fast fractal image compression using spatial correlation-2004

合集下载

threshold and

threshold and

Effective wavelet-based compression method with adaptive quantizationthreshold and zerotree codingArtur Przelaskowski, Marian Kazubek, Tomasz JamrógiewiczInstitute of Radioelectronics, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warszawa,PolandABSTRACTEfficient image compression technique especially for medical applications is presented. Dyadic wavelet decomposition by use of Antonini and Villasenor bank filters is followed by adaptive space-frequency quantization and zerotree-based entropy coding of wavelet coefficients. Threshold selection and uniform quantization is made on a base of spatial variance estimate built on the lowest frequency subband data set. Threshold value for each coefficient is evaluated as linear function of 9-order binary context. After quantization zerotree construction, pruning and arithmetic coding is applied for efficient lossless data coding. Presented compression method is less complex than the most effective EZW-based techniques but allows to achieve comparable compression efficiency. Specifically our method has similar to SPIHT efficiency in MR image compression, slightly better for CT image and significantly better in US image compression. Thus the compression efficiency of presented method is competitive with the best published algorithms in the literature across diverse classes of medical images. Keywords: wavelet transform, image compression, medical image archiving, adaptive quantization1. INTRODUCTIONLossy image compression techniques allow significantly diminish the length of original image representation at the cost of certain original data changes. At range of lower bit rates these changes are mostly observed as distortion but sometimes improved image quality is visible. Compression of the concrete image with its all important features preserving and the noise and all redundancy of original representation removing is do required. The choice of proper compression method depends on many factors, especially on statistical image characteristics (global and local) and application. Medical applications seem to be challenged because of restricted demands on image quality (in the meaning of diagnostic accuracy) preserving. Perfect reconstruction of very small structures which are often very important for diagnosis even at low bit rates is possible by increasing adaptability of the algorithm. Fitting data processing method to changeable data behaviour within an image and taking into account a priori data knowledge allow to achieve sufficient compression efficiency. Recent achievements clearly show that nowadays wavelet-based techniques can realise these ideas in the best way.Wavelet transform features are useful for better representation of the actual nonstationary signals and allow to use a priori and a posteriori data knowledge for diagnostically important image elements preserving. Wavelets are very efficient for image compression as entire transformation basis function set. This transformation gives similar level of data decorrelation in comparison to very popular discrete cosine transform and has additional very important features. It often provides a more natural basis set than the sinusoids of the Fourier analysis, enables widen set of solution to construct effective adaptive scalar or vector quantization in time-frequency domain and correlated entropy coding techniques, does not create blocking artefacts and is well suited for hardware implementation. Wavelet-based compression is naturally multiresolution and scalable in different applications so that a single decomposition provides reconstruction at a variety of sizes and resolutions (limited by compressed representation) and progressive coding and transmission in multiuser environments.Wavelet decomposition can be implemented in terms of filters and realised as subband coding approach. The fundamental issue in construction of efficient subband coding techniques is to select, design or modify the analysis and synthesis filters.1Wavelets are good tool to create wide class of new filters which occur very effective in compression schemes. The choice of suitable wavelet family, with such criteria as regularity, linearity, symmetry, orthogonality or impulse and step response of corresponding filter bank, can significantly improve compression efficiency. For compactly supported wavelets corresponding filter length is proportional to the degree of smoothness and regularity of the wavelet. Butwhen the wavelets are orthogonal (the greatest data decorrelation) they also have non-linear phase in the associated FIR filters. The symmetry, compact support and linear phase of filters may be achieved by biorthogonal wavelet bases application. Then quadrature mirror and perfect reconstruction subband filters are used to compute the wavelet transform. Biorthogonal wavelet-based filters occurred very efficient in compression algorithms. A construction of wavelet transformation by fitting local defined basis transformation function (or finite length filters) into image data characteristics is possible but very difficult. Because of nonstationary of image data, miscellaneous image futures which could be important for good reconstruction, significant various image quality (signal to noise level, spatial resolution etc.) from different imaging systems it is very difficult to elaborate the construction method of the optimal-for-compression filters. Many issues relating to the choice of the most efficient filter bank for image compression remain still unresolved.2The demands of preserving the diagnostic accuracy in reconstructed medical images are exacting. Important high frequency coefficients which appear at the place of small structure edges in CT and MR images should be saved. Accurate global organ shapes reconstruction in US images and strong noise reduction in MN images is also required. It is rather difficult to imagine that one filter bank can do it in the best way. Rather choosing the best wavelet families for each modality is expected.Our aim is to increase the image compression efficiency, especially for medical applications, by applying suitable wavelet transformation, adaptive quantization scheme and corresponding processed decomposition tree entropy coding. We want to achieve higher acceptable compression ratios for medical images by better preserving the diagnostic accuracy of images. Many bit allocation techniques applied in quantization scheme are based on data distribution assumptions, quantiser distortion function etc. All statistical assumptions built on global data characteristics do not cover exactly local data behaviour and important detail of original image, e.g., different texture small area may be lost. Thus we decided to build quantization scheme on the base of local data characteristics such a direct data context in two dimensions mentioned earlier. We do data variance estimation on the base of real data set as spatial estimate for corresponding coefficient positions in successive subbands. The details of quantization process and correlated coding technique as a part of effective simple wavelet-based compression method which allows to achieve high reconstructed image quality at low bit rates are presented.2. THE COMPRESSION TECHNIQUEScheme of our algorithm is very simple: dyadic, 3 levels decomposition of original image (256×256 images were used) done by selected filters. For symmetrical filters symmetry boundary extension at the image borders was used and for asymmetrical filters - a periodic (or circular) boundary extension.Figure 1. Dyadic wavelet image decomposition scheme. - horizontal relations, - parent - children relations. LL - the lowest frequency subband.Our approach to filters is utilitarian one, making use of the literature to select the proper filters rather than to design them. We conducted an experiment using different kinds of wavelet transformation in presented algorithm. Long list of wavelet families and corresponding filters were tested: Daubechies, Adelson, Brislawn, Odegard, Villasenor, Spline, Antonini, Coiflet, Symmlet, Beylkin, Vaid etc.3 Generally Antonini 4 filters occurred to be the most efficient. Villasenor, Odegard and Brislawn filters allow to achieve similar compression efficiency. Finally: Antonini 7/9 tap filters are used for MR and US image compression and Villasenor 18/10 tap filters for CT image compression.2.1 Adaptive space-frequency quantizationPresented space-frequency quantization technique is realised as entire data pre-selection, threshold selection and scalar uniform quantization with step size conditioned by chosen compression ratio. For adaptive estimation of threshold and quantization step values two extra data structure are build. Entire data pre-selection allows to evaluate zero-quantized data set and predict the spatial context of each coefficient. Next simple quantization of the lowest frequency subband (LL) allows to estimate quantized coefficient variance prediction as a space function across sequential subbands. Next the value of quantization step is slightly modified by a model build on variance estimate. Additionally, a set of coefficients is reduced by threshold selection. The threshold value is increased in the areas with the dominant zero-valued coefficients and the level of growth depends on coefficient spatial position according variance estimation function.Firstly zero-quantized data prediction is performed. The step size w is assumed to be constant for all coefficients at each decomposition level. For such quantization model the threshold value is equal to w /2. Each coefficient whose value is less than threshold is predicted to be zero-valued after quantization (insignificant). In opposite case coefficient is predicted to be not equal to zero (significant). It allows to create predictive zero-quantized coefficients P map for threshold evaluation in the next step. The process of P map creation is as follows:if c w then p else p i i i <==/201, (1)where i m n m n =⋅−12,,...,;, horizontal and vertical image size , c i - wavelet coefficient value. The coefficient variance estimation is made on the base of LL data for coefficients from next subbands in corresponding spatial positions. The quantization with mentioned step size w is performed in LL and the most often occurring coefficient value is estimated. This value is named MHC (mode of histogram coefficient). The areas of MHC appearance are strongly correlated with zero-valued data areas in the successive subbands. The absolute difference of the LL quantized data and MHC is used as variance estimate for next subband coefficients in corresponding spatial positions. We tested many different schemes but this model allows to achieve the best results in the final meaning of compression efficiency. The variance estimation is rather coarse but this simple adaptive model built on real data does not need additional information for reconstruction process and increases the compression efficiency. Let lc i , i =1,2,...,lm , be a set ofLL quantized coefficient values, lm - size of this set . Furthermore let mode of histogram coefficient MHC value be estimated as follows:f MHC f lc MHC Al lc Al i i ()max ()=∈∈ and , (2)where Al - alphabet of data source which describes the values of the coefficient set and f lc n lmi lc i ()=, n lc i - number of lc i -valued coefficients. The normalised values of variance estimate ve si for next subband coefficients in corresponding to i spatial positions (parent - children relations from the top to the bottom of zerotree - see fig. 1) are simply expressed by the following equation: ve lc MHC ve si i =−max . (3)These set of ve si data is treated as top parent estimation and is applied to all corresponding child nodes in wavelet hierarchical decomposition tree.9-th order context model is applied for coarser data reduction in ‘unimportant' areas (usually with low diagnostic importance). The unimportance means that in these areas the majority of the data are equal to zero and significant values are separated. If single significant values appear in these areas it most often suggests that these high frequency coefficients are caused by noise. Thus the coarser data reduction by higher threshold allows to increase signal to noise ratio by removing the noise. At the edges of diagnostically important structures significant values are grouped together and the threshold value is lower at this fields. P map is used for each coefficient context estimation. Noncausal prediction of the coefficient importance is made as linear function of the binary surrounding data excluding considered coefficient significance. The other polynomial, exponential or hyperbolic function were tested but linear function occurred the most efficient. The data context shown on fig. 2 is formed for each coefficient. This context is modified in the previous data points of processing stream by the results of the selection with the actual threshold values at these points instead of w /2 (causal modification). Values of the coefficient importance - cim are evaluated for each c i coefficient from the following equation:cim coeff p i i j j =⋅−=∑1199(),, where i m n =⋅12,,...,. (4)Next the threshold value is evaluated for each c i coefficient: th w cim w ve i i si =⋅+⋅⋅−/(())211, (5)where i m n =⋅12,,...,, si - corresponding to LL parent spatial location in lower decomposition levels.The modified quantization step model uses the LL-based variance estimate to slightly increase the step size for less variance coefficients. Threshold data selection and uniform quantization is made as follows: each coefficient value is firstly compared to its threshold value and then quantized using w step for LL and modified step value mw si for next subbands . Threshold selection and quantization for each c i coefficient can be clearly described by the following equations:LLif c then c c welse if c th then c else c c mw i i i i i i i i si∈=<==//0, (6)where mw w coeff ve si si =⋅+⋅−(())112. (7)The coeff 1 and coeff 2 values are fitted to actual data characteristic by using a priori image knowledge and performingentire tests on groups of similar characteristic images.a) b)Figure 2. a) 9-order coefficient context for evaluating the coefficient importance value in procedure of adaptive threshold P map context of single edge coefficient.2.2 Zerotrees construction and codingSophisticated entropy coding methods which can significantly improve compression efficiency should retain progressive way of data reconstruction. Progressive reconstruction is simple and natural after wavelet-based decomposition. Thus the wavelet coefficient values are coded subband-sequentially and spectral selection is made typically for wavelet methods. The same scale subbands are coded as follows: firstly the lowest frequency subband, then right side coefficient block, down-left and down-right block at the end. After that next larger scale data blocks are coded in the same order. To reduce a redundancy of such data representation zerotree structure is built. Zerotree describes well the correlation between data values in horizontal and vertical directions, especially between large areas with zero-valued data. These correlated fragments of zerotree are removed and final data streams for entropy coding are significantly diminish. Also zerotree structure allows to create different characteristics data streams to increase the coding efficiency. We used simple arithmetic coders for these data streams coding instead of applied in many techniques bit map (from MSB to LSB) coding with necessity of applying the efficient context model construction. Because of refusing the successive approximation we lost full progression. But the simplicity of the algorithm and sometimes even higher coding efficiency was achieved. Two slightly different arithmetic coders for producing ending data stream were used.2.2.1 Construction and pruning of zerotreeThe dyadic hierarchical image data decomposition is presented on fig. 1. Decomposition tree structure reflects this hierarchical data processing and strictly corresponds to created in transformation process data streams. The four lowest frequency subbands which belong to the coarsest scale level are located at the top of the tree. These data have not got parent values but they are the parents for the coefficients in lower tree level of greater scale in corresponding spatial positions. These correspondence is shown on the fig. 1 as parent-children relations. Each parent coefficient has got four direct children and each child is under one direct parent. Additionally, horizontal relations at top tree level are introduced to describe the data correlation in better way.The decomposition tree becomes zerotree when node values of quantized coefficients are signed by symbols of binary alphabet. Each tree node is checked to be significant (not equal to zero) or insignificant (equal to zero) - binary tree is built. For LL nodes way of significance estimation is slightly different. The MHC value is used again because of the LL areas of MHC appearance strong correlation with zero-valued data areas in the next subbands. Node is signed to be significant if its value is not equal to MHC value or insignificant if its value is equal to MHC. The value of MHC must be sent to a decoder for correct tree reconstruction.Next step of algorithm is a pruning of this tree. Only the branches to insignificant nodes can be pruned and the procedure is slightly other at different levels of the zerotree. Procedure of zerotree pruning starts at the bottom of wavelet zerotree. Sequential values of four children data and their parent from higher level are tested. If the parent and the children are insignificant - the tree branch with child nodes is removed and the parent is signed as pruned branch node (PBN). Because of this the tree alphabet is widened to three symbols. At the middle levels the pruning of the tree is performed if the parent value is insignificant and all children are recognised as PBN. From conducted research we found out that adding extra symbols to the tree alphabet is not efficient for decreasing the code bit rate. The zerotree pruning at top level is different. The checking node values is made in horizontal tree directions by exploiting the spatial correlation of the quantized coefficients in the subbands of the coarsest scale - see fig. 1. Sequentially the four coefficients from the same spatial positions and different subbands are compared with one another. The tree is pruned if the LL node is insignificant and three corresponding coefficients are PBN. Thus three branches with nodes are removed and LL node is signed as PBN. It means that all its children across zerotree are insignificant. The spatial horizontal correlation between the data at other tree levels is not strong enough to increase the coding efficiency by its utilisation.2.2.2 Making three data streams and codingPruned zerotree structure is handy to create data streams for ending efficient entropy coding. Instead of PBN zero or MHC values (nodes of LL) additional code value is inserted into data set of coded values. Also bit maps of PBN spatial distribution at different tree levels can be applied. We used optionally only PBN bit map of LL data to slightly increase the coding efficiency. The zerotree coding is performed sequentially from the top to the bottom to support progressive reconstruction. Because of various quantized data characteristics and wider alphabet of data source model after zerotree pruning three separated different data streams and optionally fourth bit map stream are produced for efficient data coding. It is well known from information theory that if we deal with a data set with significant variability of data statistics anddifferent statistics (alphabet and estimate of conditional probabilities) data may be grouped together it is better to separate these data and encode each group independently to increase the coding efficiency. Especially is true when context-based arithmetic coder is used. The data separation is made on the base of zerotree and than the following data are coded independently:- the LL data set which has usually smaller number of insignificant (MHC-valued) coefficients, less PBN and less spatial data correlation than next subband data (word- or charwise arithmetic coder is less efficient then bitwise coder);optionally this data stream is divided on PBN distribution bit map and word or char data set without PBNs,- the rest of top level (three next subbands) and middle level subband data set with a considerable number of zero-valued (insignificant) coefficients and PBN code values; level of data correlation is greater, thus word- or charwise arithmetic coder is efficient enough,- the lowest level data set with usually great number of insignificant coefficients and without PBN code value; data correlation is very high.Urban Koistinen arithmetic coder (DDJ Compression Contest public domain code accessible by internet) with simple bitwise algorithm is used for first data stream coding. For the second and third data stream coding 1-st order arithmetic coder built on the base of code presented in Nelson book 5 is applied. Urban coder occurred up to 10% more efficient than Nelson coder for first data stream coding. Combining a rest of top level data and the similar statistics middle level data allows to increase the coding efficiency approximately up to 3%.The procedure of the zerotree construction, pruning and coding is presented on fig. 3.Construction ofbinary zerotreeBitwise arithmetic codingFinal compressed data representationFigure 3. Quantized wavelet coefficients coding scheme with using zerotree structure. PBN - pruned branch node.3. TESTS, RESULTS AND DISCUSSIONIn our tests many different medical modality images were used. For chosen results presentation we applied three 256×256×8-bit images from various medical imaging systems: CT (computed tomography), MR (magnetic resonance) and US(ultrasound) images. These images are shown on fig. 4. Mean square error - MSE and peak signal to noise ratio - PSNR were assumed to be reconstructed image quality evaluation criteria. Subjective quality appreciation was conducted in very simple way - only by psychovisual impression of the non-professional observer.Application of adaptive quantization scheme based on modified threshold value and quantization step size is more efficient than simple uniform scalar quantization up to 10% in a sense of better compression of all algorithm. Generally applying zerotree structure and its processing improved coding efficiency up to 10% in comparison to direct arithmetic coding of quantized data set.The comparison of the compression efficiency of three methods: DCT-based algorithm,6,7 SPIHT 8 and presented compression technique, called MBWT (modified basic wavelet-based technique) were performed for efficiency evaluation of MBWT. The results of MSE and PSNR-based evaluation are presented in table 1. Two wavelet-based compression techniques are clearly more efficient than DCT-based compression in terms of MSE/PSNR and also in our subjective evaluation for all cases. MBWT overcomes SPIHT method for US images and slightly for CT test image at lower bit rate range.The concept of adaptive threshold and modified quantization step size is effective for strong reduction of noise but it occurs sometimes too coarse at lower bit rate range and very small details of the image structures are put out of shape. US images contain significant noise level and diagnostically important small structures do not appear (image resolution is poor). Thus these images can be efficiently compressed by MBWT with image quality preserved. It is clearly shown on fig.5. An improvement of compression efficiency in relatio to SPIHT is almost constant at wide range of bit rates (0.3 - 0.6 dB of PSNR).a) b)c)Figure 4. Examples of images used in the tests of compression efficiency evaluation. The results presented in table 1 and on fig. 5 were achieved for those images. The images are as follows: a ) echocardiography image, b) CT head image, c) MR head image.Table 1. Comparison of the three techniques compression efficiency: DCT-based, SPIHT and MBWT. The bit rates are chosen in diagnostically interesting range (near the borders of acceptance).Modality - bit rateDCT-based SPIHT MBWTMSE PSNR[dB] MSE PSNR[dB] MSE PSNR[db] MRI - 0.70 bpp8.93 38.62 4.65 41.45 4.75 41.36 MRI - 0.50 bpp13.8 36.72 8.00 39.10 7.96 39.12 CT - 0.50 bpp6.41 40.06 3.17 43.12 3.1843.11 CT - 0.30 bpp18.5 35.46 8.30 38.94 8.0639.07 US - 0.40 bpp54.5 30.08 31.3 33.18 28.3 33.61 US - 0.25 bpp 91.5 28.61 51.5 31.01 46.8 31.43The level of noise in CT and MR images is lower and small structures are often important in image analysis. That is the reason why the benefits of MBWT in this case are smaller. Generally compression efficiency of MBWT is comparable to SPIHT for these images. Presented method lost its effectiveness for higher bit rates (see PSNR of 0.7 bpp MR representation) but for lower bit rates both MR and CT images are compressed significantly better. Maybe the reason is that the coefficients are reduced relatively stronger because of its importance reduction in MBWT threshold selection at lower bits rate range.0,20,30,40,50,60,70,8Rate in bits/pixel PSNR in dBFigure 5. Comparison of SPIHT and presented in this paper technique (MBWT) compression efficiency at range of low bit rates. US test image was compressed.4. CONCLUSIONSAdaptive space-frequency quantization scheme and zerotree-based entropy coding are not time-consuming and allow to achieve significant compression efficiency. Generally our algorithm is simpler than EZW-based algorithms 9 and other algorithms with extended subband classification or space -frequency quantization models 10 but compression efficiency of presented method is competitive with the best published algorithms in the literature across diverse classes of medical images. The MBWT-based compression gives slightly better results than SPIHT for high quality images: CT and MR and significantly better efficiency for US images. Presented compression technique occurred very useful and promising for medical applications. Appropriate reconstructed image quality evaluation is desirable to delimit the acceptable lossy compression ratios for each medical modality. We intend to improve the efficiency of this method by: the design a construction method of adaptive filter banks and correlated more sufficient quantization scheme. It seems to be possible byapplying proper a priori model of image features which determine diagnostic accuracy. Also more efficient context-based arithmetic coders should be applied and more sophisticated zerotree structures should be tested.REFERENCES1.Hui, C. W. Kok, T. Q. Nguyen, …Image Compression Using Shift-Invariant Dydiadic Wavelet Transform”, subbmited toIEEE Trans. Image Proc., April 3nd, 1996.2.J. D. Villasenor, B. Belzer and J. Liao, …Wavelet Filter Evaluation for Image Compression”, IEEE Trans. Image Proc.,August 1995.3. A. Przelaskowski, M.Kazubek, T. Jamrógiewicz, …Optimalization of the Wavelet-Based Algorithm for Increasing theMedical Image Compression Efficiency”, submitted and accepted to TFTS'97 2nd IEEE UK Symposium on Applications of Time-Frequency and Time-Scale Methods, Coventry, UK 27-29 August 1997.4.M. Antonini, M. Barlaud, P. Mathieu and I. Daubechies, …Image coding using wavelet transform”, IEEE Trans. ImageProc., vol. IP-1, pp.205-220, April 1992.5.M. Nelson, The Data Compression Book, chapter 6, M&T Books, 1991.6.M. Kazubek, A. Przelaskowski and T. Jamrógiewicz, …Using A Priori Information for Improving the Compression ofMedical Images”, Analysis of Biomedical Signals and Images, vol. 13,pp. 32-34, 1996.7. A. Przelaskowski, M. Kazubek and T. Jamrógiewicz, …Application of Medical Image Data Characteristics forConstructing DCT-based Compression Algorithm”, Medical & Biological Engineering & Computing,vol. 34, Supplement I, part I, pp.243-244, 1996.8. A. Said and W. A. Pearlman, …A New Fast and Efficient Image Codec Based on Set Partitioning in Hierarchical Trees”,submitted to IEEE Trans. Circ. & Syst. Video Tech., 1996.9.J. M. Shapiro, …Embedded Image Coding Using Zerotrees of Wavelet Coefficients”, IEEE Trans. Signal Proces., vol.41, no.12, pp. 3445-3462, December 1993.10.Z. Xiong, K. Ramchandran and M. T. Orchard, …Space-Frequency Quantization for Wavelet Image Coding”, IEEETrans. Image Proc., to appear in 1997.。

