2020年六年级上册数学易错题难题材料

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年六年级上册数学易错题难题材料
一、培优题易错题
1.“△”表示一种新的运算符号,已知:2△3=2﹣3+4,7△2=7﹣8,3△5=3﹣4+5﹣6+7,…;按此规则,计算:
(1)10△3=________.
(2)若x△7=2003,则x=________.
【答案】(1)11
(2)2000
【解析】【解答】(1)10△3=10-11+12=11;(2)∵x△7=2003,
∴x-(x+1)+(x+2)-(x+3)+(x+4)-(x+5)+(x+6)=2003,
解得x=2000.
【分析】(1)首先弄清楚定义新运算的计算法则,从题目中给出的例子来看,第一个数表示从整数几开始,后面的数表示几个连续整数相加减,根据发现的运算规则,即可由10△3列出算式,再根据有理数加减法法则,即可算出答案;
(2)根据定义新运算的计算方法,由x△7=2003,列出方程,求解即可。

2.用“⊕”定义一种新运算:对于有理数a和b,规定a⊕b=2a+b,如1⊕3=2×1+3=5 (1)求2⊕(﹣2)的值;
(2)若[()⊕(﹣3)]⊕ =a+4,求a的值.
【答案】(1)解:原式=2×2+(﹣2)=2
(2)解:根据题意可知:
2[(a+1)+(﹣3)]+ =a+4,
2(a﹣2)+ =a+4,
4(a﹣2)+1=2(a+4),
4a﹣8+1=2a+8,
2a=15,
a= .
【解析】【分析】(1)根据定义的新运算,进行计算。

(2)根据题目中定义的新运算,写出算式,计算出a的值
3.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.
(1)求前4个台阶上数的和是多少?
(2)求第5个台阶上的数是多少?
(3)应用求从下到上前31个台阶上数的和.
发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.
【答案】(1)解:由题意得前4个台阶上数的和是-5-2+1+9=3
(2)解:由题意得-2+1+9+x=3,
解得:x=-5,
则第5个台阶上的数x是-5
(3)解:应用:由题意知台阶上的数字是每4个一循环,
∵31÷4=7…3,
∴7×3+1-2-5=15,
即从下到上前31个台阶上数的和为15;
发现:数“1”所在的台阶数为4k-1
【解析】【分析】(1)由台阶上的数求出台阶上数的和即可;(2)根据题意和(1)的值,求出第5个台阶上的数x的值;(3)根据题意知台阶上的数字是每4个一循环,得到从下到上前31个台阶上数的和,得到数“1”所在的台阶数为4k-1.
4.数轴上有、、三点,分别表示有理数、、,动点从出发,以每秒个单位的速度向右移动,当点运动到点时运动停止,设点移动时间为秒.
(1)用含的代数式表示点对应的数:________;
(2)当点运动到点时,点从点出发,以每秒个单位的速度向点运动,点到达点后,再立即以同样的速度返回点.
①用含的代数式表示点在由到过程中对应的数:________ ;
②当 t=________ 时,动点 P、 Q到达同一位置(即相遇);
③当PQ=3 时,求 t的值.________
【答案】(1)
(2)2t-58;当时,t=32 ;当时,t=;t=3,29,35,,
【解析】(1)点所对应的数为:
( 2 )①
② 点从运动到点所花的时间为秒,点从运动到点所花的时间为秒
当时,:,:
,解之得
当时,:,:
,解之得
【分析】(1)向右移动,左边的数加上移动的距离就得移动后的数;(2)需分类讨论,16≤t≤39 和39 ≤ t ≤ 46两类分别计算.
5.某检修小组乘一辆汽车沿东西走向的公路检修线路,约定向东走为正,某天从A地出发到收工时,行走记录如下(单位:km):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6
(1)收工时,检修小组在A地的哪一边,距A地多远?
(2)若汽车每千米耗油3升,已知汽车出发时油箱里有180升汽油,问收工前是否需要中途加油?若加,应加多少升?若不加,还剩多少升汽油?
【答案】(1)解:+15+(-2)+5+(-1)+(-10)+(-3)+(-2)+12+4+(-5)+6 =19(km),答:检修小组在A地东边,距A地19千米
(2)解:(+15+|-2|+5+|-1|+|-10|+|-3|+|-2|+12+4+|-5|+6)×3
=65×3=195(升),∵195>180,
∴收工前需要中途加油,
195-180=15(升),
答:应加15升.
【解析】【分析】(1)先求出这组数的和,如为正则在A的东边,为负则在A的西边,为0则在A处;
(2)先求出这组数的绝对值的和与3的乘积,再与180比较,若大于180就需要中途加油,否则不用.
6.有两种溶液,甲溶液的酒精浓度为,盐浓度为,乙溶液中的酒精浓度为,盐浓度为.现在有甲溶液千克,那么需要多少千克乙溶液,将它与甲溶液混和后所得的溶液的酒精浓度是盐浓度的3倍?
【答案】解:假设把水都蒸发掉,则甲溶液盐占盐和酒精的:10%÷(15%+10%)=40%,乙溶液中盐占盐和酒精的:5%÷(45%+5%)=10%;
需要配的溶液盐占盐和酒精的:1÷(1+3)=25%;
则:(0.25-0.1):(0.4-0.25)=0.15:0.15=1:1,
1千克甲溶液中盐和酒精:1×(15%+10%)=0.25(千克),1千克乙溶液中盐和酒精:1×(5+45%)=0.5(千克)。

答:需要0.5千克乙溶液,将它与甲溶液混和后所得的溶液的酒精浓度是盐浓度的3倍。

【解析】【分析】可以这样来看,将溶液中的水剔出或者说蒸发掉,那么所得到的溶液就是盐溶在酒精中。

(事实上这种情况不符合物理规律,但这只是假设)。

这样就能分别求出甲、乙溶液中盐占盐和酒精的百分之几。

根据配制成溶液中酒精是盐的3倍先计算出配制后盐占盐和酒精的百分之几。

分别求出1千克甲、乙溶液中盐和酒精的质量,然后确定需要加入的乙溶液的重量即可。

7.瓶中装有浓度为的酒精溶液克,现在又分别倒入克和克的、两种酒精溶液,瓶中的浓度变成了.已知种酒精溶液浓度是种酒精溶液浓度的倍,那么种酒精溶液的浓度是百分之几?
【答案】解:新倒入的纯酒精重量:
(1000+100+400)×14%-1000×15%
=210-150
=60(克)
设A种酒精溶液的浓度为x,则B种为。

100x+400×=60
300x=60
x=0.2
答:A种酒精溶液的浓度是20%。

【解析】【分析】用混合后酒精的重量减去原来溶液中酒精的重量求出新加入的溶液中酒
精的重量。

设A种酒精溶液的浓度为x,则B种为,等量关系:A溶液中酒精的重量+B 溶液中酒精的重量=新加入酒精的重量,根据等量关系列出方程,解方程求出A中溶液酒精的浓度即可。

8.在浓度为40%的酒精溶液中加入5千克水,浓度变为30%,再加入多少千克酒精,浓度变为50%?
【答案】解:设原来有酒精溶液x千克。

30%x+1.5=40%x
0.1x=1.5
x=15
设再加入y千克酒精,溶液浓度变为50%。

10+0.5y=6+y
y=8
答:再加入8千克酒精,溶液浓度变为50%。

【解析】【分析】本题可以用两次方程作答,首先求出原来有酒精溶液的质量,即
,由此可以解得原来有酒精溶液的质量,然后设再加入y千克酒精,溶液浓度变为50%,即,即可解得再加入酒精的质量。

9.一项工程,如果甲先做5天,那么乙接着做20天可以完成;如果甲先做20天,那么乙接着做8天可以完成.如果甲、乙合作,那么多少天可以完成?
【答案】解:甲做5天的工作量乙需要4天,乙独做需要:20+4=24(天),
甲的工作效率:,
合做:(天)。

答:如果甲、乙合作,天可以完成。

【解析】【分析】如图:
从图中可以直观地看出:甲15天的工作量和乙12天的工作量相等,即甲5天的工作量等于乙4天的工作量。

于是可用“乙工作4天”等量替换题中“甲工作5天”这一条件。

这样这项工程就相当于乙独做需要(20+4)天。

用乙的工作效率乘4再除以5即可求出甲的工作效率,用总工作量除以工作效率和即可求出合作完成的天数。

10.甲、乙、丙三人完成一件工作,原计划按甲、乙、丙顺序每人轮流工作一天,正好整
数天完成,若按乙、丙、甲的顺序每人轮流工作一天,则比原计划多用天;若按丙、
甲、乙的顺序每人轮流工作一天,则比原计划多用天.已知甲单独完成这件工作需天.问:甲、乙、丙一起做这件工作,完成工作要用多少天?
【答案】解:甲的工作效率:1÷10.75=,乙的工作效率:,丙的工作效率:,
(天)。

答:完成工作需要天。

【解析】【分析】以甲、乙、丙各工作一天为一个周期,即3天一个周期。

容易知道,第一种情况下一定不是完整周期内完成,但是在本题中,有两种可能,第一种可能是完整周期天,第二种可能是完整周期天。

如果是第一种可能,有,得。

然而此时甲、乙、丙的效率和
为,经过4个周期后完成,还剩下,而甲每天完成,所以剩下的不可能由甲1天
完成,即所得到的结果与假设不符,所以假设不成立。

第二种可能:
完整周期不完整周期完成总工程量
第一
种情

n个周期甲1天,乙1天“1”
第二
种情况n个周期
乙1天,丙1天,甲天
“1”
第三
种情况n个周期
丙1天,甲1天,乙天
“1”
可得,所以,。

因为甲单独做需天,所以工作效率为,于是乙的工作效率为,丙的工作效率为。

于是,一个周期内他们完成的工程量为。

则需个完整周期,剩下的工程量;正好甲、乙各一天
完成.所以第二种可能是符合题意的。

这样用总工作量除以三人的工作效率和即可求出合作完成的时间。

相关文档
最新文档