小学六年级数学竞赛试卷及答案_学科竞赛一

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、拓展提优试题
1.如图,圆P的直径OA是圆O的半径,OA⊥BC,OA=10,则阴影部分的面
积是.(π取3)
2.(15分)如图,半径分别是15厘米、10厘米、5厘米的圆形齿轮A、B、C 为某传动机械的一部分,A匀速转动后带动B匀速转动,而后带动C匀速转动,请问:
(1)当A匀速顺时针转动,C是顺时针转动还是逆时针转动?
(2)当A转动一圈时,C转动了几圈?
3.若质数a,b满足5a+b=2027,则a+b=.
4.若A:B=1:4,C:A=2:3,则A:B:C用最简整数比表示是.
5.有三杯重量相等的溶液,它们的浓度依次是10%,20%,45%,如果依次将三个杯子中的溶液重量的,,倒入第四个空杯子中,则第四个杯子中溶液的浓度是%.
6.如图,设定E、F分别是△ABC的边AB、AC上的点,线段CE,BF交于点D,若△CDF,△BCD,△BDE的面积分别为3,7,7,则四边形AEDF的面积是.
7.用1,2,3,4,5,6,7,8,9九个数字组成三个三位数(每个数字只能用1次),使最大的数能被3整除;次大的数被3除余2,且尽可能的大;最小的
数被3除余1,且尽可能的小,求这三个三位数.
8.某日是台风天气,雨一直均匀地下着,在雨地里放一个如图1所示的长方体容器,此容器装满雨水需要1小时.
请问:雨水要下满如图2所示的三个不同的容器,各需要多长时间?
9.对于一个多边形,定义一种“生长”操作:如图1,将其一边AB变成向外凸的折线ACDEB,其中C和E是AB的三等分点,C,D,E三点可构成等边三角形,那么,一个边长是9的等边三角形,经过两次“生长”操作(如图2),得到的图形的周长是;经过四次“生长”操作,得到的图形的周长是.
10.若三个不同的质数的和是53,则这样的三个质数有组.
11.对任意两个数x,y规定运算“*”的含义是:x*y=(其中m是一个确定的数),如果1*2=1,那么m=,3*12=.
12.甲挖一条水渠,第一天挖了水渠总长度的,第二天挖了剩下水渠长度的,第三天挖了未挖水渠长度的,第四天挖完剩下的100米水渠.那么,这条水渠长米.
13.已知A是B的,B是C的,若A+C=55,则A=.
14.从1,2,3,…,2016中任意取出n个数,若取出的数中至少有两个数互质,则n最小是.
15.能被5和6整除,并且数字中至少有一个6的三位数有个.16.已知x是最简真分数,若它的分子加a,化简得;若它的分母加a,化简得,则x=.
17.如图,将正方形纸片ABCD折叠,使点A、B重合于点O,则∠EFO=度.
18.张强晚上六点多外出锻炼身体,此时时针与分针的夹角是110°;回家时还未到七点,此时时针与分针的夹角仍是110°,则张强外出锻炼身体用了分钟.
19.小明把一本书的页码从1开始逐页相加,加到最后,得到的数是4979,后来他发现这本书中缺了一张(连续两个页码).那么,这本书原来有页.
20.一根绳子,第一次剪去全长的,第二次剪去余下部分的30%.若两次剪去的部分比余下的部分多0.4米,则这根绳子原来长米.
21.(15分)快艇从A码头出发,沿河顺流而下,途经B码头后继续顺流驶向C码头,到达C码头后立即反向驶回B码头,共用10小时,若A、B相距20千米,快艇在静水中航行的速度是40千米/时,河水的流速是10千米/时,求B、C间的距离.
22.张阿姨和李阿姨每月的工资相同,张阿姨每月把工资的30%存入银行,其余的钱用于日常开支,李阿姨每月的日常开支比张阿姨多10%,余下的钱也存入银行,这样过了一年,李阿姨发现,她12个月存入银行的总额比张阿姨少了5880元,则李阿姨的月工资是元.
