MBA联考数学
MBA联考数学真题及解析
一、问题求解:第1~15小题,每小题3分,共45分,下列每题给出的A 、B 、C 、D 、E 五个选项中,只有一项是符合试题要求的,请在答题卡上将所选项的字母涂黑。
1.电影开演时观众中女士与男士人数之比为5:4,开演后无观众入场,放映一小时后,女士的20%,男士的15%离场,则此时在场的女士与男士人数之比为(A )4:5 (B)1:1 (C)5:4 (D)20:17 (E)85:64答案:D解析:设电影开始时,女为a 人,男为b 人,有已知条件,a=5x ,b=4x ,从而5x×0.84x×0.85=43.4=20172.某商品的成本为240元,若按该商品标价的8折出售,利润率是15%,则该商品的标价为(A)276元 (B)331元 (C)345元 (D)360元 (E)400元答案:C解析:设标价为a 元,则售价为0.8a ,由已知0.8a−240240=0.15解得a=345(元)3.三名小孩中有一名学龄前儿童(年龄不足6岁),他们的年龄都是质数(素数),且依次相差6岁,他们的年龄之和为(A )21 (B )27 (C )33 (D )39 (E )51答案:C解析:设三个儿童的年龄依次为P1,P2,P3(P1<6),若P1=2,则P2=2+6,P3=8+6,不合题意.若P1=3,则P2=3+6,P3=9+6,不合题意.取P1=5,则P2=5+6=11,P3=11+6=17,即P1,P2,P3皆为质数,符合题意要求,则三个儿童年龄和为5+11+17=334.在右边的表格中,每行为等差数列,每列为等比数列,x+y+z=答案:A解析:由x ,54,32为等差数列,52,54,y 为等比数列及32,34,z 为等比数列,得 54 - x=32 - 54,y=54×12 , z=34×12 即 x=1 , y = 58 , z=38 ,1+58+38=25.如图1,在直角三角形ABC 区域内部有座山,现计划从BC 边上的某点D 开凿一条隧道到点A ,要求隧道长度最短,已知AB 长为5km ,则所开凿的隧道AD 的长度约为(A )4.12km (B)4.22km (C)4.42km (D)4.62km (E)4.92km答案:D解析:由已知BC=√52+122=13,从而12×5×12=12×AD ×13解得:AD=6013≈4.62 6.某商店举行店庆活动,顾客消费达到一定数量后,可以在4种赠品中随机选取2件不同的赠品,任意两位顾客所选的赠品中,恰有1件品种相同的概率是(A ) 1/6 (B ) 1/4 (C )1/3 (D )1/2 (E )2/3答案:E解析:将4种赠品分别用1,2,3,4编号,任意2位顾客任选赠品的总可能性为C 42C 42=36(种)A1表示2位顾客所选赠品中恰有意见相同,且相同赠品为1号赠品,则A1包含的可能性为C 32C 21=6种,从而P(A1)=16. 以此类推,A i (i=2,3,4,)表示2位顾客所选赠品中恰有一件相同,且相同,且相同赠品为i 号赠品,则P(A2)=P(A3)=P(A4)= 16 从而所求概率为4×16=23 7.多项式x3+ax2+bx -6的两个因式是x -1和x -2,则其第三个一次因式为(A)x -6 (B)x -3 (C)x+1 (D)x+2 (E)x+3答案:B解析:若x 3+a x 2+bx -6=(x -1)(x -2)(x -m),令x=0则有(-1)×(-2)×(-m )= -6 即m=38.某公司的员工中,拥有本科毕业证、计算机登记证、汽车驾驶证得人数分别为130,110,90.又知只有一种证的人数为140,三证齐全的人数为30,则恰有双证得人数为(A )45 (B )50 (C )52 (D )65 (E )100答案:B解析:如图4所示,公司员工可被分为8部分,为书写方便,这里A 、B 、C 分别代表仅有本科毕业证,仅有计算机等级证,仅有汽车驾驶证人数,A+AB+AC+ABC=130B+AB+BC+ABC=110由已知条件:C+AC+BC+ABC=90A+B+C=140ABC=30前三个方程得A+B+C+3ABC+2(AB+AC+BC)=330从而 140+90+2(AB+AC+BC )=330AB+AC+BC=50(人)9.甲商店销售某种商品,该商品的进价为每价90元,若每件定价为100元,则一天内能售出500件,在此基础上,定价每增加1元,一天便能少售出10出,甲商店欲获得最大利润,则该商品的定价应为(A )115元 (B )120元 (C )125元 (D )130元 (E )135元答案:B解析:设定价为100+a (元),由已知条件,利润l=(100+a )(500-10a )-90(500-10a )= -10a 2+400a+5000= - 10[(a −20)2-900]即当a=20时,利润最大.10.已知直线ax -by+3=0(a>0,b>0)过圆x2+4x+y2-2y+1=0的圆心,则a -b 的最大值为答案:D解析:所给圆为(x +2)2+(y −1)2=22,由已知条件 -2a -b+3=0,即b=3-2a因此ab=a (3-2a )=-2a 2+3a=-2[(a −34)2- 916]即当a = 34 ,b = 3- 2a = 32 时,ab=98为其最大值. 11.某大学派出5名志愿者到西部4所中学支教,若每所中学至少有一名志愿者,则不同的分配方案共有(A )240种 (B )144种 (C )120种 (D )60种 (E )24种答案:A解析:由题意知其中一所学校应分得2人,另外3所各一人.第一步,选一所学校准备分得2人,共有C 41种选法第二步,从5人中选2人到这所学校,共有C 52种选法第三步,安排剩下3人去3所学校,共有3种方式由乘法原理,不同分配方案为C 41C 52×3=240(种)12.某装置的启动密码是由0到9中的3个不同数字组成,连续3次输入错误密码,就会导致该装置永久关闭,一个仅记得密码是由3个不同数字组成的人能够启动此装置的概率为(A )1/120 (B )1/168 (C ) 1/240 (D )1/720 (E )3/1000答案:C解析:设Ai (i=1,2,3,)表示第i 次输入正确,则所求概率P=P (A 1∪A 1̅̅̅A 2∪A 1̅̅̅ A 2A 3)=P(A 1)+P(A 1̅̅̅A 2)+P(A 1A 2A 3)=110×9×8 + 71910×9×8 × 1719+71910×9×8×718719×1718=3720=124013.某居民小区决定投资15万元修建停车位,据测算,修建一个室内车位的费用为5000元,修建一个室外车位的费用为1000元,考虑到实际因素,计划室外车位的数量不少于室内车位的2倍,也不多于室内车位的3倍,这笔投资最多可建车位的数量为(A )78 (B )74 (C )72 (D )70 (E )66答案:B解析:设建室内停车位x 个,室外停车位y 个,由题意求满足{5000x +1000y ≤1500002x ≤y ≤3x的最大x+y 即7x ≤150,8x ≤150,则x 可能取值为19,20,21,取x=19,得y=55,19+55=74为满足题意的最多车位数.14.如图2,长方形ABCD 的两条边长分别为8m 和6m ,四边形OEFG 的面积是4m2,则阴影部分的面积为(A )32m2 (B )28 m2 (C )24 m2 (D )20 m2 (E )16 m2答案:B解析:白色区域面积为12BF ?CD + 12 FC ?AB -4=12CD?BC −4=20,从而阴影面积为6×8−20=28(m 2)15.在一次竞猜活动中,设有5关,如果连续通过2关就算成功,小王通过每关的概率都是1/2,他闯关成功的概率为答案:E解析:用Ai (i=1,2,3,4,5)表示第i 关闯关成功,则小王的过关成功率P(A 1A 2∪A 1̅̅̅A 2A 3∪A 1A 2̅̅̅A 3A 4∪A 1 ̅̅̅̅A 2̅̅̅A 3A 4∪A 1A 2 ̅̅̅̅̅A 3̅̅̅A 4A 5∪A 1̅̅̅A 2A 3̅̅̅A 4A 5∪A 1̅̅̅ A 2 ̅̅̅̅̅A 3̅̅̅A 4A 5)= 12 ? 12 + 12 ? 12 ? 12 + 2 ?12 ? 12 ? 12 ? 12 + 3 ? 12 ? 12 ? 12 ? 12 ?12 = 14 + 18 + 18 + 332= 1932在此处键入公式。
MBA联考数学真题及解析
解析文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]一、问题求解:第「15小题,每小题3分,共45分。
下列每题给出的A、B、C、D、E五个选项中,只有一项是符合试题要求的。
1、某部门在一次联欢活动中共设26个奖,奖品均价为280元,其中一等奖单价为400元,其他奖品均价为270元,一等奖的个数为(E)A6B5C4D3E2解析:设一等奖有X个,则其他奖项有26-X个。
26个奖品的均价为280 元,得知总价为26*280元。
由题意立方程400X+270 (26-X)二26*280。
计算得出X=2,所以答案为E2.某公司进行办公室装修,若甲乙两个装修公司合做,需10周完成,工时费为100万元,甲公司单独做6周后由乙公司接着做18周完成,工时费为96万元,甲公司每周的工时费为(B)A 7. 5万元B. 7万元C. 6. 5万元D. 6万元E. 5. 5万元解析:设甲公司每周工时费为X万元,乙公司每周工时费为Y万元。
