2019届九年级数学下册 第6章 二次函数小结与思考(1)导学案(无答案) 苏科版
第六章二次函数 小结与思考(1)导学案
二次函数 小结与思考(1)学习目标:1、理解二次函数的概念,会用描点法画二次函数的图象。
2、根据二次函数图象的特征,概括二次函数的性质,理解二次函数与一元二次方程的关系。
学习过程:一、知识检测1、形如____________________________的函数是二次函数。
2、二次函数的图象是________,y =ax 2,当a >0时,开口____,对称轴为_____,顶点坐标为________;x <0时,y 随x 的减小而___,当x____时,y 有极___值,为___。
3、通过配方,把二次函数y =ax 2+bx +c 化为y =a(x +m)2+k 的形式为___________________,顶点坐标为_________,对称轴为_______。
45、方程-x +10x-25=0的根是 ;则函数y = -x +10x-25的图象与x 轴的交点有 个,其坐标是 . 三、典例剖析:1. 若函数y =mx -6x +2的图象与x 轴只有一个公共点,求m 的值。
2、已知二次函数图象的顶点是(12)-,,且过点302⎛⎫ ⎪⎝⎭,. (1)求二次函数的表达式,并在右图中画出它的图象;(2)求证:对任意实数m ,点2()M m m -,都不在这个二次函数的图象上.四、随堂练习:1、试写出一个二次函数表达式,使它对应的一元二次方程的一个根为0,另一个根在1~2之间:______________________。
2.已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论:①0>abc ;② c a b +<;③024>++c b a ;④ b c 32<;⑤ )(b am m b a +>+,(1≠m 的实数)其中正确的结论有( )A. 2个B. 3个C. 4个D. 5个3、已知二次函数y =x 2―bx +b -2,试说明这个函数的图象与x 轴一定有两个交点。
第六章《二次函数》小结与思考--学案、巩固案
第六章《二次函数》小结与思考--学案课型:复习课 主备:谢辉 审核:孙祥 时间:2012-1-27 学生姓名__________一、学习目标:注重知识梳理,让零散的知识结构化、系统化;注重问题解决,将类似的问题联系起来,形成方法的总结;重点培养数形结合的思想。
二、学习重点与难点:⑴体会二次函数的意义,了解二次函数的有关概念;⑵会运用配方法确定二次函数的图象的顶点、开口方向和对称轴,并能确定其最值;⑶会运用待定系数法求二次函数的解析式;⑷利用二次函数图象的性质解决问题,并对解决问题的策略进行反思。
三、复习导学:问题一:已知二次函数y=ax 2+bx+c 的部分图象如图1所示,图象经过(1,0),从中你能得到哪些结论?问题二:问题三:(1)若把图1的函数图象绕着顶点旋转180度,则能得到函数的表达式是 ,若再将得到的函数图象向上平移2个单位,向右平移3个单位得新函数 。
问题四:根据图象回答问题:(1)在此题中,方程ax 2+bx+c=0的根的情况如何确定?为什么? (2)m 满足什么条件时方程ax 2+bx+c=m ,①有两个不相等的实数根?②有两个相等的实数根?③没有实数根?问题五:根据图象回答问题::41B 01)0(22)两点,则,(),,(交于与该抛物线,若直线如图-++=≠+=A c bx ax y k m kx y ;的解为方程 )1(2m kx c bx ax +=++;的解为不等式 )2(2m kx c bx ax +>++;的解为不等式 )3(2m kx c bx ax +<++。
或填,则)也是抛物线上的两点,(,若),(___4B )y A(-2,2121=<>y y y 则所示抛物线上的两点,)是图,(,若212112B )y A(-3,y y -??m 12B )y A(m,212121y y y y y m >=+②则①取何值时,当所示抛物线上的两点,)是图,(,变式:若第六章《二次函数》小结与思考--巩固案1.用配方法将二次函数1232--=x x y 化成()k h x a y +-=2的形式是 . 2.已知二次函数32++=bx x y 的图象的顶点的横坐标是1,则b= .3.已知抛物线()8122++-=x y ,抛物线与y 轴的交点坐标是 ;求抛物线与x 轴的两个交点间的距离是 .4.已知直线y=x+m 与抛物线2x y =相交于两点,则实数m 的取值范围是( ).(A)m ﹥41-; (B)m ﹤41-; (C)m ﹥41; (D) m ﹤41. 5.若一条抛物线c bx ax y ++=2的顶点在第二象限,交于y 轴的正半轴,与x 轴有两个交点,则下列结论正确的是( ).(A)a ﹥0,bc ﹥0; (B)a ﹤0,bc ﹤0; (C) a ﹤0, bc ﹥0; (D) a ﹥0, bc ﹤06.已知二次函数y=ax 2+bx+c 的图象如下图所示,则下列5个代数式:ab ,abc ,a -b+c ,b 2-4ac ,2a+b 中,值大于0的个数有( )A. 5B. 4C. 3D. 27.课本34页第7题。
二次函数小结与复习教案
