一次函数易错题汇编

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数易错题汇编
一、选择题
1.如图,在平面直角坐标系中,OABC 的顶点A 在x 轴上,定点B 的坐标为(6,4),若直线经过定点(1,0),且将平行四边形OABC 分割成面积相等的两部分,则直线的表达式( )
A .+1y x =
B .4455y x =-
C .1y x =-
D .33y x =-
【答案】C
【解析】
【分析】 根据过平行四边形的中心的直线把平行四边形分成面积相等的两部分,先求出平行四边形中心的坐标,再利用待定系数法求一次函数解析式解答即可.
【详解】
∵点B 的坐标为(6,4),∴平行四边形的中心坐标为(3,2),
设直线l 的函数解析式为y kx b =+,
则320k b k b +=⎧⎨+=⎩,解得11
k b =⎧⎨=-⎩,所以直线l 的解析式为1y x =-. 故选:C .
【点睛】
本题考查了待定系数法求一次函数解析式,平行四边形的性质,熟练掌握过平行四边形的中心的直线把平行四边形分成面积相等的两部分是解题的关键.
2.给出下列函数:①y =﹣3x +2:②y =
3x ;③y =﹣5x
:④y =3x ,上述函数中符合条件“当x >1时,函数值y 随自变量x 增大而增大”的是( )
A .①③
B .③④
C .②④
D .②③
【答案】B
【解析】
【分析】
分别利用一次函数、正比例函数、反比例函数的增减性分析得出答案.
【详解】
解:①y =﹣3x +2,当x >1时,函数值y 随自变量x 增大而减小,故此选项不符合题意; ②y =3x
,当x >1时,函数值y 随自变量x 增大而减小,故此选项不符合题意; ③y =﹣5x
,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意; ④y =3x ,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意;
故选:B .
【点睛】
此题考查一次函数、正比例函数、反比例函数,正确把握相关性质是解题关键.
3.平面直角坐标系中,点(0,0)O 、(2,0)A 、(,2)B b b -+,当45ABO ∠<︒时,b 的取值范围为( )
A .0b <
B .2b <
C .02b <<
D .0b <或2b >
【答案】D
【解析】
【分析】
根据点B 的坐标特征得到点B 在直线y=-x+2上,由于直线y=-x+2与y 轴的交点Q 的坐标为(0,2),连结AQ ,以AQ 为直径作⊙P ,如图,易得∠AQO=45°,⊙P 与直线y=-x+2只有一个交点,根据圆外角的性质得到点B 在直线y=-x+2上(除Q 点外),有∠ABO 小于45°,所以b <0或b >2.
【详解】
解∵B 点坐标为(b ,-b+2),
∴点B 在直线y=-x+2上,
直线y=-x+2与y 轴的交点Q 的坐标为(0,2),连结AQ ,以AQ 为直径作⊙P ,如图, ∵A (2,0),
∴∠AQO=45°,
∴点B 在直线y=-x+2上(除Q 点外),有∠ABO 小于45°,
∴b 的取值范围为b <0或b >2.
故选D .
【点睛】
本题考查了一函数图象上点的坐标特征:一次函数y=kx+b ,(k≠0,且k ,b 为常数)的图
象是一条直线.它与x 轴的交点坐标是(b k
-,0);与y 轴的交点坐标是(0,b ).直线上任意一点的坐标都满足函数关系式y=kx+b .
4.若一次函数32y x =-+的图象与x 轴交于点A ,与y 轴交于点,B 则AOB V (O 为坐标原点)的面积为( )
A .32
B .2
C .23
D .3
【答案】C
【解析】
【分析】
根据直线解析式求出OA 、OB 的长度,根据面积公式计算即可.
【详解】
当32y x =-+中y=0时,解得x=
23,当x=0时,解得y=2, ∴A(23
,0),B(0,2), ∴OA=23
,OB=2, ∴1122223AOB S OA OB =
⋅=⨯⨯=V 23, 故选:C.
【点睛】
此题考查一次函数图象与坐标轴的交点坐标,正确理解交点坐标的计算方法是解题的关键.
5.已知正比例函数y=kx (k≠0)经过第二、四象限,点(k ﹣1,3k+5)是其图象上的点,
则k的值为()
A.3 B.5 C.﹣1 D.﹣3
【答案】C
【解析】
【分析】
把x=k﹣1,y=3k+5代入正比例函数y=kx解答即可.
【详解】
把x=k﹣1,y=3k+5代入正比例函数的y=kx,
可得:3k+5=k(k﹣1),
解得:k1=﹣1,k2=5,
因为正比例函数的y=kx(k≠0)的图象经过二,四象限,
所以k<0,
所以k=﹣1,
故选C.
