高压无功补偿与谐波治理217
高压电网无功抵偿及谐波处理
高压电网无功抵偿及谐波处理1无功电量的概念在平稳直流状况下,功率等于电压与电流的乘积,即:P=U;x;I。
在沟通状况下,因为电压与电流均为时刻的周期函数,则功率由下式来进行核算:当电网中的负荷富含电抗成分(一般为理性成分)或许负荷具有非线性特性时,电压与电流就会有相位差或许电流富含谐波成分,此刻电网传输能量的才调降低,功率的核算值小于电压有用值与电流有用值的乘积,所以就引进了功率因数的概念。
功率因数的英文全称是Powerfactor,简称PF。
PF是一个无量纲的小于1的实数。
当电压与电流用有用值标明并引进功率因数时,则功率由下式来进行核算:当体系中没有谐波时,功率因数即是电压与电流相位差phi;的余弦函数即:PF=cosphi;。
所以功率的表达式可写为:P=U;x;I;x;cos引进了功率因数的概念往后,咱们就能够运用向量的办法将电流分化为有功电流和无功电流:式中:P为有功功率,PL为无功功率,PS为视在功率。
有功功率代表着能量的传递,而无功功率是一种沟通电网中特有的不传递能量的伴生量。
在电网系核算量进程中,还常常运用有功电量与无功电量来核算功率因数,因为有功电量恰当于有功功率对时刻的积分,无功电量恰当于无功功率对时刻的积分,因而这么的核算效果恰当于功率因数在一个计量周期的均匀值。
需求留神的是:(1)只需无功电流与无功功率的概念,没有无功电压的概念。
因而一般所说的无功用够指无功电流,也能够指无功功率。
(2)当体系中富含谐波时,用cos来表达功率因数会发作较大的过错。
谐波含量越大,过错越大。
2无功抵偿的必要性因为无功电流的存在,在传送一样能量的状况下,电流比没有无功的状况下添加,会许多添加体系的铜损,降低线路与变压器的运用率,这是了解了解的作业。
在一个沟通联接的电网中(这儿偏重沟通联接的要素是因为直流输电线路不传递无功,因而用直流输电线路联接的若干电网能够分隔为各自独立的电网来思考无功疑问),无功电流在任何顷刻间间都是平衡的,也即是说,无功电流的宣告量与吸收量在任何顷刻间间都是持平的,这即是无功平衡原理。
谐波治理与无功补偿
谐波治理与⽆功补偿1:什么是谐波:电⼒系统中有⾮线性(时变或时不变)负载时,即使电源都以⼯频50HZ供电,当⼯频电压或电流作⽤于⾮线性负载时,就会产⽣不同于⼯频的其它频率的正弦电压或电流,这些不同于⼯频频率的正弦电压或电流,⽤富⽒级数展开,就是⼈们称的电⼒谐波。
从⼴义上讲,由于交流电⽹有效分量为⼯频单⼀频率,因此任何与⼯频频率不同的成分都可以称之为谐波.在电⼒系统⽅⾯,谐波是指多少倍于⼯频频率的波形,简称“次”,是指从2次到30次范围,如5次谐波电压(电流)的频率是250赫兹,7次谐波电压(电流)的频率是350赫兹;3、5、、7、9、11、等叫做其次谐波,超过13次的谐波称⾼次谐波。
近三四⼗年来,各种电⼒电⼦装置的迅速发展使得公⽤电⽹的谐波污染⽇趋严重,由谐波引起的各种故障和事故也不断发⽣,谐波危害的严重性才引起⼈们⾼度的关注。
: 电⼒谐波对电⼒⽹(包括⽤户)危害是⼗分严重的,它是⼀种电⼒污染,随着经济展,⼤功率可控硅的⼴泛应⽤,⼤量⾮线性负荷增加,特别是电⼦技术、节能技术和控制技术的进步,在化⼯、冶⾦、钢铁、煤矿和交通等部门⼤量使⽤各种整流设备、交直流换流设备和电⼦电压调整设备,电熔炼设备、电化学设备、矿井起重设备、露天采掘设备、电⽓机车等与⽇俱增,同时种类繁多的照明器具、娱乐设施和家⽤电器等普及使⽤,使得电⼒系统波形严重变形。
2::电⼒谐波的主要危害有:(1)引起串联谐振及并联谐振,放⼤谐波,造成危险的过电压或过电流;(2)产⽣谐波损耗,使发、变电和⽤电设备效率降低;(3)加速电⽓设备及电⼒变压器绝缘⽼化,使其容易击穿,从⽽缩短它们的使⽤寿命;(4)使设备(如电机、继电保护、⾃动装置、测量仪表、电⼒电⼦器件、计算机系统、精密仪器等)运转不正常或不能正确操作;(5)⼲扰通讯系统,降低信号的传输质量,破坏信号的正确传递,甚⾄损坏通信设备。
(6)使开关(断路器)过载,造成经常性跳闸。
由于谐波电流在导体表⾯流动,引起导体发热,降低了开关的实际容量所致。
谐波治理及无功补偿方案
谐波治理及无功补偿方案谐波治理及无功补偿方案随着现代电力系统的快速发展和应用,电力质量问题日益凸显。
其中一个主要问题就是谐波污染,谐波污染会对电力系统产生极大的危害,如烧毁电器设备、造成供电失灵等。
为了有效解决谐波污染问题,可以采用谐波治理及无功补偿方案。
一、谐波治理1.谐波发生的原因谐波是指电源产生的不同于基波频率的信号,其会把电力系统中的电压和电流形成很多波峰,属于高频电流。
2.谐波的产生谐波的形成,主要是由非线性负载所引起(例如变频器、电子电路等),这些负载会对输电线路上传输的电能进行畸变,导致电力系统中产生多余的波形。
3.谐波的危害谐波的危害十分显著,其主要表现为电力系统中的电器设备可能会受到烧毁的风险,从而引发一系列的安全事故和设备故障。
4.谐波治理方案(1)滤波器法:通过在负载侧增加合适的滤波器,可以去除输出信号中的高频波形,让电力系统中的电路保持基波同步。
(2)减小非线性负载法:由于非线性负载是谐波形成的主要原因,因此可以通过减少或替换负载器件,从而降低谐波的产生。
