和8:5
1 1 1 (3)3 : 6 和 2
(2)0.2:2.5和4:50
1 4
:
(4)1.2:0.2和
4 5
:5
比较:“比”与“比例”有什么联系与区别?
比
意义 构成
五星红旗是中华人民共和国的象征
10 长5m,宽 m 3
长2.4m,宽1.6 m
长60cm,宽40cm
长15cm,宽10cm
在这四面国旗的尺寸中,你能找到哪些比 可以组成比例?
下面哪组中的两个比可以组成比例?把组成的比例写出来。 (1)6:10和9:15
1 1 (3)2 : 3 和6:4
(2)20:5和1:4 (4)0.6:0.2和
比例的意义和基本性质 预习案
一、温故 1.什么叫比?举例说明比中各部分名称。
2.什么叫比值?
求出下面两个比的比值: 24∶40
3 :0.25 5
3.什么叫比的基本性质?
二、观察并思考:
A
B
C
D
如图,A是原图,B、C、D都是由A变化来的。 (1)请分别写出四个图形长与宽的比,并求出比值。 (2)结合图形比较这些比和比值,你有什么发现?
4:1=28:(
( ) 4 = 5 15
)
两个数相除叫做两个数 的比 由两项组成,分别叫做 比的前叫做比例的外项,中间的 两项叫做比例的内项。 等于两个内项的积。
基本性质 比的前项和后项同时乘 在比例里,两个外项的积
或除以相同的数(0) 除外,比值不变。
用下图中的4个数据可以组成多少个比例?用自己喜欢的方 法验证。
在比例里,两个外项的积等于两个内 项的积,这叫做比例的基本性质。
下面哪组中的两个比可以组成比例? (1)6:3和8:5
1 1 1 (3)3 : 6 和 2
(2)0.2:2.5和4:50
1 4
:
(4)1.2:0.2和
4 5
:5
比较:“比”与“比例”有什么联系与区别?
比
意义 构成
五星红旗是中华人民共和国的象征
10 长5m,宽 m 3
长2.4m,宽1.6 m
长60cm,宽40cm
长15cm,宽10cm
在这四面国旗的尺寸中,你能找到哪些比 可以组成比例?
下面哪组中的两个比可以组成比例?把组成的比例写出来。 (1)6:10和9:15
1 1 (3)2 : 3 和6:4
(2)20:5和1:4 (4)0.6:0.2和
比例的意义和基本性质 预习案
一、温故 1.什么叫比?举例说明比中各部分名称。
2.什么叫比值?
求出下面两个比的比值: 24∶40
3 :0.25 5
3.什么叫比的基本性质?
二、观察并思考:
A
B
C
D
如图,A是原图,B、C、D都是由A变化来的。 (1)请分别写出四个图形长与宽的比,并求出比值。 (2)结合图形比较这些比和比值,你有什么发现?
4:1=28:(
( ) 4 = 5 15
)
两个数相除叫做两个数 的比 由两项组成,分别叫做 比的前叫做比例的外项,中间的 两项叫做比例的内项。 等于两个内项的积。
基本性质 比的前项和后项同时乘 在比例里,两个外项的积
或除以相同的数(0) 除外,比值不变。
用下图中的4个数据可以组成多少个比例?用自己喜欢的方 法验证。
比例的基本性质(说课课件)-六年级下册数学人教版
比例的基本性质
说教材
比、除法和分数的知识
比例的意义
比 例 的 项
外内 项项 积积
分 数 形 式
比 例 基 本 性 质
解 决 问 题
说学生
比的知识
理解问题、归纳总结 算术的思考方式
自主探索
说目标
使学生了解和掌握比例的基本性质, 能用比例的基本性质判断两个比是否成比 例;认识比例各部分名称,并能正确地组
1、把 4.5,7.5, 1 , 1 和四个数组成比例,其中内项的积是(
)
A.33.75 B.2.2253
C.1.35
D.4.65
2、明辨是非
(1)因为5a=6b,所以a:b=6:5.
