木兰县第二中学2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

木兰县第二中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 已知角α的终边经过点(sin15,cos15)-,则2
cos α的值为( )
A .
12+
B .12 C. 34 D .0 2. 设集合M={(x ,y )|x 2+y 2=1,x ∈R ,y ∈R},N={(x ,y )|x 2﹣y=0,x ∈R ,y ∈R},则集合M ∩N 中元素的个数为( ) A .1
B .2
C .3
D .4
3. 现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求取出的这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为( )
A .232
B .252
C .472
D .484
4. 以下四个命题中,真命题的是( ) A .(0,)x π∃∈,sin tan x x =
B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<
C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数
D .ABC ∆中,“sin sin cos cos A B A B +=+”是“2
C π
=
”的充要条件
【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.
5. 已知向量=(1,n ),=(﹣1,n ﹣2),若与共线.则n 等于( )
A .1
B .
C .2
D .4
6. 把函数y=sin (2x ﹣)的图象向右平移
个单位得到的函数解析式为( )
A .y=sin (2x ﹣
) B .y=sin (2x+

C .y=cos2x
D .y=﹣sin2x
7. 已知正三棱柱111ABC A B C -的底面边长为4cm ,高为10cm ,则一质点自点A 出发,沿着三棱 柱的侧面,绕行两周到达点1A 的最短路线的长为( )
A .16cm
B .
C .
D .26cm
8.将n2个正整数1、2、3、…、n2(n≥2)任意排成n行n列的数表.对于某一个数表,计算某行或某列中
的任意两个数a、b(a>b)的比值,称这些比值中的最小值为这个数表的“特征值”.当n=2时,数表的所有可能的“特征值”的最大值为()
A.B.C.2 D.3
9.数列1,﹣4,7,﹣10,13,…,的通项公式a n为()
A.2n﹣1 B.﹣3n+2 C.(﹣1)n+1(3n﹣2)D.(﹣1)n+13n﹣2
10.在平面直角坐标系中,把横、纵坐标均为有理数的点称为有理点.若a为无理数,则在过点P(a,﹣)的所有直线中()
A.有无穷多条直线,每条直线上至少存在两个有理点
B.恰有n(n≥2)条直线,每条直线上至少存在两个有理点
C.有且仅有一条直线至少过两个有理点
D.每条直线至多过一个有理点
11.在△ABC中,b=,c=3,B=30°,则a=()
A.B.2C.或2D.2
12.在正方体ABCD﹣A1B1C1D1中,点E为底面ABCD上的动点.若三棱锥B﹣D1EC的表面积最大,则E 点位于()
A.点A处B.线段AD的中点处
C.线段AB的中点处D.点D处
二、填空题
13.设A={x|x≤1或x≥3},B={x|a≤x≤a+1},A∩B=B,则a的取值范围是.
14.抛物线y2=8x上到顶点和准线距离相等的点的坐标为.
15.下列命题:
①函数y=sinx和y=tanx在第一象限都是增函数;
②若函数f(x)在[a,b]上满足f(a)f(b)<0,函数f(x)在(a,b)上至少有一个零点;
③数列{a n}为等差数列,设数列{a n}的前n项和为S n,S10>0,S11<0,S n最大值为S5;
④在△ABC中,A>B的充要条件是cos2A<cos2B;
⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强.
其中正确命题的序号是(把所有正确命题的序号都写上).
16.在区间[﹣2,3]上任取一个数a,则函数f(x)=x3﹣ax2+(a+2)x有极值的概率为.17.多面体的三视图如图所示,则该多面体体积为(单位cm).
18.把函数y=sin2x的图象向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵
坐标不变),所得函数图象的解析式为.
三、解答题
19.如图,边长为2的正方形ABCD绕AB边所在直线旋转一定的角度(小于180°)到ABEF的位置.(Ⅰ)求证:CE∥平面ADF;
(Ⅱ)若K为线段BE上异于B,E的点,CE=2.设直线AK与平面BDF所成角为φ,当30°≤φ≤45°时,
求BK的取值范围.
20.设函数,若对于任意x∈[﹣1,2]都有f(x)<m成立,求实数m的取值范围.
21.巳知二次函数f(x)=ax2+bx+c和g(x)=ax2+bx+c•lnx(abc≠0).
(Ⅰ)证明:当a<0时,无论b为何值,函数g(x)在定义域内不可能总为增函数;
(Ⅱ)在同一函数图象上取任意两个不同的点A(x1,y1),B(x2,y2),线段AB的中点C(x0,y0),记直线AB的斜率为k若f(x)满足k=f′(x0),则称其为“K函数”.判断函数f(x)=ax2+bx+c与g(x)=ax2+bx+c•lnx 是否为“K函数”?并证明你的结论.