电子信息工程专业英语词汇

电子信息工程专业英语词汇

n.晶体管n.二极管n 半导体resistor n 电阻器capacitor n 电容器alter nati ng adj 交互的amplifier n 扩音器,放大器in tegrated circuit 集成电路lin ear time inv aria nt systems 线性时不变系统voltage n 电压,伏特数tolera nee n 公差;宽容;容忍conden ser n 电容器;冷凝器dielectric n 绝缘体;电解质electromag netic adj 电磁的deflection n偏斜;偏转;偏差lin ear device 线性器件in tegrated circuits 集成电路an alog n 模拟digital adj 数字的,数位的horiz on tal adj, 水平的,地平线的vertical adj 垂直的,顶点的amplitude n 振幅,广阔,丰富atte nu ati on 衰减;变薄;稀薄化multimeter 万用表freque ney 频率,周率the cathode-ray tube dual-trace oscilloscope 阴极射线管双踪示波器sig nal gen erati ng device 信号发生器peak-to-peak output voltage 输岀电压峰峰值sine wave 正弦波trian gle wave 三角波square wave 方波amplifier 放大器,扩音器oscillator 振荡器feedback 反馈,回应phase 相,阶段,状态filter 滤波器,过滤器rectifier 整流器;纠正者1ban d-stop filter 带阻滤波器ban d-pass filter 带通滤波器decimal adj 十进制的,小数的hexadecimal adj/n 十六进制的bin ary adj 二进制的;二元的1 octal adj 八进制的domai n n 域;领域code n代码,密码,编码v编码the Fourier tra nsform 傅里叶变换Fast Fourier Transform快速傅里叶变换microc on troller n 微处理器;微控制器beam n (光线的)束,柱,梁polarize v (使)偏振,(使)极化fuzzy adj模糊的|Artificial In tellige nee Shell 人工智能外壳程序Expert Systems 专家系统Artificial In tellige nee 人工智能Perceptive Systems 感知系统neural network 神经网络fuzzy logic 模糊逻辑in tellige nt age nt 智能代理electromag netic adj 电磁的coaxial adj同轴的,共轴的microwave n 微波charge v充电,使充电two-dime nsio nal 二维的;缺乏深度的three-dime nsio nal 三维的;立体的;真实的object-orie nted programm ing 面向对象的程序设计spectral adj 光谱的attenuation n衰减;变薄;稀释distortion n失真,扭曲,变形wavelength n 波长refractive adj 折射的ATM 异步传输模式Asynchronous Transfer ModeADSL 非对称用户数字线Asymmetric digital subscriberlineVDSL 甚高速数字用户线very high data rate digitalsubscriber lineHDSL 高速数据用户线high rate digital subscriber lineFDMA 频分多址(Frequency Division Multiple Access)TDMA 时分多址(Time Division Multiple Access) CDMA 同步码分多址方式(Code Division Multiple Access)WCDMA宽带码分多址移动通信系统(WidebandCodeDivisio n Multiple Access)TD-SCDMA(Time Divisio n Sy nchro nous Code Divisio nMultiple Access)时分同步码分多址SDLC(sy nchro nous data link con trol) 同步数据链路控制HDLC(high-level data link con trol) 高级数据链路控制IP/TCP(i nter net protocol /tra nsfer Co ntrol Protocol)网络传输控制协议ITU (I nternatio nal Telecomm un icati on Union) 国际电彳言联盟ISO 国际标准化组织(In ter natio nal Sta ndardizatio nOrganization );OSI开放式系统互联参考模型(Open SystemIn terc onn ect )GSM 全球移动通信系统( Global System for Mobile Communi cati ons )GPRS 通用分组无线业务(Gen eral Packet Radio Service)FDD(freque ncy divisi on duplex) 频分双工TDD(time divisi on duplex) 时分双工VPI 虚路径标识符(Virtual Path Identifier );ISDN ( Integrated Services Digital Network )综合业务数字网IDN 综合数字网(integrated digital network )HDTV (high defi ni tion televisi on) 高清晰度电视DCT(Discrete Cos ine Tra nsform) 离散余弦变换VCI(virtual circuit address) 虚通路标识MAN 城域网Metropolitan area networks LAN 局域网localarea network WAN 广域网wide area network 同步时分复统计时分复用STDM Statistical Time Divisio nMultiplexi ng 单工传输simplex transmission 半双工传输half-duplex tran smissi on 全双工传输full-duplex tra nsmissi on 交换矩阵Switching Matrix 电路交换circuit switchi ng 分组交换packet switching扌报文交换message switching 奇偶校验paritychecking 循环冗余校验CRC Cyclic Redu nda ncyCheck 虚过滤Virtual filter 数字滤波digital filtering伪随机比特Quasi Ra ndom Bit 带宽分配Bandwidth allocatio n信源information source 信宿destination 数字化digitalize 数字传输技术Digital tra nsmissio n techno logy 灰度图像Grey scale images 灰度级Greyscale level 幅度谱Magnitude spectrum 相位谱Phase spectrum 频谱frequency spectrum 智能设备Smart Device 软切换Soft handover 硬切换HardHa ndover 相干检测Cohere nt detecti on 边缘检测Edge detection 冲突检测collision detection 业务集合service integration 业务分离/综合serviceseparation/ integration 网络集合networkintegration 环形网Ring networks 令牌环网TokenRing network 网络终端Network Terminal 用户终端user terminal 用户电路line circuit 电路利用率channel utilization (通道利用率)相关性cohere nee 相干解调cohere nt demodulation 数字图像压缩digital image compressi on 图像编码image encoding 有损/无损压缩lossy/losslesscompression 解压decompression 呼叫控制CallControl 误差控制error eontrol 存储程序控制storedprogram eon trol 存储转发方式store-a nd-forwardmanner 语音视频传输voice\video transmission 视频点播video-on-demand(VOD) 会议电视VideoCon fere nee 有线电视cable television 量化quantization 吞吐量throughput 话务量traffic 多径分集Multipath diversity 多媒体通信MDM MultimediaCommu nicatio n 多址干扰Multiple AccessInterferenee 人机交互man machi ne in terface 交互式会话Conv ersati onal in teracti on 路由算法Routing Algorithm 目标识另U Object recognition 话音变换Voice transform 中继线trunkline 传输时延transmission delay 远程监控remote monitoring 光链路optical link 拓扑结构Topology 均方根rootmean square whatsoever=whatever 0switchboard (电话)交换台bipolar (电子)双极的tran sistor diode semic on ductoranode n 阳极,正极cathoden 阴极|breakdow n n 故障;崩溃terminal n 终点站;终端,接线端emitter n 发射器collect v 收集,集聚,集中oscilloscope 示波镜;示波器gain 增益,放大倍数forward biased 正向偏置reverse biased 反向偏置P-N junction PN 结MOS( metal-oxide semiconductor ) 金属氧化物半导体enhan ceme nt and exhausted 增强型和耗尽型chip n 芯片,碎片modular adj 模块化的;模数的sensor n 传感器plug vt 堵,塞,插上n塞子,插头,插销coaxial adj 同轴的,共轴的fiber n 光纤relay eon tact 继电接触器sin gle in structi on programmer 单指令编程器dedicated manu factures programm ing unit 专供制造厂用的编程单元in sulator n绝缘体,绝缘物noneon ductive adj非导体的,绝缘的antenna n天线;触角modeli ng n 建模,造型simulati on n仿真;模拟prototype n 原型array n排队,编队vector n 向量,矢量wavelet n微波,小浪sine 正弦cosine 余弦inv erse adj 倒转的,反转的n反面;相反v倒转high-performa nee 高精确性,高性能the in sulati on resista nee 绝缘电阻assembly lan guage in structi ons n 汇编语言指令premise (复)房屋,前提cursor (计算机尺的)游标,指导的elapse (时间)经过,消失vaporize (使)蒸发subsystem (系统的)分部,子系统,辅助系统metallic (像)金属的,含金属的,(声音)刺耳的dispatch (迅速)派遣,急件consen sus (意见)一致,同意deadli ne (最后)期限,截止时间tomographic X线体层摄像的alas 唉,哎呀cluster把…集成一束,一组,一簇,一串,一群en cyclopedia 百科全书millio nfold 百万倍的semic on ductor 半导体radius半径范围,半径,径向射线half-duplex tra nsmissi on 半双工传输accompa nime nt 伴随物,附属物reservati on 保留,预定quotatio n 报价单,行情报告,引语memora ndum 备忘录red undancy 备用be viewed as 被看作…be regards as 被认为是as such 本身;照此;以这种资格textual本文的,正文的verge 边界variati on 变化,变量conv ersi on 变化,转化ide ntity 标识;标志criterio n 标准,准则in parallel o n 并联到,合并到juxtapose 并置,并歹卩dial ing pulse 拨号脉冲wave-guide 波导wavele ngth divisi on multiplexed 波分复用baud rate 波特率playback 播放(录音带,唱片)no greater tha n 不大于update不断改进,使…适合新的要求,更新asymmetric 不对称的irrespective 不考虑的,不顾的in evitably 不可避免的in evitable 不可避免的,不可逃避的,必定的segme nt 部分abrasion 擦伤,磨损deploy采用,利用,推广应用take the form of 采用…的形式parameter 参数,参量layer 层dope 掺杂FET(field effect tra nsistors)场效应管audio recordi ng 卩昌片ultra-high-freque ncy(UHF)超高频in excess of 超过in excess of 超过hypertext 超文本in gredie nt 成分,因素in gredie nt 成分,组成部分,要素metropolita n-area n etwork(WAN)城域网metropolitan area network(WAN)城域网,城市网络con gestio n 充满,拥挤,阻塞collisio n 冲突extractive 抽岀;释放岀extract抽取,取岀,分离lease 出租,租约,租界期限,租界物pass on 传递,切换tran smissi on 传输facsimile 传真inno vative二inno vatory 仓新的,富有革新精神的track 磁道impetus 促进,激励cluster 簇stored-program con trol(SPC) 存储程序控制a large nu mber of 大量的peal 大声响,发岀supersede 代替suppla nt 代替,取代out-of-ba nd sig nali ng 带外信号simplex tran smissi on 单工传输con ductor 导体等级制度,层次底层结构,基础结构地理的,地区的地理上GIS(grou nd in strume ntation system) 地面测量系统gro und stati on 地面站earth orbit 地球轨道Lan d-sat 地球资源卫星rug 地毯,毯子ignite 点火,点燃,使兴奋electromag netic 电磁的in ductive 电感arc 电弧teleph ony 电话(学),通话dielectric 电介质,绝缘材料;电解质的,绝缘的capacitor 电容telecomm uni catio n 电信,无线电通讯sce nario 电影剧本,方案modem pool 调制解调器(存储)池superimpos ing 叠加,重叠pin 钉住,扣住,抓住customize 定做,定制mono lithic 独立的,完全统一的alumi nize 镀铝strategic 对全局有重要意义的,战略的substa ntial 多的,大的,实际上的multi-path fadi ng 多径衰落multi-path 多路,多途径;多路的,多途径的multi-access 多路存取,多路进入multiplex 多路复用multiplex 多路复用的degradation 恶化,降级dioxide 二氧化碳LED(light-emitti ng-diode)发光二极管evolution 发展,展开,渐进feedback 反馈,回授dime nsion 范围,方向,维,元sce nario 方案sce nario 方案,电影剧本amplifer 放大器nonin vasive 非侵略的,非侵害的tariff 费率,关税率;对…征税distributed fun ctio nal pla ne(DFP)分布功能平面DQDB(distributed queue dual bus)分布式队列双总线hierarchy 分层,层次partiti on 分成segme ntati on 分割in terface 分界面,接口asu nder 分开地,分离地detached 分离的,分开的,孤立的dispe nse 分配allocate 分配,配给;配给物cen tigrade 分为百度的,百分度的,摄氏温度的fractal 分形molecule 分子,微小,些微cellular蜂窝状的cellular蜂窝状的,格形的,多孔的auxiliary storage(also called sec on dary storage) 辅助存储器decay 腐烂,衰减,衰退n egative 负电vicinity附近,邻近vicinity附近地区,近处sophisticated 复杂的,高级的,现代化的high-freque ncy(HF) 高频high defi ni tion televisi on 高清晰度电视铬给…作注解根据,按照公布,企业决算公开公用网功能,功能度汞共鸣器共振古怪的,反复无常的管理,经营cursor光标(显示器),游标,指针opticalcomputer 光计算机photoco nductor 光敏电阻optical disks 光盘optically光学地,光地wide-area n etworks 广域网specification规范,说明书silicon 硅the in ter nati onal telecomm un icatio n union(ITU)际电信联盟excess过剩obsolete 过时的,废弃的maritime 海事的syn thetic 合成的,人造的,综合的syn thetic 合成的,综合性的rati onal 合乎理性的rati on alizati on 合理化streamli ne 合理化,理顺in frared 红夕卜线的,红外线skepticism 怀疑论ring n etwork 环形网hybrid混合物coun terpart 伙伴,副本,对应物electromecha nical 机电的,电动机械的Robot机器人Robotics 机器人技术,机器人学accumulati on 积累in frastructure 基础,基础结构substrate 基质,底质upheaval 激变,剧变compact disc 激光磁盘(CD)concen trator 集中器,集线器cen trex system 集中式用户交换功能系统conv erge on 集中于,聚集在…上lumped eleme nt 集总元件CAI(computer-aided in structio n) 计算机辅助教学computer-i ntegrated manu facturi ng(CIM) 计算机集成制造computer mediated comm un icatio n( CMC) 介通信record 记录register expedite weight 力口权acceleratecategorize in additi on hypothetical rigidly兼容性,相容性监视监视mono chromatic 单色的,单色光的,黑白的ballistic 弹道的,射击的,冲击的hierarchy infrastructuregeographicgeographicallyextraterrestrial 地球外的,地球大气圈外的chromiumanno tate interms ofdisclosurepublic n etworkfun cti on alitymercury res onator resonancewhimsicaladmi nistration计算机中记录器,寄存器加快,促进加速,加快,促进加以类别,分类加之,又,另外假设的坚硬的,僵硬的compatibilitysurveilla neesurveilla neeretrieval 检索,(可)补救 verificati on 检验 simplicity 简单,简明film胶片,薄膜 take over 接管,接任 rugged ness 结实threshold 界限,临界值 with the aid of 借助于,用,通过 wire line 金属线路,有线线路 cohere nt 紧凑的,表达清楚的,粘附的,相干的 compact 紧密的 approximati on 近似 un dertake 进行,从事 tran sistor 晶体管 elaborate 精心制作的,细心完成的,周密安排的 vigilant 警戒的,警惕的 alcohol 酒精,酒 local area n etworks(LANs) 局域网 local-area n etworks(LANs) 局域网 drama 剧本,戏剧,戏剧的演岀 focus on聚集在,集中于,注视in sulator 绝缘 root mean square 均方根 un iform 均匀的 ope n-system-i nterc onn ectio n(OSI) 开放系统互连 expire 开始无效,满期,终止 immu nity 抗扰,免除,免疫性 take …into account 考虑,重视… programmable in dustrial automati on 可编程工业自动化demo un table tun ablereliable 可靠 be likely tovideotex video n egligible可拆卸的可调的 可能,大约,像要 可视图文电视 可以忽略的deviate 偏离,与…不同 spectrum 频谱 come into play 其作用 en trepre neurial 企业的 heuristic methods启发式方法 play a •••role(part) 起…作用stem from 起源于;由…发生organic 器官的,有机的,组织的 hypothesis前提 fron t-e nd 前置,前级 pote ntial 潜势的,潜力的 inten sity 强度coin cide nee 巧合,吻合,一致scalpel 轻便小刀,解剖刀 inven tory 清单,报表spherical 球的,球形的 disti nguish 区别,辨别 succumb屈服,屈从,死global fun ctio nal pla ne(GFP) 全局功能平面 full-duplex tra nsmissi on 全双工传输hologram 全息照相,全息图 deficie ncy缺乏therm onu clear 热 核的 artifact 人工制品 AI(artificial in tellige nee)人工智能fusion 熔解,熔化 diskettes(also called floppy disk)软盘sector 扇区 en tropy 熵upli nk 上行链路 arsenic 砷simulta neous 同时发生的,同时做的 simulta neous 同时发生的,一齐的 coaxial 同轴的 copper 铜 statistical 统计的,统计学的 domin ate 统治,支配 in vest in 投资perspective 透视,角度,远景 graphics 图示,图解 pictorial图像的coat ing 涂层,层 deduce 推理reas oning strategies 推理策略 inference engine 推理机topology 拓扑结构 heterod yne 夕卜差法的peripheral 夕卜界的,外部的,周围的 gateway 网关 hazardous 危险的 microwave 微波(的)microprocessor 微处理机,微处理器 microelectro nic微电子nua nee 微小的差别(色彩等) en compass围绕,包围,造成,设法做到mai nte nance 维护;保持;维修satellite comm uni cati on 卫星通彳言 satellite network 卫星网络 tran sceiver无线电收发信机radio-relay tra nsmissi on 无线电中继传输without any doubt 无疑passive satellite无源卫星n eural n etwork神经网络very-high-freque ncy(VHF) 甚高频 sparse 稀少的, dow nli nk aerial 空气的,空中的,无形的,虚幻的;天线broadba nd 宽(频)带pervasive扩大的,渗透的 tensile 拉力的,张力的roma nticism 浪漫精神,浪漫主义discrete 离散,不连续 ion 离子 force 力量;力 stereoph onic 立体声的 contin uum 连续统一体,连续统,闭联集 smart 灵巧的;精明的;洒脱的 toke n 令牌on the other hand另一方面 hexago nal 六边形的,六角形的 hexag on 六角形,六边形 mon opoly 垄断,专禾U video-clip 录像剪辑 alumi num 铝pebble 卵石,水晶透镜 forum 论坛,讨论会logical relati on ships 逻辑关系 code book 码本pulse code modulatio n(PCM) 脉冲编码调制 roam 漫步,漫游bps(bits per sec on d) 每秒钟传输的比特 ZIP codes美国邮区划分的五位编码susceptible(to) 敏感的,易受…的 analog 模拟,模拟量patter n recog niti on 模式识另 U bibliographic 目录的,文献的 n eodymium 钕the europea n telecomm uni cati on sta ndardizati on in stitute(ETSI) 欧洲电信标准局coordi nate配合的,协调的;使配合,调整ratify 批准,认可 bias 偏差;偏置 upgrade distortio n iden tification 升级失真,畸变 识别,鉴定,验明precursor visualizati on pragmatic 实际的 impleme ntation 实施,实现,执行,敷设en tity 实体,存在 vector qua ntificati on 矢量量化mislead 使…误解,给…错误印象,引错vex使烦恼,使恼火defy 使落空 facilitate 使容易,促进 reti na 视网膜 compatible 适合的,兼容的tra nsceiver 收发两用机 authorize 授权,委托,允许 data security数据安全性data in depe ndence 数据独立 data man ageme nt 数据管理 database数据库database man ageme nt system(DBMS) 理信息系统database tran sacti on 数据库事务 data in tegrity 数据完整性,数据一致性 atte nu ati on衰减fadi ng 衰落,衰减,消失 dual 双的,二重的 tra nsie nt瞬时的determi ni stic 宿命的,确定的 algorithm 算法 dissipatio n 损耗carbon 碳 diabetes 糖尿病cumbersome 讨厌的,麻烦的,笨重的 razor 剃刀,剃 go by the name of通称,普通叫做commucati on sessi on 通信会话 traffic 通信业务(量) syn chr onous tra nsmissi on 同步传输con curre nt同时发生的,共存的数据库管feasibility lin earity con strain considerablegeo-stati onaryby con trast coorelati on mutual 相互的 稀疏的 下行链路 先驱,前任 显像现实性,可行性 线性度限制,约束,制约 相当的,重要的 相对地面静止 相反,而,对比起来 相关性相互的,共同的 相互连接,互连one after the other 相继,依次小型计算机 协议,草案 协议,规约,规程心理(精神)听觉的;传音的 通信信道选择行程编码mutually in terc onn ectmini computer protocolprotocol psycho-acoustic cha nn elizati on 信道化, run len gth en coding groom 修饰,准备虚拟许多, virtual ISDN multitude ISDN大批,大量whirl 旋转 prefere nee avalanche pursue 寻求, interrogation dumb 哑的, subcategory喜欢 选择, 雪崩从事 询问不说话的,无声的亚类,子种类,子范畴orbital 眼眶;轨道oxygen 氧气,氧元素service switchi ng and con trol poin ts(SSCPs) 控制点service con trol poi nts(SCPs) 业务控制点service con trol fun ctio n(SCF) 业务控制功能in con cert 一致,一齐 han dover移交,越区切换 at a rate of以 .... 