新人教版九年级数学上册+二次函数经典应用题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数经典应用题“8”道
1、某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件.
(1)求商家降价前每星期的销售利润为多少元?
(2)降价后,商家要使每星期的销售利润最大,应将售价定为多少元?最大销售利润是多少?
2、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
3、张大爷要围成一个矩形花圃.花圃的一
边利用足够长的墙另三边用总长为32米的
篱笆恰好围成.围成的花圃是如图所示的矩
形.设边的长为x米.矩形的面积为S平方米.
(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围).
(2)当x 为何值时,S 有最大值?并求出最大值. (参考公式:二次函数2y ax bx c =++(0a ≠),当2b
x a
=-
时,244ac b y a
-=
最大(小)值
)
4、某电视机生产厂家去年销往农村的某品牌电视机每台的售价
y (元)与月份x 之间满足函数关系502600y x =-+,去年的月销售
量p (万台)与月份x 之间成一次函数关系,其中两个月的销售情况如下表:
月份 1月 5月 销售量
3.9万台
4.3万台
(1)求该品牌电视机在去年哪个月销往农村的销售金额最大?最大是多少?
(2)由于受国际金融危机的影响,今年1、2月份该品牌电视机销往农村的售价都比去年12月份下降了%m ,且每月的销售量都
比去年12月份下降了1.5.国家实施“家电下乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补贴.受此政策的影响,今年3至5月份,该厂家销往农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加了1.5万台.若今年3至5月份国家对这种电视机的销售共给予了财政补贴936万元,求m的值(保留一位小数).
5.831 5.916
6.083 6.164)
5、某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y kx b
=+,且65
x=时,y=;75
y=.
55
x=时,45
(1)求一次函数y kx b
=+的表达式;
(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
(3)若该商场获得利润不低于500元,试确定销售单价x的范围.
6、某商场在销售旺季临近时,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)
涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。
(1)请建立销售价格y (元)与周次x 之间的函数关系; (2)若该品牌童装于进货当周售完,且这种童装每件进价z (元)与周次x 之间的关系为12)8(8
1
2+--
=x z , 1≤ x ≤11,且x 为
整数,那么该品牌童装在第几周售出后,每件获得利润最大?并求最大利润为多少? )
7、茂名石化乙烯厂某车间生产甲、乙两种塑料的相关信息如下表,请你解答下列问题:
(1)设该车间每月生产甲、乙两种塑料各x吨,利润分别为
y
1元和
y元,分别求1y和2y与x的函数关系式(注:利润
2
=总收入-总支出);
(2)已知该车间每月生产甲、乙两种塑料均不超过400吨,若某月要生产甲、乙两种塑料共700吨,求该月生产甲、乙塑料各多少吨,获得的总利润最大?最大利润是多
少?
8、某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价1y (元)与销售月份x (月)满足关系式
3
368
y x =-+,而其每千克成本2y (元)与销售月份x (月)满足的
函数关系如图所示. (1)试确定b c 、的值;
(2)求出这种水产品每千克的利润y (元)与销售月份x (月)之间的函数关系式;
(3)“五·一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少?
y
月)
第8题
二次函数应用题答案
1、解:(1) (130-100)×80=2400(元)
(2)设应将售价定为x 元,则销售利润 130(100)(8020)5
x
y x -=-+
⨯ 24100060000x x =-+-24(125)2500x =--+.
当125x =时,y 有最大值2500. ∴应将售价定为125元,最大销售利润是2500元.
2、解:(1)(24002000)8450x y x ⎛⎫=--+⨯
⎪⎝
⎭,即2
224320025
y x x =-++. (2)由题意,得2
2243200480025
x x -
++=.
整理,得2300200000x x -+=. 得12100200x x ==,.要使百姓得到实惠,取200x =.所以,每台冰箱应降价200元. (3)对于2
224320025
y x x =-
++,当24
1502225x =-=⎛⎫⨯- ⎪⎝⎭
时, 150(24002000150)8425020500050y ⎛
⎫=--+⨯=⨯= ⎪⎝⎭
最大值.