()
(2)在比例中,“:”左边两个数的乘积等于“:”右边两个数的乘积.
()
(3)运用比例的基本性质能判断两个比是否成比例.
组长
李响 付晓娜 胥日发 胡悦
武丛 王璐萍 贾舒然
组员
侯志臣 周星月 吕奇鹏 佟曦辉 王 书 李星辰 姜 楠王 硕
李思朦 刘可鑫 李思博 尹雁超 郑文巧 刘倬蓉 刘博闻 李 彤
郭亚楠 李 岩 王 淇姜珊
许强崔 昊 霍天赐 张云鹏
潘晓刚 冯天阳 尹燕楠 陈 宇
时间
互助情况
《
比
例
的设
基 本 性
计 亮
质点
突破难点
教学时有意识创设情境,激发学生探索问题 的欲望,根据后进生理解知识慢的情况,我想在介绍了比 例中各部分的名称后,可以再举一些比例,让学生说说每 个比例中的外项、内项分别是哪些数. 因为是刚认识比例 中各部分的名称,学生一般会与以前学习的比的前项与后 项发生混淆,而一旦混淆会影响后一部分的学习. 所以这 里可以适当放慢节奏. 另外在习题的训练过程中,将教材 中的习题重新设置补充,分层次由易变难.
说教材
比、除法和分数的知识
比例的意义
比 例 的 项
外内 项项 积积
分 数 形 式
比 例 基 本 性 质
解 决 问 题
说学生
比的知识
理解问题、归纳总结 算术的思考方式
自主探索
说目标
使学生了解和掌握比例的基本性质, 能用比例的基本性质判断两个比是否成比 例;认识比例各部分名称,并能正确地组
1、把 4.5,7.5, 1 , 1 和四个数组成比例,其中内项的积是(
)
A.33.75 B.2.2253
C.1.35
D.4.65
2、明辨是非
(1)因为5a=6b,所以a:b=6:5.
()
(2)在比例中,“:”左边两个数的乘积等于“:”右边两个数的乘积.
()
(3)运用比例的基本性质能判断两个比是否成比例.
组长
李响 付晓娜 胥日发 胡悦
武丛 王璐萍 贾舒然
组员
侯志臣 周星月 吕奇鹏 佟曦辉 王 书 李星辰 姜 楠王 硕
李思朦 刘可鑫 李思博 尹雁超 郑文巧 刘倬蓉 刘博闻 李 彤
郭亚楠 李 岩 王 淇姜珊
许强崔 昊 霍天赐 张云鹏
潘晓刚 冯天阳 尹燕楠 陈 宇
时间
互助情况
《
比
例
的设
基 本 性
计 亮
质点
突破难点
教学时有意识创设情境,激发学生探索问题 的欲望,根据后进生理解知识慢的情况,我想在介绍了比 例中各部分的名称后,可以再举一些比例,让学生说说每 个比例中的外项、内项分别是哪些数. 因为是刚认识比例 中各部分的名称,学生一般会与以前学习的比的前项与后 项发生混淆,而一旦混淆会影响后一部分的学习. 所以这 里可以适当放慢节奏. 另外在习题的训练过程中,将教材 中的习题重新设置补充,分层次由易变难.
