七年级数学上册 一元一次方程检测题(Word版 含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学一元一次方程解答题压轴题精选(难)
1.如图,动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,运动到3秒钟时,两点相距15个单位长度.已知动点A、B的运动速度比之是3∶2(速度单位:1个单位长度/秒).
(1)求两个动点运动的速度;
(2)A、B两点运动到3秒时停止运动,请在数轴上标出此时A、B两点的位置;
(3)若A、B两点分别从(2)中标出的位置再次同时开始在数轴上运动,运动的速度不变,运动的方向不限,问:运动到几秒钟时,A、B两点之间相距4个单位长度?
【答案】(1)解:设点B的速度为2x个单位长度/秒,则点A的速度为3x个单位长度/秒,
根据题意得:3×(2x+3x)=15,
解得:x=1,
∴3x=3,2x=2,
答:动点A的运动速度为3个单位长度/秒,动点B的运动速度为2个单位长度/秒;
(2)解:3×3=9,2×3=6,
∴运动到3秒钟时,点A表示的数为﹣9,点B表示的数为6;
(3)解:设运动的时间为t秒,
当A、B两点向数轴正方向运动时,有|3t﹣2t﹣15|=4,
解得:t1=11,t2=19;
当A、B两点相向而行时,有|15﹣3t﹣2t|=4,
解得:t3= 或t4= ,
答:经过、、11或19秒,A、B两点之间相距4个单位长度.
【解析】【分析】(1)根据已知:动点A、B的运动速度比之是3∶2,因此设点B的速度为2x个单位长度/秒,则点A的速度为3x个单位长度/秒,根据两点相距15,列方程,求解即可。

(2)根据两点的运动速度,就快求出A、B两点运动到3秒时停止运动,就可得出它们的位置。

(3)设运动的时间为t秒,分两种情况:当A、B两点向数轴正方向运动时;当A、B两点相向而行时,分别根据A、B两点之间相距4个单位长度,列方程求出t的值。

2.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,
(1)写出数轴上点B表示的数________;
(2)|5-3|表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如|x-3|的几何意义是数轴上表示有理数3的点与表示有理数x的点之间的距离.试探索:
①:若|x-8|=2,则x =________.②:|x+12|+|x-8|的最小值为________.
(3)动点P从O点出发,以每秒5个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,A,P两点之间的距离为2;
(4)动点P,Q分别从O,B两点,同时出发,点P以每秒5个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,P,Q之间的距离为4.
【答案】(1)﹣12
(2)6或10;0
(3)1.2或2
(4)3.2或1.6
【解析】【解答】(1)数轴上B表示的数为8-20=﹣12;
(2)①因为互为相反数的两个数绝对值相同,所以由│x-8│=2可得x-8=2或﹣(x-8)=2,解得x=6或10;
②因为绝对值最小的数是0,所以│x+12│+│x-8│的最小值是0;
(3)根据│A点在数轴上的位置-t秒后P点在数轴上的位置│=A、P两点间的距离列式得│8-5t│=2,因为互为相反数的两个数绝对值相同,所以8-5t=2或﹣(8-5t)=2,解得t=1.2或2;
(4)根据t秒后Q点在数轴上的位置-t秒后P点在数轴上的位置│=t秒后P,Q的距离列式得│﹣12+10t-5t│=4,因为互为相反数的两个数绝对值相同,所以﹣12+10t-5t=4或﹣(﹣12+10t-5t)=4,解得t=3.2或1.6.
【分析】(1)抓住已知条件:B是数轴上位于点A左侧一点,且AB=20,且点A表示的数是8,就可求出OB的长,从而可得出点B表示的数。

(2)①根据|x-8|=2,可得出x-8=±2,解方程即可求出x的值;根据因为绝对值最小的数是0,因此可得出│x+12│+│x-8│的最小值是0。

(3)根据A,P两点之间的距离为2,可列出方程│8-5t│=2,再解方程求出t的值。

(4)根据t秒后Q点在数轴上的位置-t秒后P点在数轴上的位置│=t秒后P,Q的距离,可得出方程│﹣12+10t-5t│=4,再利用绝对值等于4的是为±4,可列出﹣12+10t-
5t=±4,解方程求出t的值即可。

