数据管理工作心得体会(共6篇)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据管理工作心得体会(共6篇)
第1篇:数据分析心得体会
数据分析心得体会
在数据分析这门课程当中主要学习了numpy和pandas和数据挖掘的知识,学习过程很充实,也不是很难。
首先学习了Numpy, NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,主要学习了1、矩阵生成,2、矩阵切片,3、轴对换、相乘,4、条件填入(where),5、数据处理。
NumPy 是一个运行速度非常快的数学库,主要用于数组计算。
在pandas中有两类非常重要的数据结构,即序列Series和数据DataFrame。
Series类似于numpy中的一维数组,除了通吃一维数组可用的函数或方法,而且其可通过索引标签的方式获取数据,还具有索引的自动对齐功能;DataFrame 类似于numpy中的二维数组,同样可以通用numpy数组的函数和方法,而且还具有其他灵活应用。
之后学习了数据索引index,包括了通过索引值或索引标签获取数据以及自动化对齐;此外,pandas模块为我们提供了非常多的描述性统计分析的指标函数,如总和、均值、最小值、最大值等,我们来具体看看这些函数;在SQL中常见的操作主要是增、删、改、查几个动作,那么pandas能否实现对数据的这几项操作呢?答案是Of Course! 我们发现,不论是删除行还是删除列,都可以通过drop方法实现,只需要设定好删除的轴即可,即调整drop方法中的axis参数。
默认该参数为0,表示删除行观测,如果需要删除列变量,则需设置为1。
在Excel中有一个非常强大的功能就是数据透视表,通过托拉拽的方式可以迅速的查看数据的聚合情况,这里的聚合可以是计数、求和、均值、标准差等。
pandas为我们提供了非常强大的函数pivot_table(),该函数就是实现数据透视表功能的。
数据挖掘的技术与方法相关知识包括:数据挖掘的方法分为描述性与预测性两种。
其中描述性数据挖掘指的是分析具有多个属性的数据集,找出潜在的模式和规律,没有因变量。
要采用的算法:聚类、关联分析、因子分析、主成分分析等。
预测性数据挖掘指的是用一个或多个自变量预测因变量的值。
主要算法:决
策树、线性回归Logistic回归、支持向量机、神经网络、判别分析。
通过这几天的学习我了解到数据分析的复杂性和难度,想要学好的它,还需要我花费很长时间。
第2篇:数据结构心得体会
Experience The data structure design subject, it needs to change the theory to the computer debugging.At the beginning of the first leon of the subject, Mr.Lu explained the importance of it for us.It has some difficulty for us.It is a basic subject of other programming languages.Many students say that the data structure is not good to learn, I deeply understand this.When I first started learning, there were a lot of places I didn’t understand.Every time I was in cla, the teacher gave us different design questions.It was a big challenge for us as a beginner.I remember walking through the contents of two trees in a cla, preorder, preorder, and preorder.Teacher Lu said, “the content of this leon is very important.No matter whether you have understood it or not, listen carefully now.”.To tell the truth, I didn’t really understand what I had done before, but I listened to the teacher carefully.Preorder traversal is very simple, is the three traversal, the simplest.And in order to traverse, listen to a little fuzzy, after the order traversal, also half understand, half understand, I thought, if the teacher once again, I certainly can ter, the teacher drew a two tree, smoked the students to the blackboard sorting, this two fork tree seems complex, but with first order traversal to row, not difficult.So I lined up in the following, first order, first order traversal, very simple, I am a little complacent, the teacher to the location of the point, I went up the row in the order, go up after a row in a me.Then the teacher spoke again, I just understand, Lu teacher and aured us that the two tree is hard, the order and post order are not good, want to learn that we sort,
and ask the students to row out respectively, the teacher also had my name, call me up in order to distinguish the two row row which students answer correctly, I did not hesitate to answer.Because of this content, the first traversal of the two fork tree, the sequence traversal two fork tree, after the order traversal two fork tree, I really understand, for the first time on this cla so succeful sense.Gradually interested in the course.I thought I would never understand the leon.Now I see, and if I listen carefully and try my best, this leon is not difficult.The degree of difficulty of data structure learning depends largely on personal interest.It’s painful to make a task as a task, and it will be fun to do it.Also hope that the teacher can see my change, in this also thank the teacher’s hard teaching.The teacher did not give up on me, several times my name go up, the teacher must see my ter, I listened carefully every cla, although the teacher did not call the roll, but I still listened very seriously.The parents expre the children and the children and the brothers.I can understand them very well.I listen to the lectures almost every cla.Sometimes I also take claes in my spare time to read what I’ve been doing before.So, when I first read the textbooks, I memorize the concepts in mind, and then build a knowledge framework.The data structure includes linear structure, tree structure, graph structure or network structure.Linear structure including linear list, stack, queue, string, array, generalized list, stack and queue is a linear scale is limited, the data object constraint string for character set, and an array of generalized list of linear table: data element in the table is a data structure.In addition to linear tables, the stack is the focus, because the stack is closely related to recursion, and recursion is an important tool in programming.I’ve learned that Stack is a special linear list that can only be inserted and deleted at one end.It stores data in accordance with the principle of “first in, first out”.The incoming data is pushed
to the bottom of the stack, and the last data pops up from the top of the stack at the top of the stack when it is neceary to read data; A special linear table that allows only deleting operations at the front of the table (front) and inserting operations at the back of the table (rear).The inserted operation end is called the queue tail, and the deleted operation end is called the header.When there is no element in the queue, it is called an empty queue.The list is a discontinuous and non sequential storage structure on the physical storage unit, and the logical order of the data elements is achieved by the order of pointer linking in the linked list.A linked list consists of a series of nodes that can be dynamically generated at run time.Each node consists of two parts: one is the data domain that stores the data elements, and the other is the pointer domain that stores the addre of the next node.Think oneself enter oneself for an examination of the profeional, but also the data structure of this gate, this semester is over, more or le have gained some knowledge.Although the study is not very thorough, I believe that this will help a lot of self exams, so even if I finish the subject, I will not give up learning it.