二次函数小结与复习教案一、教学目标1. 理解二次函数的定义、性质及图象特征。
2. 掌握二次函数的解析式、顶点式及标准式之间的转换。
3. 能够运用二次函数解决实际问题,提高解决问题的能力。
4. 培养学生的逻辑思维能力和团队协作能力。
二、教学内容1. 二次函数的定义与性质1.1 二次函数的定义:一般式为y=ax^2+bx+c(a≠0)1.2 二次函数的性质:开口方向、对称轴、顶点、单调性等。
2. 二次函数的图象特征2.1 开口方向:a>0时,开口向上;a<0时,开口向下。
2.2 对称轴:x=-b/(2a)2.3 顶点:(-b/(2a), c-b^2/(4a))2.4 与y轴的交点:x=0时,y=c。
3. 二次函数的解析式3.1 一般式:y=ax^2+bx+c3.2 顶点式:y=a(x-h)^2+k3.3 标准式:y=a(x-α)^2+β4. 二次函数的转换4.1 一般式与顶点式的转换:4.2 顶点式与标准式的转换:5. 实际问题中的应用5.1 抛物线与坐标轴的交点问题5.2 实际问题转化为二次函数问题,求最值等。
三、教学方法1. 采用问题驱动法,引导学生探究二次函数的性质及图象特征。
2. 利用数形结合法,让学生直观地理解二次函数的图象与性质之间的关系。
3. 运用小组合作探究法,培养学生的团队协作能力和解决问题的能力。
4. 结合实际例子,让学生感受二次函数在生活中的应用。
四、教学准备1. PPT课件:二次函数的性质、图象、实际应用等。
2. 练习题:涵盖本节课的主要知识点。
3. 小组讨论:分组安排。
五、教学过程1. 导入:复习一次函数和反比例函数,引出二次函数。
2. 讲解:介绍二次函数的定义、性质、图象特征等。
3. 演示:利用PPT展示二次函数的图象,让学生直观地感受开口方向、对称轴等。
4. 练习:让学生完成一些简单的练习题,巩固所学知识。
5. 小组讨论:布置一道实际问题,让学生分组讨论,运用二次函数解决问题。
二次函数小结与复习教案
二次函数小结与复习教案一、教学目标1. 知识与技能:(1)理解二次函数的定义、性质和图像;(2)掌握二次函数的求解方法,包括配方法、公式法、图像法;(3)能够运用二次函数解决实际问题。
2. 过程与方法:(2)培养学生运用二次函数解决实际问题的能力;(3)培养学生合作学习、讨论交流的能力。
3. 情感态度与价值观:(1)激发学生对数学的兴趣,培养其自信心;(2)培养学生勇于探究、积极思考的精神;(3)培养学生团队协作、分享的品质。
二、教学内容1. 复习二次函数的定义:函数式y = ax^2 + bx + c(a ≠0);2. 复习二次函数的性质:开口方向、对称轴、顶点、单调性等;3. 复习二次函数的图像:开口向上/向下的抛物线,顶点式、对称轴式等;4. 复习二次函数的求解方法:配方法、公式法、图像法;5. 运用二次函数解决实际问题:长度、面积、最大值、最小值等问题。
三、教学重点与难点1. 教学重点:(1)二次函数的定义、性质和图像;(2)二次函数的求解方法;(3)运用二次函数解决实际问题。
2. 教学难点:(1)二次函数的图像分析;(2)运用二次函数解决实际问题。
四、教学过程1. 导入:通过提问方式引导学生回顾二次函数的相关知识,激发学生的学习兴趣;2. 讲解:根据教材,系统讲解二次函数的定义、性质、图像和求解方法,让学生清晰地理解二次函数的基本概念;3. 案例分析:分析实际问题,引导学生运用二次函数解决问题,培养学生运用知识的能力;4. 练习:布置课堂练习题,让学生巩固所学知识,并及时给予解答和指导;五、课后作业1. 复习二次函数的定义、性质、图像和求解方法;2. 完成课后练习题,巩固所学知识;3. 选择一个实际问题,运用二次函数解决,并将解题过程和答案写在作业本上。
六、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态;2. 课后作业:检查学生完成的课后作业,评估其对二次函数知识的掌握程度;3. 练习题:分析学生完成的练习题,了解其在二次函数求解方法和实际问题解决方面的能力;4. 小组讨论:评估学生在小组讨论中的表现,了解其合作学习、交流分享的能力。
二次函数的教学反思(2篇)
二次函数的教学反思这节课我首先让学生思考了三个列函数关系式的实际问题,接着在学生探究这三个实际问题的基础上,思考、归纳出二次函数的定义以及探讨对二次函数的判断,最后针对二次函数的定义和能用二次函数表示变量之间关系进行了巩固应用。
本节课通过丰富的现实背景,使学生感受二次函数的意义,感受数学的广泛联系和应用价值。
通过学生的探究性活动(经历数学化的过程),和学生之间的合作与交流,通过分析实际问题,引出二次函数的概念,使学生感受二次函数与生活的密切联系. 在新知的巩固应用环节,我精心设计了不同题型的问题,很好巩固应用了本节的新知,课堂达到了较好的教学效果。
通过本节课也让我真正意识到:对于每节课的教学不能仅仅凭经验设计。
在每节课的课前,一定要进行精心的预设。
在课堂中,同时要结合课堂的实际效果和学生的情况注意灵活处理课堂生成。
课堂上在进行分组教学时,提前预设好教学时间,在每节课上,既要放的开,同时又要注意在适当的时机收回,以保证每节教学基本任务完成。
二次函数的教学反思(2)在二次函数的教学中,我发现了一些问题和可以改进的地方。