的速率in the form of 以…的形式业务交换base on…以…为基础yttrium钇(稀有金属,符号Y)asyn chr onous tra nsmissi on 异步传输asyn chr onous 异步的exceptio nal 异常的,特殊的voice-grade 音频级indium 铟give rise to 引起,使产生cryptic隐义的,秘密的hard disk 硬盘hard automati on 硬自动化by means of 用,依靠equip with 用…装备subscriber 用户telex 用户电报PBX(private branch excha nge)用户小交换机或专用交换机be called upon to 用来…,(被)要求…superiority 优势predom inance 优势,显著active satellite 有源卫星in comparis on with 与…比较comparable to 与…可比prelim in ary 预备的,初步的prem on iti on 预感,预兆nu cleus 原子核vale nee 原子价circumfere nee 圆周,周围teleprocessi ng 远程信息处理,遥控处理perspective 远景,前途con strain 约束,强迫mobile运动的,流动的,机动的,装在车上的convey运输,传递,转换impurity 杂质impurity 杂质,混杂物,不洁,不纯rege nerative 再生的improve over 在 ....... 基础上改善play importa nt role in 在…中起重要作用in close proximity 在附近,在很近un derly ing 在下的,基础的in this respect 在这方面en tail遭遇,导致prese ntation 赠与,图像,呈现,演示n arrowba nd 窄(频)带deploy展开,使用,推广应用megabit 兆比特germa nium 锗positive 正电quadrature 正交orthog onal 正交的quadrature amplitude modulatio n(QAM)正交幅度调制on the right track 正在轨道上sustain支撑,撑住,维持,持续outgrowh 支派;长岀;副产品domin ate 支配,统治kno wledge represe ntati on 矢口识表示kno wledge engin eeri ng 矢口识工程kno wledge base 矢口识库in diameter 直径helicopter 直升飞机acro nym 只取首字母的缩写词as long as 只要,如果tutorial指导教师的,指导的coin 制造(新字符),杜撰fabricatio n 制造,装配;捏造事实proton 质子in tellige nce 智能,智力,信息in tellige nt n etwork 智能网in termediate 中间的nu cleus(pl. nu clei) 中心,核心n eutr ons 中子termi nal 终端,终端设备overlay重叠,覆盖,涂覆highlight 重要的部分,焦点charge主管,看管;承载domi nant 主要的,控制的,最有力的cyli nder 柱面expert system 专家系统private network 专用网络tra nsiti on 转变,转换,跃迁relay 转播relay 转播,中继repeater 转发器,中继器pursue追赶,追踪,追求,继续desktop publish 桌面岀版ultraviolet 紫外线的,紫外的;紫外线辐射field 字段vendor自动售货机,厂商n aturally 自然的;天生具备的syn thesize 综合,合成in tegrate 综合,使完全ISDN(i ntergrated services digital n etwork)综合业务数字网as a whole 总体上bus network 总线形网crossbar 纵横,交叉impeda nce 阻抗ini tial 最初的,开始的optimum 最佳条件appear as 作为…岀现A An alog 模拟A/D An alog to Digital 模-数转换AAC Adva need Audio Codi ng 高级音频编码ABB Automatic Black Bala nce 自动黑平衡ABC American Broadcast ing Compa ny 美国广播公司Automatic Bass Compe nsati on 自动低音补偿Automatic Bright ness Con trol 自动亮度控制ABL Automatic Black Level 自动黑电平ABLC Automatic Bright ness Limiter Circuit 自动亮度限制电路ABU Asia n Broadcast ing Un io n 亚洲广播联盟(亚广联ABS American Bureau of Sta ndard 美国标准局AC Access Con ditio ns 接入条件Audio Cen ter 音频中心ACA Adjace nt Cha nnel Atte nuati on 邻频道衰减ACC Automatic Ce nteri ng Co ntrol 自动中心控制Automatic Chroma Control 自动色度(增益ACK Automatic Chroma Killer 自动消色器ACP Additive Colour Process 加色法ACS Access Co ntrol SystemAdva need Comm uni cati on Service 高级通信业务Area Comm uni cati on System区域通信系统ADC An alog to Digital Con verter 模-数转换器Automatic Degaussirng Circuit 自动消磁电路ADL Acoustic Delay Li ne 声延迟线ADS Audio Distribution System 音频分配系统AE Audio Erasi ng 音频(声音AEF Automatic Editi ng Fun ction 自动编辑功能AES Audio Engin eeri ng Society 音频工程协会AF AudioFreque ncy 音频AFA Audio Freque ncy Amplifier 音频放大器AFC Automatic Freque ncy Coder 音频编码器Automatic Freque ncy Co ntrol 自动频率控制AFT Automatic Fi ne Tuning 自动微调Automatic Freque ncy Track 自动频率跟踪Automatic Freque ncy Trim 自动额率微调AGC Automatic Ga in Con trol 自动增益控制AI ArtificialIn tellige nce 人工智能ALM Audio-Level Meter 音频电平表AM Amplitude Modulation 调幅AMS Automatic Music Se nsor置ANC Automatic Noise Ca nceller 自动噪声消除器ANT ANTe nna 天线AO An alog Output 模拟输岀APS Automatic Program Search 自动节目搜索APPS Automatic Program Pause System 自动节目暂停系统APSS Automatic Program Search System 自动节目搜索系统AR Audio Respo nse 音频响应ARC Automatic Remote Con trol 自动遥控ASCII American Standard Code for InformationIn tercha nge 美国信息交换标准AST Automatic Sca nning Tracki ng 自动扫描跟踪ATC Automatic Timi ng Co ntrol 自动定时控制Automatic Tone Correcti on 自动音频校正ATM Asy nchro nous Tra nsfer Mode 异步传输模式ATF Automatic Track Fi ndi ng 自动寻迹ATS Automatic Test System 自动测试系统ATSC Adva need Televisio n Systems Committee(美国高级电视制式委员会)***C Automatic Volume Con trol 自动音量控制***R Automatic Voltage Regulator 自动稳压器AWB Automatic White Bala nee 自动白平衡AZCAutomatic Zoomi ng Con trol 自动变焦控制AZSAutomatic Zero Setti ng 自动调零BA Bra nch Amplifier 分支放大器Buffer Amplifier 缓冲放大器BAC Bin ary-A nalog Co nversion 二进制模拟转换BB Black Burst 黑场信号BBC British Broadcast ing Corporation 英国广播公司BBI Beiji ng Broadcasti ng In stitute 北京广播学院BC Bin ary Code 二进制码Bala need Curre nt 平衡电流Broadcast Con trol 广播控制BCT Ban dwidth Compressi on Tech nique 带宽压缩技术BDB Bi-directio nal Data Bus 双向数据总线BER Basic En codi ng Rules 基本编码规则Bit Error Rate 比特误码率BF Burst Flag 色同步旗脉冲BFA Bare Fiber Adapter 裸光纤适配器Brilloui n Fiber Amplifier 布里渊光纤放大器BGM Backgrou nd Music 背景音乐BIOS Basic In put / Output System 基本输入输出系统B-ISDN Broadba nd-ISDN 宽带综合业务数据网BIU Basic In formation Un it 基本信息单元Bus In terface Unit 总线接口单元BM Bi-phase Modulation 双相调制BML Busi ness Man ageme nt Layer 商务管理层BN Backbo ne Network 主干网BNT Broadba nd Network Termi natio n 宽带网络终端设备BO Bus Out 总线输岀BPG Basic Pulse Gen erator 基准脉冲发生器BPS Ba nd Pitch Shift 分频段变调节器BSI British Sta ndard In stitute 英国标准学会BSS Broadcast Satellite Service 广播卫星业务BT Block Term in al 分线盒、分组终端British Telecom 英国电信BTA Broadba nd Termi nal Adapter 宽带终端适配器Broadcasti ng Tech no logy Associati on (日本BTL Bala need Tran sformer-Less 桥式推挽放大电路BTS Broadcast Tech nical Sta ndard 广播技术标接入控制系统自动音乐传感装BTU Basic Tra nsmission Un it 基本传输单元BVU Broadcasting Video Unit 广播视频型(一种3/4英寸带录像机记录格式BW Ban dWidth 带宽BWTV Black and White Televisio n 黑白电视CA Co nditio nal Access 条件接收CAC Con ditio nal Access Con trol 条件接收控制CAL Co nti nuity Accept Limit 连续性接受极限CAS Con ditio nal Access System 条件接收系统Co nditio nalAccess Sub-system 条件接收子系统CATV Cable Televisi on 有线电视,电缆电视Commu nity An te nna Televisio n 共用天线电视C*** Con sta nt An gular Velocity 恒角速度CBC Can adia n Broadcasti ng Corporati on 力口拿大广播公司CBS Columbia Broadcasti ng System (美国哥伦比亚广播公司CC Concen tric Cable 同轴电缆CCG Chi nese Character Gen erator 中文字幕发生器CCIR In ter nati onal Radio Con sultativeCommittee 国际无线电咨询委员会CCITT In ter nati onal Telegraph and Teleph oneCon sultativeCommittee 国际电话电报咨询委员会CCR Cen tral Co ntrol Room 中心控制室CCTV Chi na Ce ntral Televisio n 中国中央电视台Close-Circuit Televisio n 闭路电视CCS Cen ter Cen tral System 中心控制系统CCU Camera Con trol Un it 摄像机控制器CCW Cou nter Clock-Wise 反时针方向CD Compact Disc 激光唱片CDA Curre nt Dumpi ng Amplifier 电流放大器CD-E Compact Disc Erasable 可抹式激光唱片CDFM Compact Disc File Man ager 光盘文件管理(程序CDPG Compact-Disc Plus Graphic 带有静止图像的CD唱盘CD-ROM Compact Disc-Read Only Memory 只读式紧凑光盘CETV Chi na Educatio nal Televisio n 中国教育电视台CF Color Frami ng 彩色成帧CGA Color Graphics Adapter 彩色图形(显示卡CI Common In terface 通用接口CGA Color Graphics Adapter 彩色图形(显示卡CI Common In terface 通用接口CIE Chin ese In stitute of ElectronicsCII China Information Infrastructure础设施CIF Comm on In termediate FormatCIS Chin ese In dustrial Sta ndardCLV Con sta nt Lin ear Velocity 恒定线速度CM Colour Mon itor 彩色监视器CMTS Cable Modem Termi nation System 线缆调制解调器终端系统CNR Carrier-to-Noise Ratio 载噪比CON Co nsole 操纵台Con troller 控制器CPB Corporation of Public Broadcasti ng (美国公共广播公司CPU Central Processi ng Un it 中央处理单元CRC Cyclic Redu nda ncy Check 循环冗余校验CRCC CRI Cyclic Redu ndan cy Check Code 循环冗余校验码CROM Chi na Radio In ter natio nal 中国国际广播电台CRT Con trol Read Only Memory 控制只读存储器CS Cathode-Ray Tube 阴极射线管CSC Commu nication Satellite 通信卫星CSS Color Sub-carrier 彩色副载波Cen ter Storage Server 中央存储服务器Con te nt Scrambl ing System 内容加扰系统CSU Cha nnel Service Un it 信道业务单元CT Color Temperature 色温CTC Cassette Tape Co ntroller 盒式磁带控制器Cha nnel Traffic Con trol 通道通信量控制Cou nter Timer Circuit 计数器定时器电路Cou nter Timer Con trol 计数器定时器控制CTE Cable Term in ation Equipme nt 线缆终端设备Customer Term inal Equipme nt 用户终端设备CTV Color Televisi on 彩色电视CVD Chi na Video Disc 中国数字视盘CW Carrie Wave 载波DAB Digital Audio Broadcast ing 数字音频广播DASH Digital Audio Statio nary Head 数字音频静止磁头DAT Digital Audio Tape 数字音频磁带DBMS Data Base Man ageme nt System 数据库管理系统DBS Direct Broadcast Satellite 直播卫星DCC Digital Compact Cassette 数字小型盒带Dyn amic Co ntrast Co ntrol 动态对比度控制DCT Digital Compo nent Tech nology 数字分量技术Discrete Cosi ne Tra nsform 离散余弦变换DCTV Digital Color Televisio n 数字彩色电视DD DirectDrive 直接驱动DDC Direct Digital C on trol 直接数字控制DDE Dy namic Data Excha nge 动态数据交换DDM Data Display Mon itor 数据显示监视器DES Data Eleme ntary Stream 数据基本码流Data En cryption Sta ndard 美国数据加密标准DF Dispersio n Flatte ned 色散平坦光纤DG Differe ntial Gai n 微分增益DI Digital In terface 数字接口DITEC Digital Televisio n Camera 数字电视摄像机DL Delay Line 延时线DLD Dyn amic Lin ear Drive 动态线性驱动DM Delta Modulation 增量调制Digital Modulation 数字调制DMB Digital Multimedia Broadcasti ng 数字多媒体广播DMC Dyn amic Motio n Co ntrol 动态控制DME Digital Multiple Effect 数字多功能特技DMS Digital Masteri ng System 数字主系统DN Data Network 数据网络DNG Digital News Gatheri ng 数字新闻采集DNR Digital Noise Reducer 数字式降噪器DOB Data Output Bus 数据输岀总线DOCSIS Data Over Cable Service In terfaceSpecificatio ns 有线数据传输业务接口规范DOC Drop Out Compe nsati on 失落补偿DOS Disc Operat ing System 磁盘操作系统DP Differe ntial Phase 微分相位Data Pulse 数据脉冲DPCM Differe ntial Pulse Code Modulation 差值脉冲编码调制DPL Dolby Pro Logic 杜比定向逻辑DSB Digital Satellite Broadcasti ng 数字卫星广播DSC Digital Studio Con trol 数字演播室控制DSD Dolby Surrou nd Digital 杜比数字环绕声DSE Digital Special Effect 数字特技DSK Dow n-Stream Key 下游键DSP Digital Sig nal Process ing 数字信号处理Digital Sou nd Processor 数字声音处理器DSS Digital Satellite System 数字卫星系统DT Digital Tech ni que 数字技术Digital Televisio n 数字电视Data Term in al 数据终端Data Tran smissi on 数据传输DTB Digital Terrestrial Broadcast ing 数字地面广播DTBC Digital Time-Base Corrector 数字时基校正器DTC Digital Televisio n Camera 数字电视摄像机DTS Digital Theater System 数字影院系统Digital Tuning System 数字调谐系统Digital Televisio n Sta ndard 数字电视标准DVB Digital Video Broadcast ing 数字视频广播DVC Digital Video Compressio n 数字视频压缩DVE Digital Video Effect 数字视频特技DVS Desktop Video Studio 桌上视频演播DVTR Digital Video Tape Recorder 数字磁带录像机EA Exte nsion Ampl ifier 延长放大器EB Electro n Beam 电子束EBS Emerge ncy Broadcast ing System 紧急广播系统EBU European Broadcast ing Un io n 欧洲广播联盟EC Error Correctio n 误差校正ECN Emerge ncy Comm un icati ons Network 应急通信网络ECS European Comm un icatio n Satellite 欧洲通信卫星EDC Error Detection Code 错误检测码EDE Electro nic Data Excha nge 电子数据交换EDF Erbium-Doped Fiber 掺饵光纤EDFA Erbium-Doped Fiber Amplifier 掺饵光纤放大器EDL Edit Decisi on List 编辑点清单EDTV Exte nded Defi niti on Televisi on 扩展清晰度电视EE Error Excepted 允许误差EFM Eight to Fourteen Modulation 8-14 调制EFP Electro nic Field Production 电子现场节目制作EH Ether net Hosts 以太网主机EIN Equivale nt m put Noise 等效输入噪声EIS Electro nic In formation System 电子信息系统EISA Exte nded In dustrial Sta ndard Architecture扩展工业标准总线EL Electro-Lum in esce nt 场致发光EM Error Mo nitori ng 误码监测EN End Node 末端节点ENG Electro nic News Gatheri ng 电子新闻采集EOT End of Tape 带尾EP Edit Poi nt 编辑点Error Protocol 错误协议EPG Electro nic Program Guides 电子节目指南EPS Emerge ncy Power Supply 应急电源ERP Effective Radiated Power 有效辐射功率ES Eleme ntary Stream 基本码流End System 终端系统ESA European Space Age ncy 欧洲空间局ETV Educati on Televisio n 教育电视FA Enhan ced Televisio n 增强电视FABM FAS Facial An imatio n 面部动画FC Fiber Amp li fier Booster Module 光纤放大器增强模块Fiber Access System 光纤接入系统Freque ncy Chan ger 变频器FCC Fiber Cha nnel 光纤通道FD Film Composer 电影编辑系统Federal Comm un icatio ns Commissio n 美国联邦通信委员会FDCT Freque ncy Divider 分频器FDDI FDM Fiber Duct 光纤管道FDP Forward Discrete Cos ine Tran sform 离散余弦正变换FE Fiber Distributed Data In terface 分布式光纤数据接口Freque ncy-Divisi on Multiplexi ng 频分复用中国电子学会中国信息基通用中间格式中国工业标准。