23.A,B两校的男、女生人数的比分别为8:7和30:31,两校合并后男、女生人数的比是27:26,则A,B两校合并前人数比是.
24.有2013名学生参加数学竞赛,共有20道竞赛题,每个学生有基础分25分,此外,答对一题得3分,不答题得1分,答错一题扣1分,则所有参赛学生得分的总和是数(填“奇”或“偶”).
25.有一个温泉游泳池,池底有泉水不断涌出,要想抽干满池的水,10台抽水机需工作8小时,9台抽水机需工作9小时,为了保证游泳池水位不变(池水既不减少,也不增多),则向外抽水的抽水机需台.
26.甲、乙两人分别从A、B两地同时出发,相向而行,甲乙两人的速度比是4:5,相遇后,如果甲的速度降低25%,乙的速度提高20%,然后继续沿原方向行驶,当乙到达A地时,甲距离B地30km,那么A、B两地相距
km.
27.小红整理零钱包时发现,包中有面值为1分,2分,5分的硬币共有25枚,总值为0.60元,则5分的硬币最多有枚.
28.如图,三个同心圆分别被直径AB,CD,EF,GH八等分,那么,图中阴影部分面积与非阴影部分面积之比是.
29.如图所示的“鱼”形图案中共有个三角形.
30.如图.从楞长为10的立方体中挖去一个底面半径为2,高为10的圆柱体后,得到的几何体的表面积是,体积是.(π取3)
31.有一口无水的井,用一根绳子测井的深度,将绳对折后垂到井底,绳子的一端高出井口9m;将绳子三折后垂到井底,绳子的一端高出井口2m,则绳长米,井深米.
32.22012的个位数字是.(其中,2n表示n个2相乘)
33.一列快车从甲地开往乙地需要5小时,一列慢车从乙地开往甲地所需时间比快车多,两车同时从甲乙两地相对开出2小时后,慢车停止前进,快车继续行驶40千米后恰与慢车相遇,则甲乙两地相距千米.
34.若算式(□+121×3.125)÷121的值约等于3.38,则□中应填入的自然数是.
35.认真观察图4中的三幅图,则第三幅图中的阴影部分应填的数字是.
36.图中每一个圆的面积都是1平方厘米,则六瓣花形阴影部分的面积是平方厘米.
37.早晨7点10分,妈妈叫醒小明,让他起床,可小明从镜子中看到的时刻还没有到起床的时刻,他对妈妈说:“还早呢!”小明误以为当时是点分.
38.从1,2,3,4,…,15,16这十六个自然数中,任取出n个数,其中必有这样的两个数:一个是另一个的3倍,则n最小是.
39.王涛将连续的自然数1,2,3,…逐个相加,一直加到某个自然数为止,由于计算时漏加了一个自然数而得到错误的结果2012.那么,他漏加的自然数是.
40.从1开始的n个连续的自然数,如果去掉其中的一个数后,余下的各个数的平均数是,那么去掉的数是.
【参考答案】
一、拓展提优试题
1.解:3×102÷2﹣3×(10÷2)2
=3×100÷2﹣3×25
=150﹣75
=75
答:阴影部分的面积是75.
故答案为:75.
2.解:(1)如图,
答:当A匀速顺时针转动,C是顺时针转动.
(2)A:B:C=15:10:5=3:2:1
答:当A转动一圈时,C转动了3圈.
3.解:依题意可知:
两数字和为奇数,那么一定有一个偶数.偶质数是2.当b=2时,5a+2=2027,a=405不符合题意.
当a=2时,10+b=2027,b=2017符合题意,
a+b=2+2017=2019.
故答案为:2019.
4.解:A:B
=1:4
=:
=(×6):(×6)
=10:29
C:A
=2:3
=:
=(×15):(×15)
=33:55
=3:5
=6:10
这样A的份数都是10,
所以A:B:C=10:29:6.