首先,在教学目标的设定上,我没有充分考虑到学生的实际情况和学习需求,导致一些学生对二次函数的概念和应用不够理解和掌握。
其次,在教学方法的选择上,我过于强调了传统的讲授和演示方式,忽视了学生的参与和互动,这也导致一些学生对二次函数的内容存在困惑和难以理解的问题。
最后,在教学资源的准备上,我没有充分利用多媒体和网络资源,使得教学内容的呈现和学生的学习方式相对单一。
基于以上的教学反思,我认为在二次函数的教学中,需要更加注重学生的主动参与和互动,充分利用教学资源,提高教学效果。
首先,对于教学目标的设定,应该考虑到学生的实际情况和学习需求。
二次函数作为初中数学的重要内容之一,学生对其概念和应用的理解和掌握程度直接影响到后续数学学习的成功与否。
因此,在设定教学目标时,应该充分考虑学生的实际情况,将教学目标设置为学生能够熟练掌握二次函数的基本概念和解题方法,并能够运用二次函数解决实际问题。
2019年人教版初中数学九年级下册《二次函数》教学反思(1)
二次函数教学反思二次函数是初中阶段的重要知识点,如何让学生学得好,也是困扰我很久的问题。
通过画图,在观察图形中总结出图形的性质,对学生来说不是难点。
重点和难点在准确灵活地应用性质。
但是要想准确应用,熟记图形与性质是前提,于是我重点放在对“性质的记忆”和“对学生高要求上”。
灵活处理教材,教材上是一节课学习两种类型的函数,但是根据学生作图的速度和理解能力,一节课完成两种类型的函数有一定的困难。
虽然也想过适当处理,但是想到教材是一节课完成两种函数,所以还是决定两种函数在一节课完成,事实证明一节课完成两种函数效果不是很好。
由此可见有时教材上的安排不一定是科学的,所以要根据学生的实际情况进行灵活处理。
强化记忆,功夫在平时。
每节课上课一开始,我在黑板上板书上节学过的有代表性的函数,为防止出错,开始以小组或者同为相互检查快速说性质:包括图形、对称轴、顶点坐标、增减性、最值六个方面。
每节课都将前几节课学过的函数式板书,学生自然形成习惯。
直到学习顶点式的一般形式这节课,共出示六个代表性的函数,尽管多,但是在前几节课的基础上,学生已经达到熟练快速准确。
我和学生开玩笑说,必须将函数性质记忆到说梦话都说函数性质的地步。
深化理解,学生对着自己曾经画过函数说性质,不知不觉中将图像和性质有机的结合在了一起。
并逐步的将说具体函数的性质过渡到说一般表达式的函数性质。
y=2a y=2a+k,提高要求。
因为手中没有合适的材料供学生练习使用,因此我们每节课印制了两份随堂练习,因为刚学完性质,对学生来说训练题难度不大,开始对学生的要求是最多错一个题,结果发现学生的错误很少,后期发现自己的要求低了,于是我改变要求,必须一个不错方可得A等级。
结果发现,学生自然对自己的要求也提高了。
当发现自己错一个时,就会反思自己那里没学好。
一班的学生平时反映灵活,但是缺少深入细致,必须提高要求,方可让他们耐下心来认真学习。
同时从学生的答题中,及时发现学生存在的问题,及时提醒学生反思改进。
九年级数学下册《二次函数》教学反思
九年级数学下册《二次函数》教学反思(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如职场文书、合同协议、策划方案、规章制度、演讲致辞、应急预案、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as workplace documents, contract agreements, planning plans, rules and regulations, speeches, emergency plans, experiences, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!九年级数学下册《二次函数》教学反思九年级数学下册《二次函数》教学反思范文(精选4篇)作为一名人·民教师,课堂教学是重要的工作之一、通过教学反思能很快的发现自己的讲课缺点,如何把教学反思做到重点突出呢?以下是本店铺精心整理的九年级数学下册《二次函数》教学反思范文(精选3篇)仅供参考,大家一起来看看吧。
二次函数的教学反思(精选5篇)
二次函数的教学反思(精选5篇)二次函数的教学反思(精选5篇)身为一位优秀的教师,我们要有一流的课堂教学能力,通过教学反思可以有效提升自己的教学能力,快来参考教学反思是怎么写的吧!下面是小编整理的二次函数的教学反思(精选5篇),欢迎大家分享。
二次函数的教学反思1课后查看了数学课程标准中对二次函数的要求:1、通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。
2、会用描点法画出二次函数的图象,能从图象上认识二次函数的性质。
3、会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题。
4、会利用二次函数的图象求一元二次方程的近似解。
发现并没有提到用顶点式来求二次函数的解析式,而且在后面的几节课的教学中也没有要求用顶点式来求二次函数的解析式。
但是我认为新课标所提出的要求应该是对学生的最低要求,它并不反对教师结合学生的实际对教材的重新处理。