电子信息工程专业英语词汇(精华整理版)

电子信息工程专业英语词汇(精华整理版)

电子信息工程专业英语词汇(精华整理版)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(电子信息工程专业英语词汇(精华整理版))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为电子信息工程专业英语词汇(精华整理版)的全部内容。

transistor n 晶体管diode n 二极管semiconductor n 半导体resistor n 电阻器capacitor n 电容器alternating adj 交互的amplifier n 扩音器,放大器integrated circuit 集成电路linear time invariant systems线性时不变系统voltage n 电压,伏特数tolerance n 公差;宽容;容忍condenser n 电容器;冷凝器dielectric n 绝缘体;电解质electromagnetic adj 电磁的adj 非传导性的deflection n偏斜;偏转;偏差linear device 线性器件the insulation resistance 绝缘电阻anode n 阳极,正极cathode n 阴极breakdown n 故障;崩溃terminal n 终点站;终端,接线端emitter n 发射器collect v 收集,集聚,集中insulator n 绝缘体,绝热器oscilloscope n 示波镜;示波器gain n 增益,放大倍数forward biased 正向偏置reverse biased 反向偏置P-N junction PN结MOS(metal-oxide semiconductor)金属氧化物半导体enhancement and exhausted 增强型和耗尽型integrated circuits 集成电路analog n 模拟digital adj 数字的,数位的horizontal adj, 水平的,地平线的vertical adj 垂直的,顶点的amplitude n 振幅,广阔,丰富attenuation n衰减;变薄;稀薄化multimeter n 万用表frequency n 频率,周率the cathode-ray tube 阴极射线管dual—trace oscilloscope 双踪示波器signal generating device 信号发生器peak-to—peak output voltage 输出电压峰峰值sine wave 正弦波triangle wave 三角波square wave 方波amplifier 放大器,扩音器oscillator n 振荡器feedback n 反馈,回应phase n 相,阶段,状态filter n 滤波器,过滤器rectifier n整流器;纠正者band-stop filter 带阻滤波器band-pass filter 带通滤波器decimal adj 十进制的,小数的hexadecimal adj/n十六进制的binary adj 二进制的;二元的octal adj 八进制的domain n 域;领域code n代码,密码,编码v编码the Fourier transform 傅里叶变换Fast Fourier Transform 快速傅里叶变换microcontroller n 微处理器;微控制器assembly language instrucionsn 汇编语言指令chip n 芯片,碎片modular adj 模块化的;模数的sensor n 传感器plug vt堵,塞,插上n塞子,插头,插销coaxial adj 同轴的,共轴的fiber n 光纤relay contact 继电接触器single instruction programmer单指令编程器dedicated manufacturesprogramming unit 专供制造厂用的编程单元beam n (光线的)束,柱,梁polarize v(使)偏振,(使)极化Cathode Ray Tube(CRT)阴极射线管neuron n神经元;神经细胞fuzzy adj 模糊的Artificial Intelligence Shell人工智能外壳程序Expert Systems 专家系统Artificial Intelligence 人工智能Perceptive Systems 感知系统neural network 神经网络fuzzy logic 模糊逻辑intelligent agent 智能代理electromagnetic adj 电磁的coaxial adj 同轴的,共轴的microwave n 微波charge v充电,使充电insulator n 绝缘体,绝缘物nonconductive adj非导体的,绝缘的antenna n天线;触角modeling n建模,造型simulation n 仿真;模拟prototype n 原型array n 排队,编队vector n 向量,矢量wavelet n 微波,小浪sine 正弦 cosine 余弦inverse adj倒转的,反转的n反面;相反v倒转high—performance 高精确性,高性能two—dimensional 二维的;缺乏深度的three—dimensional 三维的;立体的;真实的object—oriented programming面向对象的程序设计spectral adj 光谱的attenuation n衰减;变薄;稀释distortion n 失真,扭曲,变形wavelength n 波长refractive adj 折射的ATM 异步传输模式AsynchronousTransfer ModeADSL非对称用户数字线Asymmetricdigital subscriber lineVDSL甚高速数字用户线very highdata rate digital subscriberlineHDSL高速数据用户线 high ratedigital subscriber lineFDMA频分多址(Frequency DivisionMultiple Access)TDMA时分多址(Time DivisionMultiple Access)CDMA同步码分多址方式(CodeDivision Multiple Access)WCDMA宽带码分多址移动通信系统(Wideband Code DivisionMultiple Access)TD—SCDMA(Time DivisionSynchronous Code DivisionMultiple Access)时分同步码分多址SDLC(synchronous data linkcontrol)同步数据链路控制HDLC(high—level data linkcontrol)高级数据链路控制IP/TCP(internet protocol/transfer Control Protocol)网络传输控制协议ITU (InternationalTelecommunication Union)国际电信联盟ISO国际标准化组织(InternationalStandardization Organization);OSI开放式系统互联参考模型(OpenSystem Interconnect)GSM全球移动通信系统(GlobalSystem for Mobile Communications)GPRS通用分组无线业务(GeneralPacket Radio Service)FDD(frequency division duplex)频分双工TDD(time division duplex)时分双工VPI虚路径标识符(Virtual PathIdentifier);ISDN(Integrated ServicesDigital Network)综合业务数字网IDN综合数字网(integrateddigital network)HDTV (high definitiontelevision)高清晰度电视DCT(Discrete Cosine Transform)离散余弦变换VCI(virtual circuit address)虚通路标识MAN城域网Metropolitan areanetworksLAN局域网local area networkWAN广域网wide area network同步时分复用STDM SynchronousTime Division Multiplexing统计时分复用STDM StatisticalTime Division Multiplexing单工传输simplex transmission半双工传输half-duplex transmission全双工传输full-duplex transmission交换矩阵Switching Matrix电路交换 circuit switching分组交换packet switching报文交换message switching奇偶校验parity checking循环冗余校验CRC Cyclic Redundancy Check虚过滤Virtual filter数字滤波digital filtering伪随机比特Quasi Random Bit带宽分配 Bandwidth allocation信源information source信宿destination数字化digitalize数字传输技术Digital transmission technology灰度图像Grey scale images灰度级Grey scale level幅度谱Magnitude spectrum相位谱Phase spectrum频谱frequency spectrum智能设备Smart Device软切换Soft handover硬切换 Hard Handover相干检测Coherent detection边缘检测Edge detection冲突检测collision detection业务集合service integration业务分离/综合service separation/ integration网络集合network integration环形网Ring networks令牌环网Token Ring network网络终端Network Terminal用户终端user terminal用户电路line circuit电路利用率channel utilization (通道利用率)相关性coherence相干解调coherent demodulation数字图像压缩digital image compression图像编码image encoding有损/无损压缩lossy/lossless compression解压decompression呼叫控制Call Control误差控制error control存储程序控制stored program control存储转发方式store-and-forward manner语音\视频传输voice\video transmission视频点播video—on-demand(VOD)会议电视Video Conference有线电视cable television量化quantization吞吐量throughput话务量traffic多径分集Multipath diversity多媒体通信MDM Multimedia Communication多址干扰Multiple Access Interference人机交互man machine interface 交互式会话Conversationalinteraction路由算法Routing Algorithm目标识别Object recognition话音变换Voice transform中继线trunk line传输时延transmission delay远程监控remote monitoring光链路optical link拓扑结构Topology均方根root mean squarewhatsoever=whatever 0switchboard (电话)交换台bipolar (电子)双极的premise (复)房屋,前提cursor (计算机尺的)游标,指导的elapse (时间)经过,消失vaporize (使)蒸发subsystem (系统的)分部,子系统,辅助系统metallic (像)金属的,含金属的,(声音)刺耳的dispatch (迅速)派遣,急件consensus (意见)一致,同意deadline (最后)期限,截止时间tomographic X线体层摄像的alas 唉,哎呀cluster把…集成一束,一组,一簇,一串,一群encyclopedia 百科全书millionfold 百万倍的semiconductor 半导体radius 半径范围,半径,径向射线half-duplex transmission 半双工传输accompaniment 伴随物,附属物reservation 保留,预定quotation 报价单,行情报告,引语memorandum 备忘录redundancy 备用be viewed as 被看作…be regards as 被认为是as such 本身;照此;以这种资格textual 本文的,正文的verge 边界variation 变化,变量conversion 变化,转化identity 标识;标志criterion 标准,准则in parallel on 并联到,合并到juxtapose 并置,并列dialing pulse 拨号脉冲wave-guide 波导wavelength division multiplexed波分复用baud rate 波特率playback 播放(录音带,唱片)no greater than 不大于update不断改进,使…适合新的要求,更新asymmetric 不对称的irrespective 不考虑的,不顾的inevitably 不可避免的inevitable 不可避免的,不可逃避的,必定的segment 部分abrasion 擦伤,磨损deploy 采用,利用,推广应用take the form of 采用…的形式parameter 参数,参量layer 层dope 掺杂FET(field effect transistors) 场效应管audio recording 唱片ultra—high—frequency(UHF)超高频in excess of 超过in excess of 超过hypertext 超文本ingredient 成分,因素ingredient 成分,组成部分,要素metropolitan—area network(WAN)城域网metropolitan area network(WAN)城域网,城市网络congestion 充满,拥挤,阻塞collision 冲突extractive 抽出;释放出extract 抽取,取出,分离lease 出租,租约,租界期限,租界物pass on 传递,切换transmission 传输facsimile 传真innovative=innovatory 创新的,富有革新精神的track 磁道impetus 促进,激励cluster 簇stored-program control(SPC)存储程序控制a large number of 大量的peal 大声响,发出supersede 代替supplant 代替,取代out—of—band signaling 带外信号simplex transmission 单工传输monochromatic 单色的,单色光的,黑白的ballistic 弹道的,射击的,冲击的conductor 导体hierarchy 等级制度,层次infrastructure 底层结构,基础结构geographic 地理的,地区的geographically 地理上GIS(ground instrumentationsystem) 地面测量系统ground station 地面站earth orbit 地球轨道extraterrestrial 地球外的,地球大气圈外的Land-sat 地球资源卫星rug 地毯,毯子ignite 点火,点燃,使兴奋electromagnetic 电磁的inductive 电感arc 电弧telephony 电话(学),通话dielectric 电介质,绝缘材料;电解质的,绝缘的capacitor 电容telecommunication 电信,无线电通讯scenario 电影剧本,方案modem pool 调制解调器(存储)池superimposing 叠加,重叠pin 钉住,扣住,抓住customize 定做,定制monolithic 独立的,完全统一的aluminize 镀铝strategic 对全局有重要意义的,战略的substantial 多的,大的,实际上的multi-path fading 多径衰落multi—path 多路,多途径;多路的,多途径的multi-access 多路存取,多路进入multiplex 多路复用multiplex 多路复用的degradation 恶化,降级dioxide 二氧化碳LED(light—emitting—diode)发光二极管evolution 发展,展开,渐进feedback 反馈,回授dimension 范围,方向,维,元scenario 方案scenario 方案,电影剧本amplifer 放大器noninvasive 非侵略的,非侵害的tariff 费率,关税率;对…征税distributed functional plane(DFP)分布功能平面DQDB(distributed queue dual bus)分布式队列双总线hierarchy 分层,层次partition 分成segmentation 分割interface 分界面,接口asunder 分开地,分离地detached 分离的,分开的,孤立的dispense 分配allocate 分配,配给;配给物centigrade 分为百度的,百分度的,摄氏温度的fractal 分形molecule 分子,微小,些微cellular 蜂窝状的cellular 蜂窝状的,格形的,多孔的auxiliary storage(also called secondary storage) 辅助存储器decay 腐烂,衰减,衰退negative 负电vicinity 附近,邻近vicinity 附近地区,近处sophisticated 复杂的,高级的,现代化的high-frequency(HF) 高频high definition television 高清晰度电视chromium 铬annotate 给…作注解in terms of 根据,按照disclosure 公布,企业决算公开public network 公用网functionality 功能,功能度mercury 汞resonator 共鸣器resonance 共振whimsical 古怪的,反复无常的administration 管理,经营cursor 光标(显示器),游标,指针optical computer 光计算机photoconductor 光敏电阻optical disks 光盘optically 光学地,光地wide—area networks 广域网specification 规范,说明书silicon 硅the internationaltelecommunication union(ITU) 国际电信联盟excess 过剩obsolete 过时的,废弃的maritime 海事的synthetic 合成的,人造的,综合的synthetic 合成的,综合性的rational 合乎理性的rationalization 合理化streamline 合理化,理顺infrared 红外线的,红外线skepticism 怀疑论ring network 环形网hybrid 混合物counterpart 伙伴,副本,对应物electromechanical 机电的,电动机械的Robot 机器人Robotics 机器人技术,机器人学accumulation 积累infrastructure 基础,基础结构substrate 基质,底质upheaval 激变,剧变compact disc 激光磁盘(CD)concentrator 集中器,集线器centrex system 集中式用户交换功能系统converge on 集中于,聚集在…上lumped element 集总元件CAI(computer-aided instruction)计算机辅助教学computer—integratedmanufacturing(CIM)计算机集成制造computer mediated communication(CMC)计算机中介通信record 记录register 记录器,寄存器expedite 加快,促进weight 加权accelerate 加速,加快,促进categorize 加以类别,分类in addition 加之,又,另外hypothetical 假设的rigidly 坚硬的,僵硬的compatibility 兼容性,相容性surveillance 监视surveillance 监视retrieval 检索,(可)补救verification 检验simplicity 简单,简明film 胶片,薄膜take over 接管,接任ruggedness 结实threshold 界限,临界值with the aid of 借助于,用,通过wire line 金属线路,有线线路coherent 紧凑的,表达清楚的,粘附的,相干的compact 紧密的approximation 近似undertake 进行,从事transistor 晶体管elaborate 精心制作的,细心完成的,周密安排的vigilant 警戒的,警惕的alcohol 酒精,酒local area networks(LANs)局域网local-area networks(LANs)局域网drama 剧本,戏剧,戏剧的演出focus on 聚集在,集中于,注视insulator 绝缘root mean square 均方根uniform 均匀的open—system-interconnection(OSI)开放系统互连expire 开始无效,满期,终止immunity 抗扰,免除,免疫性take…into account考虑,重视…programmable industrialautomation 可编程工业自动化demountable 可拆卸的tunable 可调的reliable 可靠be likely to 可能,大约,像要videotex video 可视图文电视negligible 可以忽略的aerial 空气的,空中的,无形的,虚幻的;天线broadband 宽(频)带pervasive 扩大的,渗透的tensile 拉力的,张力的romanticism 浪漫精神,浪漫主义discrete 离散,不连续ion 离子force 力量;力stereophonic 立体声的continuum 连续统一体,连续统,闭联集smart 灵巧的;精明的;洒脱的token 令牌on the other hand 另一方面hexagonal 六边形的,六角形的hexagon 六角形,六边形monopoly 垄断,专利video-clip 录像剪辑aluminum 铝pebble 卵石,水晶透镜forum 论坛,讨论会logical relationships 逻辑关系code book 码本pulse code modulation(PCM)脉冲编码调制roam 漫步,漫游bps(bits per second) 每秒钟传输的比特ZIP codes 美国邮区划分的五位编码susceptible(to)敏感的,易受…的analog 模拟,模拟量pattern recognition 模式识别bibliographic 目录的,文献的neodymium 钕the european telecommunicationstandardization institute(ETSI)欧洲电信标准局coordinate 配合的,协调的;使配合,调整ratify 批准,认可bias 偏差;偏置deviate 偏离,与…不同spectrum 频谱come into play 其作用entrepreneurial 企业的heuristic methods 启发式方法play a …role(part)起…作用stem from 起源于;由…发生organic 器官的,有机的,组织的hypothesis 前提front-end 前置,前级potential 潜势的,潜力的intensity 强度coincidence 巧合,吻合,一致scalpel 轻便小刀,解剖刀inventory 清单,报表spherical 球的,球形的distinguish 区别,辨别succumb 屈服,屈从,死global functional plane(GFP) 全局功能平面full-duplex transmission 全双工传输hologram 全息照相,全息图deficiency 缺乏thermonuclear 热核的artifact 人工制品AI(artificial intelligence) 人工智能fusion 熔解,熔化diskettes(also called floppy disk) 软盘sector 扇区entropy 熵uplink 上行链路arsenic 砷neural network 神经网络very-high—frequency(VHF) 甚高频upgrade 升级distortion 失真,畸变identification 识别,鉴定,验明pragmatic 实际的implementation 实施,实现,执行,敷设entity 实体,存在vector quantification 矢量量化mislead 使…误解,给…错误印象,引错vex 使烦恼,使恼火defy 使落空facilitate 使容易,促进retina 视网膜compatible 适合的,兼容的transceiver 收发两用机authorize 授权,委托,允许data security 数据安全性data independence 数据独立data management 数据管理database 数据库database management system(DBMS)数据库管理信息系统database transaction 数据库事务data integrity 数据完整性,数据一致性attenuation 衰减fading 衰落,衰减,消失dual 双的,二重的transient 瞬时的deterministic 宿命的,确定的algorithm 算法dissipation 损耗carbon 碳diabetes 糖尿病cumbersome 讨厌的,麻烦的,笨重的razor 剃刀,剃go by the name of 通称,普通叫做commucation session 通信会话traffic 通信业务(量)synchronous transmission 同步传输concurrent 同时发生的,共存的simultaneous 同时发生的,同时做的simultaneous 同时发生的,一齐的coaxial 同轴的copper 铜statistical 统计的,统计学的dominate 统治,支配invest in 投资perspective 透视,角度,远景graphics 图示,图解pictorial 图像的coating 涂层,层deduce 推理reasoning strategies 推理策略inference engine 推理机topology 拓扑结构heterodyne 外差法的peripheral 外界的,外部的,周围的gateway 网关hazardous 危险的microwave 微波(的)microprocessor 微处理机,微处理器microelectronic 微电子nuance 微小的差别(色彩等)encompass 围绕,包围,造成,设法做到maintenance 维护;保持;维修satellite communication 卫星通信satellite network 卫星网络transceiver 无线电收发信机radio—relay transmission 无线电中继传输without any doubt 无疑passive satellite 无源卫星sparse 稀少的,稀疏的downlink 下行链路precursor 先驱,前任visualization 显像feasibility 现实性,可行性linearity 线性度constrain 限制,约束,制约considerable 相当的,重要的geo-stationary 相对地面静止by contrast 相反,而,对比起来coorelation 相关性mutual 相互的mutually 相互的,共同的interconnect 相互连接,互连one after the other 相继,依次minicomputer 小型计算机protocol 协议,草案protocol 协议,规约,规程psycho-acoustic 心理(精神)听觉的;传音的channelization 信道化,通信信道选择run length encoding 行程编码groom 修饰,准备virtual ISDN 虚拟ISDNmultitude 许多,大批,大量whirl 旋转preference 选择,喜欢avalanche 雪崩pursue 寻求,从事interrogation 询问dumb 哑的,不说话的,无声的subcategory 亚类,子种类,子范畴orbital 眼眶;轨道oxygen 氧气,氧元素service switching and controlpoints(SSCPs)业务交换控制点service control points(SCPs) 业务控制点service control function(SCF) 业务控制功能in concert 一致,一齐handover 移交,越区切换at a rate of 以……的速率in the form of 以…的形式base on… 以…为基础yttrium 钇(稀有金属,符号Y)asynchronous transmission 异步传输asynchronous 异步的exceptional 异常的,特殊的voice—grade 音频级indium 铟give rise to 引起,使产生cryptic 隐义的,秘密的hard disk 硬盘hard automation 硬自动化by means of 用,依靠equip with 用…装备subscriber 用户telex 用户电报PBX(private branch exchange)用户小交换机或专用交换机be called upon to 用来…,(被)要求…superiority 优势predominance 优势,显著active satellite 有源卫星in comparison with 与…比较comparable to 与…可比preliminary 预备的,初步的premonition 预感,预兆nucleus 原子核valence 原子价circumference 圆周,周围teleprocessing 远程信息处理,遥控处理perspective 远景,前途constrain 约束,强迫mobile 运动的,流动的,机动的,装在车上的convey 运输,传递,转换impurity 杂质impurity 杂质,混杂物,不洁,不纯regenerative 再生的improve over 在……基础上改善play important role in 在…中起重要作用in close proximity 在附近,在很近underlying 在下的,基础的in this respect 在这方面entail 遭遇,导致presentation 赠与,图像,呈现,演示narrowband 窄(频)带deploy 展开,使用,推广应用megabit 兆比特germanium 锗positive 正电quadrature 正交orthogonal 正交的quadrature amplitudemodulation(QAM) 正交幅度调制on the right track 正在轨道上sustain 支撑,撑住,维持,持续outgrowh 支派;长出;副产品dominate 支配,统治knowledge representation 知识表示knowledge engineering 知识工程knowledge base 知识库in diameter 直径helicopter 直升飞机acronym 只取首字母的缩写词as long as 只要,如果tutorial 指导教师的,指导的coin 制造(新字符),杜撰fabrication 制造,装配;捏造事实proton 质子intelligence 智能,智力,信息intelligent network 智能网intermediate 中间的nucleus(pl.nuclei) 中心,核心neutrons 中子terminal 终端,终端设备overlay 重叠,覆盖,涂覆highlight 重要的部分,焦点charge 主管,看管;承载dominant 主要的,控制的,最有力的cylinder 柱面expert system 专家系统private network 专用网络transition 转变,转换,跃迁relay 转播relay 转播,中继repeater 转发器,中继器pursue 追赶,追踪,追求,继续desktop publish 桌面出版ultraviolet 紫外线的,紫外的;紫外线辐射field 字段vendor 自动售货机,厂商naturally 自然的;天生具备的synthesize 综合,合成integrate 综合,使完全ISDN(intergrated servicesdigital network) 综合业务数字网as a whole 总体上bus network 总线形网crossbar 纵横,交叉impedance 阻抗initial 最初的,开始的optimum 最佳条件appear as 作为…出现A Analog 模拟A/D Analog to Digital 模—数转换AAC Advanced Audio Coding高级音频编码ABB Automatic Black Balance 自动黑平衡ABC American Broadcasting Company 美国广播公司Automatic Bass Compensation 自动低音补偿 Automatic BrightnessControl 自动亮度控制ABL Automatic Black Level自动黑电平ABLC Automatic BrightnessLimiter Circuit 自动亮度限制电路ABU Asian BroadcastingUnion 亚洲广播联盟(亚广联ABS American Bureau ofStandard 美国标准局AC Access Conditions 接入条件Audio Center 音频中心ACA Adjacent ChannelAttenuation 邻频道衰减ACC Automatic CenteringControl 自动中心控制Automatic Chroma Control 自动色度(增益ACK Automatic Chroma Killer自动消色器ACP Additive Colour Process加色法ACS Access Control System接入控制系统Advanced CommunicationService 高级通信业务Area Communication System区域通信系统ADC Analog to DigitalConverter 模-数转换器Automatic DegaussirngCircuit 自动消磁电路ADL Acoustic Delay Line 声延迟线ADS Audio DistributionSystem 音频分配系统AE Audio Erasing 音频(声音AEF Automatic EditingFunction 自动编辑功能AES Audio EngineeringSociety 音频工程协会AF Audio Frequency 音频AFA Audio FrequencyAmplifier 音频放大器AFC Automatic FrequencyCoder 音频编码器Automatic Frequency Control自动频率控制AFT Automatic Fine Tuning自动微调Automatic Frequency Track自动频率跟踪Automatic Frequency Trim 自动额率微调AGC Automatic Gain Control自动增益控制AI Artificial Intelligence人工智能ALM Audio—Level Meter 音频电平表AM Amplitude Modulation 调幅AMS Automatic Music Sensor自动音乐传感装置ANC Automatic NoiseCanceller 自动噪声消除器ANT ANTenna 天线AO Analog Output 模拟输出APS Automatic ProgramSearch 自动节目搜索APPS Automatic ProgramPause System 自动节目暂停系统APSS Automatic ProgramSearch System 自动节目搜索系统AR Audio Response 音频响应ARC Automatic RemoteControl 自动遥控ASCII American StandardCode for InformationInterchange 美国信息交换标准AST Automatic ScanningTracking 自动扫描跟踪ATC Automatic TimingControl 自动定时控制Automatic Tone Correction自动音频校正ATM Asynchronous TransferMode 异步传输模式ATF Automatic Track Finding自动寻迹ATS Automatic Test System自动测试系统ATSC Advanced TelevisionSystems Committee (美国高级电视制式委员会)***C Automatic VolumeControl 自动音量控制***R Automatic VoltageRegulator 自动稳压器AWB Automatic White Balance自动白平衡AZC Automatic ZoomingControl 自动变焦控制AZS Automatic Zero Setting自动调零BA Branch Amplifier 分支放大器Buffer Amplifier 缓冲放大器BAC Binary-AnalogConversion 二进制模拟转换BB Black Burst 黑场信号BBC British BroadcastingCorporation 英国广播公司BBI Beijing BroadcastingInstitute 北京广播学院BC Binary Code 二进制码Balanced Current 平衡电流Broadcast Control 广播控制BCT Bandwidth CompressionTechnique 带宽压缩技术BDB Bi-directional Data Bus双向数据总线BER Basic Encoding Rules 基本编码规则Bit Error Rate 比特误码率BF Burst Flag 色同步旗脉冲BFA Bare Fiber Adapter 裸光纤适配器Brillouin Fiber Amplifier布里渊光纤放大器BGM Background Music 背景音乐BIOS Basic Input/OutputSystem 基本输入输出系统B—ISDN Broadband—ISDN 宽带综合业务数据网BIU Basic Information Unit基本信息单元Bus Interface Unit 总线接口单元BM Bi-phase Modulation 双相调制BML Business ManagementLayer 商务管理层BN Backbone Network 主干网BNT Broadband NetworkTermination 宽带网络终端设备BO Bus Out 总线输出BPG Basic Pulse Generator 基准脉冲发生器BPS Band Pitch Shift 分频段变调节器BSI British Standard Institute 英国标准学会BSS Broadcast Satellite Service 广播卫星业务BT Block Terminal 分线盒、分组终端British Telecom 英国电信BTA Broadband Terminal Adapter 宽带终端适配器Broadcasting Technology Association (日本BTL Balanced Transformer—Less 桥式推挽放大电路BTS Broadcast Technical Standard 广播技术标准BTU Basic Transmission Unit 基本传输单元BVU Broadcasting Video Unit 广播视频型(一种3/4英寸带录像机记录格式BW BandWidth 带宽BWTV Black and White Television 黑白电视CA Conditional Access 条件接收CAC Conditional Access Control 条件接收控制CAL Continuity AcceptLimit 连续性接受极限CAS Conditional Access System 条件接收系统Conditional Access Sub—system 条件接收子系统CATV Cable Television 有线电视,电缆电视Community Antenna Television 共用天线电视C*** Constant Angular Velocity 恒角速度CBC Canadian Broadcasting Corporation 加拿大广播公司CBS Columbia Broadcasting System (美国哥伦比亚广播公司CC Concentric Cable 同轴电缆CCG Chinese Character Generator 中文字幕发生器CCIR International Radio Consultative Committee 国际无线电咨询委员会CCITT International Telegraph and Telephone ConsultativeCommittee 国际电话电报咨询委员会CCR Central Control Room 中心控制室CCTV China Central Television 中国中央电视台Close-Circuit Television 闭路电视CCS Center Central System 中心控制系统CCU Camera Control Unit 摄像机控制器CCW Counter Clock—Wise 反时针方向CD Compact Disc 激光唱片 CDA Current DumpingAmplifier 电流放大器CD—E Compact Disc Erasable可抹式激光唱片CDFM Compact Disc FileManager 光盘文件管理(程序CDPG Compact—Disc PlusGraphic 带有静止图像的CD唱盘CD-ROM Compact Disc—ReadOnly Memory 只读式紧凑光盘CETV China EducationalTelevision 中国教育电视台CF Color Framing 彩色成帧CGA Color Graphics Adapter彩色图形(显示卡CI Common Interface 通用接口CGA Color Graphics Adapter 彩色图形(显示卡CI Common Interface 通用接口CIE Chinese Institute ofElectronics 中国电子学会CII China InformationInfrastructure 中国信息基础设施CIF Common IntermediateFormat 通用中间格式CIS Chinese IndustrialStandard 中国工业标准CLV Constant Linear Velocity恒定线速度CM Colour Monitor 彩色监视器CMTS Cable Modem TerminationSystem 线缆调制解调器终端系统CNR Carrier-to—Noise Ratio载噪比CON Console 操纵台Controller 控制器CPB Corporation of PublicBroadcasting (美国公共广播公司CPU Central Processing Unit中央处理单元CRC Cyclic Redundancy Check循环冗余校验CRCC CRI Cyclic RedundancyCheck Code 循环冗余校验码CROM China RadioInternational 中国国际广播电台CRT Control Read Only Memory控制只读存储器CS Cathode—Ray Tube 阴极射线管CSC Communication Satellite通信卫星CSS Color Sub-carrier 彩色副载波Center Storage Server 中央存储服务器Content Scrambling System 内容加扰系统CSU Channel Service Unit 信道业务单元CT Color Temperature 色温CTC Cassette Tape Controller盒式磁带控制器Channel Traffic Control 通道通信量控制Counter Timer Circuit 计数器定时器电路Counter Timer Control 计数器定时器控制CTE Cable TerminationEquipment 线缆终端设备Customer Terminal Equipment用户终端设备CTV Color Television 彩色电视CVD China Video Disc 中国数字视盘CW Carrie Wave 载波DAB Digital AudioBroadcasting 数字音频广播DASH Digital AudioStationary Head 数字音频静止磁头DAT Digital Audio Tape 数字音频磁带DBMS Data Base ManagementSystem 数据库管理系统DBS Direct BroadcastSatellite 直播卫星DCC Digital Compact Cassette数字小型盒带Dynamic Contrast Control 动态对比度控制DCT Digital ComponentTechnology 数字分量技术Discrete Cosine Transform 离散余弦变换DCTV Digital ColorTelevision 数字彩色电视DD Direct Drive 直接驱动DDC Direct Digital Control直接数字控制DDE Dynamic Data Exchange 动态数据交换DDM Data Display Monitor 数据显示监视器DES Data Elementary Stream数据基本码流Data Encryption Standard 美国数据加密标准DF Dispersion Flattened 色散平坦光纤DG Differential Gain 微分增益DI Digital Interface 数字接口DITEC Digital TelevisionCamera 数字电视摄像机DL Delay Line 延时线DLD Dynamic Linear Drive 动态线性驱动DM Delta Modulation 增量调制Digital Modulation 数字调制DMB Digital MultimediaBroadcasting 数字多媒体广播DMC Dynamic Motion Control动态控制DME Digital Multiple Effect数字多功能特技DMS Digital Mastering System数字主系统DN Data Network 数据网络DNG Digital News Gathering数字新闻采集DNR Digital Noise Reducer 数字式降噪器DOB Data Output Bus 数据输出总线DOCSIS Data Over CableService Interface Specifications有线数据传输业务接口规范DOC Drop Out Compensation 失落补偿DOS Disc Operating System 磁盘操作系统DP Differential Phase 微分相位Data Pulse 数据脉冲DPCM Differential Pulse Code Modulation 差值脉冲编码调制DPL Dolby Pro Logic 杜比定向逻辑DSB Digital Satellite Broadcasting 数字卫星广播DSC Digital Studio Control 数字演播室控制DSD Dolby Surround Digital 杜比数字环绕声DSE Digital Special Effect 数字特技DSK Down-Stream Key 下游键DSP Digital Signal Processing 数字信号处理Digital Sound Processor 数字声音处理器DSS Digital Satellite System 数字卫星系统DT Digital Technique 数字技术Digital Television 数字电视Data Terminal 数据终端Data Transmission 数据传输DTB Digital Terrestrial Broadcasting 数字地面广播DTBC Digital Time—Base Corrector 数字时基校正器DTC Digital Television Camera 数字电视摄像机DTS Digital Theater System 数字影院系统Digital Tuning System 数字调谐系统Digital Television Standard 数字电视标准DVB Digital Video Broadcasting 数字视频广播DVC Digital Video Compression 数字视频压缩DVE Digital Video Effect 数字视频特技DVS Desktop Video Studio 桌上视频演播DVTR Digital Video Tape Recorder 数字磁带录像机EA Extension Amplifier 延长放大器EB Electron Beam 电子束EBS Emergency Broadcasting System 紧急广播系统EBU European Broadcasting Union 欧洲广播联盟EC Error Correction 误差校正 ECN Emergency Communications Network 应急通信网络ECS European Communication Satellite 欧洲通信卫星EDC Error Detection Code 错误检测码EDE Electronic Data Exchange 电子数据交换EDF Erbium—Doped Fiber 掺饵光纤EDFA Erbium-Doped Fiber Amplifier 掺饵光纤放大器EDL Edit Decision List 编辑点清单EDTV Extended Definition Television 扩展清晰度电视EE Error Excepted 允许误差EFM Eight to Fourteen Modulation 8-14调制 EFP Electronic FieldProduction 电子现场节目制作EH Ethernet Hosts 以太网主机EIN Equivalent Input Noise等效输入噪声EIS Electronic InformationSystem 电子信息系统EISA Extended IndustrialStandard Architecture 扩展工业标准总线EL Electro—Luminescent 场致发光EM Error Monitoring 误码监测EN End Node 末端节点ENG Electronic NewsGathering 电子新闻采集EOT End of Tape 带尾EP Edit Point 编辑点Error Protocol 错误协议EPG Electronic Program Guides 电子节目指南EPS Emergency Power Supply应急电源ERP Effective Radiated Power 有效辐射功率ES Elementary Stream 基本码流End System 终端系统ESA European Space Agency 欧洲空间局ETV Education Television 教育电视FA Enhanced Television 增强电视FABM FAS Facial Animation 面部动画FC Fiber Amplifier BoosterModule 光纤放大器增强模块Fiber Access System 光纤接入系统Frequency Changer 变频器FCC Fiber Channel 光纤通道FD Film Composer 电影编辑系统Federal CommunicationsCommission 美国联邦通信委员会FDCT Frequency Divider 分频器FDDI FDM Fiber Duct 光纤管道FDP Forward Discrete CosineTransform 离散余弦正变换FE Fiber Distributed DataInterface 分布式光纤数据接口Frequency-Division Multiplexing频分复用FF Fiber Distribution Point光纤分配点FG Front End 前端FH Framing Error 成帧误差FIT Fast Forward 快进FN Frequency Generator 频率发生器FOA Frequency Hopping 跳频FOC Frame—Interline Transfer帧一行间转移Fiber Node 光纤节点Fiber Optic Amplifier 光纤放大器FOM Fiber Optic Cable 光缆FON Fiber Optic Communications光纤通信FOS Fiber Optic Coupler 光纤耦合器FOTC Fiber Optic Modem 光纤调制解调器FS Fiber Optic Net 光纤网Factor of Safety 安全系数Fiber Optic Trunk Cable 光缆干线FT Frame Scan 帧扫描FTP Frame Store 帧存储器FTTB Frame Synchro 帧同步机FTTC France Telecom 法国电信Absorber Circuit 吸收电路AC/AC Frequency Converter 交交变频电路AC power control交流电力控制AC Power Controller交流调功电路AC Power Electronic Switch交流电力电子开关Ac Voltage Controller交流调压电路Asynchronous Modulation异步调制Baker Clamping Circuit贝克箝位电路Bi—directional Triode Thyristor双向晶闸管Bipolar Junction Transistor-—BJT双极结型晶体管Boost—Buck Chopper升降压斩波电路Boost Chopper升压斩波电路Boost Converter升压变换器Bridge Reversible Chopper桥式可逆斩波电路Buck Chopper降压斩波电路Buck Converter降压变换器Commutation换流Conduction Angle导通角Constant Voltage ConstantFrequency —-CVCF 恒压恒频Continuous Conduction—-CCM(电流)连续模式Control Circuit 控制电路Cuk Circuit CUK 斩波电路Current Reversible Chopper电流可逆斩波电路Current Source Type Inverter--CSTI 电流(源)型逆变电路Cyclo convertor周波变流器DC-AC-DC Converter直交直电路DC Chopping直流斩波DC Chopping Circuit直流斩波电路DC—DC Converter直流-直流变换器Device Commutation器件换流Direct Current Control直接电流控制Discontinuous Conduction mode(电流)断续模式displacement factor 位移因数distortion power 畸变功率double end converter 双端电路driving circuit 驱动电路electrical isolation 电气隔离fast acting fuse 快速熔断器fast recovery diode快恢复二极管fast revcovery epitaxial diodes快恢复外延二极管fast switching thyristor快速晶闸管。

