2019年沧州市九年级数学下期中一模试卷(带答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年沧州市九年级数学下期中一模试卷(带答案) 一、选择题
1.若反比例函数
k
y
x
=(x<0)的图象如图所示,则k的值可以是()
A.-1B.-2C.-3D.-4
2.如图,用放大镜看△ABC,若边BC的长度变为原来的2倍,那么下列说法中,不正确的是().
A.边AB的长度也变为原来的2倍;B.∠BAC的度数也变为原来的2倍;C.△ABC的周长变为原来的2倍;D.△ABC的面积变为原来的4倍;
3.若
3
5
x
x y
=
+
,则
x
y
等于()
A.3
2
B.
3
8
C.
2
3
D.
8
5
4.如图,河坝横断面迎水坡AB的坡比是1:3(坡比是坡面的铅直高度BC与水平宽度AC之比),坝高3m
BC=,则坡面AB的长度是().
A.9m B.6m C.63m D.33m
5.如图,菱形OABC的顶点A的坐标为(3,4),顶点C在x轴的正半轴上,反比例函
数y=k
x
(x>0)的图象经过顶点B,则反比例函数的表达式为()
A .y=12x
B .y=24x
C .y=32x
D .y=40x 6.若
37a b =,则b a a -等于( ) A .34 B .43 C .73 D .37
7.如图,校园内有两棵树,相距8米,一棵树树高13米,另一棵树高7米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞( )
A .8米
B .9米
C .10米
D .11米
8.如图▱ABCD ,F 为BC 中点,延长AD 至E ,使:1:3DE AD =,连结EF 交DC 于点G ,则:DEG CFG S S ∆V =( )
A .2:3
B .3:2
C .9:4
D .4:9
9.如图,∠APD=90°,AP=PB=BC=CD ,则下列结论成立的是( )
A .△PA
B ∽△PCA B .△AB
C ∽△DBA C .△PAB ∽△PDA
D .△ABC ∽△DCA
10.如图,BC 是半圆O 的直径,D ,E 是»BC
上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE ,如果70A ∠︒=,那么DOE ∠的度数为( )
A .35︒
B .38︒
C .40︒
D .42︒
11.图(1)所示矩形ABCD 中,BC x =,CD y =,y 与x 满足的反比例函数关系如图(2)所示,等腰直角三角形AEF 的斜边EF 过点C ,M 为EF 的中点,则下列结论正确的是( )
A .当3x =时,EC EM <
B .当9y =时,E
C EM <
C .当x 增大时,EC CF ⋅的值增大
D .当x 增大时,B
E D
F ⋅的值不变
12.如图,在同一平面直角坐标系中,一次函数y 1=kx+b (k 、b 是常数,且k≠0)与反比
例函数y 2=c x
(c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是( )
A .﹣3<x <2
B .x <﹣3或x >2
C .﹣3<x <0或x >2
D .0<x <2
二、填空题
13.如图,在一段坡度为1∶2的山坡上种树,要求株距(即相邻两株树之间的水平距离)为6米,那么斜坡上相邻两株树之间的坡面距离为____米.
14.一天,小青想利用影子测量校园内一根旗杆的高度,在同一时刻内,小青的影长为2米,旗杆的影长为20米,若小青的身高为1.60米,则旗杆的高度为__________米.
15.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外币A处到达内壁B处的最短距离为_______.
16.如图,在△ABC中,∠C=90°,BC=16 cm,AC=12 cm,点P从点B出发,沿BC 以2 cm/s的速度向点C移动,点Q从点C出发,以1 cm/s的速度向点A移动,若点P、Q 分别从点B、C同时出发,设运动时间为ts,当t=__________时,△CPQ与△CBA相似.
17.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是______步.
18.已知反比例函数y=
2
m
x
-
,当x>0时,y随x增大而减小,则m的取值范围是
_____.
19.如果点P把线段AB分割成AP和PB两段(AP PB
>),其中AP是AB与PB的比例中项,那么:
AP AB的值为________.