【点睛】
本题考查了待定系数法求正比例函数的解析式,掌握正比例函数图象上的点的坐标都满足正比例函数的解析式是解题的关键.
6.一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发,设普通列车行驶的时间为x (小时),两车之间的距离为y (千米),如图中的折线表示y与x之间的函数关系,下列说法:①动车的速度是270千米/小时;②点B的实际意义是
两车出发后3小时相遇;③甲、乙两地相距1000千米;④普通列车从乙地到达甲地时间是9小时,其中不正确的有( )
A.1个B.2个C.3个D.4个
【答案】B
【解析】
【分析】
由x=0时y=1000可判断③;由运动过程和函数图像关系可判断②;求出普通列车速度,设动车的速度为x千米/小时,根据“动车3小时行驶的路程+普通列车3小时行驶的路程=1000”列方程求解可判断①;根据x=12时的实际意义可判断④.
【详解】
解:③由x=0时,y=1000知,甲地和乙地相距1000千米,正确;
②如图,出发后3小时,两车之间的距离为0,可知点B 的实际意义是两车出发后3小时相遇,正确;
①普通列车的速度是
100012=2503
千米/小时, 设动车的速度为x 千米/小时, 根据题意,得:3x+3×
2503
=1000, 解得:x=250,
动车的速度为250千米/小时,错误;
④由图象知x=t 时,动车到达乙地,
∴x=12时,普通列车到达甲地,
即普通列车到达终点共需12小时,错误;
故选B.
【点睛】
本题主要考查一次函数的应用,根据题意弄懂函数图象中各拐点坐标的实际意义及行程问题中蕴含的相等关系是解题的关键.
7.若一个正比例函数的图象经过A (3,﹣6),B (m ,﹣4)两点,则m 的值为( ) A .2
B .8
C .﹣2
D .﹣8
【答案】A
【解析】
试题分析:设正比例函数解析式为:y=kx ,将点A (3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x ,将B (m ,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选A .
考点:一次函数图象上点的坐标特征.
8.如图,把 Rt ABC ∆放在直角坐标系内,其中 90CAB ∠=o ,5BC =,点 A 、B 的坐标分别为(1,0)、(4,0),将ABC ∆沿x 轴向右平移,当点 C 落在直线26y x =-上是,线段BC 扫过的面积为( )
A.4B.8C.16D.8
【答案】C
【解析】
【分析】
根据题目提供的点的坐标求得点C的坐标,当向右平移时,点C的纵坐标不变,代入直线求得点C的横坐标,进而求得其平移的距离,计算平行四边形的面积即可.
【详解】
∵点A、B的坐标分别为(1,0)、(4,0),
∴AB=3,BC=5,
∵∠CAB=90°,
∴AC=4,
∴点C的坐标为(1,4),
当点C落在直线y=2x-6上时,
∴令y=4,得到4=2x-6,
解得x=5,
∴平移的距离为5-1=4,
∴线段BC扫过的面积为4×4=16,
故选C.
【点睛】
本题考查了一次函数与几何知识的应用,解题关键是题中运用圆与直线的关系以及直角三角形等知识求出线段的长.
9.将直线21y x =+向下平移n 个单位长度得到新直线21y x =-,则n 的值为( ) A .2-
B .1-
C .1
D .2 【答案】D
【解析】
【分析】
直接根据“上加下减”的原则进行解答即可.
【详解】
解:由“上加下减”的原则可知:直线y=2x+1向下平移n 个单位长度,得到新的直线的解析式是y=2x+1-n ,则1-n=-1,
解得n=2.
故选:D .
【点睛】
本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.
10.如图,直线y=kx+b (k≠0)经过点A (﹣2,4),则不等式kx+b >4的解集为( )
A .x >﹣2
B .x <﹣2
C .x >4
D .x <4
【答案】A
【解析】 【分析】求不等式kx+b >4的解集就是求函数值大于4时,自变量的取值范围,观察图象即可得.
【详解】由图象可以看出,直线y=4上方函数图象所对应自变量的取值为x>-2, ∴不等式kx+b >4的解集是x>-2,
故选A .
【点睛】本题考查了一次函数与一元一次不等式;观察函数图象,比较函数图象的高低(即比较函数值的大小),确定对应的自变量的取值范围.也考查了数形结合的思想.
11.下列各点在一次函数y=2x ﹣3的图象上的是( )
A .( 2,3)
B .(2,1)
C .(0,3)
D .(3,0
【答案】B
【解析】
【分析】
把各点分别代入一次函数y=2x﹣3进行检验即可.