分形图像压缩的算法

分形图像压缩的算法

大学本科学生毕业设计—分形图像压缩的算法二零一二年六月中文摘要分形图像编码方法是近十年来诞生并发展起来的一种新型图像压缩方法,它将图像编码为一组收缩映射,由这组收缩映射的不动点近似待编码对象。

借助自可变换性特征有效地消除了图像表达上的数据冗余,具有编码效率高、与分辨率无关、解码算法简单等潜在优势,已成为当今国际上图像编码领域中令人瞩目的研究方向。

本课题旨在以分块迭代函数系统为基础,研究分形图像编码的理论、方法和实现技术,探讨其工作机理,评价其能力,弥补其缺陷,设计并实现高效的图像压缩/解压算法,为多媒体智能软件系统提供有效的工具。

本文阐述了分形理论应用在图像压缩领域的基本原理和实现该算法的关键技术,介绍了具有代表性的各种图像压缩的新方法,阐明了各个方法的优劣,最后简要总结了分形图像压缩的改进方法以及未来的发展趋势关键词:图像压缩,分形,算法ABSTRACTFractal image coding, which is also called attractor image coding, is a emergent method of image compression during the last decade. It codes images as contraction maps of which the fixed points approximate to the images. Redundancy in images are efficiently exploited via the self-transformability on the blockwise basis. Owing to itshigh compression ratio, good image quality, and resolution-independence of the decoded image, fractal image coding has been attracting much attention, and being considered to be promising in the realm of image compressionThis paper aims at giving a compreheresearch on the theory, methodology, and implementation techniques of fractal image coding under the iterated function systems, developing a set of efficient coding/decoding algorithms to support multimedia software applications.This paper expounds the basic principle of the application of fractal in the image compression field theory and key technology of this algorithm,this paper introduces all kinds oftypical new method of image compression.It compared the advantages and disadvantages of every method ,and finally summarized the improvement and the future development trend of the fractal image compression method.Keywords: Image Compressing,Fractal,algorithm目录第一章绪论 (5)第二章分形图像编码的相关介绍 (6)一、分形图像编码的基本原理 (7)二、分形图像编码的实现步骤 (9)(一)编码主要步骤 (9)(二)解码主要步骤 (10)三、分形图像压缩的发展方向 (10)(一)加快分形的编码速度 (11)(二)提高分形编码质量 (11)(三)分形序列图像编码 (12)第三章分形与其他技术相结合的改进方案 (13)一、提高压缩比和编码效果常用的改进方法 (13)(一)改进分割的方法 (13)(二)改进覆盖式方法 (13)(三)提高显示效果的后处理法 (14)二、 DCT与分形混合编码 (14)三、小波分形混合图像编码 (15)四、提高编码和解码速度的方法 (16)(一)提高编码速度 (16)(二)提高解码速度 (16)第四章仿真实验 (17)一、分型图像压缩流程图 (17)二、实验环境与所需步骤 (18)(一)实验环境: (18)(二)仿真步骤: (18)三、实验程序 (18)五、仿真结果 (22)第五章结论 (24)参考文献 (25)附录 (26)第一章绪论十多年前,在计算机图形学中分形技术被用来模拟自然景象,其中最常用的思想便是迭代函数系统(IFS)和递归迭代函数系统(RIFS)。

数码相机的英语作文

数码相机的英语作文

Digital cameras have revolutionized the way we capture and share our memories. They are compact,versatile,and offer a range of features that traditional film cameras could never match.Here is an essay on the topic of digital cameras,highlighting their advantages,types,and impact on society.IntroductionIn the digital age,photography has evolved from a cumbersome process involving film to a seamless experience with digital cameras.These devices have transformed not only the way we take pictures but also how we interact with them,store them,and share them with others.Advantages of Digital Cameras1.Instant Gratification:Digital cameras allow users to view their photos immediately after capture,making it easy to delete unsatisfactory shots and retake them without wasting film.2.Storage Capacity:Unlike film cameras,which are limited by the number of exposures on a roll,digital cameras can store hundreds or even thousands of images on a single memory card.3.Image Quality Adjustment:Users can adjust the image quality settings,such as resolution and compression,to suit their needs,whether for casual snapshots or professionalquality prints.4.Versatility:Digital cameras come in various forms,from compact pointandshoot models to advanced DSLRs Digital SingleLens Reflex,catering to a wide range of user preferences and skill levels.5.Editing Capabilities:Postprocessing is much easier with digital images,allowing for quick edits and enhancements using software applications.Types of Digital Cameras1.PointandShoot Cameras:These are the most basic and userfriendly type,designed for casual photographers who want simplicity and portability.2.Bridge Cameras:Offering more zoom capabilities than pointandshoots,bridge cameras are a step up in terms of features and image quality.3.Mirrorless Cameras:These cameras have larger sensors than pointandshoots but are smaller and lighter than DSLRs,offering a balance between image quality and portability.4.DSLR Cameras:Digital SingleLens Reflex cameras are the choice for professional photographers and serious enthusiasts,offering the highest level of control and image quality.5.Action Cameras:Designed for capturing fastpaced activities,these cameras are rugged and often waterproof,with wideangle lenses for capturing immersive footage.Impact on Society1.Social Media:The ease of sharing photos through digital cameras has fueled the growth of social media platforms,where people share their lives through images.2.Photography as a Hobby:The accessibility of digital cameras has made photography a popular hobby,with countless online communities and resources available for learning and sharing.3.Professional Opportunities:The rise of digital photography has opened up new career paths in fields such as photojournalism,commercial photography,and digital imaging.4.Preservation of Memories:Digital cameras have made it easier than ever to preserve memories in high quality,with the ability to store and back up images indefinitely. ConclusionDigital cameras have undeniably changed the landscape of photography.They offer unparalleled convenience,flexibility,and creative possibilities,making it easier for anyone to capture and share the world around them.As technology continues to advance, we can expect even more innovations that will further enhance the capabilities of digital photography.。

分形图像压缩的算法

分形图像压缩的算法

大学本科学生毕业设计—分形图像压缩的算法二零一二年六月中文摘要分形图像编码方法是近十年来诞生并发展起来的一种新型图像压缩方法,它将图像编码为一组收缩映射,由这组收缩映射的不动点近似待编码对象。

借助自可变换性特征有效地消除了图像表达上的数据冗余,具有编码效率高、与分辨率无关、解码算法简单等潜在优势,已成为当今国际上图像编码领域中令人瞩目的研究方向。

本课题旨在以分块迭代函数系统为基础,研究分形图像编码的理论、方法和实现技术,探讨其工作机理,评价其能力,弥补其缺陷,设计并实现高效的图像压缩/解压算法,为多媒体智能软件系统提供有效的工具。

本文阐述了分形理论应用在图像压缩领域的基本原理和实现该算法的关键技术,介绍了具有代表性的各种图像压缩的新方法,阐明了各个方法的优劣,最后简要总结了分形图像压缩的改进方法以及未来的发展趋势关键词:图像压缩,分形,算法ABSTRACTFractal image coding, which is also called attractor image coding, is a emergent method of image compression during the last decade. It codes images as contraction maps of which the fixed points approximate to the images. Redundancy in images are efficiently exploited via the self-transformability on the blockwise basis. Owing to its high compression ratio, good image quality, and resolution-independence of the decoded image, fractal image coding has been attracting much attention, and being considered to be promising in the realm of image compressionThis paper aims at giving a compreheresearch on the theory, methodology, and implementation techniques of fractal image coding under the iterated function systems, developing a set of efficient coding/decoding algorithms to support multimedia software applications.This paper expounds the basic principle of the application of fractal in the image compression field theory and key technology of thisalgorithm,this paper introduces all kinds oftypical new method of image compression.It compared the advantages and disadvantages of every method ,and finally summarized the improvement and the future development trend of the fractal image compression method.Keywords: Image Compressing,Fractal,algorithm目录第一章绪论 (6)第二章分形图像编码的相关介绍 (7)一、分形图像编码的基本原理 (8)二、分形图像编码的实现步骤 (10)(一)编码主要步骤 (11)(二)解码主要步骤 (12)三、分形图像压缩的发展方向 (13)(一)加快分形的编码速度 (13)(二)提高分形编码质量 (14)(三)分形序列图像编码 (14)第三章分形与其他技术相结合的改进方案 (16)一、提高压缩比和编码效果常用的改进方法 (16)(一)改进分割的方法 (16)(二)改进覆盖式方法 (17)(三)提高显示效果的后处理法 (17)二、DCT与分形混合编码 (17)三、小波分形混合图像编码 (19)四、提高编码和解码速度的方法 (20)(一)提高编码速度 (20)(二)提高解码速度 (21)第四章仿真实验 (21)一、分型图像压缩流程图 (21)二、实验环境与所需步骤 (22)(一)实验环境: (22)(二)仿真步骤: (22)三、实验程序 (23)五、仿真结果 (30)第五章结论 (32)参考文献 (33)附录 (34)第一章绪论十多年前,在计算机图形学中分形技术被用来模拟自然景象,其中最常用的思想便是迭代函数系统(IFS)和递归迭代函数系统(RIFS)。

MEDICAL IMAGE COMPRESSION USING REGION-OF-INTEREST VECTOR QUANTIZATION

MEDICAL IMAGE COMPRESSION USING REGION-OF-INTEREST VECTOR QUANTIZATION

...
block Original image
Best matching search
index
Table look-up
...
Reconstructed image
Codebook
Coder and decoder
The codebook must contain vectors that represent well the images to be compressed. Several methods are used in constructing codebooks. They apply, in general, a learning method on the training set issued from available images which are supposed to be representative of the images to be compressed.
I. Introduction
Amongst lossy signal compression approaches the Vector Quantization [1] is the optimal method in the sense that by increasing the vector length and the codebook size, better performance can be obtained than using any other block coding technique. Although the rapidly growing memory and computation requirements do not permit approximate arbitrarily closely the optimal performance, VQ has been proved to be a very straightforward image compression approach[2]. For instance, the use of variable size codewords was proposed according to the quadtree decomposition of images in order to proceed with large blocks whenever it is possible [3,4,5].