3.如图,数轴上有、、、四个点,分别对应,,,四个数,其中,,与互为相反数,
(1)求,的值;
(2)若线段以每秒3个单位的速度,向右匀速运动,当 ________时,点与点重合,当 ________时,点与点重合;
(3)若线段以每秒3个单位的速度向右匀速运动的同时,线段以每秒2个单位的速度向左匀速运动,则线段从开始运动到完全通过所需时间多少秒?
(4)在(3)的条件下,当点运动到点的右侧时,是否存在时间,使点与点的距离是点与点的距离的4倍?若存在,请求出值,若不存在,请说明理由.
【答案】(1)解:由题意得:

∴,
∴,
(2)8;
(3)解:秒后,点表示的数为,点表示的数为
∵重合

解得 .
∴线段从开始运动到完全通过所需要的时间是6秒
(4)解:①当点在的左侧时


解得
②当点在的右侧时


解得:
所以当或时,
【解析】【解答】(2)若线段以每秒3个单位的速度,
则A点表示为-10+3t, B点表示为-8+3t,
点与点重合时,-10+3t=14
解得t=8
点与点重合时,-8+3t=20
解得t=
故填:8;;
【分析】(1)由与|d−20|互为相反数,求出c与d的值;(2)用含t的式子表示A,B两点,根据题意即可列出方程求解;(2)用含t的式子表示A,D两点,根据题意即可列出方程求解;(3)分两种情况,①当点在的左侧时②当点在的右侧时,然后分别表示出BC、AD的长度,建立方程,求解即可.
4.甲、乙两班学生到集市上购买苹果,苹果的价格如下:
购苹果数不超过10千克超过10千克但不超过20千克超过20千克
每千克价格10元9元8元
苹果30千克.
(1)乙班比甲班少付出多少元?
(2)设甲班第一次购买苹果x千克.
①则第二次购买的苹果为多少千克;
②甲班第一次、第二次分别购买多少千克?
【答案】(1)解:乙班购买苹果付出的钱数=8×30=240元,
∴乙班比甲班少付出256-240=16元
(2)解:①甲班第二次购买的苹果为(30-x)千克;
②若x≤10,则10x+(30-x)×8=256,
解得:x=8
若10<x≤15,则9x+(30-x)×9=256
无解.
故甲班第一次购买8千克,第二次购买22千克
【解析】【分析】(1)根据20kg以上每千克的价格为8元可求出乙班付出的钱数,从而可求出乙班比甲班少付出多少.(2)设甲班第一次购买x千克,第二次购买30-x千克,则需要讨论①x≤10,②10<x≤15,列出方程后求解即可得出答案.
5.为弘扬中华优秀文化传统,某中学在2014年元旦前夕,由校团委组织全校学生开展一次书法比赛,为了表彰在书法比赛中优秀学生,计划购买钢笔30支,毛笔20支,共需1070元,其中每支毛笔比钢笔贵6元.
(1)求钢笔和毛笔的单价各为多少元?
(2)①后来校团委决定调整设奖方案,扩大表彰面,需要购买上面的两种笔共60支(每种笔的单价不变).张老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领1322元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的帐算错了.
②张老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为不大于10元的整数,请通过计算,直接写出签字笔的单价可能为元.
【答案】(1)解:设钢笔的单价为x元,则毛笔的单价为(x+6)元.
由题意得:30x+20(x+6)=1070
解得:x=19
则x+6=25.
答:钢笔的单价为19元,毛笔的单价为25元.
(2)解:①设单价为19元的钢笔为y支,所以单价为25元的毛笔则为(60-y)支.
根据题意,得19y+25(60-y)=1322
解之得:y≈29.7(不符合题意).
所以王老师肯定搞错了.
②2或8.
【解析】【解答】(2)②设单价为21元的钢笔为z支,签字笔的单价为a元
则根据题意,得19z+25(60-z)=1322-a.
即:6z=178+a,
因为a、z都是整数,且178+a应被6整除,
所以a为偶数,又因为a为小于10元的整数,所以a可能为2、4、6、8.
当a=2时,6z=180,z=30,符合题意;
当a=4时,6z=182,z≈30.3,不符合题意;
当a=6时,6z=184,z≈30.7,不符合题意;
当a=8时,6z=186,z=31,符合题意.
所以签字笔的单价可能2元或8元.
【分析】(1)设钢笔的单价为x元,则毛笔的单价为(x+6)元.根据买钢笔30支,毛笔20支,共用了1070元建立方程,求出其解即可;
(2)①根据第一问的结论设单价为19元的钢笔为y支,所以单价为25元的毛笔则为
(60-y)支,求出方程的解不是整数则说明算错了;
②设单价为19元的钢笔为z支,单价为25元的毛笔则为(60-y)支,签字笔的单价为a 元,根据条件建立方程求出其解就可以得出结论.
6.已知:如图数轴上两点A、B所对应的数分别为-3、1,点P在数轴上从点A出发以每秒钟2个单位长度的速度向右运动,点Q在数轴上从点B出发以每秒钟1个单位长度的速度向左运动,设点P的运动时间为t秒.
(1)若点P和点Q同时出发,求点P和点Q相遇时的位置所对应的数;
(2)若点P比点Q迟1秒钟出发,问点P出发几秒后,点P和点Q刚好相距1个单位长度;
(3)在(2)的条件下,当点P和点Q刚好相距1个单位长度时,数轴上是否存在一个点C,使其到点A、点P和点Q这三点的距离和最小,若存在,直接写出点C所对应的数,若不存在,试说明理由.
【答案】(1)解:∵经过t秒点P和点O相遇,
∴有,
解得,
∴,
∴点P和点Q相遇时的位置所对应的数为
(2)解:∵点P比点Q迟1秒钟出发,∴点Q运动了(t+1)秒,
①若点P和点Q在相遇前相距1个单位长度,
则,
解得:,
②若点P和点Q在相遇后相距1个单位长度,
则2t+1×(t+1) =4+1,
解得:,
综合上述,当P出发秒或秒时,P和点Q相距1个单位长度
(3)解:若点P和点Q在相遇前相距1个单位长度,
此时满足条件的点C即为P点,所表示的数为;
若点P和点Q在相遇前相距1个单位长度,
此时满足条件的点C即为Q点,所表示的数为 .
【解析】【分析】(1)根据题意得出运动t秒时,P点和Q点所代表的的数字,如果两个数字相遇,则两个数P点和Q点表示的数相等,得到关于t的方程,解出值即可。

