专题28 解直角三角形(58题)(原卷版)--2024年中考数学真题分类汇编
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题28解直角三角形(58题)
一、单选题
1.
(2024·吉林长春·中考真题)2024年5月29日16时12分,“长春净月一号”卫星搭乘谷神星一号火箭在黄海海域成功发射.当火箭上升到点A 时,位于海平面R 处的雷达测得点R 到点A 的距离为a 千米,仰角为θ,则此时火箭距海平面的高度AL 为(
)
A .sin a θ千米
B .
sin a
θ
千米C .cos a θ千米
D .
cos a
θ
千米2.(2024·天津·2cos451- 的值等于()
A .0
B .1
C .
2
12
-D 21
3.(2024·甘肃临夏·中考真题)如图,在ABC 中,5AB AC ==,4sin 5
B =,则B
C 的长是(
)
A .3
B .6
C .8
D .9
4.
(2024·四川自贡·中考真题)如图,等边ABC 钢架的立柱CD AB ⊥于点D ,AB 长12m .现将钢架立柱缩短成DE ,60BED ∠=︒.则新钢架减少用钢(
)
A .(243m
-B .(243m
-C .(2463m
-D .(243m
-5.
(2024·四川德阳·中考真题)某校学生开展综合实践活动,测量一建筑物CD 的高度,在建筑物旁边有一
高度为10米的小楼房AB ,小李同学在小楼房楼底B 处测得C 处的仰角为60︒,在小楼房楼顶A 处测得C 处
的仰角为30︒.(AB CD 、在同一平面内,B D 、在同一水平面上),则建筑物CD 的高为()米
A .20
B .15
C .12
D .
10+6.(2024·广东深圳·中考真题)如图,为了测量某电子厂的高度,小明用高1.8m 的测量仪EF 测得的仰角为
45︒,小军在小明的前面5m 处用高1.5m 的测量仪CD 测得的仰角为53︒,则电子厂AB 的高度为(
)(参
考数据:sin 5345︒≈
,cos5335︒≈,tan 534
3
︒≈)
A .22.7m
B .22.4m
C .21.2m
D .23.0m
7.(2024·内蒙古包头·中考真题)如图,在矩形ABCD 中,,E F 是边BC 上两点,且BE EF FC ==,连接
,,DE AF DE 与AF 相交于点G ,连接BG .若4AB =,6BC =,则sin GBF ∠的值为(
)
A .
10
B .
10
C .
13
D .
23
8.(2024·黑龙江大兴安岭地·中考真题)如图,菱形ABCD 中,点O 是BD 的中点,AM BC ⊥,垂足为M ,AM 交BD 于点N ,2OM =,8BD =,则MN 的长为(
)
A 5
B 455
C 355
D 259.
(2024·四川乐山·中考真题)如图,在菱形ABCD 中,60ABC ∠=︒,1AB =,点P 是BC 边上一个动点,在BC 延长线上找一点Q ,使得点P 和点Q 关于点C 对称,连接DP AQ 、交于点M .当点P 从B 点运动到C 点时,点M 的运动路径长为()
A .
3
6
B 33
C 32
D 3
10.
(2024·山东泰安·中考真题)如图,菱形ABCD 中,=60B ∠︒,点E 是AB 边上的点,4AE =,8BE =,点F 是BC 上的一点,EGF △是以点G 为直角顶点,EFG ∠为30︒角的直角三角形,连结AG .当点F 在直线BC 上运动时,线段AG 的最小值是(
)
A .2
B .432-
C .23
D .4
11.(2024·四川泸州·51
2
-的美感.如图,把黄金矩形ABCD 沿对角线AC 翻折,点B 落在点B '处,AB '交CD 于点E ,则sin DAE ∠的值为(
)
A 55
B .1
2
C .
35
D 255
12.
(2024·黑龙江大兴安岭地·中考真题)如图,在正方形ABCD 中,点H 在AD 边上(不与点A 、D 重合),
90BHF ∠=︒,HF 交正方形外角的平分线DF 于点F ,连接AC 交BH 于点M ,连接BF 交AC 于点G ,交
CD 于点N ,连接BD .则下列结论:①45HBF ∠=︒;②点G 是BF 的中点;③若点H 是AD 的中点,则
sin
NBC ∠BN =;⑤若12AH D H =,则112BND AHM S S =△△,其中正确的结论是(
)
A .①②③④
B .①③⑤
C .①②④⑤
D .①②③④⑤
二、填空题
13.(2024·黑龙江绥化·中考真题)如图,用热气球的探测器测一栋楼的高度,从热气球上的点A 测得该楼顶部点C 的仰角为60︒,测得底部点B 的俯角为45︒,点A 与楼BC 的水平距离50m AD =,则这栋楼的高度为
m (结果保留根号).