并且从教学的反馈来看,加上了这3个练习学生能较好的理解本课的教学目标,同时也能对前面所学的二次函数顶点的知识加深印象。
适应学生的最近发展区。
何乐而不为。
二次函数的教学反思2从课本的体系来看,这节课明显是要让学生明白什么是二次函数,能区别二次函数与其他函数的不同,能深刻理解二次函数的一般形式,并能初步理解实际问题中对定义域的限制。
完成这节课后,静下心来准备写个教学反思。
重新思索教材的编写意图,发现课本这部分内容大部分篇幅是在讲三个实际问题,由此引出了二次函数,我才意识其实这节课的重点实际上应该放在“经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验,从而形成定义”上,有了这个认识,一切变得简单了!对于实际问题的选择,我将4个问题整和于同一个实际背景下,这样设计既能引起学生兴趣,也尽量减少学生审题的时间,显得非常有层次性,这些实际问题贯穿整个课堂的始终,使整个课堂有浑然天成的感觉。
对于练习的设计,仍然采取了不重复的原则性,尽量做到每题针对一个问题,并进行及时的小结,也遵循了从开放到封闭的原则,达到了良好的效果。
苏科版九年级数学第六章《二次函数》全章导学案
《6.1 二次函数》导学案学习目标:1.经历对实际问题情境分析确定二次函数表达式的过程,体会二次函数意义;2.了解二次函数关系式,会确定二次函数关系式中各项的系数。
一、知识准备:1.设在一个变化过程中有两个变量x 和y ,如果对于x 的每一个值, y 都有唯一的值与它对应,那么就说y 是x 的 ,x 叫做 。
2.我们已经学过的函数有:一次函数、反比例函数,其中 的图像是直线, 的图像是双曲线。
我们得到它们图像的方法和步骤是:① ;② ;③ 。
3. 形如___________y =,( )的函数是一次函数,当______0=时,它是 函数,图像是经过 的直线;形如k y x=,( )的函数是 函数,它的表达式还可以写成:① 、② 二、提出问题(展示交流):1.一粒石子投入水中,激起的波纹不断向外扩展,扩大的圆的面积S 与半径r 之间的函数关系式是 。
2.用16m 长的篱笆围成长方形圈养小兔,圈的面积y(㎡)与长方形的长x(m)之间的函数关系式为 。
3.要给一个边长为x (m)的正方形实验室铺设地板,已知某种地板的价格为每平方米240元,踢脚线价格为每米30元,如果其它费用为1000元,那么总费用y (元)与x (m )之间的函数关系式是 。
三、归纳提高(讨论归纳):观察上述函数函数关系有哪些共同之处?它们与一次函数、反比例函数的关系式有什么不同? 。
一般地,形如 ,( ,且 )的函数为二次函数。
其中x 是自变量, 函数。
四、例题精讲(小组讨论交流): 例1 函数y=(m +2)x22-m +2x -1是二次函数,则m= .点拨:从二次函数的定义出发:看二次项的系数和次数确定m 的取值例2.下列函数中是二次函数的有( )①y=x +x 1;②y=3(x -1)2+2;③y=(x +3)2-2x 2;④y=21x+x .A .1个B .2个C .3个D .4个例3、写出下列各函数关系,并判断它们是什么类型的函数.⑴圆的面积y (cm 2)与它的周长x (cm )之间的函数关系;⑵某种储蓄的年利率是1.98%,存入10000元本金,若不计利息税,求本息和y (元)与所存年数x 之间的函数关系;⑶菱形的两条对角线的和为26cm ,求菱形的面积S (cm 2)与一对角线长x (cm )之间的函数关系五、课堂训练1.下列函数中,二次函数是( ) A .y=6x 2+1 B .y=6x +1 C .y=x 6+1 D .y=26x +12.函数y=(m -n )x 2+mx +n 是二次函数的条件是( ) A .m 、n 为常数,且m ≠0 B .m 、n 为常数,且m ≠n C .m 、n 为常数,且n ≠0D .m 、n 可以为任何常数3.半径为3的圆,如果半径增加2x ,则面积S 与x 之间的函数表达式为( ) AS=2π(x +3)2B.S=9π+xC.S=4πx 2+12x +9 D S=4πx 2+12πx +9π4.下列函数关系中,满足二次函数关系的是( )A.圆的周长与圆的半径之间的关系;B.在弹性限度内,弹簧的长度与所挂物体质量的关系;C.圆柱的高一定时,圆柱的体积与底面半径的关系;D.距离一定时,汽车行驶的速度与时间之间的关系.5.已知菱形的一条对角线长为a ,另一条对角线为它的3倍,用表达式表示出菱形的面积S 与对角线a 的关系_________.6.若一个边长为x cm 的无盖..正方体形纸盒的表面积为y cm 2,则___________y =,其中x 的取值范围是 。
【名师推荐资料】2020届九年级数学下册 第6章 二次函数小结与思考(1)导学案(无答案) 苏科版(精品)
数y=ax+c在同一坐标系中的图象大致是图中的()
【例3】在同一坐标系中,函数y=ax2+bx与y= 的图象大致是图中的()
【例4】如图所示的是桥梁的两条钢缆具有相同的抛物线形状.按照图中建立的直角坐标系,左面的一条抛物线可以用y=0.0225x2+0.9x+10表示,而且左右两条抛物线关于y轴对称,你能写出右面钢缆的表达式吗?
