【最新人教版初中数学精选】第2套人教初中数学九上 25.3 概率的实际应用(第2课时)课件.ppt
人教版九年级数学上册 第二十五章概率初步25.3 用频率估计概率 课后练习
人教版九年级数学上册第二十五章概率初步25.3 用频率估计概率课后练习一、选择题1.由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色,下列说法正确的是()A.两个转盘转出蓝色的概率一样大B.如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性变小了C.游戏者配成紫色的概率为1 6D.先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率不同2.甲、乙两位同学在一次用频率估计概率的实验中统计了某一结果出现的频率,并绘出了如下统计图,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现5点的概率B.掷一枚硬币,出现正面朝上的概事C.一个不透明的袋子中装着除颜色外都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率D.任意写出一个两位数,能被2整除的概率3.罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响很大.如图是对某球员罚球训练时命中情况的统计:下面三个推断:①当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822;②随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812;③由于该球员“罚球命中”的频率的平均值是0.809,所以“罚球命中”的概率是0.809.其中合理的是()A.①B.②C.①③D.②③4.如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计实验结果),他将若干次有效实验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为()A.26m B.27m C.28m D.29m5.在一个不透明的盒子中,红色、白色、黑色的球共有40个,除颜色外其他完全相同,老师在课堂上组织同学通过多次试验后发现其中摸到红色、白色的频率基本稳定在45%和15%,则盒子中黑色球的个数可能是()A.16B.18C.20D.226.设a,b是两个任意独立的一位正整数, 则点(a,b)在抛物线y=ax2-bx上方的概率是( )A.1181B.1381C.1781D.19817.某中学初三年级四个班,四个数学老师分别任教不同的班.期末考试时,学校安排统一监考,要求同年级数学老师交换监考,那么安排初三年级数学考试时可选择的监考方案有()种.A.8 B.9 C.10 D.128.现有6张正面分别标有数字﹣1,0,1,2,3,4的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a,则使得关于x的二次函数y=x2﹣2x+a﹣2与x轴有交点,且关于x的分式方程11222axx x-+=--有解的概率为()A.12B.13C.56D.169.从﹣3,﹣2,﹣1,0,1这五个数中,随机取出一个数,记为a,若a使得关于x的不等式组53(2)x ax x-≤⎧⎨--⎩<无解,且关于x的分式方程1322x ax x--=--有整数解的概率为()A.15B.25C.35D.4510.从-3,1,-2这三个数中,任选两个数的积作为k的值,则使正比例函数y=kx的图象经过第二、四象限的概率是( )A.13B.12C.16D.23二、填空题11.去游泳馆游泳,要换拖鞋,如果鞋柜里只剩下尺码相同的4双红色的鞋和3双蓝色的鞋混合放在一起,闭上眼睛随意拿出2只,它们正好是一双的概率为_________.12.有5张正面分别标有数字-2,0,2,4,6的不透明卡片,它们除数字不同外其余全部相同,先将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为m,则使关于x的分式方程2322x m mx x++=--有正实数解的概率为________.13.动物学家通过大量的调查估计,某种动物活到20岁的概率为0.8,活到25岁的概率为0.6,则现年20岁的这种动物活到25岁的概率是_____.14.一种游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,无奖金,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是____.15.由于各人的习惯不同,双手交叉时左手大拇指在上或右手大拇指在上是一个随机事件(分别记为A,B),曾老师对他任教的学生做了一个调查,统计结果如下表所示:若曾老师所在学校有2 000名学生,根据表格中的数据,在这个随机事件中,右手大拇指在上的学生人数可以估计为________名.三、解答题16.某医院医生为了研究该院某种疾病的诊断情况,需要调查来院就诊的病人的两个生理指标x ,y ,于是他分别在这种疾病的患者和非患者中,各随机选取20人作为调查对象,将收集到的数据整理后,绘制统计图如下:注“●”表示患者,“▲”表示非患者.根据以上信息,回答下列问题:(1)在这40名被调查者中,①指标y 低于0.4的有 人;②将20名患者的指标x 的平均数记作1x ,方差记作21s ,20名非患者的指标x 的平均数记作2x ,方差记作22s ,则1x 2x ,21s 22s (填“>”,“=”或“<”);(2)来该院就诊的500名未患这种疾病的人中,估计指标x 低于0.3的大约有 人;(3)若将“指标x低于0.3,且指标y低于0.8”作为判断是否患有这种疾病的依据,则发生漏判的概率多少.17.小明在操场上做游戏,他发现地上有一个不规则的封闭图形ABC.为了知道它的面积,他在封闭图形内划出了一个半径为1米的圆,在不远处向图形内掷石子,且记录如下:(1)随着次数的增多,小明发现m与n的比值在一个常数k附近波动,请你写出k的值.(2)请利用学过的知识求出封闭图形ABC的大致面积.18.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶以每瓶2元的价格当天全部降价处理完.根据往年销售经验,每天需求量与当天本地最高气温有关.为了制定今年六月份的订购计划,计划部对去年六月份每天的最高气温x(℃)及当天售出(不含降价处理)的酸奶瓶数),等数据统计如下:以最高气温位于各范围的频率代替最高气温位于该范围的概率.(1)试估计今年六月份每天售出(不含降价处理)的酸奶瓶数不高于360瓶的概率;(2)根据供货方的要求,今年这种酸奶每天的进货量必须力100的整数倍.问今年六月份这种酸奶一天的进货量为多少时,平均每天销售这种酸奶的利润最大?19.在不透明的袋子中有黑棋子10枚和白棋子若干枚(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:根据以上数据,估算袋中白棋子的数量.20.[概率中的方案设计]小红和小明在操场上做游戏,他们先在地上画了半径分别为2m和3m的同心圆(如图),然后蒙上眼睛,并在一定距离外向圈内掷小石子,掷中阴影部分时小红胜,否则小明胜,未掷入圈内(半径为3m的圆内)或掷在边界上重掷.(1)你认为游戏公平吗?为什么?(2)游戏结束,小明边走边想:能否用频率估计概率的方法,来估算不规则图形的面积呢?请你设计一个方案,解决这一问题(要求画出图形,说明设计步骤、原理,并给出计算公式)21.小晶和小红玩掷骰子游戏,每人将一个各面分别标有1、2、3、4、5、6的正方体骰子掷一次,把两个人掷得的点数相加,并约定‘点数之和等于6,小晶赢,点数之和等于7,小红赢,点数之和是其他数,两人不分胜负’,问,他们两人谁获胜的概率大,请你用“画树形图”的方法加以说明。
人教版初中数学九年级上册第二十五章 25.3用频率估计概率
间,即0<P(不确定事件)<1. 如果A为随机事件(不确定事件),
那么0<P(A)<1.
用列举法求概率的条件是什么? (1)试验的所有结果是有限个(n) (2)各种结果的可能性相等.
用频率估计概率
用列举法可以求一些事件的概 率,我们还可以利用多次重复 试验,通过统计实验结果去估 计概率。
3.动物学家通过大量的调查估计出,某种动物活到20 岁的概率为0.8,活到25岁的概率是0.5,活到30岁的概率
是0.3.现年20岁的这种动物活到25岁的概率为多少?现
年25岁的这种动物活到30岁的概率为多少?