六年级下册数学课件-16整理和复习——比和比例人教版
(1)全班人数一定,出勤人数与缺勤人数。 (不成比例)
(2)已知
y x
=
3
,y
与
x
。
(3)三角形的面积一定,它的底与高。
(4)正方体的表面积与它的一个面的面积。
(5)已知 xy=1 , y 与 x 。
(6)出油率一定,花生油的质量与花生的质量。
判断下面各题中的两个量是否成正比例或反比例关系。
(1)全班人数一定比,值出一勤定人数与缺勤人数。 (不成比例)
整理与复习 比和比例 小学六年级 数学
各部分名称
0.6 ∶ 0.4
前项 后项
意义
比 两个数的比表 示两个数相除。
比的前项和后项同时乘 或除以相同的数(0除
外),比值不变。 基本性质
意义
表示两个比相等 的式子叫做比例。
比例
基本性质
在比例里,两个内项的 积等于两个外项的积。
0.6 : 0.4 = 3: 2
(1)全班人数一定,出勤人数与缺勤人数。 (不成比例)
(2)已知
y x
=
3
,y
与
x
。
(成正比例)
(3)三角形的面积一定,它的底与高。 (成反比例)
(4)正方体的表面积乘与积它一的定一个面的面积。 (成正比例)
(5)已知 xy=1 , y 与 x 。
(成反比例)
(6)出油率一定,花生油的质量与花生的质量。
×2
每天页数/页
每天页数 60
48
40
240 7
30
...
天数 4 5 6 7 8 ...
240
(1,240)
÷2
210
180
150
人教版六年级数学下册第四单元比例PPT教学课件全套
4.判断。(对的画“√”,错的画“×”)
(1)在比例里,两个外项的积与两个内项的积的差等于0。 ( √ )
(2)已知xy=32,则可以有比例x:4=8:y。 (3)2:3和4:5可以组成比例。 ( ( √) ) ×
(4)如果5a=8b,那么a:b=5:8。
(5)8:4
1 3 和12:7 可以组成比例。 8 4
6∶ 4= 3 ∶ 2
1 1 所以, 2 : 3 和6∶4可以组成比 1 1 例,所以, : =6:4 。 2 3
方法提示:
判断两个比能不能组成比例,关键看它们的比值是否相等。
比例的意义:
1.比例的意义:表示两个比相等的式子叫做比例。
2.判断两个比能否组成比例的方法:根据比例的 意义,看两个比的比值是否相等,相等就能组 成比例。
夯实基础 (选题源于《典中点》)
1.填空。
2 在比例 3 :2=0.2:0.6里,( 0.9 18 = 40 里,( 2
2 3
)和( 0.6 )是外项;在
2
)和( 18
)是内项。
2.指出下面比例的外项和内项。 (1) 4.5:2.7=10:6 4.5和6是外项,2.7和10是内项。 (2)
x 1.2 = 25 75
像这样表示两个比相等的式子叫做比例。
提示: 写比例时,组成比例的两个比既可以写成带比号
的形式,也可以写成分数的形式,但读法相同。
国旗长5m,宽
10 m。 国旗长2.4m,宽1.6m。 国旗长60cm,宽40cm。 3
想一想,在上图的三面国旗的尺寸中, 还有哪些比可以组成比例?
归纳总结:
1.比例的意义:表示两个比相等的式子叫做比例。
(3) (
易错辨析 (选题源于《典中点》)
六年级数学比例的意义和基本性质
(4) 7 : 9 与( ) 能组成比例。
1 1 A. 70 : 90 B. 7 : 9
C.
3:4
4.填空: (1)在比例里,两个内项的积是18, 其中一个外项是2, 另一个外项是( )。 (2)如果5a=3b,那么,
a = ( ) ( ) b b = ( ) a ( )
,
5.下面每组中的四个数都可以组成比例, 把组成的比例写出来: (1) 4、5、12和15。 (2) 2、4 、5和10。
第一次所行驶的路程和时间的比是:— ——— 第二次所行驶的路程和时间的比是:— ————
表示两个比相等的式子叫做比例。
时间(时) 路程(千米) 80 : 2 200 : 5
2 80
5:3
5 200 10 : 6 6 :10 9 :15
80 2
200 5
做一做,相信你能行!
下面哪一组中的两个比可以组比例?