14.(2024·内蒙古赤峰·中考真题)综合实践课上,航模小组用无人机测量古树AB 的高度.如图,点C 处与古树底部A 处在同一水平面上,且10AC =米,无人机从C 处竖直上升到达D 处,测得古树顶部B 的俯角为45︒,古树底部A 的俯角为65︒,则古树AB 的高度约为米(结果精确到0.1米;参考数据:
sin 650.906︒≈,cos 650.423︒≈,tan 65 2.145︒≈).
15.(2024·湖北武汉·中考真题)黄鹤楼是武汉市著名的旅游景点,享有“天下江山第一楼”的美誉.在一次综合实践活动中,某数学小组用无人机测量黄鹤楼AB 的高度,具体过程如下:如图,将无人机垂直上升
至距水平地面102m 的C 处,测得黄鹤楼顶端A 的俯角为45︒,底端B 的俯角为63︒,则测得黄鹤楼的高度是
m .
(参考数据:tan632︒≈)
16.
(2024·四川内江·中考真题)如图,在矩形ABCD 中,3AB =,5AD =,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么tan ∠=
EFC .
17.
(2024·江苏盐城·中考真题)如图,小明用无人机测量教学楼的高度,将无人机垂直上升距地面30m 的点P 处,测得教学楼底端点A 的俯角为37︒,再将无人机沿教学楼方向水平飞行26.6m 至点Q 处,测得教学楼顶端点B 的俯角为45︒,则教学楼AB 的高度约为
m .
(精确到1m ,参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈)
18.
(2024·北京·中考真题)如图,在正方形ABCD 中,点E 在AB 上,AF D E ⊥于点F ,CG DE ⊥于点G .若5AD =,CG 4=,则AEF △的面积为
.
19.
(2024·甘肃临夏·中考真题)如图,对折边长为2的正方形纸片ABCD ,OM 为折痕,以点O 为圆心,OM 为半径作弧,分别交AD ,BC 于E ,F 两点,则 EF
的长度为(结果保留π).
20.(2024·黑龙江齐齐哈尔·中考真题)如图,数学活动小组在用几何画板绘制几何图形时,发现了如“花
朵”形的美丽图案,他们将等腰三角形OBC 置于平面直角坐标系中,点O 的坐标为(00),,点B 的坐标为(1)0,
,点C 在第一象限,120OBC ∠=︒.将OBC △沿x 轴正方向作无滑动滚动,使它的三边依次与x 轴重合,第一次滚动后,点O 的对应点为O ',点C 的对应点为C ',OC 与O C ''的交点为1A ,称点1A 为第一个“花朵”的花心,点2A 为第二个“花朵”的花心;……;按此规律,OBC △滚动2024次后停止滚动,则最后一个“花朵”的花心的坐标为
.
21.(2024·黑龙江大兴安岭地·中考真题)矩形ABCD 中,3AB =,4BC =,将AB 沿过点A 的一条直线折叠,折痕交直线BC 于点P (点P 不与点B 重合),点B 的对称点落在矩形对角线所在的直线上,则PC 长为
.
22.(2024·山东泰安·中考真题)在综合实践课上,数学兴趣小组用所学数学知识测量大汶河某河段的宽度,他们在河岸一侧的瞭望台上放飞一只无人机,如图,无人机在河上方距水面高60米的点P 处测得瞭望台正对岸A 处的俯角为50︒,测得瞭望台顶端C 处的俯角为63.6︒,已知瞭望台BC 高12米(图中点A ,B ,
C ,P 在同一平面内),那么大汶河此河段的宽AB 为
米.(参考数据:3sin 405︒≈,9
sin 63.610
︒≈,
6
tan 505
︒≈
,tan 63.62︒≈)
23.(2024·四川达州·中考真题)如图,在Rt ABC △中,90C ∠=︒.点D 在线段BC 上,45BAD ∠=︒.若4AC =,1CD =,则ABC 的面积是
.
24.(2024·贵州·中考真题)如图,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点,连接AE ,AF .若4
sin 5
EAF ∠=
,5AE =,则AB 的长为.