20.如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若
∠B′MD=50°,则∠BEF的度数为_____.
三、解答题
21.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向的B处,求此时轮船所在的B处与灯塔P的距离.(参考数据:6≈2.449,结果保留整数)
22.如图,在△ABC中,AB=AC,点P,D分别是BC,AC边上的点,且∠APD=∠B.
(1)求证:△ABP∽△PCD;
(2)若AB=10,BC=12,当PD∥AB时,求BP的长.
23.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D竖起标杆DE,使得点E与点C、A共线.
已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.
24.如图,点C、D在线段AB上,△PCD是等边三角形,且CD2=AD•BC.
(1)求证:△APD∽△PBC;
(2)求∠APB的度数.
25.如图,△ABC是一张锐角三角形的硬纸片.AD是边BC上的高,BC=40cm,
AD=30cm.从这张硬纸片剪下一个长HG是宽HE的2倍的矩形EFGH.使它的一边EF在BC上,顶点G,H分别在AC,AB上.AD与HG的交点为M.
(1)求证:AM HG AD BC
;
(2)求这个矩形EFGH的周长.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【解析】
【分析】
由图像可知,反比例函数与线段AB相交,由A、B的坐标,可求出k的取值范围,即可得到答案.
【详解】
如图所示:
由题意可知A (-2,2),B (-2,1),
∴1-2⨯2<<-2⨯k ,即4-<<-2k
故选C.
【点睛】
本题考查反比例函数的图像与性质,由图像性质得到k 的取值范围是解题的关键.
2.B
解析:B
【解析】
【分析】
根据相似三角形的判定和性质,可得出这两个三角形相似,相似三角形的周长之比等于相似比,面积之比等于相似比的平方.
【详解】
解:∵用放大镜看△ABC ,若边BC 的长度变为原来的2倍,
∴放大镜内的三角形与原三角形相似,且相似比为2
∴边AB 的长度也变为原来的2倍,故A 正确;
∴∠BAC 的度数与原来的角相等,故B 错误;
∴△ABC 的周长变为原来的2倍,故C 正确;
∴△ABC 的面积变为原来的4倍,故D 正确;
故选B
【点睛】
本题考查了相似三角形的性质,相似三角形的周长之比等于相似比,面积之比等于相似比的平方.
3.A
解析:A
【解析】
【分析】先根据比例的基本性质进行变形,得到2x=3y ,再根据比例的基本性质转化成比例式即可得.
【详解】根据比例的基本性质得:
5x=3(x+y ),即2x=3y , 即得32
x y =,
故选A .
【点睛】本题考查了比例的基本性质,熟练掌握比例的基本性质是解本题的关键.
4.B
解析:B
【解析】 由图可知,:1:3BC AC
=,tan 3
BAC ∠=
, ∴30BAC ∠=︒, ∴36m 1
sin 302
BC AB =
==︒. 故选B . 5.C
解析:C
【解析】
【分析】
过A 作AM ⊥x 轴于M ,过B 作BN ⊥x 轴于N ,根据菱形性质得出OA=BC=AB=OC ,AB ∥OC ,OA ∥BC ,求出∠AOM=∠BCN ,OM=3,AM=4,OC=OA=AB=BC=5,证△AOM ≌△BCN ,求出BN=AM=4,CN=OM=3,ON=8,求出B 点的坐标,把B 的坐标代入y=kx 求出k 即可.
【详解】
过A 作AM ⊥x 轴于M ,过B 作BN ⊥x 轴于N ,
则∠AMO=∠BNC=90°,
∵四边形AOCB 是菱形,
∴OA=BC=AB=OC,AB ∥OC,OA ∥BC ,
∴∠AOM=∠BCN ,
∵A(3,4),
∴OM=3,AM=4,由勾股定理得:OA=5,
即OC=OA=AB=BC=5,
在△AOM 和△BCN 中
AMO BNC AOM BCN OA BC ∠=∠⎧⎪∠=∠⎨⎪=⎩
,
∴△AOM ≌△BCN(AAS),
∴BN=AM=4,CN=OM=3,
∴ON=5+3=8,
即B 点的坐标是(8,4),
把B 的坐标代入y=kx 得:k=32,
即y=32x , 故答案选C.
