[精品]初一七年级数学(上册)导学案[含答案][131页]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[精品]初一七年级数学(上册)导学案[含答案][131页]初中数学七年级(上册)导学案及答案
第一章有理数
课题:1.1正数和负数(1)
【学习目标】:1、掌握正数和负数概念;
2、会区分两种不同意义的量,会用符号表示正数和负数;
3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。
【重点难点】:正数和负数概念
【导学指导】:
一、知识链接:
1、小学里学过哪些数请写出来:、、。
2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)
回答下面提出的问题:
3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?
二、自主学习
1、正数与负数的产生
(1)、生活中具有相反意义的量
如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相
反意义的量。
请你也举一个具有相反意义量的例子:。
(2)负数的产生同样是生活和生产的需要
2、正数和负数的表示方法
(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,
如:下降、运出、零下、支出、后退、低于等规定为负的。
正的量就用小学里学过的数表示,
有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放
上“—”(读作负)号来表示,如上面的—3、—8、—47。
(2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.
(3)阅读P3练习前的内容
3、正数、负数的概念
1)大于0的数叫做,小于0的数叫做。
2)正数是大于0的数,负数是的数,0既不是正数也不是负数。
【课堂练习】:
1.P3第一题到第四题(直接做在课本上)。
2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作4万元表示.已知下列各数:,,,+,0,239;
则正数有;负数有.下列结论中正确的是
A.0既是正数,又是负数B.O是最小的正数
.0是最大的负数D.0既不是正数,也不是负数.给出下列各数:
3,,+5,,+31,,2004,+20其中是负数的有A.2个B.3个.4个D.5个1.零下15℃,表示为,比O℃低4℃的温度是2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为5米,其中最高处为地,最低处为地..“甲比乙大3岁”表示的意义是如果海平面的高度为米,一潜水艇在海水下米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度
课题:1.1正数和负数(2)
【学习目标】:
1、会用正、负数表示具有相反意义的量;
2、通过正、负数学习,培养学生应用数学知识的意识;
【学习重点】:用正、负数表示具有相反意义的量;
【学习难点】:实际问题中的数量关系;
【导学指导】
一、知识链接.
通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用__________和___________来分别表示它们。
问题:“零”为什么即不是正数也不是负数呢?
引导学生思考讨论,借助举例说明。
参考例子:温度表示中的零上,零下和零度。
二.自主探究
问题:(课本第4页例题)
先引导学生分析,再让学生独立完成
例(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;
2)2001年下列国家的商品进出口总额比上一年的变化情况是:
美国减少6.4%,德国增长1.3%,
法国减少2.4%,英国减少3.5%,
意大利增长0.2%,中国增长7.5%.
写出这些国家2001年商品进出口总额的增长率;
解:(1)这个月小明体重增长__________,小华体重增长_________,小强体重增长_________;
2)六个国家2001年商品进出口总额的增长率:
美国___________德国__________
法国___________英国__________
意大利__________中国__________
【课堂练习】
1.课本第4页练习
2、阅读思考
(课本第8页)用正负数表示加工允许误差;
问题:直径为30.032mm和直径为29.97的零件是否合格?
【要点归纳】
1、本节课你有那些收获?
2、还有没解决的问题吗?
【拓展训练】
1)甲冷库的温度是-12°C,乙冷库的温度比甲冷酷低5°C,则乙冷库的温度是;
2)一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9mm,加工要求最大不超过标准尺寸多少?最小不小于标准尺寸多少?
【总结反思】:
课题:1.2.1有理数
【学习目标】:
1、掌握有理数的概念,会对有理数按一定标准进行分类,培养分类能力;
2、了解分类的标准与集合的含义;
3、体验分类是数学上常用的处理问题方法;
【学习重点】:正确理解有理数的概念
【学习难点】:正确理解分类的标准和按照一定标准分类
【导学指导】
一、温故知新
1、通过两节课的学习,,那么你能写出3个不同类的数吗?.(4名学生板书)
__________________________________________
二、自主探究
问题1:观察黑板上的12个数,我们将这4位同学所写的数做一下分类;该分为几类,又该怎样分呢?先分组讨论交流,再写出来
分为类,分别是:
引导归纳:
统称为整数,统称为有理数。
问题2:我们是否可以把上述数分为两类?如果可以,应分为哪两类?