25.(2024·广东深圳·中考真题)如图,在ABC 中,AB BC =,
5tan 12B ∠=,D 为BC 上一点,且满足
8
5
BD CD =,过D 作DE AD ⊥交AC 延长线于点E ,则
CE
AC
=.
26.
(2024·黑龙江绥化·中考真题)在矩形ABCD 中,4cm AB =,8cm BC =,点E 在直线AD 上,且2cm DE =,则点E 到矩形对角线所在直线的距离是
cm .
三、解答题
27.(2024·内蒙古通辽·0
322sin60(π)-+︒--.
28.
(2024·四川甘孜·中考真题)如图,一艘海轮位于灯塔P 的北偏东37︒方向,距离灯塔100海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45︒方向上的B 处.这时,B 处距离A 处有多远?(参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈)
29.(2024·北京·中考真题)计算:()0
582sin 302
π-︒+-30.(2024·湖南长沙·中考真题)计算:()011(32cos 30π 6.84
-+-︒-.
31.(2024·广东深圳·中考真题)计算:()1
12cos 45 3.14124π-⎛⎫
-⋅︒+-++ ⎪⎝⎭
.
32.(2024·黑龙江大兴安岭地·中考真题)先化简,再求值:22
22
2111m m m m m m ⎛⎫-+÷- ⎪-+⎝⎭
,其中cos60m =︒.33.(2024·吉林·中考真题)图①中的吉林省广播电视塔,又称“吉塔”.某直升飞机于空中A 处探测到吉塔,此时飞行高度873m AB =,如图②,从直升飞机上看塔尖C 的俯角37EAC ∠=︒,看塔底D 的俯角
45EAD ∠=︒,求吉塔的高度CD (结果精确到0.1m ).(参考数据:
sin 370.60︒=,cos370.80︒=,tan 370.75︒=)
34.(2024·青海·0
18tan 452π︒+--.
35.(2024·内蒙古呼伦贝尔·中考真题)计算:3
01tan6032(π2024)2-⎛⎫--+︒-+- ⎪⎝⎭
.
36.(2024·内蒙古呼伦贝尔·中考真题)综合实践活动中,数学兴趣小组利用无人机测量大楼的高度.如图,无人机在离地面40米的D 处,测得操控者A 的俯角为30︒,测得楼BC 楼顶C 处的俯角为45︒,又经过人工测量得到操控者A 和大楼BC 之间的水平距离是80米,则楼BC 的高度是多少米?(点A B C D ,,,都3 1.7≈)
37.
(2024·内蒙古通辽·中考真题)在“综合与实践”活动课上,活动小组测量一棵杨树的高度.如图,从C 点测得杨树底端B 点的仰角是30︒,BC 长6米,在距离C 点4米处的D 点测得杨树顶端A 点的仰角为45︒,
求杨树AB 的高度(精确到0.1米,AB ,BC ,CD 在同一平面内,点C ,D 在同一水平线上.参考数据:3 1.73)≈
.
38.(2024·湖南·中考真题)某数学研究性学习小组在老师的指导下,利用课余时间进行测量活动.
活动主题测算某水池中雕塑底座的底面积
测量工具
皮尺、测角仪、计算器等
活动过程
模型抽象
某休闲广场的水池中有一雕塑,其底座的底面为矩形ABCD ,其示意图如下:
测绘过程与
数据信息
①在水池外取一点E ,使得点C ,B ,E 在同一条直线上;
②过点E 作GH CE ⊥,并沿EH 方向前进到点F ,用皮尺测得EF 的长为4米;
③在点F 处用测角仪测得60.3CFG ∠=︒,45BFG ∠=︒,21.8AFG ∠=︒;
④用计算器计算得:sin60.30.87︒≈,cos60.30.50︒≈,
tan60.3 1.75︒≈.sin21.80.37︒≈,cos21.80.93︒≈,tan21.80.40︒≈.
请根据表格中提供的信息,解决下列问题(结果保留整数):(1)求线段CE 和BC 的长度:(2)求底座的底面ABCD 的面积.
39.(2024·贵州·中考真题)综合与实践:小星学习解直角三角形知识后,结合光的折射规律进行了如下综合性学习.【实验操作】
第一步:将长方体空水槽放置在水平桌面上,一束光线从水槽边沿A 处投射到底部B 处,入射光线与水槽内壁AC 的夹角为A ∠;
第二步:向水槽注水,水面上升到AC 的中点E 处时,停止注水.(直线NN '为法线,AO 为入射光线,OD 为折射光线.)【测量数据】
如图,点A ,B ,C ,D ,E ,F ,O ,N ,N '在同一平面内,测得20cm AC =,45A ∠=︒,折射角32DON ∠=︒.