由题意甲乙两个装修公司合做,需10周完成,工时费为100万元得知10(X+Y) =100,即Y二10-X .. ①又甲公司单独做6周后由乙公司接着做18周完成,工时费为96万元,得方程6X+18Y二96 ... ②将方程①带入方程②,X=7,所以答案为B3.如图1,已知AE二3AB, BF二2BC,若三角形ABC的面积为2,则三角形AEF的面积为(B)A. 14B. 12C. 10D. 8E. 6解析:做辅助线AD丄BF,垂足为D, AD即AABC和AABF的高。
VSAABC=2=?BC*AD由题知2BC二FB・•・ SAABF二?FB*AD 二BC*AD二4做辅助线FG丄AE,垂足为G, FG即AAFE和AAFB的高。
T3AB二AE, SAABF=?AB*FG=4SAAFE 二AE*FG 二*3AB*FG 二12所以答案为B4.某公司投资一个项目,已知上半年完成预算的三分之一,下半年完成了剩余部分的三分之二,此时还有8千万投资未完成,则该项目的预算为(B)A. 3亿元B. 3. 6亿元C. 3. 9亿元D. 4. 5亿元E. 5. 1亿元解析:设该项目预算为X亿元。
MBA联考数学基础知识重点汇总(一)
MBA联考数学基础知识重点汇总(一)数学知识点:集合的概念把一些能确定的对象看成一个整体,就说这个整体是由这些对象组成的一个集合,构成集合的每个对象叫做这个集合的元素。
用大写英文字母表示集合,小写英文字母表示组成集合的元素。
当a是集合A的元素时,则说a属于集合A,记做a∈A;当a不是集合A的元素时,则说a不属于集合A,记做a∉A。
组成集合的元素具有确定性、互异性,且无排列顺序。
当两个集合A,B的元素完全相同时,称这两个集合相等,记做A=B。
常用R表示实数集,Q表示有理数集,Z表示整数集,N表示自然数集,符号∅表示不含任何元素的空集。
由离散元素组成的集合,可以用列举法表示,如自然数集N={0,1,2,…,n,…},方程(x-1)(x一2)=0的解集为{1,2},方程组x-y=1与x+y=2的解集为{(3/2,1/2)}。
用集合中所有元素的共性来描述集合的方法叫做描述法.如不等式x²-2x-3>0的解集为{x│x²-2x-3>0}.偶数集为{n│n=2k,k∈Z}。
方程组x²+y²=10与x+y=2的解集可以用描述法表示为{(x,y)│x²+y²=10与x+y=2},也可以用列举法表示为{(3,一1),(一1,3)}。
实数集及其子集可以用区间表示,如R=(-∞,+∞),不等式的解集为x²-2x-3≥0的解集为(-∞,-1]∪[3,+∞),集合{x│-≤x<3}=[-1,3)。
数学知识点:集合间的关系定义4.1:对于两个集合A,B.若任意a∈A,都有a∈B,则称集合A被集合B所包含(或集合B包含集合A),记做A⊆B,此时称集合A是集合B的子集。
由定义4.1可得空集是任意集合的子集,即∅⊆A。
定义4.2:若A⊆B,且存在a∈B但a∉A则称集合A是集合B的真子集,记做A⊂B.由定义4.2可得,空集是任意非空集合的真子集。
MBA联考数学-排列组合与概率初步_真题(含答案与解析)-交互
MBA联考数学-排列组合与概率初步(总分84, 做题时间90分钟)一、条件充分性判断本大题要求判断所给出的条件能否充分支持题干中陈述的结论,阅读条件(1)和(2)后选择:(A) 条件(1)充分,但条件(2)不充分.(B) 条件(2)充分,但条件(1)不充分.(C) 条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分.(D) 条件(1)充分,条件(2)也充分.(E) 条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分.SSS_FILL1.该问题分值: 3答案:A[解析] 本题应分两步:首先,要选出所用的人,现设男生共有x人,则女生为(8-x)人,由于男生只能从男生中取,故有种.同理,女生的取法有种,故选人的方法为;其次把选出的学生分配出去的方法有=6,故3x(x-1)(8-x)=90,即x(x-1)(8-x)=30=2× 3×5,则x=5或x=3,当x=5为增根(舍);当x=3时,满足题意,故有男生3人,女生5人,即条件(1)充分,条件(2)不充分.此题也可以直接从条件(1)和条件(2)所给的值下手.故正确答案为(A).SSS_FILL2.该问题分值: 3答案:C[解析] 条件(1)和条件(2)分别给出了甲和乙每次击中目标的概率,显然单独都不充分,应联合起来考虑.甲恰好比乙多击中目标2次的情况是:甲击中2次而乙没有击中,或甲击中3次而乙只击中1次.甲击中目标2次而乙没有击中目标的概率为.甲击中目标3次而乙只击中目标1次的概率为所以甲恰好比乙多击中目标2次的概率为,两个条件联合起来充分.故选(C).SSS_FILL3.该问题分值: 3答案:E[解析] 基本事件共有6×6×6个.其中点数之积为奇数的事件,即3颗骰子均出现奇数的事件,共有3×3×3个,所以点数之积为奇数的概率点数之积为奇数的概率,则条件(2)也不充分.故正确答案为(E).SSS_FILL4.该问题分值: 3答案:D[解析] 仔细观察不难发现:条件(1)和条件(2)所构造的事件其实是同一个事件,只是不同的表达方式而已.因此,连续检测三件时都是合格品的概率为(0.9)3=0.729,至少有一件是次品的概率为1-(0.9) 3=1-0.729=0.271.即条件(1)和条件(2)都充分支持题干.故正确答案为(D).SSS_FILL5.该问题分值: 3答案:A[解析] 在条件(1)下,一个学生2本,其他3个学生每人1本,5本书取2本捆在一起作为1本,有C种方法,然后将这捆在一起的书连同其他3本共4个元素分给4个学生,有种分法,根据分步计数原理共有=240种不同的分法,则说明条件(1)是充分的.在条件(2)下,一个学生3本,其他2个学生每人1本;或者一个学生1本,其他两个学生每人2本.前一种情况下,5本书取3本捆在一起作为1本,有种方法,然后将这捆在一起的书连同其他2本共3个元素分给3个学生,有种分法,根据分步计数原理共有种不同的分法;后一种情况下,5本书分成1+2+2本书,有种方法,然后再将其分给三个学生,有种分法,根据分步计数原理共有种不同的分法;再根据分类计数原理共有60+90=150种不同的分法,则说明条件(2)是不充分的.故正确答案为(A).二、问题求解1.某洗衣机生产厂家,为了检测其产品无故障的启动次数,从生产的一批洗衣机中任意抽取了5台,如果测得的每台无故障启动次数分别为11300,11000,10700,10000, 9500,那么这批洗衣机的平均无故障启动次数大约为( ).SSS_SINGLE_SELA ( 10300B ( 10400C ( 10500D ( 10600E ( A、B、C、D都不正确该问题分值: 3答案:C[解析] 这5台洗衣机的平均无故障启动次数为故选(C).2.把6个人分配到3个部门去调研,每部门去2人,则分配方案共有( )种.SSS_SINGLE_SELA ( 15B ( 105C ( 45D ( 90E ( A、B、C、D都不正确该问题分值: 3答案:D[解析] 把6人先分为3组,每组2人,共有=15种分法.然后再把这3组分配到3个部门,有=6种分配方法.据乘法原理,总的分配方案有15×6=90种.解这类有组合又有排列的问题,常常用先组合再排列的方法考虑.故选(D).3.某种测验可以随时在网络上报名参加,某人通过这种测验的概率是.若他连续两次参加测验,则其中恰有一次通过的概率是( ).SSS_SIMPLE_SINA B C D E该问题分值: 3答案:C[解析] 这是一个独立重复试验的问题.n次独立重复试验中恰有是次发生的概率为故选(C).如果做两次测验,两次都通过的概率,则有.两次测验都不通过的概率P2(0)也等于.4.SSS_SINGLE_SEL该问题分值: 3答案:A[解析] 依题意事件应该是“一颗骰子掷4次均未出现6点”,其概率应是,而事件表示“掷两颗骰子共2次每次均未出现双6点”,其概率为,因此故正确答案为(A).5.3名医生6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有( )种.SSS_SINGLE_SELA ( 90B ( 180C ( 270D ( 540E ( A、B、C、D都不正确该问题分值: 3答案:D[解析] 设计让3所学校依次挑选,先由学校甲挑选,有种,再由学校乙挑选,有种,余下的到学校丙只有一种,于是不同的方法共有种,故正确答案为(D).6.有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐,并且这2人左右不相邻,那么不同的排法有( )种.SSS_SINGLE_SELA ( 234B ( 346C ( 350D ( 363E ( A、B、C、D都不正确该问题分值: 3答案:B[解析] 前后两排共23个座位,有3个座位不能坐,故共有20个座位两人可以坐,包括两人相邻的情况,共有种排法;考虑到两人左右相邻的情况,若两人均坐后排,采用捆绑法,把两人看成一体,共有种坐法,若两人坐前排,因中间3个座位不能坐,故只能坐左边4个或右边4个座位,共有种坐法,故题目所求的坐法种数共有,故正确答案为(B).7.