师生共同交流、归纳
2、正数集合与负数集合
所有的正数组成集合,所有的负数组成集合
【课堂练习】
1、P8练习(做在课本上)
2.把下列各数填入它所属于的集合的圈内:
15,-,-5,,,0.1,-5.32,-80,123,2.333;
正整数集合负整数集合
正分数集合负分数集合
【要点归纳】:
有理数分类
或者
【拓展训练】
1、下列说法中不正确的是
A.既是负数,分数,也是有理数B.既不是正数,也不是负数,但是整数c.2000既是负数,也是整数,但不是有理数D.O是在下表适当的空格里画上“”号整数分数正整数负分数自然数 -8是 -2.25是是 0是
【总结反思】:
课题:1.2.2数轴
【学习目标】:
1、掌握数轴概念,理解数轴上的点和有理数的对应关系;
2、会正确地画出数轴,利用数轴上的点表示有理数;
3、领会数形结合的重要思想方法;
【重点难点】:数轴的概念与用数轴上的点表示有理数;
【导学指导】
一、知识链接
1、观察下面的温度计,读出温度.分别是°C、°C、°C;
2、在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境?
东
汽车站
请同学们分小组讨论,交流合作,动手操作
二、自主探究
1、由上面的两个问题,你受到了什么启发?能用直线上的点来表示有理数吗?
2、自己动手操作,看看可以表示有理数的直线必须满足什么条件?
引导归纳:
1)、画数轴需要三个条件,即、方向和长度。
2)数轴
【课堂练习】
1、请你画好一条数轴
2、利用上面的数轴表示下列有理数
1.5,—2,2,—
2.5,,0;
3、写出数轴上点A,B,C,D,E所表示的数:
三、寻找规律
1、观察上面数轴,哪些数在原点的左边,哪些数在原点的右边,由此你有什么发现?
2、每个数到原点的距离是多少?由此你又有什么发现?
3、进一步引导学生完成P9归纳
【要点归纳】:
画数轴需要三个条件是什么?
【拓展练习】
1、在数轴上,表示数-3,2.6,,0,,,-1的点中,在原点左边的点有个。
2、在数轴上点A表示-4,如果把原点O向正方向移动1个单位,那么在新数轴上点A表示的数是()
A.-5,
B.-4
C.-3
D.-2
3、你觉得数轴上的点表示数的大小与点的位置有什么关系?
【总结反思】:
课题:1.2.3相反数
【学习目标】:
1、掌握相反数的意义掌握求一个已知数的相反数求一个已知数的相反数和是互为相反数,的相反数是2010;
(2)、a和互为相反数,也就是说,—a是的相反数
例如a=7时,—a=—7,即7的相反数是—7.
a=—5时,—a=—(—5),“—(—5)”读作“-5的相反数”.在数轴上标出,-.5,0各数与它们
2.-1.6的相反数的相反数的相反数
相反数相反数.填空:
(1)如果a=-13,那么-a=;(2)如果a=-5.4,那么a=;
(3)如果-x=-6,那么x=;(4)-x=9,那么x=相反数
课题:1.2.4绝对值
【学习目标】:
1、理解掌握求一个已知数的的绝对值是
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作∣a∣。
2、练习
(1)、式子∣-5.7∣表示的意义是。
(2)、—2的绝对值表示它离开原点的距离是个单位,记作;
(3)、∣24∣=.∣—3.1∣=,∣—∣=,∣0∣=;
3、思考、交流、归纳
由绝对值的定义可知:一个正数的绝对值是;一个负数的绝对值是它的;0的绝对值是。
用式子表示就是:
1)、当a是正数(即a>0)时,∣a∣=;
2)、当a是负数(即a<0)时,∣a∣=;
3)、当a=0时,∣a∣=;
4、随堂练习P12第1、2大题(直接做在课本上)
5、阅读思考,发现新知
阅读P12问题—P13第12行,你有什么发现吗?
