2019_2020学年高中数学课时分层作业5同角三角函数的基本关系式(含解析)新人教B版必修4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时分层作业(五) 同角三角函数的基本关系式
(建议用时:60分钟)
[合格基础练]
一、选择题
1.若sin α+sin 2
α=1,那么cos 2
α+cos 4
α的值等于( ) A .0 B .1 C .2
D .3
B [由sin α+sin 2α=1,得sin α=cos 2
α,所以cos 2
α+cos 4
α=sin α+sin 2
α=1.]
2.已知α是第三象限的角,cos α=-12
13,则sin α=( )
A.513 B .-513
C.512
D .-512
B [∵α是第三象限的角, ∴sin α=-1-cos 2
α=-
1-⎝ ⎛⎭
⎪⎫-12132
=-513.] 3.若α∈[0,2π),且有1-cos 2
α+1-sin 2
α=sin α-cos α,则角α的取值范围为( )
A.⎣
⎢⎡⎭⎪⎫0,π2
B.⎣⎢
⎡⎦
⎥
⎤π2,π
C.⎝
⎛⎭
⎪⎫π2,π
D.⎣
⎢⎡⎦⎥⎤π,32π
B [因为1-cos 2
α+1-sin 2
α=sin α-cos α,
所以⎩
⎪⎨
⎪⎧
sin α≥0,
cos α≤0,又α∈[0,2π),
所以α∈⎣⎢⎡⎦
⎥⎤π2,π,故选B.]
4.若sin θ·cos θ=12,则tan θ+cos θ
sin θ的值是( )
A .-2
B .2
C .±2
D.1
2
B [tan θ+cos θsin θ=sin θcos θ+cos θsin θ=sin 2θ+cos 2
θsin θcos θ=1sin θ cos θ=1
1
2=2,选B.]
5.若tan α=3,则2sin αcos α=( ) A .±35
B .-35
C .35
D .45
C [2sin αcos α=2sin αcos αsin 2α+cos 2
α=2tan αtan 2α+1=610=3
5.] 二、填空题
6.已知sin αcos α=1
5,则sin α-cos α=________.
±
155 [(sin α-cos α)2=sin 2α-2sin αcos α+cos 2
α=1-2sin αcos α=35
,则sin α-cos α=±
15
5
.] 7.若tan α+
1tan α=3,则sin αcos α=________,tan 2
α+1tan 2α
=________. 13 7 [∵tan α+1tan α=1
cos αsin α=3, ∴sin αcos α=13
.
又tan 2
α+1tan 2 α=⎝ ⎛⎭⎪⎫tan α+1tan α2-2=9-2=7,
∴tan 2
α+1tan 2 α
=7.]
8.已知α∈⎝ ⎛⎭⎪⎫π,3π2,tan α=2,则cos α=________. -
55 [由α∈⎝
⎛⎭⎪⎫π,32π及tan α=2, 得sin α=2cos α<0,
又sin 2
α+cos 2
α=1,∴cos α=-55
.] 三、解答题
9.已知tan α=2
3,求下列各式的值:
(1)cos α-sin αcos α+sin α+cos α+sin αcos α-sin α
;
(2)1
sin αcos α
;
(3)sin2α-2sin αcos α+4cos2α.
[解] cos α-sin α
cos α+sin α
+
cos α+sin α
cos α-sin α
=1-tan α
1+tan α
+
1+tan α
1-tan α
=
1-
2
3
1+
2
3
+
1+
2
3
1-
2
3
=
26
5
.
(2)1
sin αcos α=
sin2α+cos2α
sin αcos α
=tan2α+1
tan α
=
13
6
.
(3)sin2α-2sin αcos α+4cos2α
=sin2α-2sin αcos α+4cos2α
sin2α+cos2α
=tan2α-2tan α+4
tan2α+1
=4
9
-
4
3
+4
4
9
+1
=
28
13
.
10.求证:2(1-sin α)(1+cos α)=(1-sin α+cos α)2.
[证明]右边=2-2sin α+2cos α-2sin αcos α=2(1-sin α+cos α-sin αcos α)=2(1-sin α)(1+cos α)=左边,
∴2(1-sin α)(1+cos α)=(1-sin α+cos α)2.
[等级过关练]
1.已知△ABC中,tan A=-5
12
,则cos A=( )
A.12
13
B.
5
13
C.-5
13D.-
12
13
D[∵tan A=-5
12
,又A是三角形的内角,∴A是钝角.
∵sin A
cos A
=-
5
12
,
∴-5cos A=12sin A.
又sin 2A +cos 2
A =1, ∴cos A =-12
13.]
2.已知sin θ=m -3m +5,cos θ=4-2m m +5⎝ ⎛⎭
⎪⎫π
2<θ<π,则tan θ=( )
A.4-2m
m -3
B .±m -3
4-2m
C .-5
12
D .-34或-512
C [由sin 2
θ+cos 2
θ=1,有⎝ ⎛⎭⎪⎫m -3m +52
+⎝ ⎛⎭
⎪
⎫4-2m m +52
=1,化简得m 2-8m =0,解得m =0或m
=8,由于θ在第二象限,所以sin θ>0,m =0舍去,故m =8,sin θ=513,cos θ=-12
13,
得tan θ=-5
12
.]
3.已知sin θ-cos θ=12,则sin 3θ-cos 3
θ=________.
1116 [由已知得,1-2sin θcos θ=14,∴sin θcos θ=38
. ∴sin 3θ-cos 3θ=(sin θ-cos θ)(sin 2θ+sin θcos θ+cos 2θ)=12×⎝
⎛⎭⎪⎫1+38=1116.]
4.若f (sin α)=cos 2
α,则f ⎝ ⎛⎭
⎪⎫13=________.
89
[∵f (sin α)=cos 2α=1-sin 2
α, ∴f (t )=1-t 2
,-1≤t ≤1,
∴f ⎝ ⎛⎭⎪⎫13=1-⎝ ⎛⎭⎪⎫132
=89
.] 5.求证:tan αsin αtan α-sin α=tan α+sin αtan αsin α
.
[证明] 法一:右边=tan 2
α-sin 2
α
(tan α-sin α)·tan αsin α
=tan 2
α-tan 2
αcos 2
α
(tan α-sin α)·tan αsin α =tan 2
α(1-cos 2
α)
(tan α-sin α)·tan αsin α =tan 2
αsin 2
α
(tan α-sin α)·tan αsin α
=
tan αsin α
tan α-sin α
=左边,
∴等式成立.
法二:左边=tan αsin αtan α-tan αcos α=sin α
1-cos α,
右边=tan α+tan αcos αtan αsin α=1+cos αsin α
=1-cos 2
αsin α(1-cos α)=sin 2
αsin α(1-cos α)=sin α
1-cos α, ∴左边=右边,等式成立.。