【问题解决】
根据以上实验操作和测量的数据,解答下列问题:(1)求BC 的长;
(2)求B ,D 之间的距离(结果精确到0.1cm ).
(参考数据:sin 320.52︒≈,cos320.84︒≈,tan 320.62︒≈)
40.(2024·河南·中考真题)如图1,塑像AB 在底座BC 上,点D 是人眼所在的位置.当点B 高于人的水平视线DE 时,由远及近看塑像,会在某处感觉看到的塑像最大,此时视角最大.数学家研究发现:当经过A ,B 两点的圆与水平视线DE 相切时(如图2),在切点P 处感觉看到的塑像最大,此时APB ∠为最大视角.
(1)请仅就图2的情形证明APB ADB ∠>∠.
(2)经测量,最大视角APB ∠为30︒,在点P 处看塑像顶部点A 的仰角APE ∠为60︒,点P 到塑像的水平距离PH 为6m .求塑像AB 的高(结果精确到0.1m 3 1.73≈).
41.
(2024·天津·中考真题)综合与实践活动中,要用测角仪测量天津海河上一座桥的桥塔AB 的高度(如图①).某学习小组设计了一个方案:如图②,点,,C D E 依次在同一条水平直线上,36m,DE EC AB =⊥,垂足为C .在D 处测得桥塔顶部B 的仰角(CDB ∠)为45︒,测得桥塔底部A 的俯角(CDA ∠)为6︒,又在E 处测得桥塔顶部B 的仰角(CEB ∠)为31︒.
(1)求线段CD 的长(结果取整数)
;(2)求桥塔AB 的高度(结果取整数)
.参考数据:tan310.6,tan60.1︒≈︒≈.42.
(2024·四川乐山·中考真题)我国明朝数学家程大位写过一本数学著作《直指算法统宗》,其中有一道与荡秋千有关的数学问题是使用《西江月》词牌写的:
平地秋千未起,踏板一尺离地.
送行二步与人齐,五尺人高曾记.
仕女佳人争蹴,终朝笑语欢嬉.
良工高士素好奇,算出索长有几?
词写得很优美,翻译成现代汉语的大意是:有一架秋千,当它静止时,踏板离地1尺,将它往前推进10尺(5尺为一步),秋千的踏板就和某人一样高,这个人的身高为5尺.(假设秋千的绳索拉的很直)
(1)如图1,请你根据词意计算秋千绳索OA 的长度;
(2)如图2,将秋千从与竖直方向夹角为α的位置OA '释放,秋千摆动到另一侧与竖直方向夹角为β的地方OA '',两次位置的高度差PQ h =.根据上述条件能否求出秋千绳索OA 的长度?如果能,请用含α、β和h 的式子表示;如果不能,请说明理由.
43.(2024·山东·中考真题)【实践课题】测量湖边观测点A 和湖心岛上鸟类栖息点P 之间的距离
【实践工具】皮尺、测角仪等测量工具
【实践活动】某班甲小组根据湖岸地形状况,在岸边选取合适的点B .测量A ,B 两点间的距离以及∠PAB 和PBA ∠,测量三次取平均值,得到数据:60AB =米,79PAB ∠=︒,64PBA ∠=︒.画出示意图,如图
【问题解决】(1)计算A ,P 两点间的距离.
(参考数据:sin640.90︒≈,sin790.98︒≈,cos790.19︒≈,sin370.60︒≈,tan370.75︒≈)
【交流研讨】甲小组回班汇报后,乙小组提出了另一种方案:
如图2,选择合适的点D ,E ,F ,使得A ,D ,E 在同一条直线上,且AD DE =,DEF DAP ∠=∠,当F ,D ,P 在同一条直线上时,只需测量EF 即可.
(2)乙小组的方案用到了________.(填写正确答案的序号)
①解直角三角形②三角形全等
【教师评价】甲、乙两小组的方案都很好,对于实际测量,要根据现场地形状况选择可实施的方案.
44.
(2024·北京·中考真题)如图,在四边形ABCD 中,E 是AB 的中点,DB ,CE 交于点F ,DF FB =,AF DC .
(1)求证:四边形AFCD 为平行四边形;
(2)若90EFB ∠=︒,tan 3FEB ∠=,1EF =,求BC 的长.
45.