试一试
4.某厂打算生产一种中学生使用的笔袋,但无法确定各种颜色的 产量,于是该文具厂就笔袋的颜色随机调查了5 000名中学生, 并在调查到1 000名、2 000名、3 000名、4 000名、5 000名 时分别计算了各种颜色的频率,绘制折线图如下:
了解了一种方法-------用多次试验频率去估计概率
体会了一种思想: 用样本去估计总体 用频率去估计概率
大家都来做一做
从一定的高度落下的图钉,落地后 可能图钉尖着地,也可能图钉尖不找地, 估计一下哪种事件的概率更大,与同学
合作,通过做实验来验证 一下你事先估计是否正确?
你能估计图钉尖朝
上的概率吗?
归纳:
一般地,在大量重复试验中, 如在果某事个件常数A发p附生近的,频那率mn 么事会件稳A定 发生的概率P(A)=p。
用频率估计的概率 可能小于0吗?可 能大于1吗?
练习: 下表记录了一名球员在罚球线上的投篮结果。
投篮次数(n) 50 100 150 200 250 300 500
人教版九年级数学上册《25-3 用频率估计概率》作业同步练习题及参考答案
25.3 用频率估计概率1.下面说法合理的是( )A.小明在10 次抛图钉的试验中发现3 次钉尖朝上,由此他说钉尖朝上的概率是310B.抛掷一枚均匀的正方体骰子,“掷得6”1的概率是的意思是每66 次就有1 次掷得6C.某彩票的中奖机会是2%,则买100 张彩票一定会有2 张中奖D.在一次课堂进行的试验中,甲、乙两组同学估计硬币落地后,正面朝上的概率分别为0.48 和0.512.甲、乙两名同学在一次用频率估计概率的试验中统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的试验可能是( )A.掷一枚均匀的正方体的骰子,出现1 点的概率B.从一个装有2 个白球和1 个红球的袋子中任取一球,这3 个球除颜色外无其他差异,取到红球的概率C.抛一枚均匀硬币,出现正面的概率D.任意写一个整数,它能被2 整除的概率3.在一次质检抽测中,随机抽取某摊位20 袋食盐,测得各袋的质量分别为(单位:g):492 496 494 495 498 497 501 502 504 496497 503 506 508 507 492 496 500 501 499根据以上抽测结果,任买一袋该摊位的食盐,质量在497.5 ~501.5 g 之间的概率为( )A.15 B.14C.310D.7204.一个口袋中有红球、白球共10 个,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中.不断重复这一过程,共摸了100 次球,发现有71 次摸到红球.请你估计口袋中红球的数量为个.5.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30 条鱼做上标记,然后放归鱼塘,经过一段时间, 等有标记的鱼完全混合于鱼群中,再打捞200 条鱼,发现其中带标记的鱼有5 条,则鱼塘中估计有条鱼.6.在“抛掷质地均匀的正六面体”的试验中,已知正六面体的六个面上分别标有数字1,2,3,4,5,6,随着试验次数的增多,出现数字“1”的频率的变化趋势是接近.7.为了解学生的体能情况,随机选取了1 000 名学生进行调查,并记录了他们对长跑、短跑、跳绳、跳远四个项目的喜欢情况,整理成以下统计表,其中“√”表示喜欢,“×”表示不喜欢.(1)估计学生同时喜欢短跑和跳绳的概率.(2)估计学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率.(3)如果某同学喜欢长跑,那么该同学同时喜欢短跑、跳绳、跳远中哪项的可能性大?8.在一次大规模的统计中发现英文文献中字母E 的使用频率在0.105 附近,而字母J 的使用频率大约在0.001 附近,如果这次统计是可信的,那么下列说法可信吗?试说明理由.(1)在英文文献中字母E 出现的频率在10.5%左右,字母J 出现的频率在0.1%左右;(2)如果再去统计一篇约含200 个字母的英文文章时,那么字母E 出现的频率一定非常接近10.5%.9.一个袋子中装有12 个完全相同的小球,每个球上分别写有数字1~12.现在用摸球试验来模拟6 人中有2 人生肖相同的概率,在此过程中,下面有几种不同的观点,其中正确的是( )A.摸出的球一定不能放回B.摸出的球必须要放回C.由于袋子中的球多于6 个,因此摸出的球是否放回无所谓D.不能用摸球试验来模拟此事件10.一个不透明的袋中装有除颜色外均相同的8 个黑球、4 个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中.通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中有红球个.11.儿童节期间,某公园游戏场举行一场活动.有一种游戏规则是:在一个装有8 个红球和若干个白球(每个球除颜色外,其他都相同)的袋中,随机摸1 个球,摸到1 个红球就得到一个玩具.已知参加这种游戏的儿童有40000 人,公园游戏场发放玩具8000 个.(1)求参加此次活动得到玩具的频率. (2)请你估计袋中白球的数量接近多少?★12.小颖和小红两位同学在学习“概率”时,做抛掷骰子(质地均匀的正方体)试验,她们共做了60 次试验,试验的结果如下:朝上的点数123456出现的次数796820 10(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据试验,一次试验中出现5 点朝上的概率最大”;小红说:“如果抛掷600 次,那么出现6 点朝上的次数正好是100 次.”小颖和小红的说法正确吗?为什么?(3)小颖和小红各抛掷一枚骰子,用列表的方法求出两枚骰子朝上的点数之和为3 的倍数的概率.★13. 小红和小明在操场做游戏,他们先在地上画了半径分别为2 m 和3 m 的同心圆(如图),蒙上眼在一定距离外向大圆内掷小石子,掷中阴影部分小红胜,否则小明胜,未掷入大圆内不算,你来当裁判.(1)你认为游戏公平吗?为什么?(2)游戏结束,小明边走边想,“反过来,能否用频率估计概率的方法,来估算非规则图形的面积呢?”请你设计方案,解决这一问题.(要求画出图形,说明设计步骤、原理,写出公式)20参考答案夯基达标1.D2.B3.B 在随机抽取的 20 袋食盐中,质量在 497.5 ~501.5 g 之间的有 5 袋,由此可以估计任买一袋该摊位的食盐,质量在 497.5 ~501.5 g 之间的概率为 5= 1.44.75.1 2006.1 67.解 (1)同时喜欢短跑和跳绳的概率为 3001 000= 3 .10(2)同时喜欢三个项目的概率为200+150 = 7.1 000 20(3) 同时喜欢短跑的概率为150= 3,同时喜欢跳绳的概率为200+150+200= 11,同时喜欢跳远的概率为200 1 000= 1. 51 000201 0002011 > 1 > 3 , 20520∴该同学同时喜欢跳绳的可能性大.8.分析 根据试验频率近似地等于概率的前提条件进行判断.解 (1)正确.理由:本次大规模的统计是可信的,故试验频率近似地等于概率.(2)不正确.理由:含 200 个字母的英文文章中的字母 E 的使用频率与英文文献中字母 E 的使用频率不是等价的,只能用试验的方法去求得. 培优促能 9.B10.8 设袋中有红球 x 个,则袋中三种颜色的球共计(x+8+4)个, 根据题意可得� =0.4,解这个方程得 x=8,�+8+4经检验,x=8 是方程的解,且符合题意.11. 解 (1)参加此项游戏得到玩具的频率�= 8 000 ,即� = 1.