(3)提高系统阻抗法:当系统的阻抗增加时,电源的输出电流会减少,从而谐波的产生会得到一定的减少。
二、无功补偿1.无功补偿的原理无功补偿是一种电力系统中无功功率的调节方法,其通过连接电容器或电感器,来对补偿线路进行补偿,从而实现对无功功率的控制和调节。
2.无功功率的特点无功功率具有波动性和成段性的特点,这是由于电力系统中产生的无功功率主要受到负载方向或回路的变化所影响。
3.无功补偿的作用(1)提高功率因数:在无功补偿的情况下,系统的功率因数会有所提高,从而有效降低负载对电力系统的影响。
(2)降低电网损耗:通过对电路进行无功补偿,可以将电力系统中的无功功率转化为有用的有功功率,从而减少电网的能量损耗。
(3)提高电力系统的稳定性:无功功率的波动会影响电力系统的稳定性,因此,通过无功补偿,可以有效地提高电力系统的稳定性。
4.无功补偿方案(1)串联电容补偿法:通过在电路中增加合适的等效容值,可以将谐波电流从发电端分流到电容器中。
高压电网无功补偿及谐波治理
高压电网无功补偿及谐波治理1 无功电量的概念在平稳直流状态下,功率等于电压与电流的乘积,即:P=U×I。
在交流状态下,由于电压与电流均为时间的周期函数,则功率由下式来进行计算:当电网中的负荷含有电抗成分(通常为感性成分)或者负荷具有非线性特性时,电压与电流就会有相位差或者电流含有谐波成分,此时电网传输能量的能力下降,功率的计算值小于电压有效值与电流有效值的乘积,于是就引入了功率因数的概念。
功率因数的英文全称是Power factor,简称PF。
PF 是一个无量纲的小于1 的实数。
当电压与电流用有效值表示并引入功率因数时,则功率由下式来进行计算:当系统中没有谐波时,功率因数就是电压与电流相位差φ 的余弦函数即:PF = cosφ。
于是功率的表达式可写为:引入了功率因数的概念以后,我们就可以利用向量的方法将电流分解为有功电流和无功电流:式中:P 为有功功率,PL为无功功率,PS为视在功率。
有功功率代表着能量的传递,而无功功率是一种交流电网中特有的不传递能量的伴生量。
在电网系统计量过程中,还经常使用有功电量与无功电量来计算功率因数,由于有功电量相当于有功功率对时间的积分,无功电量相当于无功功率对时间的积分,因此这样的计算结果相当于功率因数在一个计量周期的平均值。
需要注意的是:(1)只有无功电流与无功功率的概念,没有无功电压的概念。
因此通常所说的无功可以指无功电流,也可以指无功功率。
(2)当系统中含有谐波时,用来表达功率因数会产生较大的误差。
谐波含量越大,误差越大。
2 无功补偿的必要性由于无功电流的存在,在传送同样能量的情况下,电流比没有无功的情况下增加,会大量增加系统的铜损,降低线路与变压器的利用率,这是显而易见的事情。
在一个交流连接的电网中(这里强调交流连接的原因是因为直流输电线路不传递无功,因此用直流输电线路连接的若干电网可以分开为各自独立的电网来考虑无功问题),无功电流在任何瞬间都是平衡的,也就是说,无功电流的发出量与吸收量在任何瞬间都是相等的,这就是无功平衡原理。
无功补偿及谐波治理工程技术方案
无功补偿及谐波治理工程技术方案无功补偿与谐波治理是电力系统中的两个重要问题。
无功补偿主要解决无功功率的调节问题,谐波治理主要解决电力系统中谐波污染的问题。
本文将就无功补偿及谐波治理工程技术方案进行详细的介绍。
1.电容补偿技术方案电容补偿是通过串联电容来提供无功功率,从而提高功率因数。
该技术方案具有成本低、无功补偿效果好等优点。
适用于对电网无功功率负荷波动较小的场所。
2.静止无功发生器(SVC)技术方案SVC是通过调节阻抗来提供无功功率的一种补偿方式。
它具有响应速度快、补偿效果好等优点。
适用于电网无功功率负荷波动较大的场所。
3.静态同步无功发生器(STATCOM)技术方案STATCOM是通过调整电压来提供无功功率的一种补偿方式。
该技术方案具有响应速度快、无功补偿效果好等优点。
适用于对电压稳定性要求较高的场所。
1.谐波滤波器技术方案谐波滤波器是将发生谐波的电流或电压引入滤波器,通过滤波器的谐波抑制特性将其滤除。
该技术方案具有谐波抑制效果好、性能稳定等优点。
适用于单一谐波频率的场所。
2.谐波变压器技术方案谐波变压器是通过在电力系统中串联谐波补偿变压器来抵消谐波电流。
该技术方案具有谐波抑制效果好、谐波适应性强等优点。
适用于多个谐波频率的场所。
3.主动滤波器技术方案主动滤波器是通过检测谐波电流或电压,并通过逆变器产生反向相位的谐波电流来抵消原有谐波电流。
该技术方案具有谐波抑制效果好、适应性强等优点。
适用于谐波频率较多、波动较大的场所。
综上所述,无功补偿技术方案包括电容补偿技术方案、静止无功发生器技术方案和静态同步无功发生器技术方案。
谐波治理技术方案包括谐波滤波器技术方案、谐波变压器技术方案和主动滤波器技术方案。
根据具体情况选择合适的技术方案,能够有效地解决电力系统中的无功补偿和谐波治理问题,提高电力系统的稳定性和供电质量。
高压电网无功补偿及谐波治理
电网 中去 . 因此 电能表会 将谐波 能量 当作 发 电来进 行计算 . 从 而导致计量误 差 于机 械式 电能表还会 由于高频 率谐 波 对