故答案为:10:29:6.
5.解:依题意可知:
设三杯溶液的重量为a.
根据浓度=×100%=×100%=20%
故答案为:20%
6.解:连接AD,因△CDF和△BCD的高相等,所以FD:DB=3:7,
所△AFD和△ABD的面积比也是3:7,
即可把△AFD的面积看作是3份,△ABD的面积看作是7份,
S△BCD=7,S△BDE=7
所以CD=DE,
S△ACD=S△ADE,S△ACD+S△BDE=S△ABD,
S△ACD+S△BDE=7份,
S△AFD+S△CDF+S△BDE=7份,
3份+3+7=7份,则1份=2.5,
S四边形AEDF=10份﹣7
=10×2.5﹣7
=25﹣7
=18
答:四边形AEDF的面积是18.
故答案为:18.
7.解:根据分析,最大的数最高位是:9,次大的数最高位是:8,最小的数最高位是1,
次大的数倍3除余2,且要尽可能的大,则次大的三位数为:875;
最小的数被3除余1,且要尽可能的小,则最小的三位数为:124;
剩下的三个数字只有,3,6,9,故最大的三位数为:963.
故答案是:963、875、124.
8.解:图1所示的长方体容器的容积:10×10×30=3000(立方厘米)
接水口的面积为:10×30=300(平方厘米)
接水口每平方厘米每小时可接水:3000÷300÷1=10(立方厘米)
所以,图①需要:10×10×30÷(10×10×10)=3(小时)
图②需要:(10×10×20+10×10×10)÷(10×10×20)=1.5(小时)
图③需要:2÷2=1(厘米)
3.14×1×1×20÷(3.14×1×10)=2(小时)
答:容器①需要3小时,容器②需要1.5小时,容器③需要2小时.
9.解:边长是9的等边三角形的周长是9×3=27
第一次“生长”,得到的图形的周长是:27×=36
第二次“生长”,得到的图形的周长是:36×=48
第三次“生长”,得到的图形的周长是:48×=64
第四次“生长”,得到的图形的周长是:64×==85
答:经过两次“生长”操作,得到的图形的周长是48,经过四次“生长”操作得到的图形的周长是85.
故答案为:48,85.
10.解:53以内的质数有:2、3、5、7、11,13,17,19,23,29,31,37,41,43,47,51,53;
若三个不同的质数的和是53,可以有以下几组:
(1)3,7,43;(2)3,31,19;(3)3,37,13;(4)5,11,37;(5)5,7,41;
(6)5,17,31;(7)5,19,29;(8)7,17,29;(9)11,13,29;(10)11,23,19;
(11)13,17,23;
所以这样的三个质数有11组.
故答案为:11.
11.解:①因为:
x*y=(其中m是一个确定的数)
且1*2=1
所以:
=1
8=m+6
m+6=8
m+6﹣6=8
m=2
②3*12



故答案为:2,.
12.解:把这条水渠总长度看作单位“1”,则第一天挖的分率为,第二天挖的分率(1﹣)×=,第三天挖的分率为(1﹣)×=,
100÷((1﹣﹣﹣)
=100÷
=350(米)
答:这条水渠长350米.
故答案为:350.
13.解:A是C的×=,
即A=C,
A+C=55,则:
C+C=55
C=55
C=55÷
C=40
A=40×=15
故答案为:15.
14.解:根据分析,1~2016数中,有奇数1008个,偶数1008个,因为偶数和偶数之间不能互质,故:
①n<1008时,有可能取的n个数都是偶数,就不能出现至少有两个数互质的情况;
②n=1008时,若取的数都是偶数,也不能出现至少有两个数互质的情况;
③n≥1009时,则取的n个数里至少有一个为奇数,取出的这个奇数和它相邻
的偶数一定互质,
综上,n最小是1009.
故答案是:1009.