盒内有大小相同的4个小球,全红、全白、全蓝的单色球各1个,另一个是涂有红、白、蓝3色的彩球,从中任取1个,记事件A、月、C分别表示取到的球上有“红色”、“白色”、“蓝色”,则一定有( ).SSS_SINGLE_SELA ( A、B、C两两互不相容B ( A、B、C两两互不相容且其和为ΩC ( A、B、C两两独立D ( A、B、C相互独立E ( A、B、C、D都不正确该问题分值: 3答案:C[解析] 依题意,P(A)=P(B)=P(C)==0.5,P(AB)-P(BC)-P(AC)= =0.25>0,由计算可看出A、B、C两两独立但是不相互独立,故正确答案为(C).8.设A、B是对立事件,0<P(A)<1,则一定有( ).SSS_SINGLE_SELA ( 0<P(AU<1 ( 0<PB (<1C ( 0<P()<1D ( 0<<1E ( A、B、C、D都不正确该问题分值: 3答案:B[解析] A、B是对立事件,故P(A)+P(B)=1,又因为0<P(A)<1,故0<P(B)< 1,故正确答案为(B).进一步分析知,P(AUB)=1,,P(AB)=0,因此除B外各选项均不正确.9.把两个不同的白球和两个不同的红球任意地排成一列,结果为两个白球不相邻的概率是( ).SSS_SIMPLE_SINA B C D E该问题分值: 3答案:D[解析] 总排列数为=24.要使白球不相邻,可以先定两个位置放白球,放法有=2.两白球的左、右端和中间三处空位.若选左端和中间各放一红球,有=2种排法.同理选中间和右端各放一红球,也有2种排法.若选中间放两个红球,也是2种放法.白球不相邻的排法有=12.所求概率为.若考虑两个白球相邻的情况,如果把两个白球作为一整体与两个红球作排列,则有种排法,三个位置中的一个放两个白球,又有种排法,所以两个白球相邻的概率为白球不相邻的概率为.故选(D).10.某区乒乓球队的队员中有11人是甲校学生,4人是乙校学生,5人是丙校学生,现从这20人中随机选出2人配对双打,则此2人不属于同一学校的所有选法共有( )种.SSS_SINGLE_SELA ( 71B ( 119C ( 190D ( 200E ( A、B、C、D都不正确该问题分值: 3答案:B[解析] 从20个人中选出2人的所有选法为=190种,2人来自同一学校的所有选法为=55+6+10=71.所以2人不是同一学校的选法共有190-71=119种.故选(B).11.从4名男生和3名女生中挑出3人站成一排,3人中至少有一名男同学的不同排法共有( )种.SSS_SINGLE_SELA ( 29B ( 34C ( 204D ( 209E ( A、B、C、D都不正确该问题分值: 3答案:C[解析] 从4名男生和3名女生中挑出3人站成一排的所有不同排法共有=7× 6×5=210种,其中没有男同学的不同排法共有=3×2×1=6种,所以3人中至少有一名男同学的不同排法共有种.故选(C).12.从1,2,3,4,5,6这6个数中任取3个不同的数,使3个数之和能被3整除,则不同的取法有( )种.SSS_SINGLE_SELA ( 6B ( 7C ( 8D ( 9E ( A、B、C、D都不正确该问题分值: 3答案:C[解析] 本题讨论取出3个数之和的性质,是与3个数次序无关的组合问题.因为数目不太大,可以将各种情形逐个列出.例如,首先取1,然后取2,第3个可以取3或6.然后再依次(从小到大)考虑,列出{1,2,3),{1,2,6},{1,3,5},{1,5,6},{2,3,4},{2,4,6},{3,4,5), {4,5,6},共8种取法.只要按顺序不遗漏即可.故选(C).13.从正方体的8个顶点中任取3个点为顶点作三角形,其中直角三角形的个数为( ).SSS_SINGLE_SELA ( 56B ( 52C ( 48D ( 40E ( A、B、C、D都不正确该问题分值: 3答案:C[解析] 从正方体的每个面中的四个顶点中任取三点,均可构成直角三角形,共有6×个,从正方体的相对两条棱组成的矩形的四个顶点中任选三点,也构成直角三角形,共有个,应用加法原理,有个,故正确答案为(C).14.从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有( )种.SSS_SINGLE_SELA ( 8B ( 12C ( 16D ( 20E ( A、B、C、D都不正确该问题分值: 3答案:B[解析] 记正方体的6个面为上、下、左、右、前、后,那么,从中取3个面有两个不相邻者,可分为3类.第一类:选取的3个面不含前、后面,有4种不同取法;第二类:选取的3个面不含左、右面,也有4种不同取法;第三类:选取的3个面不含上、下面,同样有4种不同取法.故应用加法原理,得不同取法数为N=4+4+4=12.故正确答案为(B).15.从12个化学实验小组(每小组4人)中选5人,进行5种不同的化学实验,且每小组至多选1人,则不同的安排方法有( )种.SSS_SIMPLE_SINA B C D E该问题分值: 3答案:B[解析] (1)先选5人,这也是一个两步问题:选5人的过程也分两步:①先确定要选取人的化学实验小组有种选法;②再从选取的小组中每组选取1人.共有:,可得选取人员的方法为:种.(2)把选取的5人安排到5个不同的实验中去,有种方法,所以,总的不同方法是:种,故正确答案为(B).16.设10件产品中有7件正品、3件次品,从中随机地抽取3件,若已发现2件次品,则3件都是次品的概率ρ是( ).SSS_SIMPLE_SINA B C D E该问题分值: 3答案:D=“取出的3件产品中有i件次品”,i=0、1、2、3应用古典型[解析] 设Ai概率公式故正确答案为(D).17.k个坛子各装n个球,编号为1,2,…,n,从每个坛中各取一个球,所取到的k个球中最大编号是m(1≤m≤n)的概率p是( ).SSS_SIMPLE_SINA B C D E该问题分值: 3答案:A[解析] 设事件A=“取到的是个球最大编号是m”,如果每个坛子都从1~m号球中取一个,则是个球的最大编号不超过m,这种取法共有m k种等可能取法;如果每个坛子都从1~m-1号球中取一个,则是个球的最大编号不超过m-1,其等可能取法共有(m- 1) k种,因此由计算可知,正确答案为(A).18.任取一个正整数,其平方数的末位数是4的概率等于( ).SSS_SINGLE_SELA ( 0.1B ( 0.2C ( 0.3D ( 0.4E ( A、B、C、D都不正确该问题分值: 3答案:B[解析] 只有当所取正整数的末位数是2或8时,其平方数的末位数字才能是4.所有正整数的末位数字只有0,1,2,…,9共10种等可能,于是所要求的概率是.故选(B).19.12名同学分别到3个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有( )种.SSS_SIMPLE_SINA B C D E该问题分值: 3答案:A[解析] 先分配4个人到第一个路口,再分配4个人到第二个路口,最后分配4个人到第三个路口.由以上分析,得种,故正确答案为(A).20.某车间生产的一种零件中,一等品的概率是0.9.生产这种零件4件,恰有2件一等品的概率是( ).SSS_SINGLE_SELA ( 0.0081B ( 0.0486C ( 0.0972D (0.06E (A、B、C、D都不正确该问题分值: 3答案:B[解析] 4件产品中,2件一等品,2件非一等品的概率为故选(B).21.设A、B是两个随机事件,0<P(A)<1,P(B)>0,P(B|A)+( )=1,则一定有( ).SSS_SIMPLE_SINA B C D E该问题分值: 3答案:C[解析] 对于任何事件与B,只要>0,定有,结合题设条件可以得出,即故正确答案为(C).22.设某种证件的号码由7位数字组成,每个数字可以是数字0,1,2,…,9中的任一个数字,则证件号码由7个完全不同的数字组成的概率是( ).SSS_SIMPLE_SINA B C D E该问题分值: 3答案:D[解析] 所有不同号码的号码数目都是107,即基本事件的总数,其中7个数字完全不相同的排列数是=10×9×8×7×6×5×4.故选(D).注意,基本事件的总数是107,而不是10!.每一位数字的取法都有10种可能10!相当于各位不重复的10位数字号码总数.在“从袋中取不同号码(颜色)的球”等问题中,也有“取后放回”和“取后不放回”的区别.此外,还要注意“7个不同数字”在这里是排列问题,不是组合问题.23.某班组共有员工10人,其中女员工3人.现选2名员工代表,至少有1名女员工当选的概率是( ).SSS_SIMPLE_SINA B C D E该问题分值: 3答案:D[解析] 基本事件的总数为,即10名员工选2名的组合数.至少1名女员工当选,其中含的基本事件数目为,于是故选(D).1。
MBA数学公式大全
管理类MBA联考数学必背公式1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(sss) 有三边对应相等的两个三角形全等26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即s=(a×b)÷2 67菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半l=(a+b)÷2 s=l×h 83 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d 84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d 85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b 86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(asa) 92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas) 94 判定定理3 三边对应成比例,两三角形相似(sss) 95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