GM17培养基 /shiji/peiyangji/M210-03.html GM17培养基
可让奴才抬着春凳将她抬回来,都别肯碰她壹根手指头の。而且昨天王爷刚把水清抱回来,今天就又来怡然居看她の主子,那让月影怎么可能别心生期盼。月影多么地希望昨天就是他 们两各人冰释前嫌、相亲相爱の良好开端。可是才刚刚有咯壹各良好の开端,怎么今天仆役就又将爷给气走咯呢?那么良好の开端,仆役为啥啊别会服各软,讨爷の欢心呢?担心被王 爷寻咯短处,恼恨水清别晓得积极争取,月影在焦急别安之中,就迎来咯晚膳时间。第壹卷 第538章 书案用过晚膳,水清就吩咐月影去将悠思小格格抱过来,月影刚刚出门,就见院 门外吵吵嚷嚷の声音,还别待她多走几步,就见三四各小太监,抬着壹张桌子绕过咯影壁墙,正朝正房走来。还没什么进院门の时候,小柱子早就听到咯院外の动静,赶快迎咯出来, 当即就认出那几各小太监是苏培盛の手下,于是慌忙说道:“几位公公,那是?”“方公公,那是苏总管吩咐我们给抬过来の,您查验壹下,没问题の话,我们就回去交差咯。”“没 问题,没问题,多谢几位公公。”送走咯那各小太监,小柱子仔细看咯看那桌子,分明就是壹各书案!于是他赶快吩咐自己院里の几各太监,将那各书案抬到咯水清の房外,他上前壹 步,站在门口,小声禀报道:“启禀主子,苏总管给咱们院子抬来壹各书案,请问您需要放置在哪儿?”水清正在等着悠思小格格,谁晓得竟然等来咯壹各书案!别用问她也晓得,壹 定是王爷吩咐苏培盛送过来の。既然是爷送来の,别管是否喜欢,是否需要,她别无选择,必须恭恭敬敬地迎进正屋才是。于是开口吩咐道:“放进屋里来吧,月影,您和竹墨两人帮 方公公壹把。”月影本来是去找吴嬷嬷带悠思格格来见水清,却迎面撞上众人在抬那各书案,于是她就傻愣愣地站在院子当中,眼看着那壹群人从眼前走过,半天没什么反应过来。此 时听到水清在屋里吩咐她,才算是回过神儿来,赶快帮着将书案抬进咯屋子。那么壹各大物件进咯屋子,摆在哪里成咯问题,水清思前想后,最后决定就摆在屋子当中。“仆役!摆在 屋子当中?”“怎么?别行吗?”“可是,摆在中间怎么走路啊!再说咯,也没什么那么壹各摆法儿啊!”“啥啊叫没什么那么壹各摆法儿,今天就看看您家仆役那各摆法!”虽然月 影对水清の决定提出咯质疑,但那是水清深思熟虑の结果。见月影被她说得别敢开腔咯,水清又有点儿别落忍,自顾自地说咯起来:“您说别摆在那里还能摆在哪儿?那书案明面上是 由苏总管调配过来の,实际上,还别是爷の吩咐?下午の时候,爷别是问咯壹句梳妆台就走咯吗?那么快苏总管就抬过来壹张书案,别是爷の吩咐还能是谁?既然是爷の吩咐,咱们还 能摆在哪里?摆在靠边の位置,要是被爷晓得,又得寻咱们の错处,认为咱们没把爷の恩典当回事儿!那回,咱们就给它摆在屋子当中,咱们给它供起来!看爷还能说啥啊!”听着水 清壹番头头是道の解释,月影别得别佩服仆役の远见卓识,于是再也别唱反调,乖乖地赶快干起活儿来。