【点睛】 本题考查了菱形的性质,解题的关键是熟练的掌握菱形的性质.
6.B
解析:B
【解析】
由比例的基本性质可知a=37b ,因此b a a -=347337
b b b -=. 故选B.
7.C
解析:C
【解析】
如图所示,
AB ,CD 为树,且AB=13,CD=8,BD 为两树距离12米,
过C 作CE ⊥AB 于E ,
则CE=BD=8,AE=AB-CD=6,
在直角三角形AEC 中,
AC=10米,
答:小鸟至少要飞10米.
故选C .
8.D
解析:D
【解析】
【分析】
先设出DE x =,进而得出3AD x =,再用平行四边形的性质得出3BC x =,进而求出CF ,最后用相似三角形的性质即可得出结论.
【详解】
解:设DE x =,
∵:1:3DE AD =,
∴3AD x =,
∵四边形ABCD 是平行四边形,
∴//AD BC ,BC AD 3x ==,
∵点F 是BC 的中点, ∴1322CF BC x ==, ∵//AD BC ,
∴DEG CFG ∆∆∽, ∴224392DEG
CFG S DE x S CF x ⎛⎫ ⎪⎛⎫=== ⎪ ⎪⎝⎭ ⎪⎝⎭
V V , 故选:D .
【点睛】
此题主要考查了相似三角形的判定和性质,平行四边形的性质,中点的定义,表示出CF 是解本题的关键.
9.B
解析:B
【解析】
【分析】
根据相似三角形的判定,采用排除法,逐条分析判断.
【详解】
∵∠APD =90°,而∠P AB ≠∠PCA ,∠PBA ≠∠P AC ,∴无法判定△P AB 与△PCA 相似,故A 错误;
同理,无法判定△P AB 与△PDA ,△ABC 与△DCA 相似,故C 、D 错误;
∵∠APD =90°,AP =PB =BC =CD ,∴AB =
P A ,AC =P A ,AD =P A ,BD =2P A ,∴
=,∴,∴△ABC ∽△DBA ,故B 正确.
故选B .
【点睛】
本题考查了相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可根据图形提供的数据计算对应角的度数、对应边的比.本题中把若干线段的长度用同一线段来表示是求线段是否成比例时常用的方法.10.C
解析:C
【解析】
【分析】
连接CD,由圆周角定理得出∠BDC=90°,求出∠ACD=90°-∠A=20°,再由圆周角定理得出∠DOE=2∠ACD=40°即可,
【详解】
连接CD,如图所示:
∵BC是半圆O的直径,
∴∠BDC=90°,
∴∠ADC=90°,
∴∠ACD=90°-∠A=20°,
∴∠DOE=2∠ACD=40°,
故选C.
【点睛】
本题考查了圆周角定理、直角三角形的性质;熟练掌握圆周角定理是解题的关键.11.D
解析:D
【解析】
【分析】
由于等腰直角三角形AEF的斜边EF过C点,则△BEC和△DCF都是直角三角形;观察反
比例函数图像得出反比例函数解析式为y=9
x
;当x=3时,y=3,即BC=CD=3,根据等腰直
角三角形的性质得2,CF=32,则C点与M点重合;当y=9时,根据反比例函数的解析式得x=1,即BC=1,CD=9,所以2,而2;利用等腰直角三角形的性质BE•DF=BC•CD=xy,然后再根据反比例函数的性质得BE•DF=9,其值为定值;由于2x×2=2xy,其值为定值.
【详解】
解:因为等腰直角三角形AEF的斜边EF过C点,M为EF的中点,所以△BEC和△DCF都
是直角三角形;观察反比例函数图像得x=3,y=3,则反比例解析式为y=9
x
.