�40 000�5∵(2)设袋中共有x 个球,则摸到红球的概率P(红球)=8.从而8 = 1,解得x=40,�� 5故白球接近40-8=32(个).12.解(1)“3点朝上”出现的频率是6 = 1 ;“5点朝上”出现的频率是20 = 1.60 10 60 3(2)小颖的说法是错误的.这是因为“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的概率最大.只有当试验的次数足够多时,该事件发生的频率才稳定在事件发生的概率附近.小红的说法也是错误的,因为事件发生具有随机性,故“6 点朝上”的次数不一定是100 次.(3)列表如下:P(点数之和为3 的倍数)=12 = 1.36 3创新应用13.解(1)不公平.因为P =9π-4π = 5,阴影9π9即小红胜的概率为5,小明胜的概率为4,9 9故游戏对双方不公平.(2)能利用频率估计概率的试验方法估算非规则图形的面积.设计方案:①设计一个可测量面积的规则图形将非规则图形围起来(如正方形,其面积为S),如图;②往图形中掷点(如蒙上眼往图形中随意掷石子,掷在图外不做记录);③当掷点次数充分大(如 1 万次),记录并统计结果,设掷入正方形内n 次,其中m 次掷入非规则图形内;④设非规则图形的面积为S1,用频率估计概率,即掷入非规则图形内的频率为�≈P(掷入非规则图形�内)=�1,�≈�1 ���故��⇒S1≈�.。
【★】2023-2024学年初中数学9年级数学人教版上册课时练第25章《25.3 用频率估计概率》
课时练第25章概率初步25.3 用频率估计概率一、单选题1.“十一”长假期间,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展有奖购买活动,顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据:下列说法错误的是()A.转动转盘20次,一定有6次获得“文具盒”铅笔文具盒B.转动转盘一次,获得“铅笔”的概率大约是0.70C.再转动转盘100次,指针落在“铅笔”区域的次数不一定是68次D.如果转动转盘3000次,指针落在“文具盒”区域的次数大约有900次2.有一个只放满形状大小都一样的白色小球的不透明盒子,小刚想知道盒内有多少白球,于是小刚向这个盒中放了5个黑球(黑球的形状大小与白球一样),摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中80次摸到黑球,则盒中白色小球的个数可能是()A.16个B.20个C.24个D.25个3.如图①所示,一张纸片上有一个不规则的图案(图中画图部分),小雅想了解该图案的面积是多少,她采取了以下的办法:用一个长为5m,宽为3m的长方形,将不规则图案围起来,然后在适当位置随机地向长方形区域扔小球,并记录小球在不规则图案上的次数(球扔在界线上或长方形区域外不计入试验结果),她将若干次有效试验的结果绘制成了图②所示的折线统计图,由此她估计此不规则图案的面积大约为()A.6m2B.5m2C.4m2D.3m24.在抛掷一枚质地均匀的硬币的实验中,第100次抛掷时,反面朝上的概率是()A.1100B.12C.23D.不确定5.在一个不透明的袋中装有只有颜色不同的白球和红球共20个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球,记下颜色后再放回袋中;然后再重复上述步骤;…如表是实验中记录的部分统计数据:则袋中的红球可能有()A.8个B.6个C.4个D.2个6.某水果超市为了吸引顾客来店购物,设立了一个如图所示的可以自由转动的转盘,开展有奖购物活动.顾客购买商品满200元就能获得一次转动转盘的机会,当转盘停止时,指针落在“一袋苹果”的区域就可以获得一袋苹果;指针落在“一袋橘子”的区域就可以获得一袋橘子.若转动转盘2000次,指针落在“一袋橘子”区域的次数有600次,则某位顾客转动转盘一次,获得一袋橘子的概率大约是()A.0.3B.0.7C.0.4D.0.27.某小组做“当试验次数很大时,用频率估计概率”的试验时,统计了某一结果出现的频率.表格如下,则符合这一结果的试验最有可能的是()A.掷一枚质地均匀的骰子,向上面的点数是“5”B.掷一枚一元的硬币,正面朝上C.不透明的袋子里有2个红球和3个黄球,除颜色外都相同,从中任取一球是红球D.三张扑克牌,分别是3、5、5,背面朝上洗匀后,随机抽出一张是58.一个不透明的袋子里装有黄球18个和红球若干,小明通过多次摸球试验后发现摸到红球的频率稳定在0.4左右,则袋子里有红球()个A.12B.15C.18D.249.在一个不透明的口袋里,装有仅颜色不同的黑球、白球若干只,某小组做摸球实验:将球搅匀后从中随机摸出一个,记下颜色,再放入袋中,不断重复,右表是活动中的一组数据,则摸到白球的概率约是()A.0.58B.0.64C.0.59D.0.6010.不透明布袋中装有除颜色外完全相同的红、白球,已知红、白球共有60个,同学们通过多次试验后发现摸到红色球的频率稳定在14左右,则袋中红球个数可能为()A.30B.25C.20D.1511.一个不透明的袋子中有1个红球,1个绿球和n个白球,这些球除颜外都相同.从袋中随机摸出一个球,记录其颜色,然后放回.大量重复该实验,发现摸到绿球的频率稳定于0.25,则白球的个数n的值可能是()A.1B.2C.4D.512.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是()A.抛一枚硬币,连续两次出现正面的概率B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.任意写一个正整数,它能被5整除的概率D.掷一枚正六面体的骰子,出现1点的概率13.为了估计暗箱里白球的数量(箱内只有白球),将6个红球放进去,这些球除颜色外其他都相同,搅匀后随机摸出一个球,记下颜色后放回,搅匀后再摸出一个球记下颜色,多次重复后发现白球出现的频率稳定在0.6附近,那么可以估计暗箱里白球的个数约为()A.15B.10C.9D.4二、填空题14.在一个不透明的口袋中装有3个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在30%左右,则口袋中白球可能有_____个.15.黑色不透明口袋里装有红色、白色球共10个,它们除颜色外都相同.从口袋中随机摸出一个球,记下颜色后放回,并摇匀,不断重复上述实验1000次,其中200次摸到红球,则可估计口袋中红色球的个数是____.16.如图,创新广场上铺设了一种新颖的石子图案,它由五个过同一点且半径不同的圆组成,其中阴影部分铺黑色石子,其余部分铺白色石子.小鹏在规定地点随意向图案内投掷小球,每球都能落在图案内,经过多次试验,发现落在一、三、五环(阴影)内的概率分别是0.04,0.2,0.36,如果最大圆的半径是1米,那么黑色石子区域的总面积约为______平方米(精确到0.01平方米).17.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:根据以上数据可以估计,该玉米种子发芽的概率约为_______(精确到0.10).18.在一个不透明的袋子里装有红球6个,黄球若干个,这些球除颜色外都相同,小明通过多次试验发现,摸出红球的频率稳定在0.3左右,则袋子中黄球的个数可能是___个.19.在一个不透明的袋子中装有若干个红球和2个白球,每个球除颜色外都相同,任意摸出一个球,记录颜色后放回,共进行了300次操作,其中白球出现了50次,由此估计红球的个数为_________.