22.已知圆C :(x ﹣1)2+y 2
=9内有一点P (2,2),过点P 作直线l 交圆C 于A ,B 两点. (1)当l 经过圆心C 时,求直线l 的方程;
(2)当弦AB 被点P 平分时,求直线l 的方程.
23.设函数f (x )=ax 2+bx+c (a ≠0)为奇函数,其图象在点(1,f (1))处的切线与直线x ﹣6y ﹣7=0垂直,导函数
f ′(x )的最小值为﹣12. (1)求a ,b ,c 的值;
(2)求函数f (x )的单调递增区间,并求函数f (x )在[﹣1,3]上的最大值和最小值.
24.(本题满分15分)
正项数列}{n a 满足12
1223+++=+n n n n a a a a ,11=a .
(1)证明:对任意的*
N n ∈,12+≤n n a a ;
(2)记数列}{n a 的前n 项和为n S ,证明:对任意的*
N n ∈,32121
<≤-
-n n S .
【命题意图】本题考查数列的递推公式与单调性,不等式性质等基础知识,意在考查推理论证能力,分析和解决问题的能力.
木兰县第二中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】B
【解析】
考点:1、同角三角函数基本关系的运用;2、两角和的正弦函数;3、任意角的三角函数的定义.
2.【答案】B
【解析】解:根据题意,M∩N={(x,y)|x2+y2=1,x∈R,y∈R}∩{(x,y)|x2﹣y=0,x∈R,y∈R}═{(x,y)
|}
将x2﹣y=0代入x2+y2=1,
得y2+y﹣1=0,△=5>0,
所以方程组有两组解,
因此集合M∩N中元素的个数为2个,
故选B.
【点评】本题既是交集运算,又是函数图形求交点个数问题
3.【答案】
C
【解析】【专题】排列组合.
【分析】不考虑特殊情况,共有种取法,其中每一种卡片各取三张,有种取法,两种红色卡片,共有
种取法,由此可得结论.
【解答】解:由题意,不考虑特殊情况,共有种取法,其中每一种卡片各取三张,有种取法,两种红
色卡片,共有种取法,
故所求的取法共有﹣﹣=560﹣16﹣72=472
故选C.
【点评】本题考查组合知识,考查排除法求解计数问题,属于中档题.
4.【答案】D
5.【答案】A
【解析】解:∵向量=(1,n),=(﹣1,n﹣2),且与共线.
∴1×(n﹣2)=﹣1×n,解之得n=1
故选:A
6.【答案】D
【解析】解:把函数y=sin(2x﹣)的图象向右平移个单位,
所得到的图象的函数解析式为:y=sin[2(x﹣)﹣]=sin(2x﹣π)=﹣sin2x.
故选D.
【点评】本题是基础题,考查三角函数的图象平移,注意平移的原则:左右平移x加与减,上下平移,y的另一侧加与减.
7.【答案】D
【解析】
考点:多面体的表面上最短距离问题.
【方法点晴】本题主要考查了多面体和旋转体的表面上的最短距离问题,其中解答中涉及到多面体与旋转体的侧面展开图的应用、直角三角形的勾股定理的应用等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,学生的空间想象能力、以及转化与化归思想的应用,试题属于基础题.
8.【答案】B
【解析】解:当n=2时,这4个数分别为1、2、3、4,排成了两行两列的数表,
当1、2同行或同列时,这个数表的“特征值”为;
当1、3同行或同列时,这个数表的特征值分别为或;
当1、4同行或同列时,这个数表的“特征值”为或,
故这些可能的“特征值”的最大值为.
故选:B.
【点评】题考查类比推理和归纳推理,属基础题.
9.【答案】C
【解析】解:通过观察前几项可以发现:数列中符号是正负交替,每一项的符号为(﹣1)n+1,绝对值为3n ﹣2,故通项公式a n=(﹣1)n+1(3n﹣2).
故选:C.
10.【答案】C
【解析】解:设一条直线上存在两个有理点A(x1,y1),B(x2,y2),
由于也在此直线上,
所以,当x1=x2时,有x1=x2=a为无理数,与假设矛盾,此时该直线不存在有理点;
当x1≠x2时,直线的斜率存在,且有,
又x2﹣a为无理数,而为有理数,
所以只能是,且y2﹣y1=0,
即;
所以满足条件的直线只有一条,且直线方程是;
所以,正确的选项为C.