A、当x=3时,y=3,即BC=CD=3,所以,,C点与M点重合,则EC=EM,所以A选项错误;
B、当y=9时,x=1,即BC=1,CD=9,所以,,,所以B选项错误;
C、因为x y=2×xy=18,所以,EC•CF为定值,所以C选项错误;
D、因为BE•DF=BC•CD=xy=9,即BE•DF的值不变,所以D选项正确.
故选:D.
【点睛】
本题考查了动点问题的函数图像:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图像,注意自变量的取值范围.
12.C
解析:C
【解析】
【分析】一次函数y1=kx+b落在与反比例函数y2=c
x
图象上方的部分对应的自变量的取值
范围即为所求.
【详解】∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=c
x
(c是常数,且
c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,
∴不等式y1>y2的解集是﹣3<x<0或x>2,
故选C.
【点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.二、填空题
13.3米【解析】【分析】利用垂直距离:水平宽度得到水平距离与斜坡的比把相应的数值代入即可【详解】解:∵坡度为1:2且株距为6米∴株距:坡面距离=2:∴坡面距离=株距×(米)【点睛】本题是将实际问题转化为
解析:
【解析】
【分析】
利用垂直距离:水平宽度得到水平距离与斜坡的比,把相应的数值代入即可.
【详解】
解:∵坡度为1:2=6米,
∴株距:坡面距离=2
∴坡面距离=株距×
5
35
2
=(米).
【点睛】
本题是将实际问题转化为直角三角形中的数学问题,可把条件和问题放到直角三角形中,进行解决.要注意坡度是坡角的正切函数.
14.16【解析】【分析】易得△AOB∽△ECD利用相似三角形对应边的比相等可得旗杆OA的长度【详解】解:
∵OA⊥DACE⊥DA∴∠CED=∠OAB=90°∵CD∥OE∴∠CDA=∠OBA∴△AOB∽△E
解析:16
【解析】
【分析】
易得△AOB∽△ECD,利用相似三角形对应边的比相等可得旗杆OA的长度.
【详解】
解:∵OA⊥DA,CE⊥DA,
∴∠CED=∠OAB=90°,
∵CD∥OE,
∴∠CDA=∠OBA,
∴△AOB∽△ECD,
∴CE OA16OA
,
DE AB220
==,
解得OA=16.
故答案为16.
15.cm【解析】【分析】将杯子侧面展开建立A关于EF的对称点A′根据两点之间线段最短可知A′B的长度即为所求【详解】解:如答图将杯子侧面展开作A关于EF的对称点A′连接A′B则A′B即为最短距离根据勾股
解析:cm.
【解析】
【分析】
将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.
【详解】
解:如答图,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离.
根据勾股定理,得(cm).
故答案为:20cm.
【点睛】
本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.
16.8或【解析】【分析】根据题意可分两种情况①当CP和CB是对应边时
△CPQ∽△CBA与②CP和CA是对应边时△CPQ∽△CAB根据相似三角形的性质分别求出时间t即可【详解】①CP和CB是对应边时△CP
解析:8或64 11
【解析】
【分析】
根据题意可分两种情况,①当CP和CB是对应边时,△CPQ∽△CBA与②CP和CA是对应边时,△CPQ∽△CAB,根据相似三角形的性质分别求出时间t即可.
【详解】
①CP和CB是对应边时,△CPQ∽△CBA,
所以CP
CB
=
CQ
CA
,
即162
16
t
-
=
12
t
,
解得t=4.8;
②CP和CA是对应边时,△CPQ∽△CAB,
所以CP
CA
=
CQ
CB
,
即162
12
t
-
=
16
t
,
解得t=64 11
.
综上所述,当t=4.8或64
11
时,△CPQ与△CBA相似.
【点睛】
此题主要考查相似三角形的性质,解题的关键是分情况讨论.