只是她壹边抹桌子掸土,又将笔墨纸砚之类の东西码放上来,片刻别得闲地忙 活着,壹边在嘴上还止别住地嘀咕着:“仆役,奴婢瞧那书案,怎么别像新の?”第壹卷 第539章 亲选那书案当然别是新の!下午の时候王爷虽然是生着壹肚子の闷气离开の怡然居, 可是当他回到书院之后,又有些懊恼起来。他别禁暗问自己:爷刚才那是干啥啊去咯?别是想看看她吗?怎么连句正经话都没什么说呢,就直接回来咯?还有她那各用梳妆台临时充当 の书案,看着真是让人心疼呢。那丫头怎么那么傻,连各书案都别说添置壹各?当时谁也别晓得那各新娶进来の侧福晋会读书写字,以为和大家壹样全都是大字别识壹各の诸人呢,所 以排字琦在为他们两人成亲张罗布置新房の时候,想当然地没什么将书桌问题考虑进去。当初淑清进府の时候,因为认识那么壹两各字,高兴得王爷亲自给她置办咯壹张极为奢华の紫 檀书案,虽然后来也别见她怎么用,但是作为他唯壹壹各识文断字の诸人,王爷自然是宠爱无比。但是今天看到学富五车、能读会写の水清居然用梳妆台充作书案,给咯他极大の震撼。 自从将她娶进府来,他总是口口声声地说他给咯那各侧福晋多么奢华の生活,多么崇高の地位,只在排字琦壹人之下,所有诸人之上。可是实际上,她连壹各正经像样の书桌都没什么, 竟然是用梳妆台拼凑の,那番寒酸の样子,别但令他始料未及,更是令他内疚别已。当年给淑清置办の那各豪华书案,既是他高高兴兴、心甘情愿,也是她刻意暗示、左挑右选の结果。 现在再看到怡然居那里,那各最有理由需要书桌の人,却是拿各梳妆台凑合咯五年时间!那各结果让他心中很别是滋味。回到书院后,他早就忘记咯刚刚是因为啥啊而怒气冲冲地拂袖 而去,反而是壹门心思地想要尽快解决她の书桌问题。心情急切の他,连吩咐奴才立即出府采办の时间都等别及,壹回咯书院,就满院子地找咯起来。朗吟阁里有好几各地方都摆有书 案,大书房、小书房、藏书阁、休憩室„„各各地方他都亲自转咯壹各遍。大书房の书案尺寸太大,她那么瘦瘦小小の壹各人用着实在别方便;小书房の书案用咯相当长の壹段时间, 是最旧の壹各;藏书阁の书案颜色有些深,和怡然居の其它家具别配套。看来看去,也就只剩下摆在休憩室の那各书案还顺眼壹些:尺寸适中,颜色
苏教版小学数学六年级下册 第4单元 比例1-2图形的放大和缩小, 比例的意义 教学课件
在写照片放大后与放大前长的比和宽的比时,要 注意比的前项是放大后的,后项是放大前的,计算 它们的比值,即可判断出这两个比能否组成比例 。
判断对错。
(1)两个比可以组成一个比例。 (2)等式就是比例。 (3)2∶3 和 3∶2 能组成比例。
( ×) ( ×) (× )
(4)比值相等的两个比一定可以组成一个比例。 (5)a : b = 3 : 4 是一个比例。
六年级数学·下 新课标[江苏] 第4单元
1-2 图形的放大和缩小,比例的意义(教材P35)
ห้องสมุดไป่ตู้
1.什么叫做比? 两个数相除又叫做两个数的比。
2.怎样化简比? 应用比的基本性质,把比化成最简单的整数比。
3.什么叫做比值?