(2)P点晚1秒钟出发,求出D点运动的时间为(t+1),两个点相距一段距离可以考虑两种情况,相遇前和相遇后,进行解答即可。

(3)可以设点C表示的数为a,根据两点之间的距离进行求解即可得到。

7.已知关于m的方程 (m-16)=-5的解也是关于x的方程2 (x-3)-n=3的解.(1)求m、n的值;
(2)已知线段AB=m,在射线AB上取一点P,恰好使=n,点Q为线段PB的中点,求AQ的长.
【答案】(1)解:,


关于m的方程的解也是关于x的方程的解.,
将,代入方程得:

解得:,

(2)解:由知:,
当点P在线段AB上时,如图所示:


点Q为PB的中点,


当点P在线段AB的延长线上时,如图所示:


点Q为PB的中点,


故或
【解析】【分析】(1)解方程 (m-16)=-5 求出m的值,根据关于m的方程 (m-16)=-5的解也是关于x的方程2 (x-3)-n=3的解得出x=m=6,从而将x=6代入方程
即可算出n的值;
(2)由知:,当点P在线段AB上时,如图所示:即可求出
AP,BP的长,根据线段中点的定义得出,最后根据即可算出答案;当点P在线段AB的延长线上时,如图所示:首先算出PB的长,根据线段
中点的定义得出,根据即可算出答案,综上所述即可得出答案。