第3篇:大数据心得体会
大数据时代的信息分析平台搭建安装报告
一、平台搭建
描述小组在完成平台安装时候遇到的问题以及如何解决这些问题的,要求截图加文字描述。
问题一:在决定选择网站绑定时,当时未找到网站绑定的地方。
解决办法:之后小组讨论后,最终找到网站绑定的地方,点击后解决了这个问题。
问题二:当时未找到TCP/IP属性这一栏
解决办法:当时未找到TCP/IP属性这一栏,通过老师的帮助和指导,顺利的点击找到了该属性途径,启用了这一属性,完成了这一步的安装步骤。
问题三:在数据库这一栏中,当时未找到“foodmartsaleDW”这个文件
解决办法:在数据库这一栏中,当时未找到“foodmartsaleDW”这个文件,后来询问老师后,得知该文件在第三周的文件里,所以很快的找到了该文件,顺利的进行了下一步
问题四:在此处的SQL server的导入和导出向导,这个过程非常的长。
解决办法:在此处的SQL server的导入和导出向导,这个过程非常的长,当时一直延迟到了下课的时间,小组成员经讨论,怀疑是否是电脑不兼容或其他问题,后来经问老师,老师说此处的加载这样长的时间是正常的,直到下课后,我们将电脑一直开着到寝室直到软件安装完为止。
问题五:问题二:.不知道维度等概念,不知道怎么设置表间关系的数据源。
关系方向不对
解决办法:百度维度概念,设置好维度表和事实表之间的关系,关系有时候是反的——点击反向,最后成功得到设置好表间关系后的数据源视图。
(如图所示)
这个大图当时完全不知道怎么做,后来问的老师,老师边讲边帮我们操作完成的。
问题六:由于发生以下连接问题,无法将项目部署到“localhost”服务器:无法建立连接。
请确保该服务器正在运行。
若要验证或更新目标服务器的名称,请在解决方案资源管理器中右键单击相应的项目、选择“项目属性”、单击“部署”选项卡,然后输入服务器的名称。
”因为我在配置数据源的时候就无法识别“localhost”,所以我就打开数据库属性页面:图1-图2 图一:图二:
解决办法:解决办法: 图2步骤1:从图1到图2后,将目标下的“服务器” 成自己的SQL SERVER服务器名称行SQL ServerManagement Studio可以)步骤2:点确定后,选择“处理”,就可以成功部署了。
问题七:无法登陆界面如图:
解决方法:尝试了其他用户登陆,就好了
二、心得体会
(1)在几周的学习中,通过老师课堂上耐心细致的讲解,耐心的指导我们如何一步一步的安装软件,以及老师那些简单清晰明了的课件,是我了解了SQL
的基础知识,学会了如何创建数据库,以及一些基本的数据应用。
陌生到熟悉的过程,从中经历了也体会到了很多感受,面临不同的知识组织,我们也遇到不同困难。
数据隐藏着有价值的模式和信息,在以往的时间才能提取这些信息。
如今的各种资源,如硬件、云结构和开源软件使得大数据的处理方法更为方便和廉价。
大数据的规模是传统IT架构所面临的直接挑战。
要求可扩展的储存和分布方式来完成查询。
传统的关系数据库无法处
理大数据的规模。
大数据进修学习内容模板:
LINUX安装,文件系统,系统性能分析 HAdoop学习原理
大数据飞速发展时代,做一个合格的大数据开发工程师,只有不断完善自己,不断提高自己技术水平,这是一门神奇的课程。
2、在学习SQL的过程中,让我们明白了原来自己的电脑可以成为一个数据库,也可以做很多意想不到的事。
以及在学习的过程中让我的动手能力增强了,也让我更加懂得了原来电脑的世界是如此的博大精深,如此的神秘。
通过这次的学习锻炼了我们的动手能力,上网查阅的能力,。
改善了我只会用电脑上网的尴尬处境,是电脑的用处更大。
让我们的小组更加的团结,每个人对自己的分工更加的明确,也锻炼了我们的团结协作,互帮互助的能力。
3、如果再有机会进行平台搭建,会比这一次的安装更加顺手。
而在导入数据库和报表等方面也可以避免再犯相同的错误,在安装lls时可以做的更好。
相信报表分析也会做的更加简单明了有条理。