MBA联考数学-方程和不等式_真题(含答案与解析)-交互
MBA联考数学-方程和不等式(总分276, 做题时间90分钟)一、条件充分性判断本大题要求判断所给出的条件能否充分支持题干中陈述的结论,阅读条件(1)和(2)后选择:(A) 条件(1)充分,但条件(2)不充分.(B) 条件(2)充分,但条件(1)不充分.(C) 条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分.(D) 条件(1)充分,条件(2)也充分.(E) 条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分.SSS_FILL1.该问题分值: 3答案:(C)[解析] 条件(1)未给定抽水机的抽水量,不能确定每分钟漏进多少水,故条件(1)不充分;条件(2)未给定抽水时间,同样为不充分条件.但是把两个条件联合起来,40分钟内两台抽水机共抽水[40×(30+20)]立方米,这个水量应该等于40分钟内漏进的水量加上800立方米,设每分钟漏进x立方米水,则有40x+800=40×(30+20).解得x=30,即每分钟漏进30立方米水,因此选(C).SSS_FILL2.该问题分值: 3答案:(A)[解析] |x-2|+|4-x|的几何意义为数轴上的点x到点2的距离加上点x到点4的距离和,如图(1)所示,很明显,当点x在2和4之间移动时,这个和最小,最小值是2.当点x移动到2的左侧或4的右侧时,这个和都大于2.因此S≤2,则无论x取什么值, |x-2|+|4-x|<S都不会成立,即该不等式无解,这表明条件(1)充分,反之,若S>2,则一定存在x值使该不等式成立.因此条件(2)不充分,故选(A).SSS_FILL3.该问题分值: 3答案:(A)[解析] 由|a|<|b|得|a|2<|b|2,即a2<b2,所以条件(1)充分;由a<b不能确定a, b的正负号,比如a==5,b=3,适合a<b但是a2=25,b2=9,可知a2<b2不成立,说明条件(2)不充分.故选(A).SSS_FILL4.该问题分值: 3答案:(D)[解析] 当-时,0<x2<2,-2<x2-2<0,0<x4<4,-4<x4-4<0,所以. -6<(x4-4)+(x2-2)<0,即条件(1)充分.当0<x<时,0<x2<2,-2<x2-2<0,0<x4<4,-4<x4-4<0,所以-6< (x4-4)+(x2-2)<0,即条件(2)也充分.故选(D).SSS_FILL5.该问题分值: 3答案:(B)[解析] 要使该方程有两个不相等的实数根,只需△=(2a-1)2-4a(a-3)>0且a≠ 0即可,解得a>-且a≠0,但是当a<3时,不一定满足该式,所以条件(1)不充分;而当a≥1时,一定满足a>且a≠0,所以条件(2)充分,故选(B).SSS_FILL6.该问题分值: 3答案:(D)[解析] 由条件(1)知(1-x)(1-|x|)>0.当x≥0时,得(1-x)2>0,解得x≥0且x≠1.当x<0时,得(1-x)(1+x)>0,解得-1<x<0.综合得-1<x<1或x>1,故条件(1)充分.由条件(2)得(x+1)(x-1)<0,得-1<x<1,故条件(2)也充分.应选择(D).SSS_FILL7.该问题分值: 3答案:(E)[解析] 原不等式与不等式组同解,解|x-1|>1,可得x<0或x>2.结合条件x≠3,则原不等式的解集是x=(0,2)∪(3,+∞),从而可以判定条件(1)不充分,条件(2)也不充分,故正确选择应为(E).SSS_FILL8.该问题分值: 3答案:(C)[解析] 条件(1)和(2)单独都不充分.当条件(1)和(2)联合起来时,设总共有x 人,则得到方程4500x+1000=5000x-3500.解得500x=4500,即x=9(人).故条件(1)和(2)联合起来充分.应选(C).SSS_FILL9.该问题分值: 3答案:(E)[解析] 由条件(1)得4a2-4×25<0,得a2<25,即-5<a<5,则-5<d<-3,此时 |a+3|-|a-5|=-a-3+a-5=-8≠2a-2.故条件(1)不充分.当5<a<10时,|a+3|-|a-5|=a+3-a+5=8≠2a-2.故条件(2)不充分.条件(1)和条件(2)联合起来也不充分,故答案为(E).SSS_FILL10.该问题分值: 3答案:(D)SSS_FILL11.该问题分值: 3答案:(D)[解析] 由条件(1)得方程x2+4x=0,它的两个根是0和-4.这两个根之差的绝对值为4,说明条件(1)充分.条件(2)给出的是方程判别式的值,代入求根公式得SSS_FILL12.该问题分值: 3答案:(E)由条件(2),因为|y|≥0,则2|y|+1>0,又(|x|-1)2≥0,所以(|x|-1)2+ (2|y|+1)2>0.显然条件(2)不充分.条件(1),(2)联合也不充分,故选(E).SSS_FILL13.该问题分值: 3答案:(D)[解析] 由条件(1),甲的录入速度是乙的50%,所以乙的录入速度为9000÷(1+50%)=6000(字/小时).由条件(2),甲的录入效率为甲乙两人合作时录入效率的,于是乙单独工作1小时可录入9000-9000×=6000(字/小时).所以条件(1),(2)均充分.应选(D).SSS_FILL14.该问题分值: 3答案:(A)[解析] 两人沿椭圆跑道同时同向出发,由条件(1),20分钟后甲从背后追上乙,说明同时间内甲比乙多跑了几圈、条件(1)充分;由条件(2),同时反向出发2分钟后甲、乙相遇,无法得知谁跑得快,故条件(2)不充分.应选择(A).SSS_FILL15.该问题分值: 3答案:(A)[解析] 当a=3时,方程的解分别为.故共同解为-1.当a=-2时,无共同解.条件(1)充分,条件(2)不充分.选(A).SSS_FILL16.该问题分值: 3答案:(D)[解析] 由条件(1),甲走的距离:乙走的距离=3:2,但从出发到相遇两人所用时间相同,设此时间为t(t≠0),则甲、乙两人速度之比为,即条件(1)充分.由条件(2),甲追上乙时,乙走的距离为2s,则甲走的距离为3s,两人所用的时间相同,所以甲、乙两速度之比为,条件(2)也充分.故选(D).SSS_FILL17.该问题分值: 3答案:(C)[解析] 条件(1)只知男女乘客人数之比,不知多少人下车,故无法推出结论;条件(1)不充分.由条件(2),只知女乘客的75%下车,缺少男女乘客人数的关系,所以条件(1)和 (2)单独都不充分.二、问题求解1.已知x1,x2是关于x的方程x2-kx+5(k-5)=0的两个正实数根,且满足2x1+x2=7,则实数是的值为( ).SSS_SINGLE_SELA ( 5B ( 6C ( 7D ( 8E ( A、B、C、D均不正确该问题分值: 3答案:B解析由韦达定理,得x1+x2=k,x1x2=5(k-5).因为2x1+x2=7,故x1=7-k,x2=2k-7.故(7-k)(2k-7)=5(k-5),即k2-8是+12=0.得k=2或k=6.又因为△=k2-20(k-5)=(k-10)2≥0,但k=2时,x1x2=-15<0,故k=2不合题意,舍去.所以是的值为6,故正确答案为(B).2.一汽艇顺流下行63千米到达目的地,然后逆流回航,共航行5小时20分钟,已知水流速度是3千米/小时,汽艇在静水中的速度为( )千米/小时.SSS_SINGLE_SELA ( 24B ( 26C ( 20D ( 18E ( A、B、C、D均不正确该问题分值: 3答案:A[解析] 设汽艇在静水中每小时行驶x千米,则在顺水中的速度为(x+3)千米,在逆水中为(x-3)千米,顺水和逆水航行63千米,所用时间之和等于小时,故解得x=24.故正确答案为(A).3.已知a为正整数,且关于x的方程lg(4-2x2)=lg(a-x)+1有实数根,则a等于( ).SSS_SINGLE_SELA ( 1B ( 1或2C ( 2D ( 2或3E ( A、B、C、D都不正确该问题分值: 3答案:A[解析] 由对数方程可得即2x2-10x+10a-4=0,方程有实数根,所以判别式100-8(10a-4)≥0,即132-80a≥0.正整数a只能取1.故选(A).4.一元二次方程x2+bx+c2=0有两个相等的实根,则( ).SSS_SINGLE_SELA ( b=2cB ( b=-2cC ( b=2|c|D ( |b|=2|c|E ( A、B、C、D均不正确该问题分值: 3答案:D[解析] 判别式b2-4c2=0,即b2=4c2,两边开方应有|6|=2|c|.5.已知关于x的一元二次方程8x2+(m+1)x+m-7=0有两个负数根,那么实数 m的取值范围是( )。
MBA联考综合能力数学(立体几何、排列组合)历年真题试卷汇编1
C.
D.