学习重点
能够分析和表示变量之间的二次函数关系,并解决用二次函数所表示的问题.能够根据二次函数的不同表示方式,从不同的侧面对函数性质进行研究.
学习难点
能够分析和表示变量之间的二次函数关系,并解决用二次函数所表示的问题.
教学流程
预
习
导
航
1.二次函数的解析式:(1)一般式:;
(2)顶点:(3)交点式:.
2.顶点式的几种特殊形式.
2.如果一条抛物线与抛物线y=- x2+2的形状相同,且顶点坐标是(4,-2),则它的表达式是.
3.抛物线y=3x2-2向左平移2个单位,向下平移3个单位,则所得抛物线为()
A.y=3(x+2)2+1B.y=பைடு நூலகம்(x-2)2-1
C.y=3(x+2)2-5D.y=3(x-2)2-2
4.如图是二次函数y=ax2+bx+c的图象,点P(a+b,bc)是坐标平面内的点,则点P在()
⑴,⑵,⑶,(4).
3.二次函数 通过配方可得 ,其抛物线关于直线 对称,顶点坐标为(,).
⑴当 时,抛物线开口向,有最(填“高”或“低”)点,当 时, 有最(“大”或“小”)值是;
⑵当 时,抛物线开口向,有最(填“高”或“低”)点,当
时, 有最(“大”或“小”)值是
九年级数学二次函数的图象和性质教学反思
九年级数学二次函数的图象和性质教学反思(一)这节课是人教版九年级数学下册的一节探究课。
在教学中我采用了体验探究的教学方式,在教师的配合引导下,让学生自己动手作图,观察、归纳出二次函数的性质,体验知识的形成过程,力求体现"主体参与、自主探索、合作交流、指导引探"的教学理念。
整个教学过程主要分为三部分:第一部分是前置性作业,前置作业是前一天发给学生的,主要涉及如何作图、一次函数和反比例函数的性质等问题。
我的设计目的就上让学生在复习这些知识的过程中体会从函数图像来研究函数性质的。
应该说这样设计既让初三同学复习了旧知又使他们体会到如何研究函数,从哪些方面研究函数,从思维层面锻炼了学生的探究能力。
第二部分是学习探究,探求活动前先让一名同学读了学习目标,让大家带着目标去探究。
探究活动一是让学生在坐标纸上画出二次函数y=ax^2的图象。
画图的过程包括列表、描点、连线。
列表过程是我引导学生取点的,其间我引导大家要明确取点注意的事项,比如代表性、易操作性。
这样学生在下一个环节就能游刃有余。
学生在我的引导下顺利地画出了函数的图象。
紧接着我让学生按照学案的要求自主探讨当a>0时函数y=ax2的性质。
探究活动二是独立画出函数y=-2x^2的图象,然后是自主探讨当a<0时函数y=y=ax2的性质。
探讨函数的性质主要从开口方向、对称轴、增减性、顶点坐标和最值方面入手,让学生从特殊函数来归纳总结一般函数的性质。
应该说探究活动二在活动一得基础上让学生锻炼了自我学习的能力,学生们完成的很好。
探索活动三是小组合作活动。
观察自己画出的两个图象,它们代表函数y=ax^2的两种情况,找出a的符号不同时他们的相同点、不同点和联系点。
这个环节能充分发挥小组合作的优势,让学生在谈论中体会分类思想。
小组讨论完毕后我让学生展示他们的成果,大部分学生跃跃欲试,他们讨论的很全面,出乎我的预料。
这里面还有个知识点我是用几何画板演示的,就是通过改变a的值让学生们观察图象的开口方向和开口宽度。
九年级数学下册《二次函数》教学反思范文
九年级数学下册《二次函数》教学反思范文前言在九年级数学下册教学中,我负责教授《二次函数》这一知识点。
通过这一章节的教学,我对于教学方法和学生态度有了一些反思和总结。
在本文中,我将分享我的教学经验和反思,以及对于今后教学的一些建议。
教学设计与准备在开始教学《二次函数》之前,我认真研读了教材内容,并结合学生的学情和教学资源,制定了一套教学设计和准备。
我决定采用多媒体教学的方式,结合课堂互动和实例分析,以激发学生的学习兴趣和提高学习效果。
教学过程与反思1. 引入阶段在引入阶段,我使用了一些引人入胜的例子,如抛物线的形状和运动轨迹等,来引起学生的兴趣。
同时,我向学生展示了该章节的学习目标和重要性,以便让学生明确学习的方向和目的。
然而,我发现有些学生对于数学的抽象概念不太感兴趣,需要我更加生动有趣地引入这个知识点。
2. 知识讲解与实例分析在知识讲解与实例分析的阶段,我通过多媒体教学的方式展示了二次函数的定义、性质和图像等内容,并给出了一些实例分析的题目。
大部分学生对于知识内容有了初步的了解和认识,但是仍有部分学生对于一些抽象的概念不太理解。