三、解答题20.下表是某校服生产厂对一批夏装校服质量检测的情况∶(1)从这批校服中任意抽取一套是合格品的概率的估计值是.(结果精确到0.01)(2)若要生产19000套合格的夏装校服,估计该厂要生产多少套夏装校服?21.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近______.(结果保留小数点后一位)(2)试估算口袋中黑、白两种颜色的球各有多少只?(3)如果再加入若干个白球后,使摸到白球的概率为0.8,求加入的白球数量.22.在一只不透明的袋子中装有黑球、白球共10个,这些球除颜色外都相同,小明每次摇匀后随机从袋中摸出一个球,记录颜色后放回袋中,通过2000次重复摸球实验后,共摸出黑球1205次.(1)估计袋中有黑球________个;(2)小明从袋中取出n个黑球后,小明从袋中剩余的球中随机摸出一个球是黑球的概率为13,求n的值.23.某射击运动员在同一条件下的射击成绩记录如下:(1)根据上表估计这名运动员射击一次时“射中九环以上”的概率约为.(结果保留两位小数)(2)小明想了解该运动员连续两次射击都“射中九环以上”的概率,他将这个问题进行了简化,制作了三张不透明卡片,其中两张卡片的正面写有“中”,第三张卡片的正面写有“未中”,卡片除正面文字不同外,其余均相同.将这三张卡片背面向上洗匀,从中随机抽取一张,记录文字后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求两次抽取的卡片上都写有“中”的概率.参考答案1.A2.B3.A4.B5.C6.A7.C8.A9.D10.D11.B12.B13.C14.715.2个16.1.8817.0.8018.1419.1020.(1)0.95(2)根据(1)的合格概率估计为:19000÷0.95=20000(套),答:该厂估计要生产20000套夏装校服.21.解:(1)根据题意得:当n 很大时,摸到白球的频率将会接近0.6; (2)∶当n 很大时,摸到白球的频率将会接近0.6,∶摸到白球的概率为35, ∶摸到黑球的概率为25, ∶口袋中黑球有22085⨯=(个) ,白球有320125⨯= (个); (3)设加入的白球有x 个,则白球一共有()12x + 个,根据题意得: 120.820x x+=+ , 解得:20x.经检验,符合题意 22.(1)1205100%60.25%60%2000⨯=≈, 1060%6⨯=(个);∶估计袋中有黑球6个;故答案是6.(2)取出n 个黑球后,还剩下()6n -个黑球,总共剩余()10n -个球, 由题意得61103-=-n n ,解得4n =; 23.解:(1)“射中九环以上”的概率约为0.6680.6660.6670.673P ++=≈, 故答案是:0.67.(2)列表如下由图可知,总的情况数是9种,满足两次抽取的卡片上都写有“中”的有4种,由概率公式:∶P(两次抽取的卡片上都写有“中”)49.11/ 11。
人教版九年级数学上册25.1.2《概率》教案
人教版九年级数学上册25.1.2《概率》教案一. 教材分析人教版九年级数学上册第25.1.2节《概率》是概率统计部分的重要内容。
本节主要介绍了概率的定义、计算方法以及如何运用概率解决实际问题。
通过本节的学习,学生能够理解概率的概念,掌握基本的概率计算方法,并能够运用概率知识解决生活中的问题。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于一些基本的数学概念和运算方法有一定的了解。
但是,对于概率这一抽象的概念,学生可能难以理解和接受。
因此,在教学过程中,需要注重引导学生从实际问题中理解概率的概念,并通过大量的实例让学生掌握概率的计算方法。
三. 教学目标1.知识与技能:让学生理解概率的概念,掌握基本的概率计算方法,能够运用概率知识解决实际问题。
2.过程与方法:通过实例分析,让学生体验概率的计算过程,培养学生的逻辑思维能力。
3.情感态度与价值观:让学生感受数学与生活的紧密联系,培养学生的数学应用意识。
四. 教学重难点1.重点:概率的定义,概率的计算方法。
2.难点:如何从实际问题中抽象出概率模型,运用概率解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入概率的概念,让学生感受数学与生活的联系。
2.启发式教学法:在教学过程中,引导学生主动思考,通过讨论、交流等方式,让学生理解概率的计算方法。
3.巩固练习法:通过大量的练习,让学生掌握概率的计算方法,并能够运用到实际问题中。
六. 教学准备1.教学课件:制作相关的教学课件,以便于直观地展示概率的计算过程。
2.练习题:准备一些与本节课内容相关的练习题,以便于学生在课堂上进行操练。
七. 教学过程1.导入(5分钟)通过一个简单的实例引入概率的概念,如抛硬币、抽签等,让学生思考:这些事件的结果是随机的,那么我们如何来描述这种随机性呢?2.呈现(10分钟)讲解概率的定义,让学生理解概率的意义。
如:抛一枚硬币,正面朝上的概率是1/2。
同时,介绍如何用数学符号表示概率,如P(A)、P(B)等。
9年级数学上册(人教版)—25.3 利用频率估计概率同步练习(人教新课标九年级上)
25.3 利用频率估计概率一、选一选(请将唯一正确答案的代号填入题后的括号内)1.盒子中有白色乒乓球8个和黄色乒乓球若干个,为求得盒中黄色乒乓球的个数,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,则黄色乒乓球的个数估计为 ( )A .90个B .24个C .70个D .32个2.从生产的一批螺钉中抽取1000个进行质量检查,结果发现有5个是次品,那么从中任取1个是次品概率约为( ). A .11000 B .1200C .12D .153.下列说法正确的是( ).A .抛一枚硬币正面朝上的机会与抛一枚图钉钉尖着地的机会一样大;B .为了解汉口火车站某一天中通过的列车车辆数,可采用全面调查的方式进行;C .彩票中奖的机会是1%,买100张一定会中奖;D .中学生小亮,对他所在的那栋住宅楼的家庭进行调查,发现拥有空调的家庭占100%,于是他得出全市拥有空调家庭的百分比为100%的结论. 4.小亮把全班50名同学的期中数学测试成绩,绘成如图所示的条形图,其中从左起第一、二、三、四个小长方形高的比是1∶3∶5∶1.从中同时抽一份最低分数段和一份最高分数段的成绩的概率分别是( ).A .110、110 B .110、12 C .12、110 D .12、125.某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来有( ).A .10粒B .160粒C .450粒D .500粒6.某校男生中,若随机抽取若干名同学做“是否喜欢足球”的问卷调查,抽到喜欢足球的同学的概率是53,这个53的含义是( ). A .只发出5份调查卷,其中三份是喜欢足球的答卷; B .在答卷中,喜欢足球的答卷与总问卷的比为3∶8;分)人数C .在答卷中,喜欢足球的答卷占总答卷的53; D .在答卷中,每抽出100份问卷,恰有60份答卷是不喜欢足球.7.要在一只口袋中装入若干个形状与大小都完全相同的球,使得从袋中摸到红球的概率为51,四位同学分别采用了下列装法,你认为他们中装错的是( ). A .口袋中装入10个小球,其中只有两个红球;B .装入1个红球,1个白球,1个黄球,1个蓝球,1个黑球;C .装入红球5个,白球13个,黑球2个;D .