17.【解析】【分析】如图根据正方形的性质得:DE∥BC则△ADE∽△ACB列比例式可得结论【详解】如图∵四边形CDEF是正方形∴CD=EDDE∥CF设ED=x则CD =xAD=12-x∵DE∥CF∴∠AD
解析:60 17
.
【解析】
【分析】
如图,根据正方形的性质得:DE∥BC,则△ADE∽△ACB,列比例式可得结论.【详解】
如图,
∵四边形CDEF是正方形,
∴CD=ED,DE∥CF,
设ED=x,则CD=x,AD=12-x,
∵DE∥CF,
∴∠ADE=∠C,∠AED=∠B,
∴△ADE∽△ACB,
∴DE
BC
=
AD
AC
,
∴x
5
=
12-x
12
,
∴x=60 17
,
故答案为60 17
.
【点睛】
本题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键.
18.m>2【解析】分析:根据反比例函数y=当x>0时y随x增大而减小可得出m﹣2>0解之即可得出m的取值范围详解:∵反比例函数y=当x>0时y随x 增大而减小∴m﹣2>0解得:m>2故答案为m>2点睛:本
解析:m>2.
【解析】
分析:根据反比例函数y =
2m x
-,当x >0时,y 随x 增大而减小,可得出m ﹣2>0,解之即可得出m 的取值范围.
详解:∵反比例函数y =2m x
-,当x >0时,y 随x 增大而减小,∴m ﹣2>0,解得:m >2.
故答案为m >2. 点睛:本题考查了反比例函数的性质,根据反比例函数的性质找出m ﹣2>0是解题的关键.
19.【解析】【分析】根据黄金分割的概念和黄金比是解答即可【详解】∵点把线段分割成和两段()其中是与的比例中项∴点P 是线段AB 的黄金分割点∴=故填【点睛】此题考察黄金分割是与的比例中项即点P 是线段AB 的黄
【解析】
【分析】
解答即可. 【详解】
∵点P 把线段AB 分割成AP 和PB 两段(AP PB >),其中AP 是AB 与PB 的比例中项, ∴点P 是线段AB 的黄金分割点,
∴:AP AB =12
,
. 【点睛】
此题考察黄金分割,AP 是AB 与PB 的比例中项即点P 是线段AB 的黄金分割点,即可得
到:AP AB . 20.70°【解析】【分析】设∠BEF=α则∠EFC=180°﹣
α∠DFE=∠BEF=α∠CFE=40°+α依据∠EFC=∠EFC 即可得到180°﹣α=40°+α进而得出∠BEF 的度数【详解】∵∠C=∠C
解析:70°
【解析】
【分析】设∠BEF=α,则∠EFC=180°﹣α,∠DFE=∠BEF=α,∠C'FE=40°+α,依据∠EFC=∠EFC',即可得到180°﹣α=40°+α,进而得出∠BEF 的度数.
【详解】∵∠C'=∠C=90°,∠DMB'=∠C'MF=50°,
∴∠C'FM=40°,
设∠BEF=α,则∠EFC=180°﹣α,∠DFE=∠BEF=α,∠C'FE=40°+α,
由折叠可得,∠EFC=∠EFC',
∴180°﹣α=40°+α,
∴α=70°,
∴∠BEF=70°,
故答案为:70°.
【点睛】本题考查了矩形的性质、折叠的性质,熟练掌握相关的性质是解题的关键.三、解答题
21.此时轮船所在的B处与灯塔P的距离是98海里.
【解析】
【分析】过点P作PC⊥AB,则在Rt△APC中易得PC的长,再在直角△BPC中求出PB的长即可.
【详解】作PC⊥AB于C点,
∴∠APC=30°,∠BPC=45°,AP=80(海里),
在Rt△APC中,cos∠APC=PC PA
,
∴PC=PA•cos∠3(海里),
在Rt△PCB中,cos∠BPC=PC PB
,
∴PB=
403
cos
PC
BPC
=
∠
6≈98(海里),
答:此时轮船所在的B处与灯塔P的距离是98海里.