在数轴上表示的两个数,右边的数总要左边的数。
1)、正数0,负数0,正数大于负数。
2)、两个负数,绝对值大的。
【课堂练习】:
1、自学例题P13(教师指导)
2、比较下列各对数的大小:—3和—5;—2.5和—∣—2.25∣
【要点归纳】:
一个正数的绝对值是;一个负数的绝对值是它的;
0的绝对值是。
【拓展练习】
1.如果,则的取值范围是
A.>O B.≥O C.≤O D.<O
2.,则;,则.
3.如果,则,.
4.绝对值等于其相反数的数一定是
A.负数B.正数.负数或零D.正数或零.给出下列说法:①互为相反数的两个数绝对值相等;
②绝对值等于本身的数只有正数;③不相等的两个数绝对值不相
其中正确的有
A.0个B.1个.2个D.3个
课题:1.3.1有理数的加法(1)
【学习目标】:
1、理解有理数加法意义,掌握有理数加法法则,会正确进行有理数加法运算;
2、会利用有理数加法运算解决简单的实际问题;
【学习重点】:有理数加法法则
【学习难点】:异号两数相加
【导学指导】
一、知识链接
1、正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出正数范围。
例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。
如果,红队进4个球,失2个球;蓝队进1个球,失1个球。
于是红队的净胜球数为4+(-2),
蓝队的净胜球数为1+(-1)。
这里用到正数和负数的加法。
那么,怎样计算4+(-2)
下面我们一起借助数轴来讨论有理数的加法。
二、自主探究
1、借助数轴来讨论有理数的加法
1)如果规定向东为正,向西为负,那么一个人向东走4米,再向东走2米,两次共向东走了米,这个问题用算式表示就是:
2)如果规定向东为正,向西为负,那么一个人向西走2米,再向西走4米,两
次共向西走多少米?很明显,两次共向西走了米。
这个问题用算式表示就是:
如图所示:
3)如果向西走2米,再向东走4米,那么两次运动后,这个人从起点向东走了米,写成算式就是这个问题用数轴表示如下图所示:
4)利用数轴,求以下情况时这个人两次运动的结果:
①先向东走3米,再向西走5米,这个人从起点向()走了()米;
②先向东走5米,再向西走5米,这个人从起点向()走了()米;
③先向西走5米,再向东走5米,这个人从起点向()走了()米。
写出这三种情况运动结果的算式
5)如果这个人第一秒向东(或向西)走5米,第二秒原地不动,两秒后这个人
从起点向东(或向西)运动了米。
写成算式就是
2、师生归纳两个有理数相加的几种情况。
3.你能从以上几个算式中发现有理数加法的运算法则吗?
有理数加法法则
(1)同号的两数相加,取的符号,并把相加。
(2)绝对值不相等的异号两数相加,取的加数的符号,并用较大的绝对值较小的绝对值.互为相
反数的两个数相加得;
(3)一个数同0相加,仍得。
4.新知应用
例1计算(自己动动手吧!)
(1)(-3)+(-9);(2)(-4.7)+3.9.
例2(自己独立完成)
【课堂练习】:
1.填空:(口答)
(1)(-4)+(-6)=;(2)3+(-8)=;
(4)7+(-7)=;(4)(-9)+1=;
(5)(-6)+0=;(6)0+(-3)=;
2.课本P18第1、2题
【要点归纳】:
有理数加法法则:
【拓展训练】:
1.判断题:
(1)两个负数的和一定是负数;
(2)绝对值相等的两个数的和等于零;
(3)若两个有理数相加时的和为负数,这两个有理数一定都是负数;(4)若两个有理数相加时的和为正数,这两个有理数一定都是正数。
2.已知│a│=8,│b│=2;
(1)当a、b同号时,求a+b的值;
(2)当a、b异号时,求a+b的值。
【总结反思】:
课题:1.3.1有理数的加法(2)
【学习目标】:掌握加法运算律并能运用加法运算律简化运算;
【重点难点】:灵活运用加法运算律简化运算;
【导学指导】
一、温故知新
1、想一想,小学里我们学过的加法运算定律有哪些?先说说,再用字母表示写在下面:、
2、计算
⑴30+(-20)=(-20)+30=
⑵[8+(-5)]+(-4)=8+[(-5)]+(-4)]=
思考:观察上面的式子与计算结果,你有什么发现?