(2024·甘肃临夏·中考真题)乾元塔(图1)位于临夏州临夏市的北山公园内,共九级,为砼框架式结构,造型独特别致,远可眺太子山露骨风月,近可收临夏市城建全貌,巍巍峨峨,傲立苍穹.某校数学兴趣小组在学习了“解直角三角形”之后,开展了测量乾元塔高度AB 的实践活动.A 为乾元塔的顶端,AB BC ⊥,点C ,D 在点B 的正东方向,在C 点用高度为1.6米的测角仪(即 1.6CE =米)测得A 点仰角为37︒,向西平移14.5米至点D ,测得A 点仰角为45︒,请根据测量数据,求乾元塔的高度AB .(结果保留整数,参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈)
46.
(2024·安徽·中考真题)科技社团选择学校游泳池进行一次光的折射实验,如图,光线自点B 处发出,经水面点E 折射到池底点A 处.已知BE 与水平线的夹角36.9α=︒,点B 到水面的距离 1.20BC =m ,点A 处水深为1.20m ,到池壁的水平距离 2.50m AD =,点B C D ,,在同一条竖直线上,所有点都在同一竖直平面内.记入射角为β,折射角为γ,求sin sin βγ
的值(精确到0.1,参考数据:sin 36.90.60︒≈,cos36.90.80︒≈,tan 36.90.75︒≈).
47.(2024·浙江·中考真题)如图,在ABC 中,AD BC ⊥,AE 是BC 边上的中线,
10,6,tan 1AB AD ACB ==∠=.
(1)求BC 的长;
(2)求sin DAE ∠的值.
48.(2024·甘肃·中考真题)习近平总书记于2021年指出,中国将力争2030年前实现碳达峰、2060年前实现碳中和.甘肃省风能资源丰富,风力发电发展迅速.某学习小组成员查阅资料得知,在风力发电机组中,“风电塔筒”非常重要,它的高度是一个重要的设计参数.于是小组成员开展了“测量风电塔筒高度”的实践活动.如图,已知一风电塔筒AH 垂直于地面,测角仪CD ,EF 在AH 两侧, 1.6m CD EF ==,点C 与点E 相距182m (点C ,H ,E 在同一条直线上),在D 处测得简尖顶点A 的仰角为45︒,在F 处测得筒尖顶点A 的仰角为53︒.求风电塔筒AH 的高度.(参考数据:sin 5345︒≈,cos5335︒≈,tan 5343
︒≈.)
49.(2024·河北·中考真题)中国的探月工程激发了同学们对太空的兴趣.某晚,淇淇在家透过窗户的最高点P 恰好看到一颗星星,此时淇淇距窗户的水平距离4m BQ =,仰角为α;淇淇向前走了3m 后到达点D ,透过点P 恰好看到月亮,仰角为β,如图是示意图.已知,淇淇的眼睛与水平地面BQ 的距离 1.6m ==AB CD ,点P 到BQ 的距离 2.6m PQ =,AC 的延长线交PQ 于点E .(注:图中所有点均在同一平面)
(1)求β的大小及tan α的值;
(2)求CP 的长及sin APC ∠的值.
50.(2024·四川广元·中考真题)计算:()2
012024π32tan 602-⎛⎫-++︒- ⎪⎝⎭.51.
(2024·四川广元·中考真题)小明从科普读物中了解到,光从真空射入介质发生折射时,入射角α的正弦值与折射角β的正弦值的比值
sin sin αβ
叫做介质的“绝对折射率”,简称“折射率”.它表示光在介质中传播时,介质对光作用的一种特征.
(1)若光从真空射入某介质,入射角为α,折射角为β,且7cos 4
α=30β=︒,求该介质的折射率;(2)现有一块与(1)中折射率相同的长方体介质,如图①所示,点A ,B ,C ,D 分别是长方体棱的中点,若光线经真空从矩形2121A D D A 对角线交点O 处射入,其折射光线恰好从点C 处射出.如图②,已知60α=︒,10cm CD =,求截面ABCD 的面积.
52.
(2024·内蒙古包头·中考真题)如图,学校数学兴趣小组开展“实地测量教学楼AB 的高度”的实践活动.教学楼周围是开阔平整的地面,可供使用的测量工具有皮尺、测角仪(皮尺的功能是直接测量任意可到达的两点间的距离;测角仪的功能是测量角的大小).
(1)请你设计测量教学楼AB 的高度的方案,方案包括画出测量平面图,把应测数据标记在所画的图形上(测出的距离用,m n 等表示,测出的角用,αβ等表示),并对设计进行说明;
(2)根据你测量的数据,计算教学楼AB 的高度(用字母表示).