为了让更多的学生参与到课堂中来,我在讲解过程中采用了提问和讨论的方式,激发学生的思考和探究。
3. 练习与巩固在练习与巩固的阶段,我设计了一些练习题,以帮助学生加深对于知识点的理解和掌握。
我给学生提供了足够的时间独立思考和解答问题,并在课堂上进行了讲解和分析。
然而,有一些学生对于解题方法还存在一定的困惑,我应该给予更多的指导和帮助。
4. 拓展与应用在拓展与应用的阶段,我给学生布置了一些拓展作业,以提升他们对于二次函数的掌握和应用能力。
同时,我也组织了一些小组活动和竞赛,以增强学生之间的合作和竞争意识。
然而,我发现有一部分学生对于拓展内容和应用题目的困难度感到有些挫败,我需要更加耐心和细心地指导他们。
教学效果与总结通过一段时间的教学实践,我发现学生对于《二次函数》这一知识点的理解和应用能力有了一定的提高。
九年级数学下册《二次函数》教学反思3篇
•••••••••••••••••九年级数学下册《二次函数》教学反思九年级数学下册《二次函数》教学反思3篇引导语:身为一名刚到岗的人民教师,我们要有一流的教学能力,通过教学反思可以有效提升自己的课堂经验,教学反思要怎么写呢?以下是小编精心整理的九年级数学下册《二次函数》教学反思,仅供参考,大家一起来看看吧。
九年级数学下册《二次函数》教学反思篇1在二次函数教学中,根据它在初中数学函数在教学中的地位,细心地准备《二次函数》的教学,教学重点为二次函数的图象性质及应用,教学难点为与二次函数的图象的关系。
根据反思备课过程和讲课效果,感受颇深,有收获,也有不足。
本章的教学是我对选题有了进一步认识,要体现教学目标,要有实际意义。
要体现学生的“最近发展区”,有利于学生分析。
如为了帮助学生建立二次函数的概念,从学生非常熟悉的正方形的面积的研究出发,通过建立函数解析式,归纳解析式特点,给出二次函数的定义.建立了二次函数概念后,再通过三个例题的分析和解决,促进学生理解和建构二次函数的概念,在建构概念的过程中,让学生体验从问题出发到列二次函数解析式的过程.体验用函数思想去描述、研究变量之间变化规律的意义.教学主要从“抛物线的开口方向、对称轴、顶点坐标、增减性”循序渐进,由特殊到一般的学习二次函数的性质,并帮助学生总结性的去记忆。
在学习过程中加强利用配方法将二次函数一般式化顶点式、判断抛物线对称轴、借图象分析函数增减性等的训练。
这部分内容就是中等偏下的学生容易混淆,还需掌握方法,加强记忆,强调必须利用图形去分析。
通过教学,让学生对建模思想、图形结合思想及分类讨论思想都有了较清晰的认识,学会了分析问题的初步方法。
本章中二次函数上下左右的平移是我觉得上的比较成功的一部分,主要是借助多媒体,动态的展示了二次函数的平移过程,让学生自己总结规律,很形象,便于记忆。
在学习了二次函数的知识后,我们尝试运用于解决三个实际问题.问题是根据实际问题建立函数解析式并学习如何确定函数的定义域;问题二是根据二次函数的解析式,分析二次函数的性质,并通过画函数图像检验作出的分析和判断是否;问题三是综合应用一次函数、二次函数的知识确定函数的解析式和定义域,并尝试解决销售问题中最大利润的问题;通过这三个问题的'分析和解决,让学生初步体会二次函数在实际生活中的运用,再次感悟数学源于生活又服务于生活。
九年级数学下:第6章二次函数复习教案苏科版
第六章 二次函数 小结与思考[学习目标]1、会用二次函数表示实际问题中两个变量之间的关系;2、会用描点法并结合对称性画二次函数的图象,并根据图象说出二次函数的性质,能指出其开口方向、顶点坐标、对称轴、最值;3、会根据二次函数的顶点式、一般式、交点式结合已知条件求出二次函数的解析式;4、会根据二次函数y=ax 2+bx+c 的图象与x 轴的交点和一元二次方程ax 2+bx+c=0的解之间的关系解决问题,能读懂图象,并根据图象写出a 、b 、c 、△等的符号,会建立二次函数模型解决简单的实际问题。
[学习过程]: [情境创设]:1、下列函数中二次函数有( )个。
(1)y=2x+2 (2)y=x+1x (3)y= (4)y=1(2)(3)2x x --+ (5)y=2x 2+x (6)y=ax 2+bx+c (7)y= x 2-(x-1)(x+3) (8)y=-x 2+122、一次函数的图象是_____________,反比例函数的图象是___________,二次函数的图象是____________.3、二次函数y=2x 2的顶点坐标为(_______),对称轴为________,开口方向______,当x______时,y 随x 的增大而_______;当x_____时,y 随x 的增大而_______;当x=_____时,y 有最______值为y=_____。