二、自主探究
1、请说说你发现的规律
2、自己换几个数字验证一下,还有上面的规律吗
3、由上可以知道,小学学习的加法交换律、结合律在有理数范围内同样适应,
即:两个数相加,交换加数的位置,和.式子表示为
三个数相加,先把前两个数相加,或者先把后两个数相加,和
用式子表示为
想想看,式子中的字母可以是哪些数?
例1计算:1)16+(-25)+24+(-35)
2)(—2.48)+(+4.33)+(—7.52)+(—4.33)
例2每袋小麦的标准重量为90千克,10袋小麦称重记录如下:
919191.58991.291.388.788.891.891.1
10袋小麦总计超过多少千克或不足多少千克?10袋小麦的总重量是多少千克?
想一想,你会怎样计算,再把自己的想法与同伴交流一下。
【课堂练习】
课本P20页练习1、2
【要点归纳】:
你会用加法交换律、结合律简化运算了吗?
【拓展训练】
1.计算:
(1)(-7)+11+3+(-2);(2)
2.绝对值不大于10的整数有个,它们的和是.
3、填空:
(1)若a>0,b>0,那么a+b0.
(2)若a<0,b<0,那么a+b0.
(3)若a>0,b<0,且│a│>│b│那么a+b0.
(4)若a<0,b>0,且│a│>│b│那么a+b0.
3.某储蓄所在某日内做了7件工作,取出950元,存入5000元,取出800元,存入12000元,取出10000元,取出2000元.问这个储蓄所这一天,共增加多少元?
4、课本P20实验与探究
【总结反思】:
课题:1.3.2有理数的减法(1)
【学习目标】:
1、经历探索有理数减法法则的过程.理解并掌握有理数减法法则;
2、会正确进行有理数减法运算;
3、体验把减法转化为加法的转化思想;
【重点难点】:有理数减法法则和运算
【导学指导】
一、知识链接
1、世界上最高的山峰珠穆郎玛峰海拔高度约是8844米,吐鲁番盆地的海拔高度约为—154米,两处的高度相差多少呢?
试试看,计算的算式应该是.能算出来吗,画草图试试
2、长春某天的气温是―2°C~3°C,这一天的温差是多少呢?(温差是最高气温减最低气温,单位:°C)显然,这天的温差是3―(―2);
想想看,温差到底是多少呢?那么,3―(―2)=;
二、自主探究
1、还记得吗,被减数、减数差之间的关系是:被减数—减数=;
差+减数=。
2、请你与同桌伙伴一起探究、交流:
要计算3―(―2)=?,实际上也就是要求:?+(—2)=3,所以这个数(差)应该是;也就是3―(―2)=5;
再看看,3+2=;所以3―(―2)3+2;
由上你有什么发现?请写出来.
3、换两个式子计算一下,看看上面的结论还成立吗?
—1—(—3)=,—1+3=,所以—1—(—3)—1+3;
0—(—3)=,0+3=,所以0—(—3)0+3;
4、师生归纳
1)法则:
2)字母表示:
三、新知应用
1、例题
计算:
(1)(-3)―(―5);(2)0-7;
(3)7.2―(―4.8);(4)-3;
请同学们先尝试解决
【课堂练习】课本P231.2
【要点归纳】:
有理数减法法则:
【拓展训练】
1、计算:
(1)(-37)-(-47);(2)(-53)-16;(3)(-210)-87;(4)1.3-(-2.7);(5)(-2)-(-1);
2.分别求出数轴上下列两点间的距离:
(1)表示数8的点与表示数3的点;
(2)表示数-2的点与表示数-3的点;
【总结反思】:
课题:1.3.2有理数的减法(2)
【学习目标】:
1、理解加减法统一成加法运算的意义;
2、会将有理数的加减混合运算转化为有理数的加法运算;
【重点难点】:有理数加减法统一成加法运算;
【导学指导】
一、知识链接
1、一架飞机作特技表演,起飞后的高度变化如下表:
高度的变化上升4.5千米下降3.2千米上升1.1千米下降1.4千米记作 +4.5千米 —3.2千米 +1.1千米 —1.4千米
请你们想一想,并和同伴一起交流,算算此时飞机比起飞点高了千米。
2、你是怎么算出来的,方法是
二、自主探究
1、现在我们来研究(—20)+(+3)—(—5)—(+7),该怎么计算呢?还是先自己独立动动手吧!