所 产 生 的高 频 涡 流 阻 力 而 变 慢 为 在 高 次 谐 波 严 重 的情 况 因 下 ( 如 中 频 炉 ) 严 重 影 响 电 能 表 的 计 量 精 度 , 致 莫 名 其 例 会 导 妙 的 丢 电现 象 ( ) 精 密 电 子 设 备 ( 括 电子 式 电 能 表 ) 精 密 电子 设 4对 包 , 备会被严重 干扰 。 导致 不 能 正 常 工作 , 至 烧 毁 。 甚
器都会产 生少量 的谐 波 。 但是 由于产生大 量谐波 的用 电设备 不断增加 . 并且 电网 中大 量使 用 的并联 电容器所 造成 的谐波 放大 , 使得谐波 的影响越 来越严重 。 逐渐引 起人们 的重 视 。
33 谐 波 造 成 的 危 害 -
4 谐 波的治 理
无源 滤波 器 由滤 波 电容 器 .滤 波电抗 器等 适 当组合成
当 电 网 中 的谐 波 电流 较 大 . 至 于 电 压 波 形 也 产 生 畸 变 以 时 。 们 将 其 称 之 为 电 网 被 污 染 。 电 网 的 污 染 程 度 用 电 压 波 我 形 畸变率来表示 , 称 T u 简 HD 。按 照 国 家 标 准 G / 15 9 9 BT 4 4 — 3
L C滤 波 装 置 .滤 波 器 除 起 滤 波 作 用 外 .还 兼 作 无 功 补 偿 作 用。L C滤 波 器 主要 有 调 谐 和 滤 波 器 , 调 谐 和 滤 波 器 。 通 双 高 滤 波 器 , 滤 波 器 等 。实 际 运 用 中 根 据 谐 波 电 流 的分 布 及 C型 大 小 以及 无 功 需 求 情 况 设 计 成 几 组 滤 波 器 . 一 组 滤 波 器 对 每 应 某 一 次 谐 波 呈 低 阻抗 . 通 滤 波 器 对 截 止 频 率 以上 的谐 波 高 均 呈 现 低 阻抗 , 滤 波 具 有 调 谐 频 带 宽 , 耗 低 的 特 点 。 C型 损 滤
无功补偿与谐波治理
无功补偿与谐波治理在现代电力系统中,无功补偿与谐波治理是两个至关重要的课题。
它们对于提高电能质量、保障电力设备的正常运行以及降低电力损耗都有着举足轻重的作用。
首先,我们来谈谈无功补偿。
无功功率,简单来说,就是那些在电力系统中没有被实际消耗掉,但在电能传输和转换过程中又必不可少的功率。
比如说,电动机在运行时需要建立磁场,这部分用于建立磁场的功率就是无功功率。
无功功率的存在会给电力系统带来一些问题。
一方面,它会增加电力线路的电流,从而导致线路损耗增加。
想象一下,电流就像水流,无功功率让水流变大,在流经管道(线路)时,与管道的摩擦(线路损耗)也就更大了。
另一方面,无功功率不足会导致系统电压下降。
电压就像水压,如果水压不足,水流就无力,电器设备就可能无法正常工作。
为了解决这些问题,我们就需要进行无功补偿。
无功补偿的方法有很多种,常见的有电容器补偿、电抗器补偿以及静止无功补偿器(SVC)和静止同步补偿器(STATCOM)等。
电容器补偿是一种比较传统且常见的方法。
电容器就像一个能量储存器,在系统无功功率不足时释放储存的能量,提供无功支持。
它具有成本低、安装方便等优点,但也存在一些局限性,比如补偿效果可能会受到系统电压波动的影响。
电抗器补偿则主要用于限制短路电流和吸收系统中的过剩无功功率。
它通常与电容器配合使用,以达到更好的补偿效果。
SVC 和 STATCOM 则是较为先进的无功补偿装置。
SVC 通过控制晶闸管的导通角来调节接入系统的无功功率。
STATCOM 则基于电力电子技术,能够快速、连续地调节输出的无功功率,具有响应速度快、补偿精度高等优点。
接下来,我们再说说谐波治理。
谐波是什么呢?谐波是指电力系统中电流或电压的频率为基波频率整数倍的分量。
打个比方,基波就像音乐中的主旋律,而谐波则是一些不和谐的杂音。
谐波的产生主要源于电力电子设备的广泛应用,比如变频器、整流器等。
这些设备在工作时会使电流或电压发生畸变,从而产生谐波。
无功补偿与谐波治理方案
无功补偿与谐波治理方案无功补偿是电力系统中一种重要的电力调节手段,可以提高电力系统的稳定性和经济性。
而谐波是电力系统中经常会遇到的一种问题,会引起电力设备的损坏和能效降低。
因此,针对无功补偿和谐波治理问题,需要制定合适的方案。
无功补偿是指通过调整电力系统中的无功功率,使系统达到稳定运行的一种方法。
在电力系统中,无功功率是电压和电流的相位差所产生的功率,它与有功功率一起构成了总功率。
无功补偿的目的是通过使用无功补偿装置,如电容器和电抗器,来改变系统中的无功功率,以达到系统功率的平衡。
无功补偿可以提高电力系统的功率因数,减小线路和设备的损耗,改善电压质量,提高电力系统的稳定性和可靠性。
谐波是指电力系统中频率为整数倍的基波的倍数的谐波。
通常情况下,电力系统中存在一些非线性负载,如电力电子设备、电弧炉等,会引入大量谐波。
谐波会导致电力设备的温升和功率损耗加大,甚至引发设备的故障和损坏。
因此,对于电力系统中的谐波问题,需要采取相应的治理措施。
针对无功补偿的问题,可以采取以下方案:1.定期检查和维护无功补偿设备:对于已经安装在电力系统中的无功补偿装置,需要定期检查和维护,确保其正常运行。
包括检查电容器和电抗器的电容值和电感值是否正常,检查电压和电流的测量装置是否准确,确保无功补偿的效果和安全性。