故选:C.
【点评】本题考查了新定义的关于直线方程与直线斜率的应用问题,解题的关键是理解新定义的内容,寻找解题的途径,是难理解的题目.
11.【答案】C
【解析】解:∵b=,c=3,B=30°,
∴由余弦定理b2
=a2+c2﹣2accosB,可得:3=9+a2﹣3,整理可得:a2﹣3a+6=0,
∴解得:a=或2.
故选:C.
12.【答案】A
【解析】解:如图,
E为底面ABCD上的动点,连接BE,CE,D1E,
对三棱锥B﹣D1EC,无论E在底面ABCD上的何位置,
面BCD1的面积为定值,
要使三棱锥B﹣D1EC的表面积最大,则侧面BCE、CAD1、BAD1的面积和最大,
而当E与A重合时,三侧面的面积均最大,
∴E点位于点A处时,三棱锥B﹣D1EC的表面积最大.
故选:A.
【点评】本题考查了空间几何体的表面积,考查了数形结合的解题思想方法,是基础题.
二、填空题
13.【答案】a≤0或a≥3.
【解析】解:∵A={x|x≤1或x≥3},B={x|a≤x≤a+1},且A∩B=B,
∴B⊆A,
则有a+1≤1或a≥3,
解得:a≤0或a≥3,
故答案为:a≤0或a≥3.
14.【答案】(1,±2).
【解析】解:设点P坐标为(a2,a)
依题意可知抛物线的准线方程为x=﹣2
a2+2=,求得a=±2
∴点P的坐标为(1,±2)
故答案为:(1,±2).
【点评】本题主要考查了两点间的距离公式、抛物线的简单性质,属基础题.
15.【答案】②③④⑤
【解析】解:①函数y=sinx和y=tanx在第一象限都是增函数,不正确,取x=,,但是
,,因此不是单调递增函数;
②若函数f(x)在[a,b]上满足f(a)f(b)<0,函数f(x)在(a,b)上至少有一个零点,正确;
③数列{a n}为等差数列,设数列{a n}的前n项和为S n,S10>0,S11<0,∴=5(a6+a5)>0,
=11a6<0,
∴a5+a6>0,a6<0,∴a5>0.因此S n最大值为S5,正确;
④在△ABC中,cos2A﹣cos2B=﹣2sin(A+B)sin(A﹣B)=2sin(A+B)sin(B﹣A)<0⇔A>B,因此正确;
⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强,正确.
其中正确命题的序号是②③④⑤.
【点评】本题综合考查了三角函数的单调性、函数零点存在判定定理、等差数列的性质、两角和差化积公式、线性回归分析,考查了推理能力与计算能力,属于难题.
16.【答案】.
【解析】解:在区间[﹣2,3]上任取一个数a,
则﹣2≤a≤3,对应的区间长度为3﹣(﹣2)=5,
若f(x)=x3﹣ax2+(a+2)x有极值,
则f'(x)=x2﹣2ax+(a+2)=0有两个不同的根,
即判别式△=4a2﹣4(a+2)>0,
解得a>2或a<﹣1,
∴﹣2≤a<﹣1或2<a≤3,
则对应的区间长度为﹣1﹣(﹣2)+3﹣2=1+1=2,
∴由几何概型的概率公式可得对应的概率P=,
故答案为:
【点评】本题主要考查几何概型的概率的计算,利用函数取得极值的条件求出对应a的取值范围是解决本题的关键.
17.【答案】cm3.
【解析】解:如图所示,
由三视图可知:
该几何体为三棱锥P﹣ABC.
该几何体可以看成是两个底面均为△PCD,高分别为AD和BD的棱锥形成的组合体,
由几何体的俯视图可得:△PCD的面积S=×4×4=8cm2,
由几何体的正视图可得:AD+BD=AB=4cm,
故几何体的体积V=×8×4=cm3,
故答案为:cm3
【点评】本题考查由三视图求几何体的体积和表面积,根据已知的三视图分析出几何体的形状是关键.18.【答案】y=cosx.
【解析】解:把函数y=sin2x的图象向左平移个单位长度,得,即y=cos2x的图象,把y=cos2x
的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y=cosx的图象;
故答案为:y=cosx.
三、解答题
19.【答案】
【解析】解:(Ⅰ)证明:正方形ABCD中,CD BA,正方形ABEF中,EF BA.…
∴EF CD,∴四边形EFDC为平行四边形,∴CE∥DF.…
又DF⊂平面ADF,CE⊄平面ADF,∴CE∥平面ADF.…
(Ⅱ)解:∵BE=BC=2,CE=,∴CE2
=BC2+BE2.