E. 6.[2014年1月]某工厂在半径为5 cm的球形工艺品上镀一层装饰金属,厚度为0.01 cm,已经装饰金属的原材料 是棱长为20 cm的正方体锭子,则加工10 000个该工艺品需要的锭子数最少为( )(不考虑加工损耗,π≈3.14)。 (分数:2.00) A.2个 B.3个 C.4个 D.5个 E.20个 7.[2013年1月]将体积为4π cm 3 和32π cm 3 的两个实心金属球熔化后炼成一个实心大球,则大球的表面积为( ) 。 (分数:2.00) A.32π cm 2 B.36π cm 2 C.38π cm 2 D.40π cm 2 E.42π cm 2 8.[2012年1月]如图,一个储物罐的下半部分是底面直径与高度均是20 m的圆柱形,上半部分(顶部)是半球形,
已知底面与顶部的造价是400元/m 2 ,侧面的造价是300元/m 2 ,该储物罐的造价是(π=3.14)( )。 (分数:2.00) A.56.52万元 B.62.8万元 C.75.36万元 D.87.92万元 E.100.48万元 9.[2011年10月]若一球体的表面积增加到原来的9倍,则它的体积( )。 (分数:2.00) A.增加到原来的9倍 B.增加到原来的27倍 C.增加到原来的3倍 D.增加到原来的6倍 E.增加到原来的8倍 10.[2011年1月]现有一个半径为R的球体,拟用刨床将其加工成正方体,则能加工成的最大正方体的体积是( )。
盖箱子(图b)。则装配成的竖式和横式箱子的个数分别为( )。 (分数:2.00) A.25,80 B.60,50 C.20,70 0,40 E.40,60 3.[2015年12月]如图5,在半径为10 cm的球体上开一个底面半径是6 cm的圆柱形洞,则洞的内壁面积为(单位:
MBA联考70天强化训练:《数学》常考题型
1.容易型 约占 10%
2.概念型 约占 20%
3.计算型 约占 20%
4.综合型 约占 40%
5.较难型 约占 10%
三.备考策略。
1.容易型首先是要细心。
2.概念型的题要求我们多看,见多才会识广。
3.计算型要求我们多动手,切勿眼高手低。历年来,许多“数学高手”在 这方面栽了跟头。
4.综合型需要在平时加强题型训练,熟能生巧。
5.考试中一般水平的考生可以考虑放弃,记住“不为方有为”。为了确保 拿到这 10 分,我们需要付出的时间可能和另外 90 分的时间一样多。
四.应该怎样提高数学复习的效率呢?
首先,要端正对数学的看法,数学的本质是一种语言,一种用特殊方式标 记的语言。而且是一种很有魅力的语言。有了这个基本认识,数学就不那幺 枯燥了。既然是语言,在此建议一种独特的学习方式--背!对了,就是那个 字,背。不但要把定理背得滚瓜烂熟,还要把典型的例题背得体无完肤才行。 其实那些所谓的考题,大部分都是把定理掰开了、揉碎了,考一些不起眼的 细微之处。但只要用心去背过这些定理,都可以从中找到解决办法。当然, 背和理解的过程是紧密结合在一起的,对原理的理解越透彻,背得越轻松, 背得越熟练,对原理的理解也会在不断的重复中得到提高。
其次,提醒基础差的朋友一定要设法听到优秀老师的授课,师傅引进门, 如果进门这一步没走好,后面的修行就痛苦了。好的老师,对于如何理解一 个定理,如何享受符号语言的快乐,能够提供非常好的观察角度和范例,听 他们的课,如沐春风,一定不能错过。
最后,修行就靠个人了。修行的主要内容就是反复做题,背定理。做题的 时候一定要集中精力,勤写勤算。时间很重要,遇到钉子就跳过去。我做练 习的时候,从一开始就是计时,70 分钟做完 23 道题,和考试的要求差不多。 其实时间才是考试中决定性的因素,如果没有时间限制,相信大家的分数最 后都会差不多的,毕竟我们参加的是考试,不是做研究报告。通过计时,也 强迫自己提高了学习效率。有些同学为了弄懂一道题反复折腾,费时无数, 一方面敬佩其精神,理解其担忧,但另一方面则他们错误的在于没有把主要 精力花在第一步上,这其实是基础不扎实的表现呀!如果想通过做题来解决 基础问题,如同缘木求鱼,自然颗粒无收了。
数学mba联考试题及答案
数学mba联考试题及答案数学MBA联考试题及答案一、选择题(每题2分,共20分)1. 某公司年销售额为500万元,预计明年增长10%,那么明年的预计销售额为:A. 550万元B. 510万元C. 540万元D. 600万元答案:A2. 一项投资的年回报率为5%,如果投资100万元,一年后的收益是多少?A. 5万元B. 10万元C. 15万元D. 20万元答案:A3. 一个圆的半径是5厘米,那么它的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π答案:B4. 如果一个数列的前四项是2, 4, 6, 8,那么这个数列的第五项是多A. 10B. 12C. 14D. 16答案:A5. 一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A6. 一个公司有10个员工,如果每个员工的工作效率提高了20%,那么整体工作效率提高了百分之多少?A. 10%B. 20%C. 22%D. 25%答案:C7. 如果一个数的平方根是4,那么这个数是多少?A. 16B. 8C. 12D. 20答案:A8. 一个班级有30名学生,其中15名学生是男生,那么女生的比例是A. 1/2B. 2/3C. 3/4D. 4/5答案:A9. 一个数的立方是125,那么这个数是多少?A. 5B. 10C. 15D. 20答案:A10. 如果一个产品的成本是50元,售价是100元,那么利润率是多少?A. 50%B. 100%C. 150%D. 200%答案:B二、填空题(每题2分,共10分)11. 如果一个数的平方是36,那么这个数是________。
答案:±612. 一个直角三角形的斜边长度是13,一个直角边是5,那么另一个直角边的长度是________。
答案:1213. 一个圆的直径是14厘米,那么它的半径是________。
答案:7厘米14. 如果一个数的对数(以10为底)是2,那么这个数是________。
管理类联考MBA综合数学真题及解析
一、问题求解(本大题共15题,每小题3分,共45分。
在下列每题给出的五个选项中,只有一项是符合试题要求的。
请在答题卡上将所选的字母涂黑。
)1、某部门在一次联欢活动中设了26个奖,奖品均价为280元,其中一等奖单价为400元,其他奖品价格为270元.一等奖的个数为( ) (A )6个(B )5个(C )4个(D )3个(E )2个 分析:126213x ⇒=⨯=, 答案:E2、某单位进行办公装修,若甲、乙两个装修公司合做需10周完成,工时费为100万元.甲单独做6周后由乙公司接着做18周完成,工时费为96万元.甲公司每周的工时费为( )(A )万元(B )7万元(C )万元(D )6万元(E )万元 分析:设甲、乙每周的工时费分别为,x y ;()1010061896x y x y ⎧+=⎪⎨+=⎪⎩73x y =⎧⇒⎨=⎩,答案:B. 3、如图示,已知3AE AB =,2BF BC =,若ABC ∆的面积为2,则AEF ∆的面积为( ) (A )14(B )12(C )10(D )8(E )6分析:根据三角形面积的性质:两三角形同底,面积比即为高的比.24ABC ABF S S =⇒=V V (两个三角形同底AB,高比为:2:1BF BC =),8BFE S ⇒=V (同三角形ABF ,同底BF ,高的比为:2:1BE AB =)故12S =,答案:B.4、某容器中装满了浓度为90%的酒精,倒出1升后用水将容器充满,搅拌均匀后再倒出升,再用水将容器充满.已知此时的酒精浓度为40%,则该容器的容积是( ) (A )升 (B )3升 (C )升 (D )4升(E )升分析:设该容器的容积是x ,22211290%140%133x x x ⎛⎫⎛⎫⎛⎫⨯-=⇒-=⇒= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.答案:B. 5、如图,图A 与图B 的半径为1,则阴影部分的面积为( )(A )23π (B )(C )3π(D )23π-E )23π-分析:阴影部分所对的圆心角为120o ,阴影面积的一半为一个圆心角为120o 减去一个等腰三角形,即有2120112223602232S S rππ⎛⎫==-=-⎪⎝⎭小.答案:E6、某公司投资一个项目,已知上半年完成了预算的13,下半年完成剩余部分的23,此时还有8千万投资未完成,则该项目的预算为()(A)3亿(B)亿(C)亿(D)亿(E)亿分析:设该项目的预算为x,2220.8 3.6333x x⎛⎫-⨯=⇒=⎪⎝⎭.答案:B.7、甲乙两人上午8:00分别自A、B出发相向而行,9:00第一次相遇之后速度均提高了公里/小时,甲到B、乙到A后立即原路返回.若两人在10:30第二次相遇,则A、B两地相距()公里(A)(B)7(C)8(D)9(E)分析:设两人的速度分别为12,v v,两地距离为S,1212()19(3) 1.52v v SSv v S+⨯=⎧⇒=⎨++⨯=⎩,答案:D.8、已知{}na为等差数列,且2589a a a-+=,则129a a a+++=L()(A)27 (B)45(C)54(D)81(E)162分析:法一,285529a a a a+=∴=Q,1295981a a a a+++==L;法二,特值法,令等差数列公差为0,则有9n a =,1299981a a a +++=⨯=L ;答案:D.9、在某项活动中,将3男3女6名志愿者都随机地分成甲、乙、丙三组,每组2人,则每组都是异性的概率为( ) (A )190(B )115(C )110(D )15(E )25分析:事件发生的可能总数为:22264233C C C P ,满足所求事件的可能数为:11111133221133C C C C C C P , 因此概率62155p ==.