4、二次函数y=-2(x+1)2的顶点坐标为(_______),对称轴为________,开口方向______,当x______时,y 随x 的增大而_______;当x_____时,y 随x 的增大而_______;当x=_____时,y 有最______值为y=_____。
其图象是由二次函数y=-2 x 2的图象向____平移______个单位所得。
5、二次函数y=12x 2-1的顶点坐标为(_______),对称轴为________,开口方向______,当x______时,y 随x 的增大而_______;当x_____时,y 随x 的增大而_______;当图象x=_____时,y有最______值为y=_____。
《二次函数》教学反思范文(精选5篇)
《二次函数》教学反思范文(精选5篇)《二次函数》教学反思范文(精选5篇)身为一名刚到岗的人民教师,我们要有很强的课堂教学能力,教学的心得体会可以总结在教学反思中,教学反思我们应该怎么写呢?以下是小编为大家收集的《二次函数》教学反思范文(精选5篇),仅供参考,希望能够帮助到大家。
《二次函数》教学反思1从课本的体系来看,这节课明显是要让学生明白什么是二次函数,能区别二次函数与其他函数的不同,能深刻理解二次函数的一般形式,并能初步理解实际问题中对定义域的限制。
完成这节课后,静下心来准备写个教学反思。
重新思索教材的编写意图,发现课本这部分内容大部分篇幅是在讲三个实际问题,由此引出了二次函数,我才意识其实这节课的重点实际上应该放在“经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验,从而形成定义”上,有了这个认识,一切变得简单了!对于实际问题的选择,我将4个问题整和于同一个实际背景下,这样设计既能引起学生兴趣,也尽量减少学生审题的时间,显得非常有层次性,这些实际问题贯穿整个课堂的始终,使整个课堂有浑然天成的感觉。
对于练习的设计,仍然采取了不重复的原则性,尽量做到每题针对一个问题,并进行及时的小结,也遵循了从开放到封闭的原则,达到了良好的效果。
对于最后讨论题的设计和提出,是我在进行了整个一章的单元备课后发现,我们其实对二次函数的最值问题是不讲的,但是不讲并不代表一点都不会涉及到,其中用到的思想方法还是相当重要的,在图象的观察中也具有了重要的地位,再加上这个问题在进行了前面的实际问题的解答之后是呼之欲出的:多种树——想提高产量——多种几棵好呢?,所以我设计了这个探索性的问题:假如你是果园的主人,你准备多种几棵?注意这里我并没有提出最大最小值的问题,但是所有的学生都能理解到,这是数学的魅力。
这个问题的提出是整节课的一个高潮和精华,是学生学完二次函数定义之后,综合利用函数的基本知识,代数式的知识和一元二次方程的知识进行的思考,因而他们的想法和说法,不论对错,不论全面还是有所偏颇,其中都涉及到了重要的数学思想方法,而这些恰恰是非常重要的。
二次函数的教学反思-二次函数教学中的心得
二次函数的教学反思:二次函数教学中的心得在二次函数教学中,根据它在初中数学函数在教学中的地位,细心地准备《二次函数》的教学,教学重点为二次函数的图象性质及应用,教学难点为a、b、c与二次函数的图象的关系。
接下来是为大家带来的二次函数的教学反思,望大家喜欢。
二次函数的教学反思范文一这节课我首先让学生思考了三个列函数关系式的实际问题,接着在学生探究这三个实际问题的基础上,思考、归纳出二次函数的定义以及探讨对二次函数的判断,最后针对二次函数的定义和能用二次函数表示变量之间关系进行了巩固应用。
本节课通过丰富的现实背景,使学生感受二次函数的意义,感受数学的广泛联系和应用价值。
通过学生的探究性活动(经历数学化的过程),和学生之间的合作与交流,通过分析实际问题,引出二次函数的概念,使学生感受二次函数与生活的密切联系. 在新知的巩固应用环节,我精心设计了不同题型的问题,很好巩固应用了本节的新知,课堂达到了较好的教学效果。
通过本节课也让我真正意识到:对于每节课的教学不能仅仅凭经验设计。
在每节课的课前,一定要进行精心的预设。