【点睛】本题考查了解直角三角形的应用举例,正确添加辅助线构建直角三角形是解题的关键.
22.(1)证明见解析;(2)BP=25 3
.
【解析】
【分析】
(1)由题意可得∠ABC=∠ACB,∠DPC=∠BAP,可证△ABP∽△PCD;
(2))由△ABP∽△PCD,可得PC AB
CD BP
=,由PD∥AB,可得
PC BC
CD AC
=,即
AB BC
BP AC
=,可求BP的长.
【详解】
(1)∵AB=AC,∴∠ABC=∠ACB.
∵∠APC=∠ABC+∠BAP,∴∠APD+∠DPC=∠ABC+∠BAP,且∠APD=∠B,∴∠DPC =∠BAP且∠ABC=∠ACB,∴△BAP∽△CPD.
(2)∵△ABP∽△PCD,∴PC CD
AB BP
=即
PC AB
CD BP
=.
∵PD∥AB,∴PC CD
BC AC
=即
PC BC
CD AC
=,∴
AB BC
BP AC
=,∴
1012
10
BP
=,∴BP
25
3
=.
【点睛】
本题考查了相似三角形的判定与性质,等腰三角形的性质,熟练掌握相似三角形的性质是本题的关键.
23.河宽为17米.
【解析】
【分析】由题意先证明∆ABC∽∆ADE,再根据相似三角形的对应边成比例即可求得AB的长.
【详解】∵CB⊥AD,ED⊥AD,
∴∠CBA=∠EDA=90°,
∵∠CAB=∠EAD,
∴∆ABC∽∆ADE,
∴AD DE AB BC
=,
又∵AD=AB+BD,BD=8.5,BC=1,DE=1.5,
∴
8.5 1.5
1 AB
AB
+
=,
∴AB=17,
即河宽为17米.
【点睛】本题考查了相似三角形的应用,熟记相似三角形的判定与性质是解题的关键. 24.(1)见解析;(2)120°
【解析】
【分析】
(1)CD2=AD•BC可得AD:PC=PD:BC,又由△PCD是等边三角形,所以可求出∠ADP=∠BCP=120°,进而证明△ACP∽△PDB;
(2)由△APD∽△PBC,可得∠APD=∠B,则可求得∠APB的大小.
【详解】
(1)证明:∵△PCD是等边三角形,
∴PD=PC=DC,∠PDC=∠PCD=60°,
∴∠ADP=∠BCP=120°,
∵CD2=AD•BC,
∴AD:PC=PD:BC,
∴△APD∽△PBC;
(2)∵△APD∽△PBC,
∴∠APD=∠B,
∵∠B+∠BPC=60°,
∴∠APD+∠BPC=60°,
∴∠APB=60°+∠DPC=120°.
【点睛】
本题考查了相似三角形的判定和性质,等边三角形的性质,熟练掌握相似三角形的性质是解题的关键.
25.(1)证明见解析;(2)72cm.
【解析】
【分析】
(1)根据矩形性质得出∠AHG=∠ABC,再证明△AHG∽△ABC,即可得出结论;
(2)根据(1)中比例式即可求出HE的长度,以及矩形的周长.
【详解】
解:(1)证明:∵四边形EFGH为矩形,
∴EF∥GH,
∴∠AHG=∠ABC,
又∵∠HAG=∠BAC,
∴△AHG∽△ABC,
∴AM HG AD BC
=;
(2)解:由(1)AM HG
AD BC
=得:设HE=xcm,则MD=HE=xcm.
∵AD=30cm,
∴AM=(30﹣x)cm.∵HG=2HE,
∴HG=(2x)cm,
可得:30
3040
x x
-
=,
解得:x=12,
故HG=2x=24,
所以矩形EFGH的周长为:2×(12+24)=72(cm).答:矩形EFGH的周长为72cm.
【点睛】
本题主要考查了相似三角形的判定与性质,根据矩形性质得出△AHG∽△ABC是解决问题的关键.。