15.解:根据分析,分解质因数6=2×3
∴这个三位数能同时被2、3、5整除,而且数字中至少含有一个6
∴这个三位数的个位数必须为偶数或0,因被5整除的数个位数必须是0或5,故个位数为0,
设此三位数为,按题意a、b中至少有一个数字为6,
①a=6时,则6+b+0 是3的倍数,则b=0,3,6,9,符合的三位数为:600、630、660、690
②b=6时,则6+a+0 是3的倍数,则a=3,6,9,符合的三位数为:360、660、960
综上所述,符合题意的三位数为:360、660、960、600、630、690
故答案为:6.
16.解:设原来的分数x是,则:

则:b=3(c+a)=3c+3a①

则:4c=a+b②
①代入②可得:
4c=a+3c+3a
4c=4a+3c
则:c=4a③
③代入①可得:
b=3c+3a=3×4a+3a=15a
所以==
即x=.
故答案为:.
17.解:沿DE折叠,所以AD=OD,同理可得BC=OC,
则:OD=DC=OC,
△OCD是等边三角形,
所以∠DCO=60°,
∠OCB=90°﹣60°=30°;
由于是对折,所以CF平分∠OCB,
∠BCF=30°÷2=15°
∠BFC=180°﹣90°﹣15°=75°
所以∠EFO=180°﹣75°×2=30°.
故答案为:30.
18.解:依题意可知:
分针开始落后时针共格;
后来分针领先格,路程差为格.
锻炼身体的时间为:=40(分);
故答案为:40.
19.解:设这本书的页码是从1到n的自然数,正确的和应该是1+2+…+n=n(n+1),
由题意可知,n(n+1)>4979,
由估算,当n=100,n(n+1)=×100×101=5050,
所以这本书有100页.
答:这本书共有100页.
故答案为:100.
20.解:第二次剪求的占全长的:
(1)×30%

=,
0.4÷[(1)]
=0.4÷[]

=0.4×15
=6(米);
答:这根绳子原来长6米.
故答案为:6.
21.解:设B、C间的距离为x千米,由题意,得
+=10,
解得x=180.
答:B、C间的距离为180千米.
22.解:(1﹣30%)×(1+10%)
=70%×110%,
=77%;
5880÷12÷[30%﹣(1﹣77%)]
=490÷[30%﹣23%],
=490÷7%,
=7000(元).
即李阿姨的月工资是 7000元.
故答案为:7000.
23.解:设A、B两校的男生、女生人数分别为8a、7a、30b、31b,
由题意得:
(8a+30b):(7a+31b)=27:26,
27×(7a+31b)=26×(8a+30b),
189a+837b=208a+780b,
837b﹣780b=208a﹣189a,
57b=19a,
所以a=3b,
所以A、B两校合并前人数的比是:
(8a+7a):(30b+31b),
=15a:61b,
=45b:61b,
=(45b÷b):(61b÷b)
=45:61;
答:A,B两校合并前人数比是45:61.
故答案为:45:61.
24.解:每人答对x道,不答y道,答错z道题目,则显然x+y+z=20,z=20﹣x﹣y;
所以一个学生得分是:
25+3x+y﹣z,
=25+3x+y﹣(20﹣x﹣y),
=5+4x+2y;
4x+2y显然是个偶数,而5+4x+2y的和一定是个奇数;
2013个奇数相加的和仍是奇数.
所以所有参赛学生得分的总和是奇数.
故答案为:奇.
25.解:设1台抽水机1小时抽1份水,
每小时新增水:9×9﹣10×8=1;
答:向外抽水的抽水机需1台.
26.解:根据题意可得:
相遇时,甲走了全程的4÷(4+5)=,乙走了全程的1﹣=;
相遇后,甲乙的速度比是4×(1﹣25%):5×(1+20%)=1:2;
当乙到达A地时,乙又走了全程的1﹣=,甲又走了全程的×=;A、B两地相距:30÷(1﹣﹣)=90(km).
答:A、B两地相距90km.