所以,每台冰箱的售价降价150元时,商场的利润最大,最大利润是5000元. 3、
4、解:(1)设p 与x 的函数关系为(0)p kx b k =+≠,根据题意,得
3.95
4.3.k b k b +=⎧⎨+=⎩,解得0.13.8.
k b =⎧⎨
=⎩,
所以,0.1 3.8p x =+. 设月销售金额为w 万元,则(0.1 3.8)(502600)w py x x ==+-+. 化简,得25709800w x x =-++,所以,25(7)10125w x =--+. 当7x =时,w 取得最大值,最大值为10125.
答:该品牌电视机在去年7月份销往农村的销售金额最大,最大是10125万元.
(2)去年12月份每台的售价为501226002000-⨯+=(元), 去年12月份的销售量为0.112 3.85⨯+=(万台), 根据题意,得2000(1%)[5(1 1.5%) 1.5]13%3936m m -⨯-+⨯⨯=. 令%m t =,原方程可化为27.514 5.30t t -+=.
t ∴==.10.528t ∴≈,2 1.339t ≈(舍去) 答:m 的值约为52.8.
5、解:(1)根据题意得65557545.
k b k b +=⎧⎨+=⎩,解得1120k b =-=,. 所求一次函数的表达式为120y x =-+.
(2)(60)(120)W x x =--+ 21807200x x =-+- 2(90)900x =--+, 抛物线的开口向下,∴当90x <时,W 随x 的增大而增大,而6087x ≤≤,
∴当87x =时,2(8790)900891W =--+=.
∴当销售单价定为87元时,商场可获得最大利润,最大利润是891元.
(3)由500W =,得25001807200x x =-+-,
整理得,218077000x x -+=,解得,1270110x x ==,.
由图象可知,要使该商场获得利润不低于500元,销售单价应在70元到110元之间,而6087x ≤≤,所以,销售单价x 的范围是7087x ≤≤.
6、 解:(1)202(1)218(16)() (2)
30 (611)()......(4)x x x x y x x +-=+≤<⎧=⎨≤≤⎩为整数分为整数分
(2)设利润为w
222211202(1)(8)1214(16)()......881130(8)12(8)18(611)()......88y z x x x x x w y z x x x x ⎧-=+-+--=+≤<⎪⎪=⎨⎪-=+--=-+≤≤⎪⎩
为整数(6分)为整数(8分) 21114 5 1788
w x x w =+=最大当时,=(元)....(9分) 2111(8)18 11 91819888
w x x w =-+=⨯+最大当时,==(元)....(10分) 综上知:在第11周进货并售出后,所获利润最大且为每件1198
元 (10)
7.解: (1)依题意得:1(2100800200)1100y x x =--=, 2(24001100100)20000120020000y x x =---=-, (2)设该月生产甲种塑料x 吨,则乙种塑料(700)x -吨,总利润为W 元,依题意得:
11001200(700)20000100820000W x x x =+--=-+.
∵400700400x x ⎧⎨-⎩≤,≤,
解得:300400x ≤≤. ∵1000-<,∴W 随着x 的增大而减小,∴当300x =时,W 最大=790000(元)
此时,700400x -=(吨).
因此,生产甲、乙塑料分别为300吨和400吨时总利润最大,最大利润为790000元.
8、解:(1)由题意:22125338124448b c b c ⎧=⨯++⎪⎪⎨⎪=⨯++⎪⎩解得7181
292b c ⎧=-⎪⎪⎨⎪=⎪⎩ (2)12y y y =-23115136298882x x x ⎛⎫=-
+--+ ⎪⎝⎭21316822x x =-++; (3)21316822y x x =-
++2111(1236)46822x x =--+++21(6)118x =--+ ∵1
08a =-<,∴抛物线开口向下.在对称轴6x =左侧y 随x 的增大而增大.
由题意5x <,所以在4月份出售这种水产品每千克的利润最大. 最大利润211(46)111082
=-
-+=(元).。