2.合理设计和布置无功补偿装置:在电力系统中,根据负载类型和电力需求情况,合理设计和布置无功补偿装置,包括电容器和电抗器的容量和数量,以及其在电力系统中的位置和连接方式。
通过合理布置无功补偿装置,可以最大限度地提高无功补偿的效果,并减少无功功率损耗。
3.使用静态无功补偿装置:与传统的无功补偿装置相比,静态无功补偿装置具有体积小、无噪音、响应速度快等优点,适用于电力系统中对无功补偿要求比较高的场合。
使用静态无功补偿装置可以提高无功补偿的精度和灵活性,同时降低运行和维护成本。
针对谐波的问题1.谐波源的隔离和控制:对于电力系统中存在的谐波源,如非线性负载设备,可以采取隔离措施,减少其对电力系统的谐波干扰。
电力系统中的谐波治理与无功补偿技术
电力系统中的谐波治理与无功补偿技术【正文】一、引言电力系统中的谐波问题和无功补偿技术是近年来电力行业亟需解决的重要问题之一。
随着电力系统的发展和电能质量的要求不断提高,谐波及无功补偿技术的研究和应用变得日益重要。
本课题报告旨在全面介绍的相关原理、方法和应用,以期为电力系统的运行和管理提供参考。
二、谐波问题的研究与分析1. 谐波基础知识:介绍谐波的基本概念、特点以及对电力系统的影响。
2. 谐波源与谐波分析:对谐波源的分类及基于电力系统的谐波分析方法进行详细阐述。
3. 谐波特性与控制策略:探讨电力系统中谐波的特征、频谱以及相应的谐波控制策略。
三、电力系统中的谐波治理技术1. 调制技术:介绍谐波治理中的调制技术,并详细阐述常用的PWM调制技术。
2. 谐波传输与隔离技术:分析谐波传输与隔离技术的原理和方法,重点讲解谐波滤波器的设计和应用。
3. 谐波抑制与补偿技术:探讨主动与被动谐波抑制与补偿技术的原理、方法和应用场景。
四、无功补偿技术在电力系统中的应用1. 无功补偿的基本原理:阐述无功补偿的基本概念、作用和分析方法。
2. 无功补偿装置的分类与特点:介绍无功补偿装置的分类及各自的特点与适用场景。
3. 无功补偿策略与控制方法:讨论电力系统中常用的无功补偿策略与控制方法,并对比分析其优劣。
五、谐波治理与无功补偿技术的应用案例分析1. 电力系统中的谐波治理案例分析:选取实际电力系统中的谐波治理案例,阐述具体的谐波问题和相应的解决方案。
2. 无功补偿技术应用案例分析:选取不同场景的电力系统无功补偿案例,分析其应用效果和经济性。
六、谐波治理与无功补偿技术的发展前景与挑战1. 技术发展趋势:展望谐波治理与无功补偿技术未来的发展方向和趋势。
2. 技术挑战与解决方案:分析目前谐波治理与无功补偿技术面临的挑战,并提出相应的解决方案与措施。
七、结论本课题报告对于进行了全面、系统的介绍和分析,强调了谐波治理与无功补偿技术在电力系统中的重要性和应用价值。
供电系统的无功补偿与谐波治理
供电系统的无功补偿与谐波治理1引言近年来,配电网中整流器、变频调速装置、电弧炉、各种电力电子设备以及电气化铁路大量应用。
这些负荷大都具有非线性、冲击性和不平衡性的特点在运行中会产生大量谐波。
这些谐波对无功补偿装置造成了严重影响。
在供电系统中,对于某次谐波,作为无功补偿用的并联电容器若与呈感性的系统电抗发生谐振则会出现过电压而造成危害。
当无功补偿装置运行地点的谐波比较严重时,电压、电流波形会有很大畸变,电容器投切控制信号的传输就会受到影响,从而有可能引起装置的误动或拒动。
另一方面并联电容器对电网谐波的影响也很大。
若电容器容抗和系统感抗配合不恰当将会造成电网谐波电压和电流的严重放大?熏给电容器本身带来极大损伤。
可见,无功补偿与谐波治理两者关系密切。
产生谐波的装置大都是消耗基波无功功率的装置;治理谐波的装置通常也是补偿无功的装置。
因此,为了寻求能同时实现无功补偿和谐波治理的装置,就必须将二者结合起来进行研究。
成都伯乐电气设备有限公司为客户提供无功功率补偿、电网谐波治理、电能质量在线监测;2电容器无功补偿装置中的谐波问题谐波源有两种一种是谐波电流源,这些用电设备中的谐波含量取决于它自身的特性和工作状况基本上与供电系统参数无关。
另外一种是谐波电压源。
发电机在发出基波电势的同时也会有谐波电势产生?熏其谐波电势大小主要取决于发电机本身的结构和工作状况。
实际上,在电网中运行的发电机和变压器等电力设备?熏输出的谐波电势分量很小几乎可以忽略。
因此?熏在供电系统中存在并实际发生作用的谐波源?熏主要是谐波电流源。
在用并联电容器进行无功补偿的供电系统中电网以感抗为主电容器支路以容抗为主。
在工频条件下并联电容器的容抗比系统的感抗大得多?熏可发出无功功率对电网进行无功补偿。
但在有谐波背景的系统中大量的非线性负荷会产生大量的谐波电流注入电网,对这些谐波频率而言?熏电网感抗显著增加而补偿系统容抗显著减小导致谐波电流大部分流入电容器支路,若此时电容器的运行电流超过其额定电流的 1.3倍,电容器将会因过流而产生故障。
谐波的治理以及无功功率的补偿
、有源滤波装置的适用场合
有源滤波器主要的应用范围是计算机控制系统的供电系统, 尤其是写字楼的供电系统,工厂的计算机控制供电系统。
、有源滤波装置的现状
对单台的有源滤波装置而言,其利润是可观的,但用户一 般不愿意用有源滤波,对于谐波的含量,不必滤得太干净, 只要不危害其他用电器也就可以了。
#2022
#2022
、无功补偿概述