53.(2024·甘肃·中考真题)马家窑文化以发达的彩陶著称于世,其陶质坚固,器表细腻,红、黑、白彩共用,彩绘线条流畅细致,图案繁缛多变,形成了绚丽典雅的艺术风格,创造了一大批令人惊叹的彩陶艺术精品,体现了古代劳动人民的智慧.如图1的彩陶纹样呈现的是三等分圆周,古人用等边三角形三点定位的方法确定圆周的三等分点,这种方法和下面三等分圆周的方法相通.如图2,已知O 和圆上一点M .作法如下:
①以点M 为圆心,OM 长为半径,作弧交O 于A ,B 两点;
②延长MO 交O 于点C ;
即点A ,B ,C 将O 的圆周三等分.
(1)请你依据以上步骤,用不带刻度的直尺和圆规在图2中将O 的圆周三等分(保留作图痕迹,不写作法);
(2)根据(1)画出的图形,连接AB ,AC ,BC ,若O 的半径为2cm ,则ABC 的周长为______cm .
54.(2024·黑龙江牡丹江·中考真题)如图,某数学活动小组用高度为1.5米的测角仪BC ,对垂直于地面CD 的建筑物AD 的高度进行测量,BC CD ⊥于点C .在B 处测得A 的仰角=45ABE ∠︒,然后将测角仪向建筑物方向水平移动6米至FG 处,FG CD ⊥于点G ,测得A 的仰角58AFE ∠=︒,BF 的延长线交AD 于点E ,求建筑物AD 的高度(结果保留小数点后一位).(参考数据:sin580.85,cos580.53,tan58 1.60︒≈︒≈︒≈)
55.(2024·广东·中考真题)中国新能源汽车为全球应对气候变化和绿色低碳转型作出了巨大贡献.为满足新能源汽车的充电需求,某小区增设了充电站,如图是矩形PQMN 充电站的平面示意图,矩形ABCD 是其中一个停车位.经测量,60ABQ ∠=︒, 5.4m AB =, 1.6m CE =,GH CD ⊥,GH 是另一个车位的宽,所
有车位的长宽相同,按图示并列划定.
根据以上信息回答下列问题:(结果精确到0.1m 3 1.73≈)
(1)求PQ 的长;
(2)该充电站有20个停车位,求PN 的长.
56.(2024·广东广州·中考真题)2024年6月2日,
嫦娥六号着陆器和上升器组合体(简称为“着上组合体”)成功着陆在月球背面.某校综合实践小组制作了一个“着上组合体”的模拟装置,在一次试验中,如图,该模拟装置在缓速下降阶段从A 点垂直下降到B 点,再垂直下降到着陆点C ,从B 点测得地面D 点的俯角为36.87︒,17AD =米,10BD =米.
(1)求CD 的长;
(2)若模拟装置从A 点以每秒2米的速度匀速下降到B 点,求模拟装置从A 点下降到B 点的时间.
(参考数据:sin 36.870.60︒≈,cos36.870.80︒≈,tan 36.870.75︒≈)
57.
(2024·青海·中考真题)如图,某种摄像头识别到最远点A 的俯角α是17︒,识别到最近点B 的俯角β是45︒,该摄像头安装在距地面5m 的点C 处,求最远点与最近点之间的距离AB (结果取整数,参考数据:sin170.29︒≈,cos170.96︒≈,tan170.31︒≈).
58.(2024·陕西·中考真题)问题提出
(1)如图1,在ABC 中,15AB =,30C ∠=︒,作ABC 的外接圆O .则 ACB 的长为________;(结果
保留π)
问题解决
(2)如图2所示,道路AB 的一侧是湿地.某生态研究所在湿地上建有观测点D ,E ,C ,线段AD AC ,和BC 为观测步道,其中点A 和点B 为观测步道出入口,已知点E 在AC 上,且AE EC =,60DAB ∠=︒,120ABC ∠=︒,1200m AB =,900m AD BC ==,现要在湿地上修建一个新观测点P ,使60DPC ∠=︒.再在线段AB 上选一个新的步道出入口点F ,并修通三条新步道PF PD PC ,,,使新步道PF 经过观测点E ,并将五边形ABCPD 的面积平分.
请问:是否存在满足要求的点P 和点F ?若存在,求此时PF 的长;若不存在,请说明理由.(点A ,B ,C ,P ,D 在同一平面内,道路AB 与观测步道的宽、观测点及出入口的大小均忽略不计,结果保留根号)。