在课堂中,同时要结合课堂的实际效果和学生的情况注意灵活处理课堂生成。
课堂上在进行分组教学时,提前预设好教学时间,在每节课上,既要放的开,同时又要注意在适当的时机收回,以保证每节教学基本任务完成。
二次函数的教学反思范文二在二次函数教学中,根据它在初中数学函数在教学中的地位,细心地准备《二次函数》的教学,教学重点为二次函数的图象性质及应用,教学难点为a、b、c与二次函数的图象的关系。
根据反思备课过程和讲课效果,感受颇深,有收获,也有不足。
本章的教学是我对选题有了进一步认识,要体现教学目标,要有实际意义。
要体现学生的“最近发展区”,有利于学生分析。
如为了帮助学生建立二次函数的概念,从学生非常熟悉的正方形的面积的研究出发,通过建立函数解析式,归纳解析式特点,给出二次函数的定义.建立了二次函数概念后,再通过三个例题的分析和解决,促进学生理解和建构二次函数的概念,在建构概念的过程中,让学生体验从问题出发到列二次函数解析式的过程.体验用函数思想去描述、研究变量之间变化规律的意义.接下来教学主要从“抛物线的开口方向、对称轴、顶点坐标、增减性”循序渐进,由特殊到一般的学习二次函数的性质,并帮助学生总结性的去记忆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则它关于y轴对称的抛物线的表达式是.
【例6】已知二次函数y=(m-2)x2+(m+3)x+m+2的图象过点(0,5).
(1)求m的值,并写出二次函数的表达式;
(2)求出二次函数图象的顶点坐标、对称轴.
1.抛物线y=-2x2+6x-1的顶点坐标为,对称轴为.
6.抛物线y=2x2向左平移1个单位,再向下平移3个单位,得到的抛物线表达式为.
7.如图,坐标系中抛物线是函数y=ax2+bx+c的图象,则下列式子能成立的是()
A.abc>0 B.a+b+c<0
C.b<a+c D.2c<3b
8.如图,已知二次函数y= x2+bx+c,图象过A(-3,6),并与x轴交于B(-1,0)和点C,顶点为P.
第六章
课题
第六章小结与思考(1)
自主空间
学习目标
知识与技能:1.知道二次函数的定义;2.知道二次函数的解析式;3.理解二次函数的图象及意义;
过程与方法:1.通过解决用二次函数所表示的问题,培养学生运用能力.2.通过对二次函数三种表示方式的特点进行研究,训练大家的求同求异思维.
情感、态度与价值观:1.初步学会从数学的角度提出问题、理解问题,并能综合运用所学的知识和技能解决问题,发展应用意识.
学习重点
能够分析和表示变量之间的二次函数关系,并解决用二次函数所表示的问题.能够根据二次函数的不同表示方式,从不同的侧面对函数性质进行研究.
学习难点
能够分析和表示变量之间的二次函数关系,并解决用二次函数所表示的问题.
教学流程
预
习
导
航
1.二次函数的解析式:(1)一般式:;
(2)顶点:(3)交点式:.
2.顶点式的几种特殊形式.
⑴,⑵,⑶,(4).
3.二次函数 通过配方可得 ,其抛物线关于直线 对称,顶点坐标为(,).
⑴当 时,抛物线开口向,有最(填“来自”或“低”)点,当 时, 有最(“大”或“小”)值是;
⑵当 时,抛物线开口向,有最(填“高”或“低”)点,当
时, 有最(“大”或“小”)值是
合
作
探
究
一.例题分析:
【例1】二次函数y=ax2+bx2+c的图象如图所示,则a0,b0,c0(填“>”或“<”=.)
2.如果一条抛物线与抛物线y=- x2+2的形状相同,且顶点坐标是(4,-2),则它的表达式是.
3.抛物线y=3x2-2向左平移2个单位,向下平移3个单位,则所得抛物线为()
A.y=3(x+2)2+1B.y=3(x-2)2-1
C.y=3(x+2)2-5D.y=3(x-2)2-2
4.如图是二次函数y=ax2+bx+c的图象,点P(a+b,bc)是坐标平面内的点,则点P在()
【例2】二次函数y=ax2+bx+c与一次函
数y=ax+c在同一坐标系中的图象大致是图中的()
【例3】在同一坐标系中,函数y=ax2+bx与y= 的图象大致是图中的()
【例4】如图所示的是桥梁的两条钢缆具有相同的抛物线形状.按照图中建立的直角坐标系,左面的一条抛物线可以用y=0.0225x2+0.9x+10表示,而且左右两条抛物线关于y轴对称,你能写出右面钢缆的表达式吗?
(1)求这个二次函数表达式;
(2)设D为线段OC上的一点,且满足∠DPC=∠BAC,求D点坐标.
学
习
反思: