龙湖区二中2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
龙湖区二中2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 在数列{}n a 中,115a =,*1332()n n a a n N +=-∈,则该数列中相邻两项的乘积为负数的项是 ( )
A .21a 和22a
B .22a 和23a
C .23a 和24a
D .24a 和25a 2. 某校为了了解1500名学生对学校食堂的意见,从中抽取1个容量为50的样本,采用系统抽样法,则分段间隔为( )1111]
A .10
B .51
C .20
D .30
3. 已知i 为虚数单位,则复数
所对应的点在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
4. 复数z=
(m ∈R ,i 为虚数单位)在复平面上对应的点不可能位于( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
5. 已知数列{}n a 的首项为11a =,且满足111
22
n n n a a +=
+,则此数列的第4项是( ) A .1 B .12 C. 34 D .5
8
6. 单位正方体(棱长为1)被切去一部分,剩下部分几何体的三视图如图所示,则( )
A .该几何体体积为
B .该几何体体积可能为
C .该几何体表面积应为+
D .该几何体唯一
7. 复数满足2+2z
1-i =i z ,则z 等于( )
A .1+i
B .-1+i
C .1-i
D .-1-i 8. S n 是等差数列{a n }的前n 项和,若3a 8-2a 7=4,则下列结论正确的是( )
A.S18=72 B.S19=76
C.S20=80 D.S21=84
9.设f(x)=e x+x﹣4,则函数f(x)的零点所在区间为()
A.(﹣1,0)B.(0,1) C.(1,2) D.(2,3)
10.独立性检验中,假设H0:变量X与变量Y没有关系.则在H0成立的情况下,估算概率P(K2≥6.635)≈0.01表示的意义是()
A.变量X与变量Y有关系的概率为1%
B.变量X与变量Y没有关系的概率为99%
C.变量X与变量Y有关系的概率为99%
D.变量X与变量Y没有关系的概率为99.9%
11.“1<x<2”是“x<2”成立的()
A.充分不必要条件B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
12.已知f(x)=m•2x+x2+nx,若{x|f(x)=0}={x|f(f(x))=0}≠∅,则m+n的取值范围为()A.(0,4) B.[0,4)C.(0,5] D.[0,5]
二、填空题
13.【徐州市2018届高三上学期期中】已知函数(为自然对数的底数),若
,则实数的取值范围为______.
14.在(2x+)6的二项式中,常数项等于(结果用数值表示).
15.在△ABC中,若a=9,b=10,c=12,则△ABC的形状是.
16.设,x y满足条件
,
1,
x y a
x y
+≥
⎧
⎨
-≤-
⎩
,若z ax y
=-有最小值,则a的取值范围为.
17.把函数y=sin2x的图象向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为.
18.已知等比数列{a n}是递增数列,S n是{a n}的前n项和.若a1,a3是方程x2﹣5x+4=0的两个根,则S6=.三、解答题
19.某城市决定对城区住房进行改造,在建新住房的同时拆除部分旧住房.第一年建新住房am2,第二年到第四年,每年建设的新住房比前一年增长100%,从第五年起,每年建设的新住房都比前一年减少am2;已知旧住房总面积为32am2,每年拆除的数量相同.
(Ⅰ)若10年后该城市住房总面积正好比改造前的住房总面积翻一番,则每年拆除的旧住房面积是多少m2?(Ⅱ),求前n(1≤n≤10且n∈N)年新建住房总面积S n
20.设集合A={x|0<x﹣m<3},B={x|x≤0或x≥3},分别求满足下列条件的实数m的取值范围.
(1)A∩B=∅;
(2)A∪B=B.
21.已知三次函数f(x)的导函数f′(x)=3x2﹣3ax,f(0)=b,a、b为实数.
(1)若曲线y=f(x)在点(a+1,f(a+1))处切线的斜率为12,求a的值;
(2)若f(x)在区间[﹣1,1]上的最小值、最大值分别为﹣2、1,且1<a<2,求函数f(x)的解析式.
22.椭圆C : =1,(a >b >0)的离心率
,点(2,)在C 上.
(1)求椭圆C 的方程;
(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .证明:直线OM
的斜率与l 的斜率的乘积为定值.
23.(本小题满分12分)
已知函数()
23cos cos 2
f x x x x =++
. (1)当6
3x ππ⎡⎤
∈-⎢⎥⎣⎦,时,求函数()y f x =的值域;
(2)已知0ω>,函数()212x g x f ωπ⎛⎫=+
⎪⎝⎭,若函数()g x 在区间23
6π
π⎡⎤-⎢⎥⎣⎦,上是增函数,求ω的最大值.
24.设{a n }是公比小于4的等比数列,S n 为数列{a n }的前n 项和.已知a 1=1,且a 1+3,3a 2,a 3+4构成等差数列.
(1)求数列{a n }的通项公式;
(2)令b n =lna 3n+1,n=12…求数列{b n }的前n 项和T n .
龙湖区二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1. 【答案】C 【解析】
考
点:等差数列的通项公式. 2. 【答案】D 【解析】
试题分析:分段间隔为5030
1500
,故选D. 考点:系统抽样 3. 【答案】A
【解析】解: =
=1+i ,其对应的点为(1,1),
故选:A .
4. 【答案】C
【解析】解:z=
=
=
=
+
i ,
当1+m >0且1﹣m >0时,有解:﹣1<m <1; 当1+m >0且1﹣m <0时,有解:m >1; 当1+m <0且1﹣m >0时,有解:m <﹣1; 当1+m <0且1﹣m <0时,无解; 故选:C .
【点评】本题考查复数的几何意义,注意解题方法的积累,属于中档题.
5. 【答案】B 【解析】
6. 【答案】C
【解析】解:由已知中三视图可得该几何体是由一个边长为1的正方体,截掉一个角(三棱锥)得到 且该三棱锥有条过同一顶点且互相垂直的棱长均为1
该几何体的表面积由三个正方形,有三个两直角边为1的等腰直角三角形和一个边长为的正三角形组成
故其表面积S=3•(1×1)+3•(×1×1)+•(
)2
=
.
故选:C .
【点评】本题考查的知识点是由三视图求表面积,其中根据三视图分析出该几何的形状及各边边长是解答本题的关键.
7. 【答案】
【解析】解析:选D.法一:由2+2z
1-i =i z 得
2+2z =i z +z , 即(1-i )z =-2,
∴z =-21-i =-2(1+i )2=-1-i.
法二:设z =a +b i (a ,b ∈R ), ∴2+2(a +b i )=(1-i )i (a +b i ), 即2+2a +2b i =a -b +(a +b )i ,
∴⎩⎪⎨⎪⎧2+2a =a -b 2b =a +b
, ∴a =b =-1,故z =-1-i. 8. 【答案】
【解析】选B.∵3a 8-2a 7=4, ∴3(a 1+7d )-2(a 1+6d )=4,
即a 1+9d =4,S 18=18a 1+18×17d 2=18(a 1+172d )不恒为常数.
S 19=19a 1+19×18d
2
=19(a 1+9d )=76,
同理S20,S21均不恒为常数,故选B.
9.【答案】C
【解析】解:f(x)=e x+x﹣4,
f(﹣1)=e﹣1﹣1﹣4<0,
f(0)=e0+0﹣4<0,
f(1)=e1+1﹣4<0,
f(2)=e2+2﹣4>0,
f(3)=e3+3﹣4>0,
∵f(1)•f(2)<0,
∴由零点判定定理可知,函数的零点在(1,2).
故选:C.
10.【答案】C
【解析】解:∵概率P(K2≥6.635)≈0.01,
∴两个变量有关系的可信度是1﹣0.01=99%,
即两个变量有关系的概率是99%,
故选C.
【点评】本题考查实际推断原理和假设检验的应用,本题解题的关键是理解所求出的概率的意义,本题是一个基础题.
11.【答案】A
【解析】解:设A={x|1<x<2},B={x|x<2},
∵A⊊B,
故“1<x<2”是“x<2”成立的充分不必要条件.
故选A.
【点评】本题考查的知识点是必要条件,充分条件与充要条件判断,其中熟练掌握集合法判断充要条件的原则“谁小谁充分,谁大谁必要”,是解答本题的关键.
12.【答案】B
【解析】解:设x1∈{x|f(x)=0}={x|f(f(x))=0},
∴f(x1)=f(f(x1))=0,
∴f(0)=0,
即f(0)=m=0,
故m=0;
故f(x)=x2+nx,
f(f(x))=(x2+nx)(x2+nx+n)=0,
当n=0时,成立;
当n≠0时,0,﹣n不是x2+nx+n=0的根,
故△=n2﹣4n<0,
故0<n<4;
综上所述,0≤n+m<4;
故选B.
【点评】本题考查了函数与集合的关系应用及分类讨论的思想应用,同时考查了方程的根的判断,属于中档题.
二、填空题
13.【答案】
【解析】令,则
所以为奇函数且单调递增,因此
即
点睛:解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内
14.【答案】240
【解析】解:由(2x+)6,得
=.
由6﹣3r=0,得r=2.
∴常数项等于.
故答案为:240.
15.【答案】锐角三角形
【解析】解:∵c=12是最大边,∴角C是最大角
根据余弦定理,得cosC==>0
∵C∈(0,π),∴角C是锐角,
由此可得A 、B 也是锐角,所以△ABC 是锐角三角形 故答案为:锐角三角形
【点评】本题给出三角形的三条边长,判断三角形的形状,着重考查了用余弦定理解三角形和知识,属于基础题.
16.【答案】[1,)+∞ 【解析】解析:不等式,
1,
x y a x y +≥⎧⎨
-≤-⎩表示的平面区域如图所示,由z ax y =-得y ax z =-,当01a ≤<时,
平移直线1l 可知,z 既没有最大值,也没有最小值;当1a ≥时,平移直线2l 可知,在点A 处z 取得最小值;当10a -<<时,平移直线3l 可知,z 既没有最大值,也没有最小值;当1a ≤-时,平移直线4l 可知,在点A 处z 取得最大值,综上所述,1a ≥.