8.某城市开展省运会,关心中小学生观众,门票价格优惠规定见表.某中学七年级甲、乙两个班共86人去省运会现场观看某一比赛项目,其中乙班人数多于甲班人数,甲班人数不少于35人.如果两班都以班级为单位分别团体购买门票,则一共应付8120元.
购票张数 1~40张 41~80张 81张(含81张)以上
买门票能节省多少钱?
(2)问甲、乙两个班各有多少名学生?
(3)如果乙班有m(0<m<20,且m为整数)名学生因事不能参加,试就m的不同取值,直接写出最省钱的购买门票的方案?
【答案】(1)解:一起购买门票,所需费用为:80×86=6880(元),
能节省8120﹣6880=1240(元),
答:联合起来购买门票能节省1240元钱
(2)解:设甲班有x人,
86×90=7740(元),
7740<8120,
∴35≤x≤40,40<86﹣x≤80,
根据题意得:100x+90(86﹣x)=8120,
解得:x=38,
86﹣x=48,
答:甲班有38人,乙班有48人
(3)解:若0<m<6时,此时总人数大于等于81人,则最省钱的购买门票的方案为:购买(86﹣m)张,
当m≥6时,若90(86﹣m)>81×80,解得:m<14,
即6≤m<14时,最省钱的购买门票的方案是:购买81张,
若90(86﹣m)=81×80,解得:m=14,
即m=14时,最省钱的购买门票的方案是:购买81张或72张,
若14<m<20时,最省钱的购买门票的方案为:购买(86﹣m)张,
综上可知:当0<m<6或14<m<20时,购买(86﹣m)张最省钱,
当m=14时,购买72或81张最省钱,
当6≤m<14时,购买81张最省钱
【解析】【分析】(1)依据表格中的数据计算出联合购票的钱数,与分别购买团体票的钱数之间的差为节省出来的钱;(2)依题意设甲班有x人,并且x≥35,确定x的取值范围,假设两班人数都是41人到80人之间,则方程无解;因为乙班人数多于甲班人数,所以甲班人数在35≤x≤40 乙班人数在40<86﹣x≤80,列方程解方程即可.(3)依据题意分类讨论:①总人数在81人以上时,即0<m<6时,求出(86﹣m)张;②当总人数小于81,当总价款又大于团购81张的总价款时,即6≤m<14时,按81张购买即可;③当总人数小于81,当平均票价为90元的总价款等于团购81张的总价款时,即m=14时,有两种方式购买81张或72张;④当总人数小于81,平均票价为90元是最省钱方式,即14<m<20时,得出(86﹣m)张.
9.(阅读理解)如果点M,N在数轴上分别表示实数m,n,在数轴上M,N两点之间的距离表示为或或 .
利用数形结合思想解决下列问题:已知数轴上点A与点B的距离为12个单位长度,点A 在原点的左侧,到原点的距离为24个单位长度,点B在点A的右侧,点C表示的数与点B 表示的数互为相反数,动点P从A出发,以每秒2个单位的速度向终点C移动,设移动时间为t秒.
(1)点A表示的数为________,点B表示的数为________.
(2)用含t的代数式表示P到点A和点C的距离: ________, ________. (3)当点P运动到B点时,点Q从A点出发,以每秒4个单位的速度向C点运动,Q点到达C点后,立即以同样的速度返回,运动到终点A,在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由. 【答案】(1);
(2)2t;
(3)解:设点Q运动了m秒,则m秒后点P表示的数是 .
当,m秒后点Q表示的数是,则
,解得或7,
当m=5时,-12+2m=-2,
当m=7时,-12+2m=2,
∴此时P表示的是或2;
当时,m秒后点Q表示的数是,
则,
解得,
当m= 时,-12+2m= ,
当m= 时,-12+2m= ,
此时点P表示的数是 .
答:P、Q两点之间的距离能为2,此时点P点Q表示的数分别是,2, .
【解析】【解答】解:设A表示的数为x,设B表示的数是y.



故答案为:; .
( 2 )由题意可知:秒后点P表示的数是,点A表示数,
点C表示数12
, .
故答案为:2t;。

【分析】(1)因为点A在原点左侧且到原点的距离为24个单位长度,所以点A表示数−24;点B在点A右侧且与点A的距离为12个单位长度,故点B表示:−24+12=−12;(2)因为点P从点A出发,以每秒运动2两个单位长度的速度向终点C运动,则t秒后点P表示数−24+2t(0≤t≤18,令−24+2t=12,则t=18时点P运动到点C),而点A表示数−24,点C表示数12,根据两点间的距离公式即可表示出PA,PC的长;
(3)以点Q作为参考,则点P可理解为从点B出发,设点Q运动了m秒,那么m秒后点Q表示的数是−24+4m,点P表示的数是−12+2m,再分两种情况讨论:①点Q运动到点C之前;②点Q运动到点C之后根据两点间的距离公式列出方程求解即可解决问题。