数字图像处理_第八章_图像压缩

数字图像处理_第八章_图像压缩
8.2 图像压缩模型 8.2.2 信道编码器和解码器(续) 一位错误由一个非0奇偶校码字 c4c2c0
给出。
c1 h1 h3 h5 h7 c2 h2 h3 h6 h7 c4 h4 h5 h0 h7
如果结果 0 ,解码器只要翻转码字中由奇偶校验字拨出 的比特位的位置(的码),然后以 h3h5h6h7 解码即可。
SNRrms
x 0 y 0 M 1 N 1 x 0

ˆ ( x, y ) 2 f
2

ˆ ( x , y ) f ( x, y ) f y 0
主观:典型观察者+典型图像
数字图像处理
Chapter 8 Image Compression
8.1 基础 8.1.4 保真度准则 表8.3为绝对等级。 可以并排对比,非常恶劣……非常好
a j P(a j )
j 1

J
P(a j ) 1
用(A,Z)描述信源。 aj kP(a j ) 如果产生k个信源符号,据大数定理, 将平均被输出 次,则根据k输出得到的平均自信息: kP(a1 ) log P(a1 ) kP(aJ ) log P(aJ )
P(a j ) log P(a j ) 每个信源输出的平均信息:k j 1
数字图像处理
Chapter 8 Image Compression
8.2 图像压缩模型 8.2 图像压缩模型。 常用图像压缩系统模型。
数字图像处理
Chapter 8 Image Compression
8.2 图像压缩模型 8.2.1 信源编码器和信源解码器 信源解码器
图中信源编码目的是消除输入冗余,信道编码是 增强信源编码器抗噪性。

一种改进的快速分形图像压缩编码算法

一种改进的快速分形图像压缩编码算法
N N i, j
ρ=
∑∑( r
i =1 j =1 N N i, j
- fR ) ( di, j - fD )
N N i, j
( 6) - fD )
2
∑∑( r
i =1 j =1
- fR ) ・
2
∑∑( d
i =1 j =1
ρ 反映了两图像块的线性相关程度 。| ρ| = 1时 , 两图像块之间以概率 1存在线性函数关系 , | ρ| 越接近 1, 线性相关程度越好 , 若 | ρ| 接近 0, 则线性相关程度差 。 因此 , 只有在 | ρ| 接近或等于 1时 , D i 才可能是 R i 的自相似匹配块 。 因此 , 选择 | ρ| 接近或等于 1的定义域块与 R i 进行自相似匹配 , 将其余定义域块排除 , 从而 缩小搜索空间 , 实际是一种图像分类的简化算法 。 改进 2:针对因素 d ) , 首先将式 ( 4 ) 代入式 ( 2 ) 得 : ( 7) D i = M ( D i ) = ai D i + oi = si D i + fR - sfD = si ( D i - fD ) + fR 则匹配时 , 只需计算 si , 而不需计算 oi , 从而提高编码速度 。 其次 , 对图像块内像素 , 采用间隔采样进行参数 fR 、
第 21 卷第 8 期
2007 年 8 月
常熟理工学院学报 (自然科学版 ) Journal of Changshu Institute of Technology (N atural Sciences)
Vol . 21 No. 8 Aug . , 2韩金姝
(德州学院 计算机系 ,山东 德州 253023 )
[2 ] Δ , 对每个子块进行编码 。 m in 对应的 D i 作为最佳匹配块 , 或将 R i 进行四叉树分割 4 ) 存储 R i 与其最佳匹配块之间的相对位置 rx , ry , 灰度变换参数 si 和 oi 作为编码信息 。

腹部CT增强检查新技术的应用

腹部CT增强检查新技术的应用

fractal image compression using the DCT inner product[J]. 强效果提出了新的挑战。本文对近几年 国外在腹部 cT增强检
IEEETra nsaetiononImageProcessinb2000,9(4):529 ̄534. 查 中应用 的新技术及进展情况进行了综述 。
I 13 l 赵耀 ,王红星 ,袁保宗 .分形 图像编码研究的进展 【JJ. 脏器 ,它有双重供血 ,大约 25%来 自肝动脉 ,75%来 自门静 脉,
电 子 学报 ,2000,28(4):95 101.
但部分肝肿瘤的供血主要 来 自肝动 脉。这一现象使得可 以刺
【14】 Polvere M,Nalli M.Speed up in fractal image coding:cor n 用腹部双期扫描来显示肝脏不 同血供 的病变 。多层螺旋 cT的
511—546,M arch 1998
时间 ,在靶器官或靶血管内对 比剂浓度达到较高时进行扫描 , 是腹部增强检查能否成功的关键 。
l l9 l Amir Said.A new fast and efficient image codec based on set partitioning in hierarchical trees[J].IEEE Transactions
[关键词 】体 层摄 影术 x线计算机 对 比增强 对比荆
and profiles versloll 6.3.July,2000.
肝 脏
I l1 I Askelof J,Lar sson M.Region of interest coding in JPEG2000[J】.signal processing:image communication, 2002(17):105—111.

Image Segmentation Using Thresholding and Genetic Algorithm

Image Segmentation Using Thresholding and Genetic Algorithm

Image Segmentation Using Thresholding and GeneticAlgorithm#P. Kanungo, P. K. Nanda and U. C. SamalImage Processing and Computer Vision Lab.Department of Electrical EngineeringNational Institute of Technology, Rourkela 769008 priyadarshikanungo@, pknanda@nitrkl.ac.in, umesh.samal@AbstractIn this paper the problem of image segmentation is addressedusing the notion of thresholding. A new approach based on GeneticAlgorithm (GA) is proposed for selection of threshold from thehistogram of images. Specifically GA based crowding algorithm isproposed for determination of the peaks and valleys of thehistogram. Experimental results are provided for histogram withbimodal feature, however, this technique can be extended to multithreshold selection for histograms with multimodal feature.Index TermsSegmentation, Genetic Algorithms (GAs)1IntroductionIt is important in picture processing to select an adequate threshold of gray level for extracting object from there background. Image thresholding is a necessary step in many image analysis applications [1]-[4]. In its simplest form, thresholding means to classify the pixels of a given image into two groups (e.g. objects and background). One including those pixels with their gray values above a certain threshold, and the other including those with grey values equal to and below the threshold. This is called bi-level thresholding. Generally, one can select more than one threshold, and use them to divide the whole range of gray values in to several sub ranges. This process is called multilevel thresholding. Most thresholding techniques [5]-[8] utilize shape information of the histogram of given image while selecting thresholds.In an ideal case, for images having two class, the histogram has a deep and sharp valley between two peaks representing objects and back ground respectively. Thus the threshold can be chosen at the bottom of this valley [5]. However, for most real pictures, it is often difficult to detect the valley precisely, because (i) valley could be flat and broad and (ii) the two peaks could be extremely unequal in height, often producing no traceablevalley. Rosenfeld et. al [6] proposed the valley sharpening techniques which restricts the histogram to the pixels with large absolute values of derivatives, S. Watanable et. al.[9] proposed the difference histogram method, which selects threshold at the gray level with the maximal amount of difference. These utilize information concerning neighboring pixels or edges in the original picture to modify the histogram so as to make it useful for thresholding. Another class of methods deal directly with the grey level histogram by parametric techniques. The histogram is approximated in the least square sense by a sum of Gaussian distributions, and statistical decision procedures are applied [8]. However, such methods are tedious and computationally involved.In our proposed method we used GA to find out the peaks and valley in bimodal class of images. GAs are used for function optimization process and hence determining the global optimal solutions. In last couple of years there were new strategies and algorithms proposed to detect the global as well as local solutions in a nonlinear multimodal function optimization [14]-[18]. Crowding originally proposed by Dejong (1975) helps to maintain multiple peaks (Global as well as Local) in multimodal function optimization problem. We have considered the images whose histogram has two peaks. Crowding method will help us to detect the two peaks. After getting the two peaks we can use GA to find out the valley bottom between these peaks. Here we have considered both types of image having flat valley as well as sharp valley in the histogram. Our discussion is confined to the elementary case of threshold selection where only the gray-level histogram suffices without other a priori knowledge. Our algorithm does not require any valley sharpening techniques.2Problem StatementThe problem considered is to extract objects from their background. Thresholding is a popular tool for segmenting grey level images. The approach is based on the assumptions that object and background pixels in the image can be distinguished by their gray level threshold. The dominant values of object and background intensities the original grey levels image can be transformed in to a segmented image of two classes (for example; one object and the other background). Although the method appears to be simple, it is an important and basic one with wide applicability. We have only considered the histogram without any priory information. For a two class problem the aim is to determine a threshold at the grey value in the valley between the two peaks of the histogram. Determination of these two peaks is not an obvious task. Prewitt et al.[5] proposed the mode method. In which theychose thresholds at the valleys (or antimodes) on the histogram. The automatic selection scheme involved some smoothing of the histogram data, searching for modes, and placing thresholds at the minima between them. Their method relied heavily on the structure of the gray level histogram, which contained peaks and valleys corresponding to gray level subpopulation of the image. Object and background regions (represented by histogram peaks) were assumed to be of fairly constant gray level, and to differ in average gray level. Edges were composed of intermediate grey levels and were less populated than either object or back grounds. Heuristic search method also fails to find the two peaks. Also it is difficult to find the exact threshold point if the valley is flat. However, the bottom of the valley is some thing difficult to locate.Several methods have been proposed for transforming the histogram so that the valley is deepened, or is converted to peak. Thus, correct threshold may be selected efficiently. In our proposed method we applied GA to find the two peaks. Genetic Algorithms are used for getting the global solution. But in this problem we need global as well as local solutions i.e. determining the niches in the multimodal function. To maintain stable sub-population by replacing population with like individuals is known as Crowding method. We have used crowding mechanism to maintain subpopulation at the two peaks. After getting the two peaks we used the GA to determine the valley bottom between the peaks. GA used here to get the global solution. We found that this method works even if the valley is flat. We do not need any valley sharpen method to depend the valley of histogram. Experimental results presented here are only for two class images. The histogram of these images have two distinct peaks. Our proposed method is works efficiently if the histogram of the given image has clearly two modes of any size i.e the image has a two class image. Our proposed algorithm fails to segment properly if there are more than two class in an image (histogram has more than two peaks).3GA Based Class ModelUsually GAs are used for optimization of nonlinear multimodal function and hence determines the global optimal solution. In case of nonlinear multimodal function optimization, the problem of determining the global optimal solution as well as the local solution reduces to determining the niches in the multimodal function. Thus the problem boils down to determining the niches of the multimodal function. Substantial efforts hasbeen directed in this direction for last couples of years [14-18], where new strategies and algorithm are proposed.Method3.1 CrowdingTo maintain stable sub-population by replacing population with like individuals can be broadly called crowding method. Crowding, originally proposed by Dejong in the year 1975 is motivated by analogy with competition for limited resourced among similar member of a natural population. Dissimilar population member often occupy different environmental niches. Older members of the niche will be replaced by the fittest of the younger member. Stochastic replacement error prevents the basic crowding algorithm from maintaining more than two peaks of multimodal fitness.Deterministic crowding eliminates replacement error and maintains multiple peaks. It works by randomly pairing the population to yield n/2 pairs for n individuals in the Population. Each pair of parent yields two children by undergoing crossover and mutation and these two children compete with the parent. In tournament selection, the pair containing the maximally fit element wins.In the deterministic crowding, sampling occurs without replacement. We will assume that an element in a given class is closer to its own class than to elements of other class. Our previous assumption is that a crossover operation between two elements of same class yields two elements of that class, and crossover operation between two elements of different classes yield one element of the both classes. Therefore, if two elements of class-A gets randomly paired, the offspring will also be of class-A, and the resulting tournament will advance two class-A elements to the next generation. The random pairing of two class-B elements will similarly result in no net change to the distribution in the next generation. If an element of class-A gets paired with an element of class-B, one offspring will be form class-A, and the other from class-B. the class-A offspring will compete against the class-A parent, the class-B offspring against the class-B parent. The end result will be that one element of the both classes advances to the next generation, and hence no net change. Since each element receives exactly one trial, the mean and variance for the number of population elements in class-A after one generation are µA=I A and σA=0.3.2 Salient Steps of the Proposed Algorithm.(i) Initialize randomly a population space of size N (each element corresponds to a gray value between 0 to 256) and their classes are determined.(ii) Choose two parents randomly for crossover and mutation operation with crossover probability P C and mutation probability P M. Compute the fitness of parents and off-springs. The fitness function is the normalized histogram function p(g).(iii) The offspring generated complete with the parents based on the concept of tournament selection strategy.(iv) After selection the selected elements are put in their respective classes.(v) Step (ii), (iii) and (iv) are repeated for all elements in the population.(vi) Steps (v) is repeated till the convergence is met i.e. the elements of respective classes are equally fit.(vii) The peaks will be determined from the converged classes of step (vi)(viii) Initialize randomly a population space of size n between the two peaks (i.e. between the two corresponding gray values).(ix) Choose two parents randomly for crossover and mutation operation with crossover probability P C and mutation probability P M. Compute the fitness of parents and off-springs. The fitness function is the histogram function p(g).(x) The fittest two elements between the parents and offspring are selected for the next generation in the selection strategy.(xi)Step (ix), (x) are repeated for all elements in the population.(xii) Step (xi) is repeated till the convergence is met.(xiii) The converged value is the gray value corresponding to the valley between the two peaks. The image is then segmented using this value as threshold.4Results and DiscussionIn simulation, we have considered images whose histograms exhibit bimodal feature. Fig 1.(a) is the original image of size 507x284, whose normalized histogram is shown in Fig. 1(b). From Fig. 1 (b), it is observed that there are two clearly separated peaks having unequal heights. The distributions of the two sets of gray values are not analogous. Selection of a global threshold now reduces to determine a suitable gray value in between the peaks of the histogram. The proposed crowding algorithm is used to determine the two peaks. The parameters of the proposed algorithm are (i) number of population elements “N”is 20 (ii) crossover probability P c =0.9 (iii) mutation probability P m follows a decaying exponential function with starting value 0.05. The valley point between the two peaks in the histogram, in other words the optimal threshold is obtained by searching the minimum gray value in between the gray values corresponding to two peaks. This minimum point is determined by employing Genetic Algorithm (GA). Fig. 1(d) shows the detected peaks and valleys using the proposed algorithm. Here, the peaks are at gray value 91 and 148 and valley is at gray value 117. Using the gray value 117 as threshold value segmentation of the original image is carried out and the segmented image is shown in Fig. 1(d). From Fig 1(d), it can be observed that the object and background is clearly distinguished.Fig 2(a) shows the original image of size 238x238 and the corresponding histogram is shown in Fig. 2(b). From this histogram it can be seen that the two modes are clearly separated by a long valley. Fig 2(c) shows the peaks and valley detected by the proposed algorithm. Peaks are at gray values 2 and 187 and the valley is at gray value 58. The segmented image is shown in Fig. 2(d) by taking gray value 58 as threshold.Fig. 3(b) shows the histogram of another image shown in Fig. 3(a). The peaks and valleys found by our proposed algorithm are shown in Fig. 3(c). Thus the threshold is selected to be 98 and the segmented image using this threshold is shown in Fig. 3(d). Thus in this case also proper segmentation could be achieved.Fig. 4(b) shows the histogram of the image shown in Fig. 4(a). From this histogram we can see that the two peaks are quite uneven in size and they are separated by a flat valley. Fig. 4(c) shows the peaks and valley detected by the proposed algorithm. Taking the valley point gray value 136 as threshold the original image is segmented and the segmented image is shown in Fig. 4(d). Here the object is clearly segmented from the background.Fig 5(a) is the original image of size 255x255 and the corresponding normalized histogram is shown in Fig. 5(b). From the histogram we can observe that there are three peaks. So this image consists of three classes. When the proposed two class algorithm is applied to this image it yields the two peaks at 122 gray value and other at 216 and 195 as the valley point for threshold which is shown in Fig. 5(c). After thresholding at this gray value 195 the image is shown in fig 5(d). It can be seen that there are some misclassification, the black dots in background and white dots in the object. This problem can be solved by modifying the algorithm for more than two classes.Fig. 1(a). Original Image of size 507x284 Fig. 1(b). Normalized Histogram of Fig 1(a)Fig. 1(c). Picks(91,148) and valley(117) detected using GA Fig. 1(d). Segmented Image after puttingThreshold at the valley(117)Fig. 2(a). Original Image of size 238x238 Fig. 2(b). Normalized Histogram of Fig. 2(a)Fig. 2(c). Picks(2,187) and valley(58) detected using GA Fig. 2(d). Segmented Image after putting Threshold at the valley (58)Fig. 3(a). Original Image of size 320x240 Fig. 3(b). Normalized Histogram of Fig. 3(a)Fig. 3(c). Picks (19,203) valley(98) detected using GA Fig. 3(d). Segmented Image after puttingThreshold at the valley (98)Fig. 4(a). Original Image of size 256x256 Fig. 4(b). Normalized Histogram of Fig. 4(a)Fig. 4(c). Picks(25,163) and valley(136) detected using GA Fig. 4(d). Segmented Image after putting Threshold at the valley (136)Fig.5(a). Original Image of size 255x255 Fig. 5(b). Normalized Histogram of Fig. 5(a)Fig. 5(c). Picks(122,216) and valley(195) detected using GA Fig. 5(d). Segmented Image after puttingThreshold at the valley (195)5ConclusionThe problem of separating object from the background in a given image is considered. Hence, the problem boils down to determining the threshold using histogram of the given image. Often, in practice, the histograms do not show two clearly separated classes rather overlapping classes. Many methods have been suggested in the past for such kind of problem but still for overlapping classes, it is hard to determine a global threshold. Hence, attempts have been made by proposing a new approach to determine the global threshold for image segmentation. The algorithm is found to produce satisfactory results for images having histograms with bimodal feature. The algorithm fails for images having histograms with tri-modal features. Currently, attempts are made to address two classimages with noises and images requiring multiple thresholds.Reference[1]K. S. Fu and J. K. Mui, “A Survey on Image segmentation”, Pattern Recognition, vol.13, pp. 3-16, Pergamon Press Ltd, 1981.[2]N. R. Pal and S. K. Pal, “A Review on Image Segmentation Techniques”, PatternRecognition, vol. 26, No. 9, pp. 1277-1294, 1993.[3]P. K. Sahoo, S. Soltani and A. K. C. Wong, “A Survey of Thresholding Techniques”,Computer Vision, Graphics, and Image Processing, vol. 41, 133-260 (1988).[4]M. Sezgin and B. Sankur, Survey over image thresholding techniques and quantitativeperformance evaluation”, Journal of Electronic Imaging, vol. 13(1), pp. 146-165, Jan.2004.[5]J. M. S. Prewitt and M. L. Mendelsohn, “The analysis of cell images”, Ann. N. Y. Acad.Sci., vol. 128, pp. 1035-1053, 1966.[6]J. S. Weszka, R. N. Nagel, and A. Rosenfeld, “A threshold selection technique”, IEEETrans. Comput., vol. C-23, pp. 1322-1326, 1974.[7]N. Otsu, “A Threshold Selection Method from Gray-Level Histograms”, IEEE Trans.Syst., Man, Cybern., vol. SMC-9 (1), pp. 62-66, Jan. 1979.[8]S. Watanable and CYBEST Group, “An automated apparatus for cancer processing:CYBEST”, Comp. Graph. Image processing, vol.3, pp. 350-358, 1974.[9]J. Kittler and J. Illingworth, “Minimum Error Thresholding”, Pattern Recognition, vol.19, No. 1, pp. 41-47, 1986.[10]K. S. Fu and J. K. Mui, “A Survey on Image segmentation”, Pattern Recognition, vol.13, pp. 3-16, Pergamon Press Ltd, 1981.[11]N. R. Pal and S. K. Pal, “A Review on Image Segmentation Techniques”, PatternRecognition, vol. 26, No. 9, pp. 1277-1294, 1993.[12]P. K. Sahoo, S. Soltani and A. K. C. Wong, “A Survey of Thresholding Techniques”,Computer Vision, Graphics, and Image Processing, vol. 41, 133-260 (1988).[13]M. Sezgin and B. Sankur, Survey over image thresholding techniques and quantitativeperformance evaluation”, Journal of Electronic Imaging, vol. 13(1), pp. 146-165, Jan.2004.[14]S. W. Mahfoud, “Simple Analytical Models of Genetic Algorithms for MultimodalFunction Optimization”, Technical Report, Illinois Genetic Algorithm Laboratory, IlliGAL report No. 93001, Feb. 1993[15]S. W. Mahfoud, “Cross over Interaction among Niches”, Technical Report, IllinoisGenetic Algorithm Laboratory, IlliGAL report, April. 1994[16]P. K. Nanda & P. Kanungo,“Parallel Genetic Algorithm Based Class Model forPattern Classification”, Proceedings of the all India Seminar on AES 2002, pp.35-40, February 2002.[17]P. K. Nanda & P. Kanungo, “Parallelized Crowding Scheme Using a NewInterconnection Model”, Proceedings of 2002 AFSS International conference on Fuzzy Systems, (Calcutta, India, February 2002), vol. LNAI 2275, Springer-Verlag, pp. 436-443, (2002).[18]P. K. Nanda & P. Kanungo “Parallel Genetic Algorithm based Crowding SchemeUsing Neighboring Net Topology”, Proceedings of sixth international conference on Information Technology, (Bhubaneswar, India, December 2003), pp. 583-585, (2003).。

对分形图像压缩编码方法的探讨

对分形图像压缩编码方法的探讨

对分形图像压缩编码方法的探讨王芳 赵德平 李井永(沈阳建筑大学职业技术学院 辽宁辽阳 111000)[摘 要]分形图像压缩编码是图像压缩领域中一种全新的编码算法,具有潜在的高压缩比、高信噪比以及任意尺度上的精细放大等特性。

本文论述了分形图像压缩的背景、编码方法、改进方法和发展趋势。

[关键词]分形;图像压缩;编码Abstract:The fractal image compression coding is a bran-new coding in image compression,and the features of which are potential high compression ratio,the high singal-to-noise and the fine enlargement in any scale,etc. This article elaborates the background of fractal image compression coding, the coding,the improved method and the development trend of the code.Key words:Fractal; Image Compression; Coding分形图像压缩编码是图像压缩领域中一种全新的编码算法。