装入红球7个,白球13个,黑球2个,黄球13个.8.某学生调查了同班同学身上的零用钱数,将每位同学的零用钱数记录了下来(单位:元):2,5,0,5,2,5,6,5,0,5,5,5,2,5,8,0,5,5,2,5,5,8,6,5,2,5,5,2,5,6,5,5,0,6,5,6,5,2,5,0.假如老师随机问一个同学的零用钱,老师最有可能得到的回答是( ). A . 2元 B .5元 C .6元 D .0元 二、填一填9. 同时抛掷两枚硬币,按照正面出现的次数,可以分为“2个正面”、“1个正面”和“没有正面”这3种可能的结果,小红与小明两人共做了6组实验,每组实验都为同时抛掷两枚硬币10次,下表为实验记录的统计表:结果 第一组 第二组 第三组 第四组 第五组 第六组 两个正面 3 3 5 1 4 2 一个正面 6 5 5 5 5 7 没有正面12411由上表结果,计算得出现“2个正面”、“1个正面”和“没有正面”这3种结果的频率分别是___________________.当试验组数增加到很大时,请你对这三种结果的可能性的大小作出预测:______________.10.红星养猪场400头猪的质量(质量均为整数千克)频率分布如下,其中数据不在分点上组别 频数 频率 46 ~ 50 40 51 ~ 558056 ~ 60 16061 ~ 65 8066 ~ 70 3071~ 75 10从中任选一头猪,质量在65kg以上的概率是___________.11.为配和新课程的实施,某市举行了“应用与创新”知识竞赛,共有1万名学生参加了这次竞赛(满分100分,得分全为整数)。
人教版九年级数学上册第二十五章概率初步《25.2用列举法求概率》说课稿
人教版九年级数学上册第二十五章概率初步《25.2用列举法求概率》说课稿一. 教材分析《人教版九年级数学上册》第二十五章主要介绍概率初步知识,让学生了解和理解概率的基本概念和求法。
在这一章节中,学生将学习如何用列举法求概率,这是求解概率问题的一种基本方法。
本节内容是在学生已经掌握了概率的定义和一些基本性质的基础上进行教学的,因此,学生对概率的概念和性质有一定的了解。
但是,学生可能对列举法求概率的具体操作步骤和应用范围还不够清楚,需要通过本节课的学习来进一步理解和掌握。
二. 学情分析九年级的学生已经具备了一定的数学基础,对概率的概念和性质有一定的了解。
但是,由于概率知识比较抽象,学生可能对列举法求概率的具体操作步骤和应用范围还不够清楚,需要通过本节课的学习来进一步理解和掌握。
三. 说教学目标1.让学生了解列举法求概率的基本步骤和方法。
2.培养学生运用列举法求解实际问题的能力。
3.帮助学生建立概率与实际问题之间的联系,提高学生的数学应用意识。
四. 说教学重难点1.教学重点:列举法求概率的基本步骤和方法。
2.教学难点:如何将实际问题转化为概率问题,并运用列举法求解。
五. 说教学方法与手段在本节课的教学中,我将采用讲授法、案例分析法和小组合作法相结合的教学方法。
1.讲授法:通过讲解和示范,让学生了解列举法求概率的基本步骤和方法。
2.案例分析法:通过分析具体案例,让学生学会如何将实际问题转化为概率问题,并运用列举法求解。
3.小组合作法:学生进行小组讨论和合作,培养学生运用概率知识解决实际问题的能力。
六. 说教学过程1.导入:通过一个简单的概率问题,引导学生思考如何用列举法求解概率问题。
2.讲解:讲解列举法求概率的基本步骤和方法,并结合具体案例进行示范。
3.练习:让学生进行一些类似的练习题,巩固所学知识。
4.应用:学生进行小组讨论,选取一些实际问题,运用列举法求解,并分享解题过程和结果。
5.总结:对本节课的内容进行总结,强调列举法在求解概率问题中的应用范围和注意事项。
25.3用频率估计概率-人教版九年级数学上册练习
人教版九年级数学上册25.3用频率估计概率一.选择题(共6小题)1.某射击运动员在同一条件下的射击成绩记录如下:射击次数20801002004001000“射中九环以上”的次数186882168327823“射中九环以上”的频率(结果保留两位小数)0.900.850.820.840.820.82根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率约是()A.0.90B.0.82C.0.85D.0.842.某小组在“用频率估计概率”的实验中,统计了某种结果出现的频率,绘制了如图所示的折线统计图,那么符合这一结果的实验最有可能的是()A.掷一枚质地均匀的硬币,落地时结果是“正面向上”B.掷一个质地均匀的正六面体骰子,落地时朝上的面点数是6C.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”D.袋子中有1个红球和2个黄球,只有颜色上的区别,从中随机取出一个球是黄球3.在一个不透明的口袋中,装有若干个红球和6个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率是0.3,则估计盒子中大约有红球()A.16个B.14个C.20个D.30个4.一个口袋中有10个红球和若干个白球,请通过以下实验估计口袋中白球的个数:从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程.实验中总共摸了200次,其中有50次摸到红球.则此口袋中估计白球的个数是()个.A.20B.30C.40D.505.在做针尖落地的实验中,正确的是()A.甲做了4000次,得出针尖触地的机会约为46%,于是他断定在做第4001次时,针尖肯定不会触地B.乙认为一次一次做,速度太慢,他拿来了大把材料、形状及大小都完全一样的图钉,随意朝上轻轻抛出,然后统计针尖触地的次数,这样大大提高了速度C.老师安排每位同学回家做实验,图钉自由选取D.老师安排同学回家做实验,图钉统一发(完全一样的图钉).同学交来的结果,老师挑选他满意的进行统计,他不满意的就不要6.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是()A.从一个装有2个白球和1个红球的袋子中任取两球,取到两个白球的概率B.任意写一个正整数,它能被2整除的概率C.抛一枚硬币,连续两次出现正面的概率D.掷一枚正六面体的骰子,出现1点的概率二.填空题(共6小题)7.技术变革带来产品质量的提升.某企业技术变革后,抽检某一产品2020件,欣喜发现产品合格的频率已达到0.9911,依此我们可以估计该产品合格的概率为.(结果要求保留两位小数)8.某种油菜籽在相同条件下发芽试验的结果如表:每批粒数501003004006001000发芽的频数4596283380571948这种油菜籽发芽的概率的估计值是.(结果精确到0.01)9.为保证口罩供应,某公司加紧转产,开设多条生产线争分夺秒赶制口罩,口罩送检合格率也不断提升,真正体现了“大国速度”,以下是质监局对一批口罩进行质量抽检的相关数据,统计如表:205010020050010002000500010000抽检数量n/个194693185459922184045959213合格数量m/个口罩合0.9500.9200.9300.9250.9180.9220.9200.9190.921格率下列说法中:①当抽检口罩的数量是100个时,口罩合格的数量是93个,所以这批口罩中“口罩合格”的概率是0.930;②随着抽检数量的增加,“口罩合格”的频率总在0.920附近摆动,显示出一定的稳定性,所以可以估计这批口罩“口罩合格”的概率是0.920:③当抽检口罩的数量达到20000个时,“口罩合格”的频率一定是0.921;你认为合理的是(填序号)10.