答案:E 10、已知直线l 是圆225x y +=在点(1,2)处的切线,则l 在y 轴上的截距为( ) (A )25(B )23(C )32(D )52(E )5分析:在圆222x y r +=上某一点()00,x y 的切线方程为:200x x y y r +=; 因此有该切线为:25x y +=1522y x ⇒=-+,在y 轴上的截距为52,答案:D.11、某单位决定对4个部门的经理进行轮岗,要求每位经理必须轮流到4个部门中的其他部门任职,则不同方案有( )种 (A )3 (B )6(C )8(D )9(E )10分析:这是4人错排法,方案有339⨯=种,答案:D.经验公式:错排法的递推公式()()211n n n D n D D --=-+,明显又有10D =,21D =,故32D =,49D =.当求别的数的错排法方案数时,依次类推.12、如图,正方体''''ABCD A B C D -的棱长为2,F 是棱''C D 的中点,则AF 的长为( )(A )3 (B )5(CD )E )分析:'AA F ∆为直角三角形,又'A F =3AF =.答案:A.13、某工厂在半径为5cm 的球形工艺品上镀一层装饰金属厚度为0.01cm ,已知装饰金属的原材料为棱长为20cm 的正方体锭子,则加工10000个该工艺品需要的锭子数最少为( )( 3.14π=,忽略装饰损耗)(A )2 (B )3(C )4(D )5(E )20分析:每个工艺品需要的材料体积为:()()332244450.0150.01 5.01+5.015+5333ππππ+-=⨯⨯⨯≈.故需要的个数为:310000 3.93420π≈<,则最少需要4个.答案:C 14、若几个质数的乘积为770,则它们的和为( ) (A )85 (B )84(C )28(D )26(E )25分析:77011752=⨯⨯⨯,和为1175225+++=.答案:E15、掷一枚均匀的硬币若干次,当正面向上次数大于反面次数时停止,则4次内停止的概率为( )(A )18(B )38(C )58(D )316(E )516分析:一次停止的概率为:12,两次停止没有可能,三次停止的概率为:11112228⨯⨯=,四次没有可能.故58p =.二、条件充分性判断(本大题共10小题,每小题3分,共30分) 解题说明:本大题要求判断所给出的条件能否充分支持题干中陈述的结论。
mba数学题型
MBA数学题型概览一、代数运算代数运算在MBA数学考试中占据重要地位。
主要考察学生对基本代数概念的理解,以及运用代数知识解决实际问题的能力。
涉及的内容包括方程求解、不等式分析、函数性质探讨等。
二、解析几何解析几何是MBA数学中的重要部分,主要涉及直线、圆、椭圆、抛物线等曲线的几何性质和方程。
此外,还会考察学生利用解析几何知识解决实际问题的能力。
三、平面几何平面几何主要涉及点、线、面之间的基本关系和性质。
考试中可能会涉及角度计算、长度测量、面积和体积计算等问题。
四、排列组合排列组合是组合数学的基本内容,主要涉及计数原理、排列组合的计算等。
在MBA数学考试中,排列组合的知识点通常会结合具体的问题背景进行考察。
五、概率论概率论部分主要涉及随机事件、概率计算、随机变量及其分布等知识点。
要求学生理解并掌握基本的概率理论,能进行概率计算和随机变量的分析。
六、数理统计数理统计是应用概率论对数据进行收集、整理、分析和推断的科学。
考试中通常会涉及参数估计、假设检验、回归分析等内容。
七、微积分微积分是MBA数学考试的核心内容之一,主要包括极限理论、导数、积分等知识点。
学生需要理解并掌握微积分的核心概念和运算方法。
八、线性代数线性代数部分主要涉及向量、矩阵、线性方程组等知识点。
要求学生掌握线性代数的核心概念,并能运用这些知识解决实际问题。
九、离散数学离散数学主要研究离散对象(如集合、图论等)的数学结构和性质。
在MBA数学考试中,离散数学通常会结合其他知识点进行考察,如集合论与图论的结合等。
2023年MBA管理类联考真题数学真题及答案
2023年MBA管理类联考真题数学真题及答案1.油价上涨5%后,加一箱油比原来多花20元,一个月后油价下降了4%,则加一箱油需要花()钱A.384元B.401元C.402.8元D.403.2元E.404元答案:D2.已知甲、乙两公司的利润之比为3:4,甲、丙两公司的利润之比为1:2,若乙公司的利润为3000万元,则丙公司的利润为()万元A.5000B.4500C.4000D.3500E.2500答案:B3.一个分数的分子与分母之和为38,其分子分母都减去15,约分后得到1/3,则这个分数的分母与分子之差为()。
A.1B.2C.3D.4E.5答案:D4.√(5+2√6) -√3=().A.√2B.√3C.√6D.2√2E.2√3答案:A5.某公司财务部有男员工2名,女员工3名,销售有男员工4名,女员工1名,现在要从中选出2男1女组成工作小组,并要求每门至少1名员工入选,则工作小组的构成方式有()种。
A.24B.36C.50D.51E.68答案:D6.甲乙两人从同一地点出发,甲先出发10分钟,若乙跑步追赶甲,则10分钟追上,若乙骑车追赶甲,每分钟比跑步多行100米,则5分钟追上,那么甲每分钟走的距离为()米。
A.50B.75C.100D.125E.150答案:C7.如图,已知点A(-1,2),点B(3,4),若点P(m,0)使得|PB|-|PA|最大,则()A m=-5B m=-3C m=-1D m=1E m=3答案:A8.由于疫情防控,电影院要求不同家庭之间至少隔一个座位,同一家庭的成员要相连,两个家庭去看电影,一家3人,一家2人,现有一排7个相连的座位,符合要求的坐法有()种A 36B 48C 72D 144E 216答案:C9.方程x2-3|x-2|-4=0的所有实根之和为()A.-4B.-3C.-2D.-1E.0答案:B10.如图,从一个棱长为6的正方体中裁去两个相同的正三棱锥,若正三棱锥的底面边长AB=4√2,则剩余几何体的表面积为().A.168B.168+16√3C.168+32√3D.112+32√3E.124+16√3答案:B11.如图3,在三角形ABC中,∠BAC=60°,BD平分∠ABC,交AC于D,CE平分∠ACB交AB于E,BD和CE交于F,则∠EFB=()A.45°B.52.5°C.60°D.67.5°E.75°答案:C12.跳水比赛中,裁判给某选手的一个动作打分,其平均值为8.6,方差为1.1,若去掉一个最高分9.7和一个最低分7.3,则剩余得分的()A.平均值变小,方差变大B.平均值变小,方差变小C.平均值变小,方差不变D.平均值变大,方差变大E.平均值变大,方差变小答案:E13.设x为正实数,则x/(8x^3+5x+2)的最大值为()A.1/15B.1/11C.1/9D.1/6E.1/5答案:B14.如图,在矩形ABCD中,AD=2AB,EF分别为AD,BC的中点,从A、B、C、D、E、F中任意取3个点,则这3个点为顶点可组成直角三角形的概率为()A.1/2B.11/20C.3/5D.13/20E.7/10答案:E15.快递员收到3个同城快递任务,取送地点各不相同,取送件可穿插进行,不同的送件方式有()种。
MBA联考数学真题及解析
M B A联考数学真题及解析Prepared on 21 November 2021一、问题求解:第1~15小题,每小题3分,共45分,下列每题给出的A 、B 、C 、D 、E 五个选项中,只有一项是符合试题要求的,请在答题卡上将所选项的字母涂黑。
1.电影开演时观众中女士与男士人数之比为5:4,开演后无观众入场,放映一小时后,女士的20%,男士的15%离场,则此时在场的女士与男士人数之比为(A )4:5 (B)1:1 (C)5:4 (D)20:17 (E)85:64答案:D解析:设电影开始时,女为a 人,男为b 人,有已知条件,a=5x ,b=4x , 从而5x ×0.84x ×0.85=43.4=20172.某商品的成本为240元,若按该商品标价的8折出售,利润率是15%,则该商品的标价为(A)276元 (B)331元 (C)345元 (D)360元 (E)400元答案:C解析:设标价为a 元,则售价为0.8a ,由已知0.8x −240240=0.15解得a=345(元)3.三名小孩中有一名学龄前儿童(年龄不足6岁),他们的年龄都是质数(素数),且依次相差6岁,他们的年龄之和为(A )21 (B )27 (C )33 (D )39 (E )51答案:C解析:设三个儿童的年龄依次为P1,P2,P3(P1<6),若P1=2,则P2=2+6,P3=8+6,不合题意.若P1=3,则P2=3+6,P3=9+6,不合题意.取P1=5,则P2=5+6=11,P3=11+6=17,即P1,P2,P3皆为质数,符合题意要求,则三个儿童年龄和为5+11+17=334.在右边的表格中,每行为等差数列,每列为等比数列,x+y+z=解析:由x ,54,32为等差数列,52,54,y 为等比数列及32,34,z 为等比数列, 得 54 - x=32 - 54,y=54×12 , z=34×12即 x=1 , y = 58 , z=38 ,1+58+38=25.