2、怎么样,计算出来了吗,是怎样计算的,与同伴交流交流,师巡视指导。
3、师生共同归纳:遇到一个式子既有加法,又有减法,第一步应该先把减法转化为.再把加号记在脑子里,省略不写
如:(-20)+(+3)-(-5)-(+7)有加法也有减法
=(-20)+(+3)+(+5)+(-7)先把减法转化为加法
=-20+3+5-7再把加号记在脑子里,省略不写
可以读作:“负20、正3、正5、负7的”或者“负20加3加5减7”.
4、师生完整写出解题过程
5、补充例题:计算-4.4-(-4)-(+2)+(-2)+12.4;
【课堂练习】
计算:(课本P24练习)
(1)1—4+3—0.5;
(2)-2.4+3.5—4.6+3.5;
(3)(—7)—(+5)+(—4)—(—10);
(4);
【要点归纳】:
【拓展训练】:
1、计算:
1)27—18+(—7)—322)
【总结反思】:
课题:1.4.1有理数的乘法(1)
【学习目标】:
1、理解有理数的运算法则;能根据有理数乘法运算法则进行有理的简单运算;
2、经历探索有理数乘法法则过程,发展观察、归纳、猜想、验证能力;
【重点难点】:有理数乘法法则
【导学指导】
一、温故知新
1.有理数加法法则内容是什么?
2.计算
(1)2+2+2=(2)(-2)+(-2)+(-2)=
3.你能将上面两个算式写成乘法算式吗?
二、自主探究
1、自学课本28-29页回答下列问题
(1)如果它以每分2cm的速度向右爬行,3分钟后它在什么位置?可以表示为.
(2)如果它以每分2cm的速度向左爬行,3分钟后它在什么位置?可以表示为
(3)如果它以每分2cm的速度向右爬行,3分钟前它在什么位置?可以表示为
(4)如果它以每分2cm的速度向左爬行,3分钟前它在什么位置?可以表示为
由上可知:
(1)2×3=;(2)(-2)×3=;
(3)(+2)×(-3)=;(4)(-2)×(-3)=;
(5)两个数相乘,一个数是0时,结果为0
观察上面的式子,你有什么发现?能说出有理数乘法法则吗?
归纳有理数乘法法则
两数相乘,同号,异号,并把相乘。
任何数与0相乘,都得。
2、直接说出下列两数相乘所得积的符号
1)5×(—3);2)(—4)×6;
3)(—7)×(—9);4)0.9×8;
3、请同学们自己完成
例1计算:(1)(-3)×9;(2)(-)×(-2);
归纳:的两个数互为倒数。
例2
【课堂练习】
课本30页练习1.2.3(直接做在课本上)
【要点归纳】:
有理数乘法法则:
【拓展训练】
1.如果ab>0,a+b>0,确定a、b的正负。
2.对于有理数a、b定义一种运算:ab=2a-b,计算(-2)3+1
【总结反思】:
课题:1.4.1有理数的乘法(2)
【学习目标】:
1、经历探索多个有理数相乘的符号确定法则;
2、会进行有理数的乘法运算;
3、通过对问题的探索,培养观察、分析和概括的能力;【学习重点】:多个有理数乘法运算符号的确定;
【学习难点】:正确进行多个有理数的乘法运算;
【导学指导】
一、温故知新
1、有理数乘法法则:
二、自主探究
1、观察:下列各式的积是正的还是负的?
2×3×4×(-5))));
(3);
【要点归纳】:
1.几个不是0的数相乘,负因数的个数是时,积是正数;
负因数的个数是时,积是负数。
2.几个数相乘,一、选择
.若干个不等于0的有理数相乘,积的符号()
A.由因数的个数决定
B.由正因数的个数决定
C.由负因数的个数决定
D.由负因数和正因数个数的差为决定
.下列运算结果为负值的是()
A.(-7)×(-6)
B.(-6)+(-4)
C.0×(-2)(-3)
D.(-7)-(-15)
3.下列运算错误的是()
A.(-2)×(-3)=6
B.