该算法采用图像内部块与块之间的自相似特性进行编码。

由于其具有潜在的高压缩比、高信噪比以及任意尺度上的精细放大等特性而得到了有关科研人员的高度重视和深入研究,并且在卫星图像、档案数据、指纹、头像以及视频等方面的应用越来越多。

分形图像压缩的特点在于图像是作为一个图像算子的不动点隐含描述,与图像的伸缩和像素点的多少无关。

因此,分形代码可以还原成任何分辨率的图像,在任何标尺上产生细节。

这种与分辨率无关的特性至少在两个方面是有用的。

首先,根据代码的自相似性而做的人工细节与对象图片的全局相对兼容,它们比仅根据像素复制或插入的图像更自然。

分数微积分用于分形压缩图像嵌入灰度水印

分数微积分用于分形压缩图像嵌入灰度水印

第8卷 第6期 信息与电子工程Vo1.8,No.6 2010年12月 INFORMATION AND ELECTRONIC ENGINEERING Dec.,2010 文章编号:1672-2892(2010)06-0702-06分数微积分用于分形压缩图像嵌入灰度水印黄晓晴,于盛林(南京航空航天大学自动化学院,江苏南京 210016)摘 要:传统的基于分形编码的水印技术一般嵌入0,1序列,没有实现灰度图像嵌入。

本文在研究正交化分形编码的基础上,利用正交化分形编码参数在迭代过程中的不变性,构造出水印嵌入变换函数,使水印直接嵌入解码参数。

分数阶微分序列的引入有效解决了嵌入水印的保密性问题,使得在分形编码的过程中嵌入灰度水印的方法具有了可行性,实现了图像压缩与水印嵌入一体化技术。

实验结果表明,水印嵌入对宿主图像的分形编码质量几乎没有影响,水印提取质量良好,且采用分数阶微分序列对灰度水印进行加密效果较好。

关键词:分数阶微分;分形图像压缩;灰度水印中图分类号:TN919;TP309文献标识码:AUsing fractional calculus to embed gray image as watermark intofractal compressed imageHUANG Xiao-qing,YU Sheng-lin(College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing Jiangsu 210016,China)Abstract:For traditional watermarking techniques based on fractal coding, watermarking format is limited to binary sequence 0,1, thus incapable of gray-scale image embedding. In this paper, a novelalgorithm feasible for gray-scale watermarking embedding is proposed. To embed watermarking directly intodecoding parameters, the host image is encoded with orthogonal fractal coding techniques. Because of themean-invariant characteristics of fractal encoding parameters during iterations, the watermarking can beembedded into them. On the other hand, fractional calculus pseudo-random sequence has solved the problemthat how to enhance the security of embedded watermarking and makes it possible for gray-scale watermarkto be embedded during fractal encoding process. Experimental results indicate that proposed algorithmbrings little contamination upon the original image,and the extracted watermarking is of good quality. Theencryption for gray-scale watermark with fractional differential sequence shows good performance.Key words:fractional calculus;fractal compressed image;gray image watermark分形技术应用于图像压缩编码是近15年发展起来的一种图像压缩方法[1−2]。

基于HV分割的快速分形图像编码算法

基于HV分割的快速分形图像编码算法

第16卷第11期软件导刊2017年11月Software Guide Yol. 16No. 11 Nov. 2017基于H V分割的快速分形图像编码算法张林娜,袁和金(华北电力大学计算机系,河北保定071003)摘要:针对现有分形算法存在的编码时间过长问题,对H V分割算法进行改进,提出一种基于H V分割的快速分形图像编码算法。

该算法首先通过条件限制策略约束R块分割方向及位置,然后采用局部码本寻找分割块的最优匹配,最终得到图像的分形码。

在O R L人脸库上的编码实验显示,相对于无策略H V分割算法,该方法的编码速度提高了 7g。

与现有方法相比,该方法减少了分割块数,在保证解码质量的前提下提高了编码效率。

关键词:H V分割;图像编码;分形码D O I:10. 11907/rjd k. 172514中图分类号:T P312 文献标识码:A文章编号!672-7800(2017)011-0033-03Fast Fractal Image Coding Algorithm Based on HV SegmentationZ H A N G L in-na,Y U A N He-jin{Department o f Computer$North China Electric Power University$Baoding 071003, China#A bstract:A im ing at the problem that the existing fractal algorithm has too long coding tim e,the algorithm has the n〇-strategy H V segmentation algorithm,and a fast fractal image coding algorithm based on H V segmentation is proposed.F irs tly,the algorithm constrains t he R block segmentation direction and location by the conditional restriction strategy,then u­ses the local codebook to find the optimal matching of the segmentation block,and finally obtains the frac The coding experiments on ORL f ace database show that the encoding speed of this method is improved by 7g compared w iththe non strategy H V segmentation pared w ith the existing methods,this method reduces the and improves the coding efficiency under the premise of guaranteeing the decoding quality.Key W ords:H V segmentation;image coding;fractal code〇引言分形图像编码是一种相对较新的图像压缩技术,该技 术通过存储图像的量化参数代替原始图像的像素值,实现 图像数据的高倍压缩。

支持分辨率渐进码流的无损图像编码方法

支持分辨率渐进码流的无损图像编码方法

支持分辨率渐进码流的无损图像编码方法李诗高;秦前清【摘要】针对无损图像压缩编码,提出了一种新颖的图像分解去相关方法.当前的无损图像编码方法主要有CALIC和JPEG-LS,两者都在空域直接作预测,导致编码码流不具有分辨率可伸缩性.结合小波提升模式与边缘自适应预测研究实现了一种比二维小波变换性能更好的分解方法.首先,对图像的每一列样值进行一维小波分解;然后,对高频子带进行边缘自适应预测,减少残留的信息.针对低频子带图像进行同样的两步操作,就完成了对图像的一次二维分解.对低频图像进行多次迭代操作后即形成了对图像的一个多分辨率分解.实验结果表明,与JPEG2000的无损模式相比,由于边缘自适应预测的引入,提出的分解模式获得了明显的编码增益.【期刊名称】《计算机应用》【年(卷),期】2013(033)006【总页数】4页(P1697-1700)【关键词】无损图像压缩;多分辨率表示;分辨率渐进性;边缘自适应预测;小波变换【作者】李诗高;秦前清【作者单位】武汉工业学院数学与计算机学院,武汉430023;武汉大学测绘遥感信息工程国家重点实验室,武汉430079【正文语种】中文【中图分类】TP391.410 引言过去的几十年里,图像压缩受到了全世界许多研究者的关注,其中很多工作是关于无损图像压缩的研究,这些压缩编码方法被广泛应用于各领域。

在无损图像压缩方法当中,最具代表性的应该属基于中值边缘检测(Median Edge Detector,MED)的低复杂度无损图像压缩(Low Complexity Lossless Compression for Images,LOCO-I)算法[1]和基于梯度自适应预测(Gradient Adaptive Prediction,GAP)的上下文自适应的无损图像压缩编码(Context-based Adaptive Lossless Image Codec,CALIC)算法[2]。

Fractal Image Coding - Stanford University分形图像编码-斯坦福大学

Fractal Image Coding - Stanford University分形图像编码-斯坦福大学

3 iterations, CPU time = 261.05s, Compression Ratio = 1.9, rms error = 4.8145 (PSNR = 34.5)
Fractal Image Coding
9
Sample Images - Flower 128x128
3 iterations, CPU time= 475.15s, Compression Ratio = 1.4, rms error = 6.3111 (PSNR = 32.1)
Child block data
Type of domain block
Scaling factor and DC shift level If edge block, type of shuffling transformation
Fractal Image Coding
8
Sample Images - Lena 128x128
For the same PSNR ~ 35,
Fractal rate = 4.8 bpp
JPEG rate = 1.5 bpp
JPEG2000 rate = 1.25 bpp
Fractal Image Coding
13
Conclusion
Fractal coding performs well, especially for uniform CG images (compression and image quality)
reconstruction
Fractal Image Coding
14
References
A. E. Jacquin, "A novel fractal block-coding technique for digital images," International Conference on Acoustics, Speech, and Signal Processing, 1990.”

一种分形彩色图像压缩编码方法

一种分形彩色图像压缩编码方法

©2003 Journal of Software 软件学报一种分形彩色图像压缩编码方法*焦华龙1+, 陈刚1,21(浙江大学计算机图象图形研究所,浙江杭州310027)2(宁波大学数字技术与应用软件研究所,浙江宁波315211)A Color Image Fractal Compression Coding MethodJIAO Hua-Long1+, CHEN Gang1,21(Institute of Computer Graphics and Imaging Processing, Zhejiang University, Hangzhou 310027, China)2(Institute of Digital Technology and Application Software, Ningbo University, Ningbo 315211, China)+ Corresponding author: Phn: 86-21-64325854 ext 814, Fax: 86-21-64325842, E-mail: hl_jiao@Received 2002-04-09; Accepted 2002-07-02Jiao HL, Chen G. A color image fractal compression coding method. Journal of Software, 2003,14(4):864~868.Abstract: In this paper, a color image fractal compression coding method is proposed by analyzing the correlation of r, g, b components of a color image and the remnant of layer information in quadtree scheme. It merges three-color components into one. Accordingly this method will reduce the matching blocks, which need to be saved and encoded by SFC (separated fractal coding) algorithm, into one and at one time the source data and layer information in quadtree scheme can sustain non-losses and high-proportion compression. Furthermore, by selecting different combinations, a series of coding methods that bear very close compression ratio and qual ity of decoded image are obtained. Moreover the coding speed of the luminosity method among them is faster than the other ones. Experimental results indicate that this approach excels SFC or standard JPEG and can be a good color image fractal compression algorithm.Key words: color image fractal coding; quadtree structure摘要: 在分析彩色图像色彩三分量r,g,b的相关性和分形四叉树编码层次信息冗余性的基础上,提出了一种分形彩色图像压缩编码方法.它将图像的3个独立的颜色分量按某种方式组合成1个来搜索匹配块,从而将需要存储和搜索的3个颜色分量匹配块(SFC方法)减少为1个,并且对四叉树层次信息进行压缩.此外,采用不同的组合,得到了几个图像压缩比和解码质量相近的编码方法,其中使用亮度分量的方法比使用其他方法速度更快.实验结果表明,它优于SFC方法及标准JPEG方法,不失为一种好的分形彩色图像压缩方法.关键词: 分形彩色图像编码;四叉树结构中图法分类号: TP391文献标识码: A自20世纪80年代Barnsley等人提出图像的分形压缩[1]以来,分形图像编码作为一种新的具有高压缩比潜在能力的图像编码方法,受到了广泛的关注.但是,其研究主要还是集中在灰度图像方面,对真彩色图像压缩算*Supported by the National Natural Science Foundation of China under Grant No.60202002 (国家自然科学基金)第一作者简介: 焦华龙(1976-),男,安徽无为人,硕士,主要研究领域为图像编码,图像检索,计算机图形学.焦华龙 等:一种分形彩色图像压缩编码方法 865 法的研究则相对较少[2].与黑白图像相比,彩色图像的色彩部分是其特有的,并且与人眼的视觉特性关系非常紧密,因而对彩色图像的处理也应有独特的方法.显然,编码真彩色图像的一个最直接的方法就是将真彩色图像看成是3个独立的灰度图像进行单独编码的SFC(separated fractal coding)方法[3].这种方法由于没有考虑彩色图像3个颜色分量之间的相关性,因而压缩比较低而且很费时.本文首先在分析灰度图像分形四叉树压缩编码[2]方法中树结构层次信息的冗余性的基础上,提出了改进这种存储方式的压缩算法,并且给出了树结构层次信息的压缩比计算公式;之后,我们对由一幅真彩色图像分别抽出的三色分量所组成的灰度图进行统计比较,发现它们有很大的相似性,在此基础上,我们提出了将三色分量组合成一个特征量来搜索匹配块的分形彩色图像压缩方法.由于此方法需要存储和搜索的匹配块信息相当于与它同等大的灰度图像,因而编码所需要的计算量和所能达到的压缩比要比SFC 方法有较为明显的提高,在恢复图像质量相近,且没有做Huffman 编码或算术编码等无损压缩的情况下,压缩比也超过了标准JPEG 方法.1 四叉树层次信息的冗余性及其压缩存储在分形压缩的四叉树方法当中,每一个R 块需要记录以下6个参数:(1) 找到的最佳匹配子块D 的位置(d x ,d y )(子块左上角坐标);(2) 对称和旋转变换的序号n ;(3) 灰度仿射变换系数α和β;(4) 子块R 的层次信息l (一般是32⨯32到4⨯4四层,用2bit 存储).以这6个参数作为R 的码本,就可以从任意图像经过迭代恢复到原图像.四叉树剖分是最常见的一种方案,基于初始的正方形剖分,一般要求R 块大小为2r ⨯2r ,剖分后得到4个2r -1⨯2r -1的子块.由于这种方案比较简单,在计算量要求较高的分形编码中比较通用.事实上,在R 块的6个参数当中的层次信息l 有很多的冗余.以剖分从32⨯32到4⨯4四层为例,当有一个R 块分到最小(4⨯4)时,紧跟它的3个块也一定是分到最小的块,这样,只需存储第1个R 块层次信息即可,其他3块的层次信息属于冗余部分;在作了对最小块的层次信息的处理之后,同样地,次小块(8⨯8)的层次信息依然存在这种冗余,即当有一个R 块分到次小时,紧跟它的3个存储的层次信息次小层或最小层信息(这里,一个最小层信息已经代表4个最小块,也相当于一个次小块),这样我们就可以用一个次小层信息加4个标志位(最小层用0,次小层用1)来表示;如此下去,直到最大块(32⨯32)为止.在解码阶段,用最后得到的块信息加上存储的所有标志位,就可以恢复整个四叉树.在经过了上述无损的消除层次信息冗余的处理之后,对于原先用2bit 表示的R 块,最小块我们只用了约0.25bit,其他非最小块也只用了约1bit,起到了一定的压缩作用(从实验来看,对于256⨯256块,一般会压缩大约3倍).这里给出可以从压缩过程推导出来的层次信息压缩倍数的计算公式如下(剖分从32⨯32到4⨯4):=R C 4321432164808421)(128n n n n n n n n ++++++, 其中C R 表示层次信息压缩倍数;n i 表示图像分块中大小为2i +1⨯2i +1的R 块个数(i =1,2,3,4).对于一般图像来说,n 1较大,因而有较好的压缩效果.推导过程如下:(1) 没有压缩之前需要的空间为)(24321n n n n +++个bit;(2) 经过压缩后,4⨯4块占用标志信息空间为0个bit,8⨯8块占用标志信息空间为4/12n n +个bit,16⨯16占用标志信息空间为16/4/123n n n ++个bit,32⨯32占用非标志信息空间为64/16/4/1234n n n n +++个bit,总计为64/)64808421(4321n n n n +++个bit;(3) 将没有压缩之前所需空间除以压缩后所占空间,即可得到上述压缩倍数计算公式.例如,对于如图1所示的四叉树剖分(设整个块大小是32⨯32的,块4⨯4到32⨯32在层次信息中分别用11,10,01,00表示),没有经过编码之前的表示为01 10 10 11 11 11 11 10 11 11 11 11 10 10 11 11 11 11 10 11 11 11 11 10 10,用了50个bit.经过一次处理之后变为01 10 10 11 10 11 10 10 11 10 11 10 10,经过两次处理后变为01 10 10 10及标志信息0 0 1 0 1 0 0 1 0 1 0 0,再经过一次Fig.1 An example of quadtree partition structure 图1 四叉树剖分结构示例866 Journal of Software 软件学报 2003,14(4) 编码后成为最终的01及标志信息0 1 1 1和0 0 1 0 1 0 0 1 0 1 0 0表示,由于最终的信息(非标志信息)只是32⨯32和16⨯16两种,故只要1bit 表示即可(01可用1来表示),也就是说,最后我们用了共17bit,压缩倍数为50/17≈3.解码时只需将编码过程反过来,就能恢复所有的层次信息.2 编码方法2.1 三色相关性在将图像中每个像素的三色分量r ,g ,b 各自单独抽取出来作为灰度图像在该点的灰度值的观察中,我们发现它们在结构上具有非常相似的地方,有差别的只是在不同的地方,其亮度有所不同(如图2所示).也就是说,当我们用分形方法进行图像编码时,如果有一个分量的R 块和D 块相似,那么另外两个分量的相同位置的R 块和D 块也非常相似,只是在亮度上有差别.通过统计分析亮度Y 及r ,g ,b 颜色之间的相关性,我们得到了表1的结果.该表中的数据显示r ,g ,b 之间确实存在着很大的相关性,证实了原先观察得出的结论,于是我们考虑利用这种相关性进行彩色图像编码.由于分形中有对像素的灰度进行匹配修正的仿射变换系数α和β,可以利用这个修正来弥补亮度的差别.在实验中发现下面的方法有不错的结果,即用r ,g ,b 的线性组合得到的亮度)113.0586.0301.0(b g r Y Y ++=来搜索匹配D 块,把该D 块也分别作为r ,g ,b 的匹配块,只是修改3个颜色分量中与亮度相关的信息α和β,这样就将SFC 方法中的3色分量单独搜索、单独存储的过程简化为用一个3色分量的组合特征量来搜索和存储,这既缩减了匹配时间(变为原来的3/1),又提高了压缩比(是原来的2倍多).从表2来看,当Y 颜色分量的匹配误差小于给定的阈值时,r ,g ,b 颜色分量的匹配误差是可以接受的,实验得到的解码图像质量与SFC 并没有太大的差别.这也说明了该方法的可行性.相关性系数的计算公式为,)()()()()(y D x D y E x E xy E xy -=ρ其中x ,y 为两向量,E (x ),D (x )分别为表示x 的所有分量的平均值和方差.Table 1 Percentages of correlation coefficient over 0.8 proportioned by every two-color components,which are obtained from 4⨯4 image segmentations of colorful picture Fruit表1 对彩色Fruit 图像分割为4⨯4小块得到的各颜色分量两两之间相关性系数大于0.8所占百分数Y r g b r94.5 100 90.2 81.0 g97.4 90.2 100 87.1 b 89.1 81.0 87.1 100Table 2 Percentages of the corresponding matching errors against r , g , b which are obtained fromsearching the matching blocks (threshold is 5.0) by Y in picture Fruit表2 Fruit 图像用Y 来搜索匹配块(阈值取为5.0)所得r ,g ,b 对应匹配误差所占百分数Matching errorr g b 10.0 94.0 79.496.3Fig.2 From left to right are gray images of picture Fruit composed by three-color components r , g , b respectively图2 从左到右分别是彩色水果图Fruit 的r ,g ,b 颜色分量组成的灰度图像焦华龙 等:一种分形彩色图像压缩编码方法8672.2 具体的编解码方法步骤从图像三色相关性出发,我们形成了彩色图像的如下的编、解码方法.方法1. (1) 对要编码的彩色图像I 每一像素点的r ,g ,b 进行组合(实验中取亮度分量Y =0.301r +0.586g +0.113b ),得到一幅灰度图I '.(2) 对灰度图I '进行传统的分形四叉树搜索,使I '中的每个R 块找到相匹配的D 块.(3) 将编码彩色图像I 的r (红色)分量所组成的灰度图r I 中R 块和D 块匹配的位置对称旋转变换,树结构用I '中得到的来替代,只是将反映亮度的部分(即灰度仿射变换系数α和β)用从r I 中计算得到的最佳匹配值重新计算进行修正;g ,b 也作与r 相同的处理.=α∑∑'-''-'-i i ii i d d d d r r 2)())((, =β,d r '-α其中R =(i r )是r I 中子块R 像素灰度值组成的n 维向量,D '=(i d ')是R I 中D 块经四邻域平均的与R 等大的子块,r 和d '分别是R 和D '的平均值.(4) 对彩色图像I 的每个R 块,存储从I '得到的匹配D 块位置,对称旋转变换及r ,g ,b 分量的6个亮度修正值,R 块的四叉树层次信息用我们前面所提出的方法存储.解码过程:先恢复R 块的树结构,再分别对r ,g ,b 分量用IFS(迭代函数系)迭代得到3幅灰度图I r ,I g ,I b ,最后将它们合成为一幅彩色图.此外,我们还对彩色图像求取R 相匹配的D 块尝试采用了其他方法.方法2.将每一点的颜色值看作一个3维向量,定义两点P (,p r ,p g p b ),Q (,q r ,q g q b )的距离为,)()()(),(222q p b q p g q p r b b g g r r Q P d -+-+-=ωωω其中r ω,g ω,b ω为每个分量的权重,r ω>0,g ω>0,b ω>0且r ω+g ω+b ω=1(在本文的实验中,取r ω=0.1875,g ω= 0.675,b ω=0.1875).R 块与D 块是否匹配,就看R 与D 每个对应点的距离的平方之和是否小于给定阈值,即下式是否满足.(),),(2Γ<'∑i i i d r d这里,R =(r i )是子块R 像素点组成的n 维向量,D '=(i d ')是D 块经四邻域平均的与R 等大的子块,Γ是给定阈值.方法3.与方法1相似,只是将颜色模型转换到YUV 空间,再在YUV 空间作彩色图像两点的距离定义,然后再将对应点的距离的平方之和是否小于给定阈值作为R 块和D 块是否匹配的标准.对于彩色图像质量衡量问题,由于颜色感知与人眼的视觉特征密切相关,对于不同的颜色以及颜色的不同变化方向,人眼的感知灵敏度是不一样的,因而颜色的度量是一个复杂的过程.这就使得彩色图像质量的评价比起灰度图像要困难得多.为了简单、客观起见,仍然采用PSNR 作为彩色图像恢复质量的评价,但是我们将分别列出图像三色分量的PSNR.3 实验结果及分析我们用本文的方法对随机抽取的256⨯256的24位真彩色图像进行了实验.在寻找块时,采用金字塔小波的加速算法[4]来提高编码速度,在P Ⅲ700型微机上基本上能够在2秒之内完成对一幅图像的编码(在实验中,我们没有引入旋转对称变换,同时仿射变换α取为经验值0.75).从实验的结果来看,本文提出的几种寻找匹配D 块的方法所得到的解码图像质量和压缩比相近,仅就速度来看,方法1编码要好一些,大约是其他方法编码速度的3倍.与SFC 相比(这里主要是指没有经过Huffman 或算术等无损编码处理的SFC 方法,因为我们的方法也没有经过这些处理),我们的方法在图像解码质量没有明显下降的情况下,编码速度及压缩比都有很大的提高.与标准JPEG(编码时采用JPEG 标准所提供的量化表,并使用经过优化的Huffman 码表)相比,在图像解码质量相似甚至更高的情况下,该方法即使对系数没有进行其他无损编码,也有相对较高的压缩比.表3和图3分别给出了868 Journal of Software 软件学报 2003,14(4) 各种方法比较的结果数据及解码图.其中图3(a)是原始图像,图3(b)是JPEG 解码图像(0.12=R C ,PSNR 分别为25.0(r ),26.0(g ),22.0(b )),图3(c)是使用本文的方法1得到的解码图像(2.14=R C ,PSNR 分别为24.9(r ),25.3(g ), 21.4(b )).Table 3 Compression ratio and PSNR of decoded image among several methods表3 各种方法图像压缩比及解码质量References :[1] Jacquin AE. Image coding based on a fractal theory of iterated contractive image transformations. IEEE Transactions on ImageProcessing, 1992,1(1):10~30.[2] Zhao HL, Liang Z, Somy NY. Fractal color image compression. In: Proceedings of the XIII Brizilian Symposium on ComputerGraphics and Image Processing (SIBGRAPI 2000). 2000. 185~192. /proceedings/sibgraphi/0878/ 08780185abs.htm.[3] Moltedo L, Nappi M, Yitulano D, Vitulano S. Color image coding combining linear prediction and iterated function systems. SignalProcessing, 1997,63(12):157~162.[4] Zhan D, Chen G, Jin YW. Fast fractal image encoding method based on pyramid wavelet transform. Acta Electronica Sinica,1998,26(8):37~42 (in Chinese with English abstract).附中文参考文献:[4] 张旦,陈刚,金以文.基于金字塔小波变换的快速分形图像编码.电子学报,1998,26(8):37~42.(b) (c)(a) Fig.3 Comparison of the decoded images图3 解码图对比。