如图1,在直角三角形ABC 区域内部有座山,现计划从BC 边上的某点D 开凿一条隧道到点A ,要求隧道长度最短,已知AB 长为5km ,则所开凿的隧道AD 的长度约为(A )4.12km (B)4.22km (C)4.42km (D)4.62km (E)4.92km解析:由已知BC=√52+122=13,从而12×5×12=12×AD ×13解得:AD=6013≈4.626.某商店举行店庆活动,顾客消费达到一定数量后,可以在4种赠品中随机选取2件不同的赠品,任意两位顾客所选的赠品中,恰有1件品种相同的概率是(A ) 1/6 (B ) 1/4 (C )1/3 (D )1/2 (E )2/3答案:E解析:将4种赠品分别用1,2,3,4编号,任意2位顾客任选赠品的总可能性为x 42x 42=36(种) A1表示2位顾客所选赠品中恰有意见相同,且相同赠品为1号赠品,则A1包含的可能性为x 32x 21=6种,从而P(A1)=16. 以此类推,x x (i=2,3,4,)表示2位顾客所选赠品中恰有一件相同,且相同,且相同赠品为i 号赠品,则P(A2)=P(A3)=P(A4)= 16从而所求概率为4×16=237.多项式x3+ax2+bx-6的两个因式是x-1和x-2,则其第三个一次因式为 (A)x-6 (B)x-3 (C)x+1 (D)x+2 (E)x+3答案:B解析:若x 3+a x 2+bx-6=(x-1)(x-2)(x-m),令x=0则有(-1)×(-2)×(-m )= -6 即m=38.某公司的员工中,拥有本科毕业证、计算机登记证、汽车驾驶证得人数分别为130,110,90.又知只有一种证的人数为140,三证齐全的人数为30,则恰有双证得人数为(A )45 (B )50 (C )52 (D )65 (E )100答案:B解析:如图4所示,公司员工可被分为8部分,为书写方便,这里A 、B 、C 分别代表仅有本科毕业证,仅有计算机等级证,仅有汽车驾驶证人数,A+AB+AC+ABC=130B+AB+BC+ABC=110由已知条件:C+AC+BC+ABC=90A+B+C=140ABC=30前三个方程得A+B+C+3ABC+2(AB+AC+BC)=330从而 140+90+2(AB+AC+BC )=330AB+AC+BC=50(人)9.甲商店销售某种商品,该商品的进价为每价90元,若每件定价为100元,则一天内能售出500件,在此基础上,定价每增加1元,一天便能少售出10出,甲商店欲获得最大利润,则该商品的定价应为(A )115元 (B )120元 (C )125元 (D )130元 (E )135元解析:设定价为100+a (元),由已知条件,利润l=(100+a )(500-10a )-90(500-10a )= -10x 2+400a+5000= - 10[(x −20)2-900]即当a=20时,利润最大.10.已知直线ax-by+3=0(a>0,b>0)过圆x2+4x+y2-2y+1=0的圆心,则a-b 的最大值为(A )9/16 (B )11/16 (C ) 3/4 (D ) 9/8 (E )9/4答案:D解析:所给圆为(x +2)2+(x −1)2=22,由已知条件 -2a -b+3=0,即b=3-2a 因此ab=a (3-2a )=-2x 2+3a=-2[(x −34)2- 916]即当a = 34 ,b = 3- 2a = 32 时,ab=98为其最大值.11.某大学派出5名志愿者到西部4所中学支教,若每所中学至少有一名志愿者,则不同的分配方案共有(A )240种 (B )144种 (C )120种 (D )60种 (E )24种答案:A解析:由题意知其中一所学校应分得2人,另外3所各一人.第一步,选一所学校准备分得2人,共有x 41种选法第二步,从5人中选2人到这所学校,共有x 52种选法第三步,安排剩下3人去3所学校,共有3种方式由乘法原理,不同分配方案为x 41x 52×3=240(种) 12.某装置的启动密码是由0到9中的3个不同数字组成,连续3次输入错误密码,就会导致该装置永久关闭,一个仅记得密码是由3个不同数字组成的人能够启动此装置的概率为(A )1/120 (B )1/168 (C ) 1/240 (D )1/720 (E )3/1000 答案:C解析:设Ai (i=1,2,3,)表示第i 次输入正确,则所求概率P=P (x 1∪x 1̅̅̅̅x 2∪x 1̅̅̅̅ x̅̅̅2x 3) =P(x 1)+P(x 1̅̅̅̅x 2)+P(x̅̅̅1x ̅̅̅2x ̅̅̅3) =110×9×8 + 71910×9×8 × 1719+71910×9×8×718719×1718=3720=124013.某居民小区决定投资15万元修建停车位,据测算,修建一个室内车位的费用为5000元,修建一个室外车位的费用为1000元,考虑到实际因素,计划室外车位的数量不少于室内车位的2倍,也不多于室内车位的3倍,这笔投资最多可建车位的数量为(A )78 (B )74 (C )72 (D )70 (E )66答案:B解析:设建室内停车位x 个,室外停车位y 个,由题意求满足{5000x +1000y ≤1500002x ≤y ≤3x的最大x+y 即7x ≤150,8x ≤150,则x 可能取值为19,20,21,取x=19,得y=55,19+55=74为满足题意的最多车位数.14.如图2,长方形ABCD 的两条边长分别为8m 和6m ,四边形OEFG 的面积是4m2,则阴影部分的面积为(A )32m2 (B )28 m2 (C )24 m2 (D )20 m2 (E )16 m2 答案:B解析:白色区域面积为12BFCD + 12 FCAB -4=12xx BC −4=20,从而阴影面积为6×8−20=28(x 2)15.在一次竞猜活动中,设有5关,如果连续通过2关就算成功,小王通过每关的概率都是1/2,他闯关成功的概率为(A )1/8 (B ) 1/4 (C ) 3/8 (D )4/8 (E )19/32答案:E解析:用Ai (i=1,2,3,4,5)表示第i 关闯关成功,则小王的过关成功率P (x 1x 2∪x 1̅̅̅̅x 2x 3∪x 1x 2̅̅̅̅x 3x 4∪x 1 ̅̅̅̅̅x 2̅̅̅̅x 3x 4∪x 1x 2 ̅̅̅̅̅̅x 3̅̅̅̅x 4x 5∪x 1̅̅̅̅x 2x 3̅̅̅̅x 4x 5∪x 1̅̅̅̅ x 2 ̅̅̅̅̅̅x 3̅̅̅̅x 4x 5)= 12 12 + 12 12 12 + 212 12 12 12+ 3 12 12 12 12 1 = 14 + 18 + 18 + 332= 1932在此处键入公式。
MBA联考数学必备公式 (1)
(2)前n项和Sn (梯形面积)
a1 an n(n 1) d d n na1 d n 2 (a1 )n 2 2 2 2 d 2 d Sn= n (a1 )n 2 2 Sn=
抽象成关于n的二次函数f ( x)
d 2 d x (a1 ) x, 2 2
1 1 x1 x2 x1 x2 x1 x2
(2)
1 1 ( x1 x2 )2 2 x1 x2 2 x12 x2 ( x1 x2 )2
( x1 x 2 ) 2 ( x1 x 2 ) 2 4 x1 x 2
11
(3) x1 x 2
尚德 MBA 中心
3 3 (4) x1 x2 ( x1 x2 )( x12 x1 x2 x12 )
2
的图像求解。 △>0 △= 0 △< 0
x1
x2
x 1,2
x1,2
b 2a
x1,2
b 2a
无实根
x < x1 或 x > x2 集 f(x)<0 解集 x
1
x
Байду номын сангаас
b 2a
X∈R x ∈
< x < x2
12
x ∈
尚德 MBA 中心
2、注意对任意 x 都成立的情况 (1) ax2 bx c>0 对任意 x 都成立,则有:a>0 且△< 0 ( 2) ax2 bx c 0 对任意 x 都成立,则有:a<0 且△< 0 3、要会根据不等式解集特点来判断不等式系数的特点. 4、绝对值不等式的解法
1、实数 a 的绝对值定义为: 2、绝对值的几何意义 实数 a 在数轴上对应一点,这个点到原点的距离就是 a 的 绝对值
MBA联考综合能力数学(实数的性质及运算;绝对值、根式、完全平方
MBA联考综合能力数学(实数的性质及运算;绝对值、根式、完全平方式)历年真题试卷汇编1(题后含答案及解析) 题型有:1. 问题求解 2. 条件充分性判断问题求解本大题共15小题,每小题3分,共45分。
下列每题给出的五个选项中,只有一项是符合试题要求的。
1.[2014年12月]设m,n是小于20的质数,满足条件|m一n|=2的{m,n}共有( )。
A.2组B.3组C.4组D.5组E.6组正确答案:C解析:20以内的质数是2,3,5,7,11,13,17,19,其中|3—5|=2,|5—7|=2,|11—13|=2,|17一19|=2,所以满足要求的{m,n}有4组,选择C选项。
知识模块:实数的性质及运算2.[2014年1月]若几个质数(素数)的乘积为770,则它们的和为( )。
A.85B.84C.28D.26E.25正确答案:E解析:因为已知若干质数的乘积为770,因此将770分解质因数可得770=2×5×7×11,显然2、5、7、11均为质数,故它们的和为2+5+7+11=25,故选E。