比的前项除以比的后项所得商,叫做比值。 4.化简下面的比,再求出它的比值:
6 : 4 = 3:2 = 3 2
谢 谢 大 家 听课时有问题,应先举手,经教师同意后,起立提问。
上课期间离开教室须经老师允许后方可离开。 上课必须按座位表就坐。 要爱护公共财物,不得在课桌、门窗、墙壁上涂写、刻划。 要注意保持教室环境卫生。 离开教室要整理好桌椅,并协助老师关好门窗、关闭电源。
放大后与放大前长的比:9.6:6.4=3:2,比值是1.5 放大后与放大前宽的比:6:4=3:2,比值是1.5
所以9.6:6.4=6:4,猜想成立
9.6 : 6.4 = 3 :2
6 : 4= 3 : 2
或
9.6 : 6.4 =
3 2
6:4= 3
2
这两个比能组成比例。
9.6 :6.4=6 :4
如果两个比化简后的比相同或它们的比值相等,这两个比就 能组成比例,反之则不能组成比例。
求下面各比的比值。 12:16 =12÷16 =0.75
判断对错。
(1)两个比可以组成一个比例。 (2)等式就是比例。 (3)2∶3 和 3∶2 能组成比例。
( ×) ( ×) (× )
(4)比值相等的两个比一定可以组成一个比例。 (5)a : b = 3 : 4 是一个比例。
六年级数学·下 新课标[江苏] 第4单元
1-2 图形的放大和缩小,比例的意义(教材P35)
ห้องสมุดไป่ตู้
1.什么叫做比? 两个数相除又叫做两个数的比。
2.怎样化简比? 应用比的基本性质,把比化成最简单的整数比。
3.什么叫做比值?
比的前项除以比的后项所得商,叫做比值。 4.化简下面的比,再求出它的比值:
6 : 4 = 3:2 = 3 2
谢 谢 大 家 听课时有问题,应先举手,经教师同意后,起立提问。
上课期间离开教室须经老师允许后方可离开。 上课必须按座位表就坐。 要爱护公共财物,不得在课桌、门窗、墙壁上涂写、刻划。 要注意保持教室环境卫生。 离开教室要整理好桌椅,并协助老师关好门窗、关闭电源。
放大后与放大前长的比:9.6:6.4=3:2,比值是1.5 放大后与放大前宽的比:6:4=3:2,比值是1.5
所以9.6:6.4=6:4,猜想成立
9.6 : 6.4 = 3 :2
6 : 4= 3 : 2
或
9.6 : 6.4 =
3 2
6:4= 3
2
这两个比能组成比例。
9.6 :6.4=6 :4
如果两个比化简后的比相同或它们的比值相等,这两个比就 能组成比例,反之则不能组成比例。
求下面各比的比值。 12:16 =12÷16 =0.75
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关知识
4.1比例的意义和基本性质
2.4 ︰1.6相等的式子叫做比例
2.4 ︰1.6 = 60︰40
内项 外项
比例的基本性质:在比例里,两个外项的积等于两个内项
这节课 你有什么收获?
比和比例有什么区别?
比 比例
意义 两个数相除又叫做两个数的 表示两个比相等式 比。 子叫做比例。
和 9:15可以组成比例吗?
解:6:10 =(6÷2):(10÷2) =3:5 3 =
5
9:15 =(9÷3):(15÷3) =3:5 3 = 5 所以6:10和9:15可以组成比例
6 9 写成:6:10=9:15(也可以写成 10 15
)
二、应用比例的基本性质判断
6:10和 9:15可以组成比例 吗?
6∶9 和 9∶12 比例的基本性质: 比例的意义: 2 因为: 6 ∶ 9 = 因为: 6 × 12 = 72 3 3 9 × 9 = 81 9∶12 = 4 2 3 ≠ 3 4 72 ≠ 81 所以: 6∶9 和 9∶12 不能组成比例。 所以: 6∶9 和 9∶12 不能组成比例。
因为 6 × 15= 90 10 × 49= 90
所以6:10和9:15可以组成比例 写成:6:10=9:15(也可以写成 6 9
)
10
15
学习目标:在练习解答中,加深对比例的意义和基本性质的理
解、会运用比例的意义和基本性质进行简单的计算
具体要求:一、小组内完成深入理解知识点。 二、小组成员交流后,选一名同学进行展示 备注:最好说清做题依据
相关知识
4.1比例的意义和基本性质
2.4 ︰1.6 = 60︰40
比例的意义: 像这样表示两个比相等的式子叫做比例
2.4 ︰1.6 = 60︰40
内项 外项
比例的基本性质:在比例里,两个外项的积等于两个内项
学习目标:在练习解答中,掌握比例的意义和基本性质并能灵
活运用进行解决相关问题
具体要求:一、小组内完成巩固运用知识点。 二、小组成员交流后,选一名同学进行展示 备注:最好说清做题依据
构成 由两个数组成,分别叫比的 由四个数组成,两 前项和后项。 端的两项叫做比例 的外项,中间的两 项叫做比例的内项。 基本 比的前项和后项同时乘或除 在比例里,两个外 性质 以相同的数(0除外),比 项的积等于两个内 值不变。 项的积。
试一试
应用比例的意义或者基本性质,判 断下面的两个比能不能组成比例。
初一数学组
像 不 像?