使载大、耗增、要备时设使流、 供,,使增大无加、,备发增无 电还如线加,功大测电容电大功 质会果路,因功。量力量机和功 量使是及这而率 仪用和、视率 严电冲变是使的 表户导变在的 重压击压显设增 的的线压功增 降产性器而备加 尺起容器率加 低生无的易及, 寸动量及增, 。剧功电见线使 和及增其加会
02
近30年来,电力电子装置的应用日益广泛,也使得电力电子装置成为最大的谐波源。在各种 电力电子装置中,整流装置所占的比例最大。目前,常用的整流电路几乎都采用晶闸管相控 整流电路或二极管整流电路,其中以三相桥式和单相桥式整流电路为最多。带阻感负载的整 流电路所产生的谐波污染和功率因数滞后已为人们所熟悉。直流侧采用电容滤波的二极管整 流电路也是严惩的谐波污染源。这种电路输入电流的基波分量相位与电源电压相位大体相同, 因而基波功率因数接近1。 但其输入电流的谐波分量却很大,给电网造成严重污染,也使得 总的功率因数很低。另外,采用相控方式的交流电力调整电路及周波变流器等电力电子装置 也会在输入侧产生大量的谐波电流。
产生的原因:由于正弦电压加压于非线 性负载,基波电流发生畸变产生谐波。 主要非线性负载有UPS、开关电源、 整流器、变频器、逆变器等。
谐波的分类
谐波是正弦波,每个谐波都具有不同的频率,幅度与相角。 谐波频率是基波频率的整倍数,根据法国数学家傅立叶(M.Fourier)分 析原理证明,任何重复的波形都可以分解为含有基波频率和一系列为基 波倍数的谐波的正弦波分量。 根据谐波频率的不同,可以分为:
电网无功补偿及谐波治理技术研究
电网无功补偿及谐波治理技术研究一、引言随着电力系统的发展,无功补偿和谐波治理技术逐渐得到广泛应用。
无功补偿技术可以解决电力系统中的劣功率问题,提高系统电能利用效率和电网供电质量;而谐波治理技术则可以有效遏制谐波污染,维护电力系统的正常运行。
本文将围绕电网无功补偿及谐波治理技术展开深入的研究和讨论。
二、无功补偿技术无功补偿是指在电力系统中,通过一系列措施使得功率因数提高至较高的水平。
无功补偿主要有容性补偿和电抗性补偿两种方式。
1.容性补偿容性补偿是指通过并联电容器的方式来进行无功补偿。
电容器能够吸收和释放电能,因此可以平衡电力系统中的无功功率,提高功率因数。
容性补偿可以有效地改善电力系统中的劣功率问题,提高电网供电质量。
但是,容性补偿也存在一些缺点,例如电容器本身的损耗问题,以及可能引起谐波污染等问题。
2.电抗性补偿电抗性补偿是指通过串联电抗器或者并联电抗器的方式来进行无功补偿。
电抗器可以吸收或者放出电能,从而平衡电力系统中的无功功率。
与容性补偿相比,电抗性补偿可以更加精确地进行无功补偿,通过精确的选择电抗器参数,可以避免容性补偿中可能引起的谐波污染和电容器本身损耗的问题。
但是,电抗性补偿也存在一些缺点,例如容易受到系统电压变化的影响,需要进行灵敏的实时控制。
三、谐波治理技术电力系统中的谐波是指频率为原有电力频率的整数倍的周期性振动。
谐波污染会导致电力系统中的电压波动,损坏电力设备,影响供电质量。
因此,谐波治理技术是非常必要的。
1.谐波滤波器谐波滤波器是一种用于隔离电力系统中谐波信号的装置。
谐波滤波器中包含一系列谐振电路,可以针对特定的谐波频率进行过滤。
谐波滤波器能够有效地抑制谐波污染,维护电力系统的供电质量。
2.有源谐波抑制器有源谐波抑制器是一种通过反馈控制实现谐波抵消的装置。
有源谐波抑制器可以自适应地抑制谐波信号,达到谐波约束的目的。
与谐波滤波器相比,有源谐波抑制器具有更好的调节性能,更加适用于谐波严重的情况。
供电系统中的谐波治理及无功补偿
供电系统中的谐波治理及无功补偿1 谐波对周期性非正弦电量进行傅立叶级数分解,除了得到与电网基波频率相同的分量,还得到一系列大于电网基波频率的分量,这部分电量被称为谐波。
谐波频率与基波频率的比值(n=fn/f1)称为谐波次数。
谐波实际上是一种干扰量,使电网受到“污染”。
其频率范围一般为2≤n≤40。
2 谐波源向公用电网注入谐波电流或在公用电网上产生谐波电压的电气设备称为谐波源。
具有非线性特性的电气设备是主要的谐波源,针对天津港这一特定供电环境而言,经天津电科院测试,主要的谐波源是采用交-直-交及变频调速的码头机械,这些设备取用的电流是非正弦形的,其谐波分量使系统正弦电压产生畸变。
谐波电流的量取决于谐波源设备本身的特性及其工作状况,而与电网参数无关,故可视为恒流源。
各种晶闸管电路产生的谐波次数与其电路形式有关,称为该电路的特征谐波。
除特征谐波外,在三相电压不平衡,触发脉冲不对称或非稳定工作状态下,上述电路还会产生非特征谐波。
进行谐波分析和计算最有意义的是特征谐波,如5,7,11,13次等。
当电网接有多个谐波源时,由于各谐波源的同次谐波电流分量的相位不同,其和将小于各分量的算术和。
变压器激磁电流中含有3,5,7等各次谐波分量。
由于变压器的原副边绕组中总有一组为角形接法,为3次谐波提供了通路,故3次谐波电流不流入电网。
但当各相激磁电流不平衡时,可使3次谐波的残余分量(最多可达20)进入电网。
3 谐波传输对于多电压等级的电网,其谐波的特点是谐波电流由低压侧流向高压侧,其大小基本上与高压侧参数无关,可视为恒流源。
谐波电压由高压侧传输到低压侧,可视为恒压源。
在进行谐波分析时,就是根据这个原则构造电网的谐波等效电路。