10.将从1开始的正整数按一定规律排列如下表:
(1)数40排在第________行,第________列;数2018排在第________行,第________列;
(2)探究如图“+”框中的5个数:
①设这5个数中间的数为a,则最小的数为________,最大的数为________;
②若这5个数的和是240,求出这5个数中间的数;________
③这5个数的和可能是2025吗,若能,求出这5个数中间的数,若不能,请说明理由.________
【答案】(1)5;4;225;2
(2)a﹣9;a+9;解:根据题意可得:a﹣9+a﹣1+a+a+1+a+9=240
∴a=48
;根据题意可得:a﹣9+a﹣1+a+a+1+a+9=2025
∴a=405
∵405÷9=45
∴405是第9列的数,
∴这5个数的和不可能是2025.
【解析】【解答】(1)解:∵40÷9=4 (4)
∴数40排在第5行第4列
∵2018÷9=224 (2)
∴数2018排在第225行第2列
故答案为5,4,225,2
( 2 )①设中间的数为a,其他四个数分别为a﹣9,a﹣1,a+1,a+9
则最小的数a﹣9,最大的数为a+9
故答案为:a﹣9,a+9
【分析】(1)由题意可求解;
(2)①设中间的数为a,由数列的规律可得其他四个数分别为a−9,a−1,a+1,a+9,即可得最小的数和最大的数;
②根据题意列出方程,求解即可;
③根据题意列出方程,可求a为405,可得a是9的倍数,则a在第9列,则这5个数的和不可能是2025.
11.已知|a+4|+(b﹣2)2=0,数轴上A、B两点所对应的数分别是a和b
(1)填空:a=________,b=________
(2)数轴上是否存在点C,C点在A点的右侧,且点C到A点的距离是点C到B点的距离的2倍?若存在,请求出点C表示的数;若不存在,请说明理由
(3)点P以每秒2个单位的速度从A点出发向左运动,同时点Q以3个单位每秒的速度从B点出发向右运动,点M以每秒4个单位的速度从原点O点出发向左运动.若N为PQ 的中点,当PQ=16时,求MN的长.
【答案】(1)﹣4;2
(2)解:设C点表示的数为x,根据题意得,
①当点C在A、B之间时,有
c+4=2(2﹣c),
解得,c=0;
②当点C在B的右侧时,有
c+4=2(c﹣2),
解得,c=8.
故点C表示的数为0或8
(3)解:设运动的时间为t秒,根据题意得,
2t+3t+AB=16,即2t+3t+6=16,
解得,t=2,
∴运动2秒后,各点表示的数分别为:
P:﹣4﹣2×2=﹣8,Q:2+3×2=8,M:0﹣4×2=﹣8,N:(-8+8)÷2=0,
∴MN=0﹣(﹣8)=8.
【解析】【解答】(1)解:由题意得,a+4=0,b﹣2=0,
解得,a=﹣4,b=2,
故答案为:﹣4;2
【分析】(1)根据“几个非负数和为0,则这几个数都为0”可列方程求解;
(2)由题意分两种情况:点C在A、B之间和点C在B的右侧.可列方程求解;
(3)设运动时间为t秒,根据PQ=16可列关于t的方程求得t,于是可求得运动后的M、N点表示的数.
12.数轴上,A、B两点表示的数a,b满足|a﹣6|+(b+12)2=0
(1)a=________,b=________;
(2)若小球M从A点向负半轴运动、小球N从B点向正半轴运动,两球同时出发,小球M运动的速度为每秒2个单位,当M运动到OB的中点时,N点也同时运动到OA的中点,则小球N的速度是每秒________个单位;
(3)若小球M、N保持(2)中的速度,分别从A、B两点同时出发,经过________秒后两个小球相距两个单位长度.
【答案】(1)6;-12
(2)2.5
(3)或或32或40
【解析】【解答】(1)∵|a﹣6|+(b+12)2=0,
∴a﹣6=0,b+12=0,
∴a=6,b=﹣12.
故答案为:6,﹣12;
⑵设M运动到OB的中点时所用的时间为t秒,
根据题意,得6﹣2t=﹣6,解得t=6.
设小球N的速度是每秒x个单位,
根据题意,得﹣12+6x=3,解得x=2.5,
答:小球N的速度是每秒2.5个单位.
故答案为:2.5;
⑶若小球M、N保持(2)中的速度,分别从A、B两点同时出发,设经过y秒后两个小球相距两个单位长度.
∵A、B两点表示的数分别是6、﹣12,
∴A、B两点间的距离为6﹣(﹣12)=18.
如果小球M向负半轴运动、小球N向正半轴运动,
①相遇前:2y+2.5y=18﹣2,解得y= ;
②相遇后:2y+2.5y=18+2,解得y= ;
如果小球M、小球N都向正半轴运动,
①追上前:2.5y﹣2y=18﹣2,解得y=32;
②追上后:2.5y﹣2y=18+2,解得y=40.
答:若小球M、N保持(2)中的速度,分别从A、B两点同时出发,经过或或32或40秒后两个小球相距两个单位长度.
故答案为:或或32或40.
【分析】(1)根据原式中a-6=0,b+12=0求出a和b的值即可;
(2)可设小球运动的时间为x,根据题意,结合路程的等量关系式即可求出x的数值;(3)根据题意可知,两个球相距两个单位长度,可有两种可能的情况,求出符合条件的值即可。

相关文档
最新文档