17.【答案】 y=cosx .
【解析】解:把函数y=sin2x 的图象向左平移个单位长度,得,即y=cos2x 的图象,把y=cos2x
的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y=cosx 的图象;
故答案为:y=cosx .
18.【答案】63
【解析】解:解方程x 2﹣5x+4=0,得x 1=1,x 2=4.
因为数列{a n }是递增数列,且a 1,a 3是方程x 2﹣5x+4=0的两个根, 所以a 1=1,a 3=4.
设等比数列{a n }的公比为q ,则,所以q=2. 则
.
故答案为63.
【点评】本题考查了等比数列的通项公式,考查了等比数列的前n 项和,是基础的计算题.
O
x
y
A
1
l 2
l 3
l 4l
三、解答题
19.【答案】
【解析】解:(I)10年后新建住房总面积为a+2a+4a+8a+7a+6a+5a+4a+3a+2a=42a.
设每年拆除的旧住房为xm2,则42a+(32a﹣10x)=2×32a,
解得x=a,即每年拆除的旧住房面积是am2
(Ⅱ)设第n年新建住房面积为a,则a n=
所以当1≤n≤4时,S n=(2n﹣1)a;
当5≤n≤10时,S n=a+2a+4a+8a+7a+6a+(12﹣n)a=
故
【点评】本小题主要考查函数模型的选择与应用,属于基础题.解决实际问题通常有四个步骤:(1)阅读理解,认真审题;(2)引进数学符号,建立数学模型;(3)利用数学的方法,得到数学结果;(4)转译成具体问题作出解答,其中关键是建立数学模型.
20.【答案】
【解析】解:∵A={x|0<x﹣m<3},∴A={x|m<x<m+3},
(1)当A∩B=∅时;如图:
则,
解得m=0,
(2)当A∪B=B时,则A⊆B,
由上图可得,m≥3或m+3≤0,
解得m≥3或m≤﹣3.
21.【答案】
【解析】解:(1)由导数的几何意义f′(a+1)=12
∴3(a+1)2﹣3a(a+1)=12
∴3a=9∴a=3
(2)∵f′(x)=3x2﹣3ax,f(0)=b
∴
由f′(x)=3x(x﹣a)=0得x1=0,x2=a
∵x∈[﹣1,1],1<a<2
∴当x∈[﹣1,0)时,f′(x)>0,f(x)递增;当x∈(0,1]时,f′(x)<0,f(x)递减.
∴f(x)在区间[﹣1,1]上的最大值为f(0)
∵f(0)=b,
∴b=1
∵,
∴f(﹣1)<f(1)
∴f(﹣1)是函数f(x)的最小值,
∴
∴
∴f(x)=x3﹣2x2+1
【点评】曲线在切点处的导数值为曲线的切线斜率;求函数的最值,一定要注意导数为0的根与定义域的关系.22.【答案】
【解析】解:(1)椭圆C:=1,(a>b>0)的离心率,点(2,)在C上,可得,
,解得a2=8,b2=4,所求椭圆C方程为:.
(2)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),
把直线y=kx+b代入可得(2k2+1)x2+4kbx+2b2﹣8=0,
故x M==,y M=kx M+b=,
于是在OM的斜率为:K OM==,即K OM k=.
∴直线OM的斜率与l的斜率的乘积为定值.
【点评】本题考查椭圆方程的综合应用,椭圆的方程的求法,考查分析问题解决问题的能力.
23.【答案】(1)
3
3
2
⎡⎤
⎢⎥
⎣⎦
,;(2).
【解析】
试题分析:(1)化简()sin 226f x x π⎛
⎫=++ ⎪⎝⎭,结合取值范围可得1sin 2126x π⎛⎫-≤+≤ ⎪⎝⎭⇒值域为332⎡⎤⎢⎥⎣⎦,;(2)
易得()sin 22123x g x f x ωππω⎛⎫⎛⎫=+=++ ⎪ ⎪⎝⎭⎝⎭和233363x πωππωππω⎡⎤+∈-++⎢⎥⎣⎦,,由()g x 在23
6π
π⎡⎤-
⎢⎥⎣⎦,上是增函数⇒222Z 336322k k k ωππωππππππ⎡⎤⎡⎤
-
++⊆-++∈⎢⎥⎢⎥⎣⎦⎣⎦,,,⇒ 22332
26
32k k ωππ
ππωππππ⎧-+≥-+⎪⎪⎨
⎪+≤+⎪⎩⇒534112k k ωω⎧≤-⎪⎨⎪≤+⎩⇒151212k -<<,Z k ∈⇒0k =⇒1ω≤⇒ω的最大值为
. 考
点:三角函数的图象与性质. 24.【答案】
【解析】解:(1)设等比数列{a n }的公比为q <4,∵a 1+3,3a 2,a 3+4构成等差数列.
∴2×3a 2=a 1+3+a 3+4,∴6q=1+7+q 2
,解得q=2. (2)由(1)可得:a n =2n ﹣1
.
b n=lna3n+1=ln23n=3nln2.
∴数列{b n}的前n项和T n=3ln2×(1+2+…+n)
=ln2.。