知识模块:实数的性质及运算3.[2011年1月]设a、b、c是小于12的三个不同的质数(素数),且|a一b|+|b一c|+|c—a|=8,则a+b+c=( )。
A.10B.12C.14D.15E.19正确答案:D解析:小于12的质数有2,3,5,7,11,则由|a—b|+|b—c|+|c一a|=8,且如果这三个数中有11的话,11与其他任意两数差的绝对值相加,结果必然大于8,与已知相矛盾;同时,也不可能有2这个数.因为两两差的绝对值显然不等于8,所以a、b、c这三个数为3、5、7,则a+b+c=3+5+7=15。
因此选D。
知识模块:实数的性质及运算4.[2010年1月]三名小孩中有一名学龄前儿童(年龄不足6岁),他们的年龄都是质数(素数),且依次相差6岁.他们的年龄之和为( )。
A.21B.27C.33D.39E.51正确答案:C解析:比6小的质数只有2、3、5,依次相差6岁,由于2、3两质数分别加上6之后为8,9,不再是质数,而只有当最小的年龄为5岁才满足题意,则三个小孩年龄分别为5、11、17,则5+11+17=33。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、实数 a、b 在数轴上的位置如图所示,则下列结论正确的是 b 0 A a+b>a>b>a-b C a-b>a>b>a+b a B a>a+b>b>a-b D a-b>a>a+b>b
(
)
MBA 培训中心 E 4、 a > b 以上都不正确
010-62751161
(1)若 a, b 是正数,且满足12345 = (111 + a )(111 − b ) (2) a = ln x +
题型 2:小数应用
有限小数化为分数的方法 (1)0.72
循环小数化为分数的方法 (2) 0.66 L = 0. 6
•
0.3131L = 0. 31
• •
0.817817 L = 0. 81 7
•
•
(3,机工版教材)10 除以 m 的余数为 1 (1)既约分数
k
n n 满足 0< <1 m m
MBA 培训中心 (2)分数
MBA 培训中心
010-62751161
实数专题
一、实数的分类
按定义分类: 有理数 分数 实数 整数
正整数 零 负整数 正分数 有限小数或无限循环小数 负分数 正无理数 自然数
无理数 按正负分类: 负无理数
无限不循环小数 正整数 正有理数 正分数 正无理数
正实数
实数
零 负有理数 负实数 负无理数
a2 − b2 a 3 ± b3 =
例:已知 n 为整数, n ≥ 2 ,则 n 3 − n 必有约数( (A)5 (B)6 (C)7 (D)8 ) (E)9
二、整式的除法
如果 f ( x ) 除以 g ( x ) ,商式为 Q( x ) ,余式为 R ( x ) ,则 f ( x ) = g ( x ) Q( x ) + R ( x ) 1:余式定理:多项式 f ( x ) 除以 ( x − a ) 的余式为 f (a )
负整数 负分数
1、 (
1 2+ 1
A.2000
+
1 3+ 2
+
1 4+ 3
+...+
1 2002 + 2001
D.2003
)( 2002 + 1 )=( E.2004
)
B.2001
C.2002
2、实数 a,b,c 满足 a<b<0 c>0 , 且|b|<|c|,|a|>|c|, 则代数式|b+c|-|b-a|+|a+c|+c 为 (A)-3a+2c (B) –a-ab-2c (C) a-2b (D)3a (E) c
2
E、不存在
MBA 培训中心
010-62751161
不等式提高训练之:不等式应用
一、基本题目 (1) log 1 ( x + 3) > 4
2
(2)已知不等式 x 2 − mx + n ≤0 的解集为 {x | −5 ≤ x ≤ 1} ,求 m、n 的值。
已知一元二次方程 x 2 − 2mx + m + 2 = 0 的两个实根平方和大于 2,求 m 的取值范围。
例,
x2 y2 z2 + + =1 a 2 b 2 c2 x y z + + =1 a b c
(2)
(1)
a b c + + =0 x y z
例,已知 a + b + c = 4, 且
1 1 1 + + = 0 ,求 (a + 1) 2 + (b + 2 2 ) + (c + 3) 2 a +1 b + 2 c + 3
( E ) 以上结论均 不正确
(8) a + b < ab (1)
1 1 < <0 a b
(2) a < 0 < b
(9)设实数 a,b,c 满足 a<b<c, 且 a+b+c=0,则不一定成立的是 (A)ab>ac (B)c(b-a)>0 (C) ac(c-a)<0 (D)ab <cb
2 2
(E) b+a<c+a
1+ 1 a
1 ) a
a 1+ 1 a
② log a (1 + a) > log a (1 + 其中成立的是( ) C.②与③ D.②与④
1 ) a
④ a1+ > a B.①与④
A.①与③
(5)不等式 log 2 x −1 ( x 2 − x + 1) > 0 成立 (1)
1 < x <1 2
(2) x > 1
010-62751161
n 可以化为小数部分的一个循环节有 K 为数字的纯循环小数 m
• •
(4)已知纯循环小数 0. x y z 化为最简分数时,分子与分母的和为 162,求这个最简分数
整式与分式专题
一、因式分解常用公式
(a + b )2 = (a ± b )3 =
需要注意:解分式方程的“增根”情况 例,解分式方程:
x −1 1 4 − = 2 x +1 x −1 x −1
例,解分式方程:
x x − 4 x −1 x − 3 + = + x −1 x − 5 x − 2 x − 4
三、一个常用的结论 1 1 1 2 2 2 2 若 + + = 0 ,则有 (a + b + c ) = a + b + c a b c
B. ( −3, −2] U (1, +∞ ) E.以上都不正确
C. ( −3, −2] U [1,2)
三、绝对值不等式
类型 1:例,不等式|x2-3x|>4 的解集是________.
类型 2: |ax-b|±|cx-d|<e
例 1:求满足|x+1|-|2x-3|<0 的 x 取值范围 (A) (-2/3,4) (B) (2/3,4) (C) (-∞,4) (E) (-∞,2/3)∪(4,+∞)
b f ( x ) 除以 (ax − b ) 的余式为 f a
2:因式定理:相当于余式定理中余式为 0 的情况。 除以 ( x + 3) 的余式为-1, 则 f (x ) (1) : (机工版) 已知多项式 f ( x ) 除以 ( x + 2) 的余式为 1, 除以 ( x + 2) ( x + 3) 的余式为:
(2)多项式 f ( x ) 除以 ( x + 2 ) 的余式为-14, 除以 x 2 − 4 x + 6 的余式为 − 4 x + 14 ,则 f ( x ) 除以 ( x + 2 ) ( x 2 − 4 x + 6) 的余式为:
MBA 培训中心
010-62751161
MBA 培训中心
010-62751161
7、一元二次方程 ax +bx+c=0 中,a>0,b<0,c<0,则该一元二次方程两根的情况是:
2
A、 有两正根
B、有两负根
C、有一正根,一负根,且正根绝对值大 E、以上都不正确
D、有一正根,一负根,且负根绝对值大
8、方程
x − 3 + 3 = 1; x = − x; x − 2 + x − 1 = 0; − x − 5 = x 中,没有实数根的方
典型题目:
题型 1:实数应用
(1)两个盒子分别装了若干石子,第一个盒子中石子的数目乘以 3 加上第二个盒子中石子 的数目乘以 4 之和为 29,问第二个盒子中石子的数目为: A.奇数 B.偶数 C.可能为奇数,可能为偶数 D.质数 E.合数
MBA 培训中心
010-62751161 ).
2 或x> 2}. a (2) a > 0
MBA 培训中心
010-62751161
(12)已知 A = {x | | x + 1| > 3} , B = x | x + x ≤ 6 , 则 A I B =
2
{
}
A. [ −3, −2) U (1,2] D. ( −∞, −3] U (1,2]
求方程 x 2 − 2mx + m 2 − 1 = 0 的两根,如果要使方程的两根介于-2 与 4 之间,求实数 m 的取值范围。
(3)要使 x +ax+a 对一切实数 x 都大于-3,则 a 的取值范围是_____
2
(4)对于 0 < a < 1 ,给出下列四个不等式 ① log a (1 + a) < log a (1 + ③ a1+ a < a
(2)在小于 100 的自然数中,含有奇数个正整数因子的自然数个数是( (A)7 个 (B)8 个 (C)9 个 (D)10 个 (E)11
(3)有 40 个小孩,每个小孩胸前号码数分别是 1,2,…,40,请你挑选出若干个小孩围 城一圈,使任意相邻两个小孩胸前号码数之积都小于 100,你最多能挑选出多少个小孩?
(4)某公交公司停车场内有 15 辆车,从上午 6 时开始发车(6 时整第一辆车开出) , 以后每隔 6 分钟再开出一辆. 第一辆车开出 3 分钟后有一辆车进场, 以后每隔 8 分钟有一辆 车进场,进场的车在原有的 15 辆车后依次再出车.问到几点时,停车场内第一次出现无车 辆? (A)10 点 (B)10 点半 (C)11 点 (D)11 点半 (E)12 点