3.1 电网元件的频率特性在谐波频率范围内,由于涡流和漏磁场作用,电网元件的谐波参数要考虑长线效应,即变压器和导线的等效电阻R随频率的上升而增加,等效电感L随频率的上升而降低。
电缆、导线和电容器的电容C基本不随频率变化而保持恒定。
谐波治理及无功补偿方案参考
一、概述:1、无功补偿的意义1、补偿无功功率可以增加电网中有功功率的比例常数2、减少发供、电设备的设计容量,减少投资,例如当功率因cosΦ=增加到cos4=时,装1Kvar电容器可节省设备容量;反之,增加;对原有设备而言,相当于增大了发、供电设备容量.因此对新建、改建工程,应充分考虑无功补偿,便可以减少设计容量,从而减少投资.3、降低线损,由公式△P%=1-cosΦ/cosΦX100%得出其中cosΦ为补偿后的功率因数,cosΦ为补偿前的功率因数则cosΦ>cosΦ,所以提高功率因数后,线损率也下降了.减少设计容量,减少投资,增加电网中有功功率的输送比例,以及降低线损都直接决定和影响着供电企业的经济效益,所以功率因数是考核经济效益的重要指标规划、实施无功补偿势在必行.2、谐波治理的意义1、谐波的产生近年来,电力电子装置应用日益广泛,但它们也是最严重、最突出的谐波源,在各种电力电子装置中,整流装置所占的比例最大.整流电路是一种将交流电能转换为直流电能的变换器.变频装置是一种前段将交流电能变换为直流能的变换器,它在生产过程中必然会产生较大的谐波,且功率因数达不到的要求.变频装置是三相桥式,整流后是6脉动的,根据谐波理论分析,它产生的特征谐波为5、7、11、13、17、19……次,表达方式为h=6N±1N=1,2,3,4,…正整数,特征谐波的电流与基波电流关系为:Ih =I1/h.变频装置在额定运行时,产生的5次谐波对基波含有率通常低于15%,7次低于8%,11次低于5%,13次低于2%.在负荷较小时,虽然谐波含有率较高,但实际向电网注入的谐波电流并不大,同时11次及以上高次谐波虽然与低于7次的谐波电流相比数值较小,但由于低压侧短路容量较小,其阻抗相对较大,故对谐波电压含有率及低压侧波形畸变率影响较大.所以11次以上谐波对电网影响不容忽视.2、谐波的危害变频装置产生的谐波电流,对系统可产生较大的影响,它不仅会产生较大的发热损耗,而且会加速电气设备的绝缘老化,特别是对电缆、变压器运行、电机运行非常不利.此外,产生谐波严重时,也会对自动控制系统和保护装置产生干扰,使其误动作,影响电网的正常安全运行.此外,谐波也会对变电站和其它用户的无功补偿电容器产生严重的影响,使其不能投运,若投运可产生谐波放大,严重时将烧坏设备,这在以后运行时特别注意,变电站和用户不要投入无谐波抑制的电容器组.二、某公司谐波治理及无功补偿方案1、某公司,使用变压器1250KW三台,负载是六脉中频炉,产生大量谐波注入电网,其他设备使用3150KVA变压器两台,主要是负载变频器,大功率电动机,同样产生谐波和需要无功功率补偿.谐波治理及无功补偿采取分散、集中治理谐波方法,即在谐波源总负荷前端安装谐波治理设备,这样就治理整个电网的谐波,谐波治理及无功补偿效率高,投资少.2、某公司,1250KVA变压器负载中频炉同时使用两台,谐波治理及无功补偿设备也采用两套.现场每台中频炉运行参数如下根据以往测试其他设备状况:输入功率:1250KW输入电压:660V功率因数:电压谐波畸变:15%左右具体需要现场实测.以实际测量为主.3、两台3150KVA变压器,负载形式较多,有变频器,电动机;根据通用电网数据,功率因数大约在左右,由于变频器使用较多,谐波畸变大约在10%左右.谐波治理及无功补偿形式,每台变压器3150KVA配一套谐波治理及无功补偿设备.实际情况测试后具体确定.三、谐波治理和无功补偿遵循标准国内外经验表明当电压波形畸变率在大于8%时对电子设备和运行中电气设备造成较大影响,大于10%时对其它用户电气设备有严重影响.在这种工况下,纯无功补偿电容器根本不能投运,对电缆、变压器等设备使用寿命有不良影响,产生大量的谐波电流会造成谐波发热损耗.因此,有必要加以治理.在进行设计低压滤波器时,通常应结合实际情况,给出具体的设计要求和谐波源及设备的运行资料.根据了解的负荷情况,我们拟采取在谐波治理的同时结合全厂的无功补偿需求,使谐波指标满足国标,同时实际功率因数达到左右.装置设计遵守的标准为满足国标规定的技术规范要求:1.GB12326-2000 “电能质量电压波动和闪变”2.GBH14549 “电能质量公用电网谐波”3.DLH599-1996 “城市低压配电网改造技术导则”“标称电压10V及以下交流电力系统用非自愈式并联电容器”综合治理后达到的性能参数满足国标规定要求1使得谐波源向系统注入电网的各次谐波电流符合国标要求,在负荷达到额定运行时,总畸变含量:U≤5%,In≤10%.N2无功补偿及滤波装置运行时不会对其它电气设备产生不良影响和干扰,设备自身安全可靠运行.3补偿后力率在左右,本次方案无具体指标要求,且不向系统倒送无功.4装置采用自动投切,跟踪负荷进行自动补偿,当负荷全停时,装置将自动全停.