空心车轴

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空心车轴

高速动力车运行速度快,国家下达的设计任务规定:最高运行速度250 km/h,试验速度280 km/h,为减轻轮轨之间的动作用力,要尽量减轻车轴质量,尤其是簧下质量。在充分考虑我国目前的制造水平及工艺措施的条件下,对所有零部件的细小结构都作了减小质量的考虑。车轴属簧下质量,必须考虑减轻质量,为此,将车轴设计成空心车轴。

车轴与车轮的应力一样,每转一周,应力将循环一次,随着运行速度提高,循环频率加快,易发生疲劳,设计时应保证车轴有足够的安全裕度,即有足够的疲劳寿命。这要通过精心设计并采取相应的工艺措施来保证。

1.空心轴结构设计

(1)空心车轴轴身内、外径的确定

在保证车轴所受的最大应力不变的条件下,空心车轴轴身外径越大,内孔直径越大,则减轻质量的效果越好。但为了减小轮轨动作用力,高速动力车采用双空心轴驱动,在此情况下,为避免内外空心轴及车轴在运动过程中相互干涉,其间必须留有足够的间隙,因此,车轴轴身外径的选择受到空间的限制。经综合考虑,轴身外径定为183mm,见图1。确定车轴内孔直径,首先要保证有足够的强度,其次是减轻质量,两者需协调;同时,车轴内孔直径不仅影响车轴的强度和应力分布,还影响轮轴的过盈量及压装工艺。

图1 空心车轴局部结构图

1.轴身

2.轮座

3.过渡圆弧

4.轴颈

5.内孔

车轴主要承受弯、扭两种载荷,可从车轴的最大弯曲和扭应力来分析其强度。

车轴受弯和受扭的分析相同,得到的结论也一致,因此,仅分析车轴受弯的情况。设截面模量为W (m 3),车轴内、外径分别为d (m )、

D (m ),车轴的最大弯矩为M (N*m ),则车轴的最大应力为σmax =M /W,单位为 (Pa )。

设实心车轴与空心车轴受到的弯矩M 相等,车轴外径也相等,则空心轴与实心轴的最大应力之比σK /σs =1/〔1-(d /D )4〕

在结构允许的条件下,尽可能使空心轴与实心轴应力相等,则: D s /D k =34)/(1k k D d

式中:d K 、D K 、D s ——空心轴内、外径及实心轴外径 (mm )。

d K /D K =0.6,则D s /D K =0.955。说明要保证空心轴与实心轴

具有相等的应力,在空心轴内外径之比为0.6时,空心轴外径应比实心轴外径大4.5%。

结合我国机车工业的加工现状,且国家攻关课题资金紧张,空心轴采用内孔为直孔结构,它虽不如收口孔心轴减轻质量的效果好,但

两者相差不大,且直孔给加工带来很大方便。从结构分析,轮座与轴肩过渡圆弧处受力状况良好。收口孔心轴不足之处是轮座处壁厚较薄,而此处正是靠过盈量压装车轮来保证轮轴装配的,见图2。

(2)轮座直径与轴身直径比及过渡圆弧半径的确定

据统计,机车车辆86%左右的车轴在轮座靠内侧处发生裂损,车轴轮座中间部分承受着最大的弯曲应力,并存在擦伤、腐蚀,以及由于压装车轮所引起的应力集中,致使轮座部分疲劳强度明显下降。根据疲劳试验的结果,得到了一条重要结论:车轴轮座部分比相邻轴身应有较大的直径,从轮座边缘应平滑地过渡到直径较小的轴身。

(a) 收口空心轴轮座(b)直孔空心轴轮座

图2

图3是日本对轴身直径d=50 mm、轮座直径D=75 mm的试样进行试验得到的直径比D/d与疲劳强度的关系曲线。图中,R为轴身与轮座两段间的过渡圆弧半径,σw2为疲劳断裂破坏的极限;σw3为磁粉探测确定的发生裂纹的疲劳极限;σw1为显微镜观察确定的裂纹发生疲劳极限。

图3 D/d与疲劳强度的关系曲线图4过渡圆弧曲线半径由图3知,选取D/d为1.1左右较为合适,大于1.16时,疲劳极限反而下降(图中未表示)。D/d为1.10~1.16时,轮座处与过渡圆弧处疲劳寿命接近。法国铁道科学研究所建议TGV动力车空心轴轮座处直径与相邻轴身直径之比为1.15~1.16,略大于以前提出的1.10。德国ICE动力车空心轴轮座处阶梯直径比为1.106,推荐采用阶梯直径比为1.10~1.16。

我国首台高速动力车空心轴阶梯直径比为208/183=1.126,见图1,是根据图3的试验曲线,并结合车轴的实际结构要求,同时参照了德国ICE动力车、法国TGV动力车空心轴的结构而确定的,目前还不能完全由计算来确定,只能作定性分析。当车轮与车轴转动时,轮毂内轴孔的前端10 mm左右部分因压装塑性变形而扩大成锥形。在弯矩作用下车轴转动时,轮座内端与轮毂的轴孔相互摩擦,在车轴的轮座表面就很快形成擦伤腐蚀和凹痕擦伤,应力集中更趋严重,形成日后发生疲劳裂纹的核心。如果轮座与轴身结构设计成阶梯状,使车轴在弯矩作用下的挠曲变形发生在过渡段内,轮座擦伤就大为减小,从而

提高疲劳寿命,但阶梯直径比过大,疲劳破坏会转移到过渡圆弧部分,因此,寿命反而降低。

阶梯直径比选定后,可设计过渡圆弧曲线半径R(见图4)。R越大,则轮座部分的疲劳极限越低,过渡圆弧部分的疲劳极限越大;反之亦然。当R最佳时,两者疲劳极限接近或相等。

轴肩过渡圆弧采用椭圆弧曲线为理想曲线,这样可以兼顾轮座处与轴肩圆弧处的疲劳极限,当轴径比D/d=1.15时,过渡圆弧曲线由R15和R55两段圆弧组成。德国ICE动力车、法国TGV动力车车轴都采用空心车轴,且都由R15和R75两段圆弧组成的近似椭圆的过渡圆弧。

(3)突悬量的选择

多次现场调研发现,使用过一段时间的车轴退轮以后,轮座表面可分为三个区:第一区为磨光区,靠近轮座内侧,该区钟口间隙大,接触压力小,滑动振幅大,微颗粒状的氧化物不易生成,同时也易排出,因此,两表面被磨光;第二区为腐蚀区,该区紧靠磨光表面,钟口间隙小,接触压力大,轮座表面与轮毂孔内表面间在循环载荷作用下,产生反复滑动,而且滑动振幅小,会产生大量的氧化磨损颗粒,两表面磨损严重,从放大的照片及实物看,该区磨蚀严重,是车轴疲劳破坏的危险区,疲劳裂纹多发生在该部位;第三区为配合良好区。

采用突悬结构(见图5),让出轮毂内轴孔前端表面因压装车轮而引起的塑性变形区,就可有效地提高轮座处的疲劳强度。

相关文档
最新文档