如图,大圆半径为6,小圆半径为2,在如图所示的圆形区域中,随机撒一把豆子,多次重复这个实验,若把“豆子落在小圆区域A中”记作事件W,请估计事件W的概率P (W)的值.11.在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有个.12.在“抛掷正六面体”的试验中,如果正六面体的六个面分别标有数字“1”、“2”、“3”、“4”、“5”和“6”,如果试验的次数增多,出现数字“1”的频率的变化趋势是.三.解答题(共3小题)13.在一只不透明的口袋里,装有若干个除了颜色外均相同的小球,某数学学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.如表是活动进行中的一组统计数据:摸球的次数n1001502005008001000摸到白球的次数m5996b295480601摸到白球的频率a0.640.580.590.600.601(1)上表中的a=,b=;(2)“摸到白球的”的概率的估计值是(精确到0.1);(3)如果袋中有12个白球,那么袋中除了白球外,还有多少个其它颜色的球?14.某家庭记录了未使用节水龙头50天的日用水量(单位:m3)和使用了节水龙头50天的日用水量,得到频数分布表如下:表1:未使用节水龙头50天的日用水量频数分布表日用水量x0≤x<0.10.1≤x<0.20.2≤x<0.30.3≤x<0.40.4≤x<0.50.5≤x<0.60.6≤x≤0.7频数13249265表2:使用了节水龙头50天的日用水量频数分布表日用水量x0≤x<0.10.1≤x<0.20.2≤x<0.30.3≤x<0.40.4≤x<0.50.5≤x<0.6频数151310165(1)估计该家庭使用节水龙头后,日用水量小于0.3m3的概率;(2)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在范围的组中值作代表.)15.准备两组相同的牌,每组两张且大小一样,两张牌的牌面数字分别是1和2.从每组牌中各摸出一张牌,称为一次试验.(1)一次试验中两张牌的牌面数字和可能有哪些值?(2)两张牌的牌面数字和为几的概率最大?(3)两张牌的牌面数字和等于3的概率是多少?人教版九年级数学上册25.3用频率估计概率参考答案一.选择题(共6小题)1.某射击运动员在同一条件下的射击成绩记录如下:射击次数20801002004001000“射中九环186882168327823以上”的次数0.900.850.820.840.820.82“射中九环以上”的频率(结果保留两位小数)根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率约是()A.0.90B.0.82C.0.85D.0.84【解答】解:∵从频率的波动情况可以发现频率稳定在0.82附近,∴这名运动员射击一次时“射中九环以上”的概率是0.82.故选:B.2.某小组在“用频率估计概率”的实验中,统计了某种结果出现的频率,绘制了如图所示的折线统计图,那么符合这一结果的实验最有可能的是()A.掷一枚质地均匀的硬币,落地时结果是“正面向上”B.掷一个质地均匀的正六面体骰子,落地时朝上的面点数是6C.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”D.袋子中有1个红球和2个黄球,只有颜色上的区别,从中随机取出一个球是黄球【解答】解:A、掷一枚质地均匀的硬币,落地时结果是“正面向上”的概率为,不符合题意;B、掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率为,符合题意;C、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率为,不符合题意;D、袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中随机地取出一个球是黄球的概率,不符合题意;故选:B.3.在一个不透明的口袋中,装有若干个红球和6个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率是0.3,则估计盒子中大约有红球()A.16个B.14个C.20个D.30个【解答】解:由题意可得:=0.3,解得:x=14,故选:B.4.一个口袋中有10个红球和若干个白球,请通过以下实验估计口袋中白球的个数:从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程.实验中总共摸了200次,其中有50次摸到红球.则此口袋中估计白球的个数是()个.A.20B.30C.40D.50【解答】解:设口袋中有x个白球,由题意,得10:(10+x)=50:200;解得:x=30.把x=30代入10+x得,10+30=40≠0,故x=30是原方程的解.答:口袋中约有30个白球.故选:B.5.在做针尖落地的实验中,正确的是()A.甲做了4000次,得出针尖触地的机会约为46%,于是他断定在做第4001次时,针尖肯定不会触地B.乙认为一次一次做,速度太慢,他拿来了大把材料、形状及大小都完全一样的图钉,随意朝上轻轻抛出,然后统计针尖触地的次数,这样大大提高了速度C.老师安排每位同学回家做实验,图钉自由选取D.老师安排同学回家做实验,图钉统一发(完全一样的图钉).同学交来的结果,老师挑选他满意的进行统计,他不满意的就不要【解答】解:A、在做第4001次时,针尖可能触地,也可能不触地,故错误,不符合题意;B、符合模拟实验的条件,正确,符合题意;C、应选择相同的图钉,在类似的条件下实验,故错误,不符合题意;D、所有的实验结果都是有可能发生,也有可能不发生的,故错误,不符合题意;故选:B.6.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是()A.从一个装有2个白球和1个红球的袋子中任取两球,取到两个白球的概率B.任意写一个正整数,它能被2整除的概率C.抛一枚硬币,连续两次出现正面的概率D.掷一枚正六面体的骰子,出现1点的概率【解答】解:A、画树形图得:所以从一个装有2个白球和1个红球的袋子中任取两球,取到两个白球的概率;故此选项正确;B、任意写一个整数,它能2被整除的概率为;故此选项错误;C、列表如下:正反正(正,正)(反,正)反(正,反)(反,反)所以抛一枚硬币,连续两次出现正面的概率,故此选项错误;D、掷一枚正六面体的骰子,出现1点的概率为,故此选项错误;故选:A.二.填空题(共6小题)7.技术变革带来产品质量的提升.某企业技术变革后,抽检某一产品2020件,欣喜发现产品合格的频率已达到0.9911,依此我们可以估计该产品合格的概率为0.99.(结果要求保留两位小数)【解答】解:∵抽检某一产品2020件,发现产品合格的频率已达到0.9911,∴依此我们可以估计该产品合格的概率为0.99,故答案为:0.99.8.某种油菜籽在相同条件下发芽试验的结果如表:每批粒数501003004006001000发芽的频数4596283380571948这种油菜籽发芽的概率的估计值是0.95.(结果精确到0.01)【解答】解:观察表格得到这种油菜籽发芽的频率稳定在0.95附近,则这种油菜籽发芽的概率的估计值是0.95,故答案为:0.95.9.