∴△BCE为直角三角形,BE⊥BC,…
又BE⊥BA,BC∩BA=B,BC、BA⊂平面ABCD,∴BE⊥平面ABCD.…
以B为原点,、、的方向分别为x轴、y轴、z轴的正方向,建立空间直角坐标系,则B(0,0,0),
F(0,2,2),A(0,2,0),=(2,2,0),=(0,2,2).
设K(0,0,m),平面BDF的一个法向量为=(x,y,z).
由,,得可取=(1,﹣1,1),…
又=(0,﹣2,m),于是sinφ==,
∵30°≤φ≤45°,∴,即…
结合0<m<2,解得0,即BK的取值范围为(0,4﹣].…
【点评】本小题主要考查空间直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力、抽象概括能力、推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想.
20.【答案】
【解析】解:∵,
∴f′(x)=3x2﹣x﹣2=(3x+2)(x﹣1),
∴当x∈[﹣1,﹣),(1,2]时,f′(x)>0;
当x∈(﹣,1)时,f′(x)<0;
∴f(x)在[﹣1,﹣),(1,2]上单调递增,在(﹣,1)上单调递减;
且f(﹣)=﹣﹣×+2×+5=5+,f(2)=8﹣×4﹣2×2+5=7;
故f max(x)=f(2)=7;
故对于任意x∈[﹣1,2]都有f(x)<m成立可化为7<m;
故实数m的取值范围为(7,+∞).
【点评】本题考查了导数的综合应用及恒成立问题的处理方法,属于中档题.
21.【答案】
【解析】解:(Ⅰ)证明:如果g(x)是定义域(0,+∞)上的增函数,
则有g′(x)=2ax+b+=>0;
从而有2ax2+bx+c>0对任意x∈(0,+∞)恒成立;
又∵a<0,则结合二次函数的图象可得,2ax2+bx+c>0对任意x∈(0,+∞)恒成立不可能,故当a<0时,无论b为何值,函数g(x)在定义域内不可能总为增函数;
(Ⅱ)函数f(x)=ax2+bx+c是“K函数”,g(x)=ax2+bx+c•lnx不是“K函数”,
事实上,对于二次函数f(x)=ax2+bx+c,
k==a(x1+x2)+b=2ax0+b;
又f′(x0)=2ax0+b,
故k=f′(x0);
故函数f(x)=ax2+bx+c是“K函数”;
对于函数g(x)=ax2+bx+c•lnx,
不妨设0<x1<x2,则k==2ax0+b+;
而g′(x0)=2ax0+b+;
故=,化简可得,
=;
设t=,则0<t<1,lnt=;
设s(t)=lnt﹣;则s′(t)=>0;
则s(t)=lnt﹣是(0,1)上的增函数,
故s(t)<s(1)=0;
则lnt≠;
故g(x)=ax2+bx+c•lnx不是“K函数”.
【点评】本题考查了导数的综合应用及学生对新定义的接受能力,属于中档题.
22.【答案】
【解析】
【分析】(1)求出圆的圆心,代入直线方程,求出直线的斜率,即可求直线l的方程;
(2)当弦AB被点P平分时,求出直线的斜率,即可写出直线l的方程;
【解答】解:(1)已知圆C:(x﹣1)2+y2=9的圆心为C(1,0),因为直线l过点P,C,所以直线l的斜率为2,所以直线l的方程为y=2(x﹣1),即2x﹣y﹣2=0.
(2)当弦AB被点P平分时,l⊥PC,直线l的方程为,即x+2y﹣6=0.
23.【答案】
【解析】解:(1)∵f(x)为奇函数,
∴f(﹣x)=﹣f(x),即﹣ax3﹣bx+c=﹣ax3﹣bx﹣c,∴c=0.
∵f′(x)=3ax2+b的最小值为﹣12,∴b=﹣12.
又直线x﹣6y﹣7=0的斜率为,则f′(1)=3a+b=﹣6,得a=2,
∴a=2,b=﹣12,c=0;
(2)由(1)知f(x)=2x3﹣12x,∴f′(x)=6x2﹣12=6(x+)(x﹣),


∵f(﹣1)=10,f()=﹣8,f(3)=18,
∴f(x)在[﹣1,3]上的最大值是f(3)=18,最小值是f()=﹣8.
24.【答案】(1)详见解析;(2)详见解析.。

相关文档
最新文档