四、具体滤波和补偿方案的确定1滤波谐波和谐波电流的确定从一般交流供电的直流系统设计原理可知,它是通过三相桥式整流装置进行整流来获得直流电流的,三相桥式整流装置正常运行必然产生较大的谐波电流,且功率因数也达不到经验值在左右的要求,一般三相桥式整流设备在正常运行工况下,产生的谐波电流主要是5、7、11、13、17、19……次,它的主要特征谐波为h=6K±1,K正整数,产生的特征谐波电流与基波电流关系为:Ih=I1/h.考虑到控制器运行燃弧角或换向角的影响,装置负荷在额定负荷运行时,产生的5次谐波对基波含有率通常低于20%,7次低于14%,11次低于9%,13次低于7%.在负荷较小时,虽然谐波含有率较高,但实际向电网注入的谐波电流并不大,同时11次以上高次谐波虽然与低于7次以下的谐波电流相比数值较小,但由于低压侧短路容量较小,其阻抗相对较大,故对谐波电压含有率及低压侧波形畸变率影响较大,这是滤波器设计时的一个矛盾,直接影响到运行效果和设计成本.由此可知,其产生的谐波电流主要是5次谐波,7次相应次之,11、13次及以上相对较小,但考虑到11次以上高次谐波对电压畸变率的贡献影响,对11次也需加以限制,实际滤波支路将以5次为主,7次为辅,同时考虑11次以上的高通滤波.另外,还需防止对3次和其它谐波的放大影响,这在各支路设计通盘考虑.现场谐波源由三台400KW中频电源及其他一些小负载产生,预计产生谐波源总负荷1500KW,根据现场情况,采用集中治理谐波方法,即在谐波源总负荷前端安装谐波治理设备,这样就治理整个电网的谐波.五、原先补偿实例:1250KVA补偿装置投切前后母排上的各次谐波电压畸变率的统计数据如下表所示:表1 投切前后母线谐波电压统计值1)测试曲线图2 电压变化曲线图3 电流变化曲线图4 A相有功变化曲线图5 A相无功变化曲线图6 功率因数图7 电压总畸变率及主要谐波电压变化曲线%图8 总畸变电流及主要谐波电流变化曲线A 1)滤波装置投入前后电压、电流波形图9 滤波装置投入前电压、电流波形图10 滤波装置投入后电压、电流波形4测试结论滤波补偿装置投运,有效地滤除了大量的谐波电流,使主要的5、11次谐波电流由212.3A、69.3A降低为59.8 A、42.3A,注入系统的谐波电流已控制在国标允许范围内.滤波补偿装置的投入,谐波电压畸变得到了很大的改善,605炼胶变低压侧的电压波形总畸变率由未投时的%,降低到%;606炼胶变低压侧的电压波形总畸变率由未投时的%,降低到%.各次谐波电压含有率也在标准规定范围内.可见,滤波装置的投运效果非常显着.滤波补偿装置投入后,功率因数也得到了很好的补偿,605炼胶变低压侧的功率因数从提高到左右,606炼胶变低压侧的功率因数从提高到左右,运行经济效益十分可观.滤波补偿装置投入后,低压侧母排的电压提高了6~10V,负荷电流减少了600~800A.经调试投运后,滤波补偿装置稳定可靠,可长期投入运行.上表实测值来源于福建省电力试验研究院电能质量测试报告,根据上表考虑值就是实际运行时允许流入滤波支路中的额定谐波电流,在短时内允许有倍的过电流.也就是我们设计的高效滤波支路可将此谐波电流90%以上谐波消除.实际考虑各支路相互影响后,应根据一定的经验数据进行设计.。
谐波治理及无功功率补偿
谐波治理及无功功率补偿关于谐波在理想状态下,电网中的电流和电压都是纯粹的正统波。
近年来,随着电力电子设备的广泛应用,使电网运行中的谐波分量急剧增加,从而严重影响了电能质量,危及用电安全,造成能源浪费。
谐波是对周期性非正弦电量进行傅立叶分解,得到一系列不同频率的分量,其中大于基波频率的部分称为谐波,谐波频率与基波频率的比值称为谐波次数。
当正弦基波电压施加于非线性设备时,产生的电流与施加的电压波形不同,电流发生了畸变,即产生了谐波。
由于负荷与电网连接,谐波电流注入电网,这些设备就成为电网中的谐波源。
电网中的谐波源主要分为两类:含半导体的非线性元件,如各种整流设备、变流器、变频器等节能和控制用电力电子设备;含电弧和铁磁非线性设备的谐波源,如日光灯、交流电弧炉、变压器和铁磁谐振设备等。
目前,一般民用电网中主要产生3次、5次谐波;而工矿企业中则以5次、7次、11次谐波为主。
在含有谐波的电网中测量,我们发现在功率S与有功功率P和无功功率Q 之间的关系是:S>P+Q,余下的功率就是畸变功率C;这样,视在功率就成为三个功率向量之和,即:S=P+Q+C。
畸变功率具有无功功率的性质,因此,谐波电流的存在可看作无功功率的增加。
它的存在会增加线路和变压器的铜损耗,并使电网的功率因数降低。
例如,半导体材料生产设备产生的高次谐波电流可以达到50Hz基波的电流的60~90%,大大增加能耗和对电网的污染。
在大型商业建筑中,由于大量使用节能射灯,高次谐波电流达基波电流的40%,造成功率因数补偿柜补偿电容大量损耗。
谐波的危害目前,谐波和电磁干扰、功率因数降低并列为电力系统的三大公害。
1.对变压器而言,谐波电流可导致铜损和杂散铜损增加,谐波电压则会增加铁损。
与纯正基本波运行的正弦电流和电压相比较,谐波对变压器的整体影响是温升较高。
必须注意的是:这些由谐波所引起的额外损失将与电流和频率的平方成比例上升,进而导致变压器的基波负载容量下降。
无功补偿和谐波治理基本原理和方法
无功补偿和谐波治理基本原理和方法无功补偿和谐波治理是电力系统中的重要技术手段,对保障电力系统的稳定运行和优化电能质量具有重要作用。
本文将就无功补偿和谐波治理的基本原理和方法进行阐述。