为保证口罩供应,某公司加紧转产,开设多条生产线争分夺秒赶制口罩,口罩送检合格率也不断提升,真正体现了“大国速度”,以下是质监局对一批口罩进行质量抽检的相关数据,统计如表:抽检数205010020050010002000500010000量n/个194693185459922184045959213合格数量m/个口罩合0.9500.9200.9300.9250.9180.9220.9200.9190.921格率下列说法中:①当抽检口罩的数量是100个时,口罩合格的数量是93个,所以这批口罩中“口罩合格”的概率是0.930;②随着抽检数量的增加,“口罩合格”的频率总在0.920附近摆动,显示出一定的稳定性,所以可以估计这批口罩“口罩合格”的概率是0.920:③当抽检口罩的数量达到20000个时,“口罩合格”的频率一定是0.921;你认为合理的是②(填序号)【解答】解:观察表格发现:随着试验的次数的增多,口罩合格率的频率逐渐稳定在0.920附近,所以可以估计这批口罩中合格的概率是0.920,故答案为:②.10.如图,大圆半径为6,小圆半径为2,在如图所示的圆形区域中,随机撒一把豆子,多次重复这个实验,若把“豆子落在小圆区域A中”记作事件W,请估计事件W的概率P (W)的值.【解答】解:∵大圆半径为6,小圆半径为2,∴S大圆=36π,S小圆=4π,∴P(W)==,故答案为:.11.在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有6个.【解答】解:红球个数为:40×15%=6个.故答案为:6.12.在“抛掷正六面体”的试验中,如果正六面体的六个面分别标有数字“1”、“2”、“3”、“4”、“5”和“6”,如果试验的次数增多,出现数字“1”的频率的变化趋势是接近.【解答】解:如果试验的次数增多,出现数字“1”的频率的变化趋势是接近.三.解答题(共3小题)13.在一只不透明的口袋里,装有若干个除了颜色外均相同的小球,某数学学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.如表是活动进行中的一组统计数据:摸球的次数n1001502005008001000摸到白球的次数m5996b295480601摸到白球的频率a0.640.580.590.600.601(1)上表中的a=0.59,b=116;(2)“摸到白球的”的概率的估计值是0.6(精确到0.1);(3)如果袋中有12个白球,那么袋中除了白球外,还有多少个其它颜色的球?【解答】解:(1)a=59÷100=0.59,b=200×0.58=116.故答案为:0.59,116(2)“摸到白球的”的概率的估计值是0.6;故答案为:0.6(3)12÷0.6﹣12=8(个).答:除白球外,还有大约8个其它颜色的小球;14.某家庭记录了未使用节水龙头50天的日用水量(单位:m3)和使用了节水龙头50天的日用水量,得到频数分布表如下:表1:未使用节水龙头50天的日用水量频数分布表日用水量x0≤x<0.10.1≤x<0.20.2≤x<0.30.3≤x<0.40.4≤x<0.50.5≤x<0.60.6≤x≤0.7频数13249265表2:使用了节水龙头50天的日用水量频数分布表日用水量x0≤x<0.10.1≤x<0.20.2≤x<0.30.3≤x<0.40.4≤x<0.50.5≤x<0.6频数151310165(1)估计该家庭使用节水龙头后,日用水量小于0.3m3的概率;(2)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在范围的组中值作代表.)【解答】解:(1)由表2可知,使用后,50天日用水量少于0.3的频数=1+5+13=19,50天日用水量少于0.3的频概率=,从而以此频率估计该家庭情况.(2)该家庭未使用节水龙头50天日用水量平均数:×(0.05×1+0.15×3+0.25×2+0.35×4+0.45×9+0.55×26+0.65×5)=0.48该家庭使用节水龙头50天日用水量平均数:×(0.05×1+0.15×5+0.25×13+0.35×10+0.45×16+0.55×5)=0.35∴估计使用节水龙头后,一年可节水:(0.48﹣0.35)×365=47.45 (m3)15.准备两组相同的牌,每组两张且大小一样,两张牌的牌面数字分别是1和2.从每组牌中各摸出一张牌,称为一次试验.(1)一次试验中两张牌的牌面数字和可能有哪些值?(2)两张牌的牌面数字和为几的概率最大?(3)两张牌的牌面数字和等于3的概率是多少?【解答】解:画树状图得:(1)一次试验中两张牌的牌面数字和可能有三种取值:和为2,和为3,和为4;(2)由树状图可知,两张牌的牌面数字和为3的概率最大;(3)∵共有4种等可能的结果,两张牌的牌面数字和是3的有2种情况,∴两张牌的牌面数字和是3的概率是:=.。
人教版数学九年级上册25.2日常生活中的概率问题教案
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
2.培养学生从随机事件中提取信息、分析问题和解决问题的能力;
3.培养学生逻辑思维、批判性思维和创新思维,提高数学推理和论证能力;
4.培养学生团队合作精神,学会与他人交流、分享和协作;
5.培养学生对概率知识的兴趣,激发学习热情,形成积极主动的学习态度。
这些核心素养目标将有助于学生更好地理解和掌握日常生活中的概率问题,使他们在面对不确定性事件时,能够运用所学的概率知识进行合理分析,做出明智的决策。
(1)通过实例引入概率的概念,使学生理解概率是描述随机事件发生可能性大小的量;
(2)讲解概率的计算方法,引导学生运用概率知识解决实际问题;
(3)举例分析日常生活中的概率问题,如彩票中奖、抽奖活动、天气预报等;
(4)讨论概率在生活中的应用,如保险、投资、决策等,提高学生的应用意识。
二、核心素养目标
1.培养学生运用数学知识解决实际问题的能力,提高数学应用意识;
三、教学难点与重点
1.教学重点
(1)概率的定义:理解概率是描述随机事件发生可能性大小的量;
举例:抛硬币出现正面的概率是0.5,表示抛硬币时出现正面的可能性是50%。
(2)概率的计算方法:掌握等可能事件、互斥事件和条件概率的计算方法;
举例:计算一个装有3个红球和2个蓝球的袋子中,连续抽取两次(不放回)得到两个红球的概率为(3/5)×(2/4)=0.3。
人教版数学九年级上册25.1用概率解决实际问题教案
(五)总结回顾(用时5分钟)
今天的学习,我们了解了概率的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对概率的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学中,我发现学生们对概率的概念和应用表现出浓厚的兴趣。通过引入日常生活中的实例,他们能够更直观地理解概率的意义。尤其是在抛硬币和掷骰子的实验中,学生们的参与度很高,这有助于他们更好地掌握概率的计算方法。
课堂上,我注意到在讲解列举法和树状图时,部分学生显得有些困惑。这说明这部分内容对学生来说是难点,我需要在这个环节上多下功夫。或许在下次课中,我可以设计更多的例子和练习,让学生有更多的机会去实践和思考。
-在讲解树状图时,通过具体案例,如掷两个骰子的实验,指导学生如何绘制树状图,并解释每个分支代表的意义。
-在讨论相依事件时,例如家庭成员的生日问题,帮助学生理解相依事件的概念,并掌握如何计算相依事件的概率。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《用概率解决实际问题》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要估计某种情况发生机会的情况?”比如,抛硬币时正面朝上的机会是多少?这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索概率的奥秘。