【详解】
A、2×2﹣3=1≠3,原式不成立,故本选项错误;
B、2×2﹣3=1,原式成立,故本选项正确;
C、2×0﹣3=﹣3≠3,原式不成立,故本选项错误;
D、2×3﹣3=3≠0,原式不成立,故本选项错误,
故选B.
【点睛】
本题考查了一次函数图象上点的坐标特征,熟知一次函数图象上的点的坐标满足一次函数的解析式是解题的关键.解答时只要把四个选项一一代入进行检验即可.
12.一次函数y=(m﹣2)x n﹣1+3是关于x的一次函数,则m,n的值为()
A.m≠2,n=2 B.m=2,n=2 C.m≠2,n=1 D.m=2,n=1
【答案】A
【解析】
【分析】
直接利用一次函数的定义分析得出答案.
【详解】
解:∵一次函数y=(m-2)x n-1+3是关于x的一次函数,
∴n-1=1,m-2≠0,
解得:n=2,m≠2.
故选A.
【点睛】
此题主要考查了一次函数的定义,正确把握系数和次数是解题关键.
13.如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点A3作y轴的垂线交l2于点A4,…,依次进行下去,则点A2019的坐标为()
A.(21009,21010)B.(﹣21009,21010)
C.(21009,﹣21010)D.(﹣21009,﹣21010)
【答案】D
【解析】
【分析】
写出一部分点的坐标,探索得到规律A2n+1[(﹣2)n,2×(﹣2)n](n是自然数),即可求解;
【详解】
A1(1,2),A2(﹣2,2),A3(﹣2,﹣4),A4(4,﹣4),A5(4,8),…
由此发现规律:
A2n+1[(﹣2)n,2×(﹣2)n](n是自然数),
2019=2×1009+1,
∴A2019[(﹣2)1009,2×(﹣2)1009],
∴A2019(﹣21009,﹣21010),
故选D.
【点睛】
本题考查一次函数图象上点的特点;能够根据作图特点,发现坐标的规律是解题的关键.
14.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂重物的质量x(kg)有下面的关系,那么弹簧总长y(cm)与所挂重物x(kg)之间的关系式为()
A.y=0.5x+12 B.y=x+10.5 C.y=0.5x+10 D.y=x+12
【答案】A
【解析】
分析:由上表可知12.5-12=0.5,13-12.5=0.5,13.5-13=0.5,14-13.5=0.5,14.5-14=0.5,15-14.5=0.5,0.5为常量,12也为常量.故弹簧总长y(cm)与所挂重物x(㎏)之间的函数关系式.
详解:由表可知:常量为0.5;
所以,弹簧总长y(cm)与所挂重物x(㎏)之间的函数关系式为y=0.5x+12.
故选A.
点睛:本题考查了函数关系,关键在于根据图表信息列出等式,然后变形为函数的形式.
15.如图,已知正比例函数y 1=ax 与一次函数y 2=12
x +b 的图象交于点P .下面有四个结论:①a <0; ②b <0; ③当x >0时,y 1>0;④当x <﹣2时,y 1>y 2.其中正确的是( )
A .①②
B .②③
C .①③
D .①④
【答案】D
【解析】
【分析】 根据正比例函数和一次函数的性质判断即可.
【详解】
因为正比例函数y 1=ax 经过二、四象限,所以a <0,①正确;
一次函数212
y x b =
+ \过一、二、三象限,所以b >0,②错误; 由图象可得:当x >0时,y 1<0,③错误;
当x <−2时,y 1>y 2,④正确;
故选D.
【点睛】 考查一次函数的图象与系数的关系,一次函数与不等式,熟练掌握和灵活运用相关知识是解题的关键.
16.如图,已知直线1y x b =+与21y kx =-相交于点P ,点P 的横坐标为1-,则关于x 的不等式1x b kx +≤-的解集在数轴上表示正确的是( ).
A .
B .
C.D.
【答案】D
【解析】
试题解析:当x>-1时,x+b>kx-1,
即不等式x+b>kx-1的解集为x>-1.
故选A.
考点:一次函数与一元一次不等式.
17.在平面直角坐标系中,已知直线与轴、轴分别交于、两点,点是轴上一动点,要使点关于直线的对称点刚好落在轴上,则此时点的坐标是()A.B.C.D.
【答案】B
【解析】
【分析】
过C作CD⊥AB于D,先求出A,B的坐标,分别为(4,0),(0,3),得到AB的长,再根据折叠的性质得到AC平分∠OAB,得到CD=CO=n,DA=OA=4,则DB=5-4=1,BC=3-n,在Rt△BCD中,利用勾股定理得到n的方程,解方程求出n即可.