C.(-5)×(-2)×(-4)=-40
D.(-3)×(-2)×(-4)=-24
;
2、;
【总结反思】:
1.4.1课题:有理数的乘法(3)
【学习目标】:
1、熟练有理数的乘法运算并能用乘法运算律简化运算;
2、学生通过观察、思考、探究、讨论,主动地进行学习;【学习重点】:正确运用运算律,使运算简化
【学习难点】:运用运算律,使运算简化
【导学指导】
一、知识链接
1、请同学们计算.并比较它们的结果:
(1)(-6)×5=5×(-6)=
(2)[3×(-4)]×(-5)=3×[(-4)×(-5)]=
请以小组为单位,相互检查,看计算对了吗?
二、自主探究
1、下面我们以小组为单位,仔细观察上面的式子与结果,把你的发现相互交流交流。
2、怎么样,在有理数运算律中,乘法的交换律,结合律以及分配律还成立吗?
3、归纳、总结
乘法交换律:两个数相乘,交换因数的位置,积。
即:ab=
乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积
即:(ab)c=
4、新知应用
例题4
用两种方法计算(+-)×)×15×(-1);
3、()×30;
【要点归纳】:
【拓展训练】:
1、看谁算得快,算得准
(1)(-7)×(-)×;(2)9×18;
(3)-9×(-11)+12×(-9);(4);
【总结反思】:
课题:1.4.2有理数的除法(1)
【学习目标】:
1、理解除法是乘法的逆运算;
2、理解倒数概念,会求有理数的倒数;
3、掌握除法法则,会进行有理数的除法运算;【重点难点】:有理数的除法法则
【导学指导】
一、知识链接
1)、小红从家里到学校,每分钟走50米,共走了20分钟。
问小红家离学校有米,列出的算式为。
2)放学时,小红仍然以每分钟50米的速度回家,应该走分钟。
列出的算式为
从上面这个例子你可以发现,有理数除法与乘法之间的关系是
3)写出下列各数的倒数
-4的倒数,3的倒数,-2的倒数;
二、合作交流、探究新知
1、小组合作完成
比较大小:8÷(-4));
(-15)÷3(-15)×;
(一1)÷(一2))×(一);
再相互交流、并与小学里学习的乘除方法进行类比与对比,
归纳有理数的除法法则:
1)、除以一个不等于0的数,等于;
2)、两数相除,同号得,异号得,并把绝对值相,0除以任何一个不等于0的数,都得;1.自学P34例5、例6
师生共同完成例7
【课堂练习】
1、练习:P35
2、练习:P36第1、2题
【要点归纳】:
有理数的除法法则:
【拓展训练】
1、计算
(1);
(2)0÷(-1000);
(3)375÷;
2、练习册P21(-)
【总结反思】:
课题:1.4.2有理数的除法(2)
【学习目标】:
1、学会用计算器进行有理数的除法运算;
2、掌握有理数的混合运算顺序;
【学习重点】:有理数的混合运算;
【学习难点】:运算顺序的确定与性质符号的处理;
【导学指导】
一、知识链接
1、计算
(1)(-8)÷(-4);
(2)(-9)÷3;
(3)(—0.1)÷×(—100);
2.有理数的除法法则:
二、自主探究
1.例8计算
(1)(—8)+4÷(-2)(2)(-7)×(-5)—90÷(-15)
你的计算方法是先算法,再算法。
有理数加减乘除的混合运算顺序应该是
写出解答过程
2.自学完成例9(阅读课本P36—P37页内容)
【课堂练习】
1、计算(P36练习)
(1)6—(—12)÷(—3);(2)3×(—4)+(—28)÷7;(3)(—48)÷8—(—25)×(—6);(4);
2.P37练习
【要点归纳】:
【拓展训练】
1、选择题
(1)下列运算有错误的是()A.÷(-3)=3×(-3)B.