27.解:因为0.60元=60分,
设1分,2分,5分的硬币各有x枚、y枚和z枚,则有x+y+z=25,x+2y+5z=60,
把上面的两个式子相减得出y+4z=35,要使5分的硬币最大,即Z最大,y最小,
因为35是奇数,所以y必须是奇数,
当y=1时,z的值不是整数,
当y=3时,z=8,
所以z=8;
答:5分的硬币最多有8枚;
故答案为:8.
28.解:由图可知,阴影部分的面积是图中最大圆面积的,非阴影部分的面积是图中最大圆面积的,
所以图中阴影部分面积与非阴影部分面积之比是::=1:3;
答:图中阴影部分面积与非阴影部分面积之比是1:3.
故答案为:1:3.
29.解:由一个三角形组成:14个;
由两个三角形组成:8个;
由三个三角形组成:8个;
由四个三角形组成:4个;
由六个三角形组成:1个;
总共:14+8+8+4+1=35个.
故共有35个三角形.
故答案为:35.
30.解:10×10×6﹣3×22×2+2×3×2×10,=600﹣24+120
=696;
10×10×10﹣3×22×10,
=1000﹣120
=880;
答:得到的几何体的表面积是696,体积是880.故答案为:696,880.
31.解:(9×2﹣2×3)÷(3﹣2),
=(18﹣6)÷1,
=12÷1,
=12(米),
(12+9)×2,
=21×2,
=42(米).
故答案为:42,12.
32.解:2012÷4=503;
没有余数,说明22012的个位数字是6.
故答案为:6.
33.解:慢车行完全程需要:
5×(1+),
=5×,
=6(小时);
全程为:
40÷[1﹣(+)×2],
=40÷[1﹣],
=40÷,
=40×,
=150(千米);
答:甲乙两地相距150千米.
故答案为:150.
34.解:令□=x,那么:
(x+121×3.125)÷121,
=(x+121×3.125)×,
=x+121×3.125×,
=x+3.125;
x+3.125≈3.38,
x≈0.255,
0.255×121=30.855;
x=30时,x=×30≈0.248;
x=31时,x=×31≈0.255;
当x=31时,运算的结果是3.38.
故答案为:31.
35.解:由每个图形的数字表示该图形所含曲边的数目可得:
第三幅图中的阴影部分含有5个曲边,
所以阴影部分应填的数字是5,
故答案为:5.
36.解:1×2=2(平方厘米);
答:六瓣花形阴影部分的面积是2平方厘米.
故答案为:2.
37.解:早晨7点10分,分针指向2,时针指7、8之间,根据对称性可得:与4点50分时的指针指向成轴对称,故小明误以为是4点50分.
故答案为:4,50.
38.解:将有3倍关系的放入一组为:(1,3,9)、(2,6)、(4,12)、(5,15)共有4组,
其余7个数每一个数为一组,
即将这16个数可分为11组,.则第一组最多取2个即1和9,其余组最多取一个,
即最多能取12个数保证没有一个数是另一个的三倍,
此时只要再任取一个,即取12+1=13个数必有一个数是另一个数的3倍.
所以n最小是13.
39.解:设这个等差数列和共有n项,则末项也应为n,这个等差数列的和为:
(1+n)n÷2=;
经代入数值试算可知:
当n=62时,数列和=1953,
当n=63时,数列和=2016,
可得:1953<2012<2016,
所以这个数列共有63项,少加的数为:2016﹣2012=4.
故答案为:4.
40.解:设去掉的数是x,那么去掉一个数后的和是:
(1+n)n÷2﹣x=×(n﹣1);
显然,n﹣1是7的倍数;
n=8、15、22、29、36时,x均为负数,不符合题意.
n=43时,和为946,42×=912,946﹣912=34.
n=50时,和为1225,49×=1064,1225﹣1064=161>50,不符合题意.
答:去掉的数是34.
故答案为:34.。

相关文档
最新文档