【详解】
过C作CD⊥AB于D,如图,
对于直线,
当x=0,得y=3;
当y=0,x=4,
∴A(4,0),B(0,3),即OA=4,OB=3,
∴AB=5,
又∵坐标平面沿直线AC折叠,使点B刚好落在x轴上,
∴AC平分∠OAB,
∴CD=CO=n,则BC=3-n,
∴DA=OA=4,
∴DB=5-4=1,
在Rt △BCD 中,DC 2+BD 2=BC 2,
∴n 2+12=(3-n )2,解得n=,
∴点C 的坐标为(0,).
故选B.
【点睛】
本题考查了一次函数图象与几何变换:直线y=kx+b ,(k≠0,且k ,b 为常数),关于x 轴对称,横坐标不变,纵坐标是原来的相反数;关于y 轴对称,纵坐标不变,横坐标是原来的相反数;关于原点轴对称,横、纵坐标都变为原来的相反数.也考查了折叠的性质和勾股定理.
18.对于一次函数24y x =-+,下列结论正确的是( )
A .函数值随自变量的增大而增大
B .函数的图象不经过第一象限
C .函数的图象向下平移4个单位长度得2y x =-的图象
D .函数的图象与x 轴的交点坐标是()0,4
【答案】C
【解析】
【分析】
根据一次函数的系数结合一次函数的性质,即可得知A 、B 选项不正确,代入y=0求出与之对应的x 值,即可得出D 不正确,根据平移的规律求得平移后的解析式,即可判断C 正确,此题得解.
【详解】
解:A 、∵k=-2<0,
∴一次函数中y 随x 的增大而减小,故 A 不正确;
B 、∵k=-2<0,b=4>0,
∴一次函数的图象经过第一、二、四象限,故B 不正确;
C 、根据平移的规律,函数的图象向下平移4个单位长度得到的函数解析式为y=-2x+4-4,即y=-2x ,
故C 正确;
D 、令y=-2x+4中y=0,则x=2,
∴一次函数的图象与x 轴的交点坐标是(2,0)故D 不正确.
故选:C .
【点睛】
此题考查一次函数的图象以及一次函数的性质,解题的关键是逐条分析四个选项.本题属于基础题,难度不大,解决该题时,熟悉一次函数的性质、一次函数图象上点的坐标特征
以及一次函数图象与系数的关系是解题的关键.
19.如图,经过点B (﹣2,0)的直线y =kx +b 与直线y =4x +2相交于点A (﹣1,﹣2),4x +2<kx +b <0的解集为( )
A .x <﹣2
B .﹣2<x <﹣1
C .x <﹣1
D .x >﹣1
【答案】B
【解析】
【分析】 由图象得到直线y=kx+b 与直线y=4x+2的交点A 的坐标(-1,-2)及直线y=kx+b 与x 轴的交点坐标,观察直线y=4x+2落在直线y=kx+b 的下方且直线y=kx+b 落在x 轴下方的部分对应的x 的取值即为所求.
【详解】
∵经过点B (﹣2,0)的直线y =kx +b 与直线y =4x +2相交于点A (﹣1,﹣2),
∴直线y =kx +b 与直线y =4x +2的交点A 的坐标为(﹣1,﹣2),直线y =kx +b 与x 轴的交点坐标为B (﹣2,0),
又∵当x <﹣1时,4x +2<kx +b ,
当x >﹣2时,kx +b <0,
∴不等式4x +2<kx +b <0的解集为﹣2<x <﹣1.
故选B .
【点睛】
本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.
20.如图,在同一直角坐标系中,函数13y x =和22y x m =-+的图象相交于点A ,则不等式210y y <<的解集是( )
A .01x <<
B .502x <<
C .1x >
D .512
x << 【答案】D
【解析】
【分析】 先利用y 1=3x 得到A(1,3),再求出m 得到y 2═-2x+5,接着求出直线y 2═-2x+m 与x 轴的交点坐标为(
52,0),然后写出直线y 2═-2x+m 在x 轴上方和在直线y 1=3x 下方所对应的自变量的范围
【详解】
当x=1时,y=3x=3,
∴A(1,3),
把A(1,3)代入y 2═−2x+m 得−2+m=3,
解得m=5,
∴y 2═−2x+5,
解方程−2x+5=0,解得x=52
, 则直线y 2═−2x+m 与x 轴的交点坐标为(
52,0), ∴不等式0<y 2<y 1的解集是1<x<
52
故选:D
【点睛】 本题考查了一次函数与一元一次不等式,会观察一次函数图象.。

相关文档
最新文档