这 张 呢?
他是谁?
学习目标:
通过自主探究、合作交流,理解比例、项, 内项,外项等概念,掌握比例的基本性质; 会解决简单的问题
具体要求: 一、看书40页-41页 二、小组内完成归纳整理知识点。 三、小组成员交流后,选一名同学进行 成果展示 备注:最好说清做题依据
一、应用比例的意义判断6:10
4.1比例的意义和基本性质
2.4 ︰1.6相等的式子叫做比例
2.4 ︰1.6 = 60︰40
内项 外项
比例的基本性质:在比例里,两个外项的积等于两个内项
这节课 你有什么收获?
比和比例有什么区别?
比 比例
意义 两个数相除又叫做两个数的 表示两个比相等式 比。 子叫做比例。
和 9:15可以组成比例吗?
解:6:10 =(6÷2):(10÷2) =3:5 3 =
5
9:15 =(9÷3):(15÷3) =3:5 3 = 5 所以6:10和9:15可以组成比例
6 9 写成:6:10=9:15(也可以写成 10 15
)
二、应用比例的基本性质判断
6:10和 9:15可以组成比例 吗?
6∶9 和 9∶12 比例的基本性质: 比例的意义: 2 因为: 6 ∶ 9 = 因为: 6 × 12 = 72 3 3 9 × 9 = 81 9∶12 = 4 2 3 ≠ 3 4 72 ≠ 81 所以: 6∶9 和 9∶12 不能组成比例。 所以: 6∶9 和 9∶12 不能组成比例。
因为 6 × 15= 90 10 × 49= 90
所以6:10和9:15可以组成比例 写成:6:10=9:15(也可以写成 6 9
)
10
15
学习目标:在练习解答中,加深对比例的意义和基本性质的理
解、会运用比例的意义和基本性质进行简单的计算
具体要求:一、小组内完成深入理解知识点。 二、小组成员交流后,选一名同学进行展示 备注:最好说清做题依据
相关知识
4.1比例的意义和基本性质
2.4 ︰1.6 = 60︰40
比例的意义: 像这样表示两个比相等的式子叫做比例
2.4 ︰1.6 = 60︰40
内项 外项
比例的基本性质:在比例里,两个外项的积等于两个内项
学习目标:在练习解答中,掌握比例的意义和基本性质并能灵
活运用进行解决相关问题
具体要求:一、小组内完成巩固运用知识点。 二、小组成员交流后,选一名同学进行展示 备注:最好说清做题依据
构成 由两个数组成,分别叫比的 由四个数组成,两 前项和后项。 端的两项叫做比例 的外项,中间的两 项叫做比例的内项。 基本 比的前项和后项同时乘或除 在比例里,两个外 性质 以相同的数(0除外),比 项的积等于两个内 值不变。 项的积。
试一试
应用比例的意义或者基本性质,判 断下面的两个比能不能组成比例。
初一数学组
像 不 像?
这 张 呢?
他是谁?
学习目标:
通过自主探究、合作交流,理解比例、项, 内项,外项等概念,掌握比例的基本性质; 会解决简单的问题
具体要求: 一、看书40页-41页 二、小组内完成归纳整理知识点。 三、小组成员交流后,选一名同学进行 成果展示 备注:最好说清做题依据
一、应用比例的意义判断6:10