人教版数学九年级上册25.1用概率解决实际问题教案
一、教学内容
人教版数学九年级上册25.1用概率解决实际问题:
1.了解概率的意义,理解概率是反映事件发生机会的大小的概念。
新人教版九年级数学上册概率教案25-2-3
25.2 用列举法求概率(第三课时)教学目标:1.进一步理解有限等可能性事件概率的意义。
2.会用树形图求出一次试验中涉及3个或更多个因素时,不重不漏地求出所有可能的结果,从而正确地计算问题的概率。
3.进一步提高分类的数学思想方法,掌握有关数学技能(树形图)。
教学重点:正确鉴别一次试验中是否涉及3个或更多个因素。
教学难点;用树形图法求出所有可能的结果。
一、解决问题,提高能力例1 同时掷两个质地均匀的骰子,计算下列事件的概率:(1)两个骰子的点子数相同;(2)两个骰子的点子数的和是9;(3)至少有一个骰子的点数为2。
分析:由于每个骰子有6种可能结果,所以2个骰子出现的可能结果就会有很多,我们用怎样的方法才能既不重复又不遗漏地求出所有可能的结果呢?这个问题要让学生充分发表意见,在次基础上再使学生认识到列表法可以清楚地列出所有可能的结果,体会其优越性。
列出表格。
也可用树形图法。
其实,求出所有可能的结果的方法不止是列表法,还有树形图法也是有效的方法,要让学生体验它们各自的特点,关键是对所有可能结果要做到:既不重复也不遗漏。
板书解答过程。
思考:教科书第152页的思考题。
例2 教科书第152页例6。
分析:弄清题意后,先让学生思考从3个口袋中每次各随机地取出一个球,共3个球,这就是说每一次试验涉及到3个因素,这样的取法共有多少种呢?你打算用什么方法求得?在学生充分思考和交流的前提下,老师介绍树形图的方法。
第一步可能产生的结果为A和B,两者出现的可能性相同且不分先后,写在第一行。
第二步可能产生的结果有C、D和E,三者出现的可能性相同且不分先后,从A 和B分别画出三个分支,在分支下的第二行分别写上C、D和E。
第三步可能产生的结果有两个H和I,两者出现的可能性相同且不分先后,从C、D和E分别画出两个分支,在分支下的第三行分别写上H和I。
(如果有更多的步骤可依上继续)第四步按竖向把各种可能的结果竖着写在下面,就得到了所有可能的结果的总数。
【最新人教版初中数学精选】第2套人教初中数学九上 25.1.2 概率教案.doc
25.1.2 概率学习目标 1.掌握直接列举法求概率的方法。
自学课本133---134页1. 在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,我们可以通过列举试验结果的方法,分析出随机事件发生的概率。
这种求概率的方法,叫做列举法。
2.把一副普通扑克牌中的13张黑桃牌洗匀后正面朝下放在桌上,从中任意抽出一张,求下列事件发生的概率:(1)抽出的牌的点数是6;(2)抽出的牌带有人像;● 变式应用:课本133页例1,如果小王在游戏开始时踩中的第一个格子上出现了标号1,下一步踩在哪一区域比较安全?2.从1—9这9个自然数中任取一个,既是2的倍数又是3的倍数的概率是( )。
3、一个家庭中有两个孩子,两个孩子都是女孩的概率是( )。
展示——反馈——导学● 用列举法求概率的步骤:(1)列举出一次试验中的所有结n ;(2)找出其中事件A 发果m ;(3)运用公式求事件A 的概率:P(A)= m n自测——反馈——点拨1、掷两枚硬币,求下列事件的概率:(1)两枚硬币全部正面朝上;(2)两枚硬币全部反面朝上;(3)一枚硬币正面朝上,一枚硬币反面朝上;自测——反馈——点拨1、袋子中装有红、绿各一个小球,除颜色外无其它差别,随机摸出1个小球后放回,再随机摸出一个,求下列事件的概率:(1)第一次摸到红球,第二次摸到绿球;(2)两次都摸到相同颜色的小球;(3)两次摸到的球中有一个绿球和一个红球。
2、将分别标有数字1、2、3的三张卡片洗匀后,背面朝上放在桌面上。
(1)随机抽取一张,求P(奇数);(2)随机抽取一张作为十位上的数字,记下数字后放回,再抽取一张作为个位上的数字,能组成哪些两位数,这个两位数能被3整除的概率是多少?(2)随机抽取一张作为十位上的数字(不放回去),再抽取一张作为个位上的数字,能组哪些两位数?这个两位数能被3整除的概率是多少?。
人教版数学九年级上册2用概率解决实际问题课件
随机事件发生的可能性是有大小的。
魔术揭秘
关于算命先生
学以致用:填空 (1) a >0, -a是负数。属于 必然事件 。 (2) a ≤0 ,-a是负数。属于 不可能事件
25.1.1 随机事件
每人拿一个球,都能拿到红球吗?
1.必然事件: 必然发生 2.不可能事件:不可能发生
也称 确定性事件
3.随机事件:有可能发生,也有可能不发生
事先不能预料即具有不确定性。也称 不确定性事件。
“闭着眼睛从一堆牌中任意抽一张抽到红牌” 根据下图回答是什么事件?
掷骰子
我们掷一个质地均匀的 正方体骰子,骰子的六个面上 分别刻有1到6的点数,请考虑以下问题:掷一次骰子, 在骰子向上的一面上 (1)出现的点数是4; (2)出现的点数是整数; (3)出现的点数大于0; (4)出现的点数是10;
判断下列事件中哪些是必然事件,哪些是不可能事 件,哪些是随机事件。 1、度量三角形内角和,结果是360° (不可能事件) 2、正常情况下水加热到100°C,就会沸腾 (必然事件) 3、经过城市中某一有交通信号灯的路口,遇到红灯 (随机事件)
4、掷一枚均匀的硬币,正面朝上 (随机事件)
5、篮球运动员在罚球线上投篮一次, 未投中 (随机事件)
说一说
对三种事件各举一例,让其他组判断它是什么事件?
让我们看看随机事件发生在你 身上的可能性有多大?
幸运大比拼,感受随机事件
恭喜你获得一本作业本 恭喜你获得一本作业本 请说说什么是 随机事件?
恭喜你获得一支笔
谢谢参与
恭喜你获得一本作业本
课件_人教版数学九上25用概率解决实际问题优秀精美PPT课件
①一次试验中,可能出现的结果只有有限个; (2)摸到白球的概率是多少?
抽纸团,抽到偶数的概率是多少?
率为
.
②一次试验中,各种结果出现的可能性相等. (2)两枚都正面向下;
例1 掷一枚质地均匀的骰子,观察向上一面的点数,求下列事件的概率:
不透明的袋子里有1个红球,3个白球,5个黄球,每 个球除颜色外都相同,从中任意摸1个球:
九年级上册
不透明的袋子里有1个红球,3个白球,5个黄球,每 个球除颜色外都相同,从中任意摸1个球:
一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率.
新课导入
出哪一张胡牌的可能性更大呢?
导入课题
新课导入
在同样条件下,某一随机事件可能发生也 可能不发生.那么它发生的可能性有多大呢?能 否用数值进行刻画呢?
(1)摸到红球的概率是多少?
解:(1)P(两枚都正面向上 1 那么它发生的可能性有多大呢?能否用数值进行刻画呢?
)= 如果在一次试验中,有n种可能的结果,并且它们发生的可能性相等,事件A包括其中的m种结果,那么事件A发生的概率P(A)=
4 (1)能够事先确定取出的球是哪种颜色的吗? 1 (2)P(点数为奇数)= (2)P(两枚都正面向下)= 4 1 (3)蓝球.
求x和y的值.
2
xxy101012,
∴x+10=y, 又5x=3y, ∴x=15,y=25.
x+10枚 y枚
5x=3y
课堂小结
1.随机事件A发生的概率
2.如果在一次试验中,有n种可能的结果,并且它们
发生的可能性相等,事件A包括其中的m种结果,
那么事件A发生的概率P(A)=
m n