九年级数学上册24圆学案新版新人教版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十四章圆
24.1圆的有关性质
24. 1. 1圆
1.了解圆的基本概念,并能准确地表示出来.
2. 理解并掌握与圆有关的概念:弦、直径、圆弧、等圆、同心圆等.
重点:与圆有关的概念.
难点:圆的有关概念的理解.
一、自学指导.(10分钟)
自学:研读课本P79~80内容,理解记忆与圆有关的概念,并完成下列问题.
探究:
①在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做__圆__,固定的端点O叫做圆心,线段OA叫做__半径__.
②用集合的观点叙述以O为圆心,r为半径的圆,可以说成是到定点O的距离为__r__的所有的点的集合.
③连接圆上任意两点的__线段__叫做弦,经过圆心的弦叫做__直径__;圆上任意两点间的部分叫做圆弧;圆上任意一条直径的两个端点把圆分成两条弧,每条弧都叫做半圆,大于半圆的弧叫做__优弧__,小于半圆的弧叫做__劣弧__.
二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(3分钟)
1.以点A为圆心,可以画__无数__个圆;以已知线段AB的长为半径可以画__无数__个圆;以点A为圆心,AB的长为半径,可以画__1__个圆.
点拨精讲:确定圆的两个要素:圆心(定点)和半径(定长).圆心确定圆的位置,半径确定圆的大小.
2.到定点O的距离为5的点的集合是以__O__为圆心,__5__为半径的圆.
一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟)
1.⊙O的半径为3 cm,则它的弦长d的取值范围是__0<d≤6__.
点拨精讲:直径是圆中最长的弦.
2.⊙O中若弦AB等于⊙O的半径,则△AOB的形状是__等边三角形__.
点拨精讲:与半径相等的弦和两半径构造等边三角形是常用数学模型.
3.如图,点A,B,C,D都在⊙O上.在图中画出以这4点为端点的各条弦.这样的弦共有多少条?
解:图略.6条.
二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(15分钟)
1.(1)在图中,画出⊙O的两条直径;
(2)依次连接这两条直径的端点,得一个四边形.判断这个四边形的形状,并说明理由.
解:矩形.理由:由于该四边形对角线互相平分且相等,所以该四边形为矩形.作图略.
点拨精讲:由刚才的问题思考:矩形的四个顶点一定共圆吗?
2.一点和⊙O上的最近点距离为4 cm,最远点距离为10 cm,则这个圆的半径是__3_cm或7_cm__.
点拨精讲:这里分点在圆外和点在圆内两种情况.
3.如图,图中有__1__条直径,__2__条非直径的弦,圆中以A为一个端点的优弧有__4__条,劣弧有__4__条.
点拨精讲:这类数弧问题,为防多数或少数,通常按一定的顺序和方向来数.
,第3题图) ,第4题图)
4.如图,⊙O 中,点A ,O ,D 以及点B ,O ,C 分别在一直线上,图中弦的条数为__2__.
点拨精讲:注意紧扣弦的定义.
5.如图,CD 为⊙O 的直径,∠EOD =72°,AE 交⊙O 于B ,且AB =OC ,求∠A 的度数.
解:24°.
点拨精讲:连接OB 构造三角形,从而得出角的关系.
,第5题图) ,第6题图)
6.如图,已知AB 是⊙O 的直径,点C 在⊙O 上,点D 是BC 的中点,若AC =10 cm ,求OD 的长. 解:5 cm .
点拨精讲:这里别忘了圆心O 是直径AB 的中点.
学生总结本堂课的收获与困惑.(2分钟)
1.圆的定义、圆的表示方法及确定一个圆的两个基本条件.
2.圆的相关概念:(1)弦、直径;(2)弧及其表示方法;(3)等圆、等弧.
学习至此,请使用本课时对应训练部分.(10分钟)
24.1.2 垂直于弦的直径
1.圆的对称性.
2.通过圆的轴对称性质的学习,理解垂径定理及其推论.
3.能运用垂径定理及其推论进行计算和证明.
重点:垂径定理及其推论.
难点:探索并证明垂径定理.
一、自学指导.(10分钟)
自学:研读课本P 81~83内容,并完成下列问题.
1.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴,它也是中心对称图形,对称中心为圆心.
2.垂直于弦的直径平分弦,并且平分弦所对的两条弧,即一条直线如果满足:①AB 经过圆心O 且与圆交于
A ,
B 两点;②AB⊥CD 交CD 于E ,那么可以推出:③CE=DE ;④CB ︵=DB ︵;⑤CA ︵=DA ︵.
3.平分弦(非直径)的直径垂直于弦,并且平分弦所对的两条弧.
点拨精讲:(1)画图说明这里被平分的弦为什么不能是直径.
(2)实际上,当一条直线满足过圆心、垂直弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,这五个条件中的任何两个,就可推出另外三个.
二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟)
1.在⊙O 中,直径为10 cm ,圆心O 到AB 的距离为3 cm ,则弦AB 的长为 __8_cm __.
2.在⊙O 中,直径为10 cm ,弦AB 的长为8 cm ,则圆心O 到AB 的距离为__3_cm __.
点拨精讲:圆中已知半径、弦长、弦心距三者中的任何两个,即可求出另一个.
3.⊙O 的半径OA =5 cm ,弦AB =8 cm ,点C 是AB 的中点,则OC 的长为__3_cm __.
点拨精讲:已知弦的中点,连接圆心和中点构造垂线是常用的辅助线.
4.某公园的一石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为多少米? (8米)
点拨精讲:圆中已知半径、弦长、弦心距或弓形高四者中的任何两个,即可求出另一个.。