C.8-(-2)=8+2
D.2-7=(+2)+(-7)
(2)下列运算正确的是()A.;B.0-2=-2;C.;D.(-2)÷(-4)=2;
2、计算
1)、18—6÷(—2)×;2)11+(—22)—3×(—11);
【总结反思】:
课题:1.5.1有理数的乘方(1)
【学习目标】:
1、理解有理数乘方的意义;
2、掌握有理数乘方运算;
3、经历探索有理数乘方的运算,获得解决问题经验;
【重点难点】:有理数乘方的运算。
【导学指导】
一、知识链接
1、看下面的故事:从前,有个“聪明的乞丐”他要到了一块面包。
他想,天天要饭太辛苦,如果我第一天吃这块面包的一半,第二天再吃剩余面包的一半,……依次每天都吃前一天剩余面包的一半,这样下去,我就永远不要去要饭了!
请你们交流讨论,再算一算,如果把整块面包看成整体“1”,那第十天他将吃到面包。
2、拉面馆的师傅用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复多次,就能把这根很粗的面条,拉成许多很细的面条.想想看,捏合次后,就可以拉出32根面条.
二、合作探究
1、分小组合作学习P41页内容,然后再完成好下面的问题
1)叫乘方,叫做幂,在式子an中,a叫做,n叫做
2)式子an表示的意义是
3)从运算上看式子an,可以读作,从结果上看式子an,可以读作;
2、新知应用
1、将下列各式写成乘方(即幂)的形式:
(1)(-2)×(-2)×(-2)×(-2)=.
(2)、(—)×(—)×(—)×(—)=;(3)……?(2010个)=
2、例题,P41例1师生共同完成
从例题1可以得出:
负数的奇次幂是数,负数的偶次幂是数,
正数的任何次幂都是数,0的任何正整次幂都是;
3、思考:(—2)4和—24意义一样吗?为什么?
4、自学例2(教师指导)
【课堂练习】完成P42页1,2.
【要点归纳】:
【拓展训练】
1、我们已经学习了五种运算,请把下表补充完整:运算加减乘除乘方运算结果和
2、用乘方的意义计算下列各式:
(1);
(2);(3);
3.计算
();(2);
【总结反思】:
课题:1.5.1有理数的乘方(2)
【学习目标】:
1、能确定有理数加、减、乘、除、乘方混合运算的顺序;
2、会进行有理数的混合运算;
3、培养并提高正确迅速的运算能力;
【学习重点】:运算顺序的确定和性质符号的处理;
【学习难点】:有理数的混合运算;
【导学指导】
一、知识链接
1、在2+×(-6)这个式子中,存在着种运算。
2、请你们以4人一个小组讨论、交流,上面这个式子应该先算、再算
、最后算。
二、合作探究
1、由上可以知道,在有理数的混合运算中,运算顺序是:
(1)______________________________________________________;
(2)___________________________________________________________;(3)____________________________________________________________;
2、P43例题3,请你试练
3、师生共同探讨P43例题4
【课堂练习】
P44练习
计算:
(1)、(—1)10×2+(—2)3÷4;
(2)、(—5)3—3×;
(3)、;
(4)、(—10)4+[(—4)2—(3+32)×2];
【要点归纳】:
有理数的混合运算的运算顺序是:
【拓展训练】
计算
1、
2、
【总结反思】:
课题:1.5.2科学记数法
【学习目标】:
1.能将一个有理数用科学记数法表示;
2.已知用科学记数法表示的数,写出原来的数;
3.懂得用科学记数法表示数的好处;
【重点难点】:用科学记数法表示较大的数
【导学指导】
一、知识链接
1、根据乘方的意义,填写下表:
10的乘方表示的意义运算结果结果中的0的个数 102 10×10 100 2 103 ? ? ? 104 ? ? ? 105 ? ?
二、自主学习
1.我们知道:光的速度约为:300000000米/秒,地球表面积约为:510000000000000平方米。
这些数非常大,写起来表较麻烦,能否用一个比较简单的方法来表示这两个数吗?
300000000=
5100000000000=
定义:把一个大于10的数表示成a×10n的形式(其中a_________________
n是____________)叫做科学记数法。
2.例5.用科学记数法表示下列各数:
(1)1000000=(2)57000000=
(3)123000000000=(4)800800=。