磁共振成像技术中英文名词对照

磁共振成像技术中英文名词对照
梯度控制器
eddy current
涡电流 或涡流
ghosting
鬼影
Radio frequency system
射频系统
Radio frequency ,RF
射频
RF coil ,or RF resonator
射频线圈
transmit coil
发射线圈
receive coil
接受线圈
array
阵列
Solenoidal RF antenna
梯度回波
Gradient recalled echo–echo planar imaging,GRE-EPI
梯度回波平面回波成像
Half-fourior acquisition single-shot turbo spin Echo ,HASTE
半傅里叶采集单次激发快速自旋回波
Inversion recovery ,IR
磁化准备快速梯度回波
Magnetization preparedrapid gradient echo imaging, MP-RAGE
磁化准备快速梯度回波成像
Magnetic resonance angiograghy ,MRA
磁共振血管成像
Magnetic resonance cholangiopancreatography,MRCP
稳态自由进动
Single shot FSE ,SS-FSE
单次激发快速自旋回波
Stimulated Echo Acquisition Mode , STEAM
刺激回波采集模式
Short TI inversion recovery , STIR
短反转时间的反转恢复序列
T1-weighted imaging , T1WI

分形图像压缩

分形图像压缩

分形图像压缩作者:柳青松来源:电子产品世界点击数:585更新时间:2006-6-27摘要:欧氏几何学不能处理自然界中非常复杂的形状,这只能借助于分形几何学。

分形图象压缩就是利用分形几何学的有关原理进行编码,达到图象压缩之目的。

关键词:分形收缩仿射变换迭代函数系统1分形的概念分形(fractal)—词是由分形理论的现代奠基人曼德尔布罗特在1975年造出来的,这个词的拉丁词根含义是破碎的、分裂的”。

分形几何或分形理论研究的对象是那些很不规则而有自相似性的形状。

所谓很不规则是指粗糙、不光滑、破碎、扭曲、缠绕等特性。

典型的代表是海岸线的形状或者云彩、山峰、树页的形状。

传统的欧几里得几何处理的是直线、由直线段组成的多边形、圆以及由不太复杂的函数定义的曲线。

对于很不规则的形状,传统的几何学就难以处理了。

典型的例子如不列颠的海岸线有多长”。

若以传统的方法测量,海岸线的长度将取决于所用量尺的长度。

对较长的量尺,一些弯曲的细节就回被忽略,因而海岸线的长度就会较短;短的量尺可以量出一些细节,量出的海岸线就较长。

如此推算下去,当量尺的长度很小时,由于海岸线的形状极其复杂,量得的长度就会变得极大。

看看由瑞典数学家科和在1904年设计的一段曲线:在单位长度的直线段E0中间,以边长为1/3 E0的等边三角形的两边去代替E0中间的1/3,得到E1 (见图1.1)。

对E1的每条线段重复上述做法又得到E2,对E2的每段又重复,如此下去得到的极限曲线就是科和曲线(科赫)。

显然,科和曲线处处是尖点,因而处处没有切线;它的长度也不难证明是无穷的,因而传统的几何方法对科和曲线很难处理。

波兰数学家谢尔品斯基从平面二维图形出发,用重复某一过程的办法形成的曲线也是分形曲线的典型例子。

如谢尔品斯基垫,它以一个三角形作为源图形,以源三角形的 1/4大小的倒三角形作为生成元。

在源三角形中除去生成元,然后在剩下的3个三角形中重复这一步骤,得到 9个更小的三角形,不断重复上述步骤得到的极限曲线就称为谢尔品斯基垫(见图 1.2 )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Fast fractal image compression using spatial correlationT.K.Truong,C.M.Kung,J.H.Jeng *,M.L.HsiehDepartment of Information Engineering,I-Shou University,Kaohsiung County 840,TaiwanAccepted 8March 2004Communicated by Prof.I.AizawaAbstractFractal image compression is time consuming in the encoding process.The time is essentially spent on the search for the best-match block in a large domain pool.In this paper,the spatial correlations in both the domain pool and the range pool are utilized to reduce the searching space.With this technique,the encoding speed is 2.6times faster than that of the full search method while the quality of the retrieved image is almost the same.Moreover,since the searching space is limited to the matched blocks of the previous range blocks,fewer bits are required to represent the transform.The bit rate is thus improved by about 20%.Ó2004Elsevier Ltd.All rights reserved.1.IntroductionFractal image compression was original proposed by Barnsley and coworkers [1–3]and first realized by Jacquin in 1990[4].The underlying premise of fractal image compression is based on the partitioned iteration function system (PIFS)which utilizes the self-similarity property in the image to achieve the purpose of compression.To encode an image according to the self-similarity property,each block must find the most similar domain block in a large domain pool.For baseline method,the encoding process is time consuming since a large amount of compu-tations of similarity measurement are required to find the best match.Also,in order to achieve the global optimization,global offsets have to be recorded,which increase the storage spaces.Therefore,focal aims of fractal image compression are to speed up the encoder and to increase the compression ratio.In the Fisher’s classification method [5],a given image block was divided into the four quadrants.For each quadrant,the average and the variance were computed.According to certain combination of these values,72classes were constructed.This method reduced the searching space efficiently.However,it required large amount of compu-tations and moreover,the arrangement of these 72classes was complicated.In Wang et al.[6],four types of range block were defined base on the edge of the decoded image.They used a hybrid type of coding mechanism to achieve higher compression ratio while maintaining a reasonable image quality.Their method does provide speedup ratio of 1.6–5times,but it still requires the same amount of storage space as that of the baseline method.In this paper,a new search strategy based on image correlation is used to improve the encoding speed and reduce the storage space,while the quality of retrieved image is preserved.The spatial correlation reveals that neighbor blocks usually have some similar properties such as edge and shade,etc.Moreover,the characteristics of the spatial correlation depend on the orientations of the edge and shade.For instance,consider the 8nearest neighbor blocks of a given block.If the given block possesses a horizontal edge,it’s left and right neighbors usually posses the similar horizontal edges,*Corresponding author.Tel.:+886-7-657-7251;fax:+886-7-657-8944.E-mail address:jjeng@.tw (J.H.Jeng).0960-0779/$-see front matter Ó2004Elsevier Ltd.All rights reserved.doi:10.1016/j.chaos.2004.03.015Chaos,Solitons and Fractals 22(2004)1071–1076/locate/chaosbut not the other 6neighbors.Similarly,if the block possesses a diagonal edge,then it’s left-up and right-down neighbors usually posses a diagonal edge,but not the others.Based on this property,one can limit searching space of the current block to the matched domain blocks of the neighbor range blocks.Since the searching space is much smaller than that of the full search method,the compression speed is improved.On the other hand,in order to avoid poor matches using this mechanism,one also pre-defines a threshold to determine if a full search process for this range block should be invoked.Thus the quality of the retrieved image can be maintained.This algorithm can also improve the compression ratio.Since the searching space is limited relative to the previous matches,fewer bits are required to record the offset of the domain block instead of the absolution position.2.Mathematical backgroundThe idea of fractal image compression is based on the Iteration Function System (IFS)in which the governing theorem is the Contractive Mapping Fixed-Point Theorem [5]given as follows.Theorem.Let x be a complete metric space and f :X !X be a contractive mapping.Then there exists a unique point x f 2X such that x f ¼f ðx f Þ¼lim n !1f ðn Þðx 0Þ,for any point x 02X .The point x f is called the fixed point or the attractor of the mapping f .For a collection of functions,the Collage Theorem [5]says that if w 1;w 2;...:;w n ,w i :X !X ,are contractive transforms then the map W ¼[w i is contractive.Thus,by Contractive Mapping Fixed-Point Theorem,there exist a unique attractor S 2X ,and S ¼W ðS Þ.IFS may be regarded as a collection of contractive transforms which has a unique attractor.Fractal image compression is an inverse problem,i.e.,if some set S is given,how to find the IFS which has S as its attractor.Another difficulty is that for natural images,only local self-similarities exist.Thus,there may not exist a transform that can make a natural image to be its own contractive fixed-point.Therefore,the idea of local self-similarity is adopted to form the Partitioned Iterated Function System (PIFS)in which is a collection of contractive maps w i :D i !X where D i &X for i ¼1;...;n .3.Baseline methodFor simplicity,let f be a given 256Â256gray level image.The domain pool ‘D’is defined as the set of all possible blocks of size 16·16of the image f ,which makes up ð256À16þ1ÞÂð256À16þ1Þ¼58081blocks.The range pool ‘R’is defined to be the set of all non-overlapping blocks of size 8·8,which makes up ð256=8ÞÂð256=8Þ¼1024blocks.For each block v from the range pool,the fractal transformation is constructed by searching all of the elements in the domain pool to find the most similar block.Let u denote a sub-sampled domain block which is of the same size as v .The similarity of u and v is measured using mean square error (MSE),which is defined by MSE ¼164P 7j ¼0P 7i ¼0ðu ði ;j ÞÀv ði ;j ÞÞ2.The fractal transformation allows the Dihedral transforms of the domain blocks,i.e.,the 8orientations of the blocks generated by rotating the blocks counter clockwise at angles 0°,90°,180°and 270°and flipping with respect to the line y ¼x ,respectively.Rotate 0°,Rotate 90°,Rotate 180°,Rotate 270°1001 ;01À10 ;À100À1 ;0110 Flip with the line X ¼Y from above0110;100À1;0À1À10 ;À1001Thus for a given block from the range pool,one needs to compute 58081·8¼464,648MSE to obtain the most similar block from the domain pool.Thus,one needs 1024·464,648¼475,799,552MSE computations in total to encode the whole image using this base line compression method.The fractal transformation also allows the adjustment of the contrast p and the brightness q on the block u .Thus the similarity is to minimize the quantity d ¼k p Áu k þq Àv k ,where u k ,06k 67are the 8orientations of u .By calculus,p and q can be computed directly by1072T.K.Truong et al./Ch aos,Solitons andFractals 22(2004)1071–1076p¼½N h u;v iÀh u;1ih v;1i ½N h u;u iÀh u;1iq¼1N½h vÁ1iÀp h uÁ1iwhere N is the number of pixels of the range pool‘R’.Finally,the position of the domain block(after sub-sampled,it is denoted by u),the contrast p,the brightness q,and the orientation k constitute the fractal code of the given range block v.For256Â256image,16bits are required to represent the position of the domain block.4.Fast encoding algorithmTo speed up the encoder time,one makes use of the spatial correlation to reduce the searching space.Let r j be the range block to be encoded,06j<1024.Denote the neighbor range blocks of r j,as depicted in Fig.1,by r H,r V,r D1and r D2which have been encoded.These neighbors are the same as those utilized to improve the vector quantization(VQ)image coding[7,8].Assume d H1,d V1,d D11and d D21are the corresponding matched domain blocks,respectively.Now,onewill restrict the searching space of r j to d H1,d V1,d D11,d D21including some domain blocks in the relative directions.Forexample,d H1is the mapped domain block of r H which is in the horizontal direction of r j.Thus one expands the searchingspace in the horizontal direction to d H0,d H1,d H2and d H3as depicted in Fig.1.Similarly,d V1,d D11and d D21are expandedaccording to their corresponding directions.Thus,the searching space of r j is limited toS¼f d H0;d H1;d H2;d H3;d V;d V1;d V2;d V3;d D1;d D11;d D12;d D13;d D2;d D21;d D22;d D23gIn this case,the expansion width is said to be4,which can be set to other values according to the trade offbetween the encoding speed and the bit rate.It should be noted that some of these neighbors and their extended domain blocks might not exist.They are considered whenever they are applicable.To avoid large gaps between this local minimum and the global minimum obtained through the baseline method, one pre-defines a threshold T.If the local minimum exceeds this threshold a full search will be invoked.The detail steps of the modified encoding algorithm are given as follows:1.j¼0.2.Perform the full search for r j.Let dðjÞbe the matched domain block.Record the fractal transformation.3.j¼jþ1,if j¼1024then stop.4.Define the searching space S byS¼f d H0;d H1;d H2;d H3;d V;d V1;d V2;d V3;d D1;d D11;d D12;d D13;d D2;d D21;d D22;d D23gas given in Fig.1.5.Search the best match of r j from S.Let dðjÞbe the best matched block.If MSEðdðjÞ;r jÞ<T,then record the fractaltransformation and go to step3.Otherwise go to step2.T.K.Truong et al./Ch aos,Solitons andFractals22(2004)1071–10761073In step2,since the full search is performed,the absolute position is recorded.In step5,when the‘‘If’’condition holds,the range block r j is called a‘‘hit’’block.It stands for the local minimum being acceptable.For such a hit block, only4bits are required to record the offset of the domain block instead of the16-bits absolute position.Two bits are used to record the range correlation and the other2to record the domain correlation as depicted in Fig.1.Bigger expansion width will produce more hit blocks and save more encoding time,but the bit rate will be higher,since more bits are required to record the relative offset.Let N R and N H denote the number of range blocks and hit blocks, respectively.For hit blocks,2þB W bits are required to record the relative positions,where B W denotes the number of bits to represent the expansion width.For non-hit blocks(N RÀN H in total),the B A bits are required to record the absolute positions.Let B k,B p and B q denote the number of bits required to represent the orientation,the contrast and the brightness,respectively.Then the bit rate(bit per pixel,bpp)can be computed directly in terms of the number of hit blocks asbpp¼N Hð1þð2þB WÞþB kþB pþB qÞþðN RÀN HÞð1þB AþB kþB pþB qÞTPwhere,N TP is the total number of pixels in the image.Note that,one bit is required to indicate if the block is a hit block or not.5.Experiment resultsThe images Lena,Baboon,F16and Pepper are tested to demonstrate the speed-up rate bit rate and quality of the proposed algorithm in comparison to the baseline method.For a given image of size256·256,the size of range blockare chosen to be8·8and4·4.The software simulation is done using C++on a Pentium IV1800Windows XPPC.Fig.2.(a)Original image,Lena of size256Ã256.(b)The initial image for the decoder of the fractal compression.(c)Baseline method, time used¼12.01min,PSNR¼28.15,bit rate¼0.4844.(d)Proposed method,time used¼4.63min,PSNR¼27.87,bit rate¼0.3824, T¼100.1074T.K.Truong et al./Ch aos,Solitons andFractals22(2004)1071–1076As an illustrative example,Fig.2shows the results of the proposed method in comparison to the baseline method. Fig.2(a)is the original Lena image and Fig.2(b)is the initial image used to retrieve the fractal-compressed image.Fig. 2(c)and(d)show the retrieved images using the baseline method and the proposed method,respectively.With threshold being set as T¼100,the proposed method is2.59times faster and the bit rate is also improved while there is only0.3dB decay.The relation between the number of hit blocks and the image qualities at various thresholds are depicted in Fig.3, which is obtained using the image Lena.It is observed that higher value of threshold produces more hit blocks and higher compression ratio,but the quality will decrease.Different sizes of range blocks will change the number of hit blocks.Since smaller blocks have simpler properties than bigger blocks,it will be easier for them tofind the best matches.Therefore,more hit blocks will be encountered in the case of smaller range block size.Such a factor will affect the speed-up rate,bit rate and PSNR.The PSNR is a measurement of the distortions between two images f and g of sizes mÂn,which is defined as:PSNR¼10Âlog2552 MSEwhereMSE¼P nÀ1j¼0P mÀ1i¼0ðfði;jÞÀgði;jÞÞ2Tables1and2show the results of the proposed method and the baseline method using range block sizes of8·8and 4·4,respectively.The threshold is100and the expansion width is4,i.e.2-bit width.According to the tables,it can be easily seen that the proposed method produces very little influence on the quality of the decoded image,while it produces lower bit rates and higher speed-up rates for bothcases.Table1The comparison of baseline method and proposed method of size8·8Method PSNR Time bpp Hit blocks Speed-up rate Pepper Baseline28.8612.120.484401Proposed28.44 4.350.3782665 2.78Lena Baseline28.1512.010.484401Proposed27.87 4.630.3824642 2.59F16Baseline24.8712.120.484401Proposed24.82 5.300.3925587 2.29Baboon Baseline19.9112.120.484401Proposed19.9110.940.4778121 1.11T.K.Truong et al./Ch aos,Solitons andFractals22(2004)1071–107610751076T.K.Truong et al./Ch aos,Solitons andFractals22(2004)1071–1076Table2The comparison of baseline method and proposed method of size4·4Method PSNR Time bpp Hit blocks Speed-up rate Pepper Baseline34.1217.02 1.937501Proposed32.82 2.24 1.345835737.58 Lena Baseline34.2116.78 1.937501Proposed32.68 2.67 1.36393474 6.28 F16Baseline30.9217.01 1.937501Proposed30.38 4.43 1.43933062 3.84 Baboon Baseline23.6117.01 1.937501Proposed23.5212.72 1.79351128 1.346.ConclusionIn this paper,the spatial correlations in both of the domain and range blocks are utilized to speed up the encoding process and improve the bit rate for fractal image compression.The rationale is the correlation between the neighbor blocks in an image.The matched domain blocks and the expanded blocks of the four neighbors are collected as the searching space.As a consequence,the searching space is much smaller than that of the baseline method.Because the proposed algorithm employs the characteristics of spatial correlations of nature image to compute local minimum which is different from the global minimum obtained by the baseline method such that for the images having less apparent spatial correlation,such as Baboon,the proposed algorithm might result in the large gaps between this local minimum and the global minimum.For this reason,the proposed algorithm uses the threshold T to avoid the large gaps between this local minimum and the global minimum obtained through the baseline method.In comparison to the baseline method,the proposed algorithm spends less encoding time and achieves higher compression ratio,while the quality of the retrieved image is almost the same.References[1]Barnsley MF,Demko S.Iterated function systems and the global construction of fractals.Proc Roy Soc1985;A399:243–75.[2]Barnsley MF.Fractal everywhere.New York:Academic;1988.[3]Barnsley MF,Elton JH,Hardin DP.Recurrent iterated function systems.In:Constructive approximation.1989.p.3–31.[4]Jacquin AE.Image coding based on a fractal theory of iterated contractive image transformations.IEEE Trans Image Process1992;1:18–30.[5]Fisher Y.Fractal image compression,theory and application.New York:Springer-Verlag;1994.[6]Wang Z,Zhang D,Yu Y.Hybrid image coding based on partial fractal mapping.Signal Process:Image Commun2000;15:767–79.[7]Tsai JC,Hsieh CH.Predictive vector quantization for image compression.Electron Lett1998;32:2325–6.[8]Hsieh CH,Tsai JC.Lossless compression of VQ index with search-order coding.IEEE Trans COM-38.1990.p.2166–73.。

相关文档
最新文档