一、无功补偿的基本原理和方法无功补偿是指通过在电力系统中加入一定的无功功率,以调节系统功率因数,提高电力系统的功率因数或者改善电力负载的无功状态,从而减小无功功率的损耗和电力负荷的无功波动。
无功补偿可以分为静态无功补偿和动态无功补偿两种形式。
静态无功补偿一般采用的是电容器或者电感器进行补偿。
当电力系统中存在较多的感性负载时,会导致系统的功率因数较低,造成无功功率的浪费。
此时可以通过并联连接电容器,来产生与感性负载相抵消的电感负载,从而提高整个系统的功率因数。
同样的,当电力系统中存在较多的容性负载时,可以通过串联连接电感器进行补偿。
动态无功补偿主要采用的是无功定子励磁方式,即在电力系统中加入特定的功率电子器件和控制策略,通过动态调节电力系统的功率因数,实现无功功率的补偿和优化。
常用的动态无功补偿设备有STATCOM(静态同步补偿器)、SVC(静态无功补偿装置)和SVG(静态无功发生器)等。
二、谐波治理的基本原理和方法谐波是指电力系统中频率是整数倍关系的波动,一般表现为电压和电流的波形畸变。
谐波问题会对电力系统的安全稳定运行产生不良影响,并且会给电力设备带来电力损耗、发热和振动等问题。
谐波治理的基本原理是通过采取一定的措施,减小电力系统中谐波的水平,提高电能质量和设备的可靠性。
常见的谐波治理方法包括滤波、变压器设计、谐波抑制器和谐波发生器等。
滤波器的作用是通过选择性地吸收特定频率的谐波,以减小谐波的水平,保证电力系统的正常运行。
根据电力系统中谐波的特点,滤波器可以分为谐波电流滤波器和谐波电压滤波器。
变压器设计也是一种常见的谐波治理方法。
通过在变压器中加入一定的谐波制约器件和调整变压器参数,可以减小电力系统中谐波的水平。
此外,还可以通过调整电力系统的耦合方式和变压器的接线方式,来降低谐波水平。
矿用10KV变电所高压无功补偿与谐波治理
、
谐 波危 害
电网 中的谐波 危害 集 中体 现在 以下几 个 方面 :1谐波 使设 备产 . 生 附加 谐 波损耗 ,降低供 配 电设 备及用 电设 备的效率 ,大量 的谐 波 电流流 过 中性点造 成过 热甚 至发 生火灾 。2. 谐波会 影响 各种 电气设 备 的正 常工作 。谐波过 电压 、过 电流使 变压器 严重过热 ;使 电容 器、 电缆 过热 ,绝缘 老化 ,寿命 大大缩 短 。3谐 波引起 公用 电网并 联谐 . 波和 串联谐 波放 大。4谐 波导致 继 电器 保护 和 自动 装置 的误动 作。 。
一
造成 大量谐 波产 生 ,需将 固定 电容器 与 电感 串联 ,构成谐 波滤
中图分类号 :T 1 文献标识码 :B 文章编号 :10—6121)1 07- 1 M71 0983( 00-06 0 0
在 矿用 设 备中 ,阻 、感性 负载 占有 很 大 比例 ,比如 :变压 器 、 电动机 、加 热器和 照 明灯 等 。使用 中不仅 消耗 有功功 率 ,同时也 要 吸收无 功功率 才能正 常工 作 。随着 电力 电子设 备 ( 晶闸管整流 器、 如 可控 硅调 压 器 、逆 变器 等 )越 来越 多地 应 用于 生 产 的各 个领 域 内 , 也 为电力 系统带来 了大量 的谐 波污 染。 因此 ,急需对 电力电子设 备 谐波 产 生 的原 因及 其危 害进 行 深入 分 析 。以 求探讨 综 合治 理 措施 ,
工 程 与技 术
西部大开发・ 中
210 O . 01
矿用 1K 0 V变 电所 高压无功补偿 与谐波治理
梁 腾
( 兴 集 团 ,山 东 枣 庄 2 7 0 ) 福 7 3 0
摘 要 :随着 电力 电子设备 越 来越 多地应 用在生 产的各 个领域 内,也为 电力 系统 带来 了大量 的谐波 污染 。 因此 ,急 需对 电力电子设 备 谐 波产 生 的原 因及 其危 害进行 深入 分析 ,以求探 讨综合 治理措 施 ,抑制谐 波 污染 ,提 高电 网功 率 因数 ,充分利 用 电能。 关 键 词 :电网 ;谐 波 ;危 害;治理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 方案1:采用“无源滤波器+固定电容器”方式
•
进行静态固定补偿;
• 方案2:采用“无源滤波器+TCR”方式进行动
•
态连续补偿;
• 方案3:采用“无源滤波器+TSC”方式进行动
•
态分组补偿;
• 方案4:采用“有源滤波器+SVC”方式进行动
•
态连续补偿;
• 方案5:采用“有源滤波器+SVG”方式进行动
的寿命; 引起电力系统局部并联或串联谐振,使谐波含量放大,造成电
容器烧毁; 引起继电保护和自动装置误动作,使电能计量出现混乱; 对通信设备和电子设备产生严重干扰。
因此,本项目的目的是消除谐波,提高系统功率因数,降 低损耗,节省电能。
项目的意义
无功补偿的意义:
提高供电系统及负载的功率因数; 减少损耗,增大电源有效容量; 稳定电网电压,提高供电质量; 在三相负载不平衡的场合,通过适当的无功补偿可平衡三相有
1.论证、分析费: 5万元 2.调研费: 5万元 3.研究费: 5万元 4.协作开发费: 10万元 5.系统调试费:5万元 二、配套资金明细: 50万元 1.设备费:30万元 2.工程及材料费:20万元
(3)在理论和实际测试数据分析的基础上,对电弧炉产生 的谐波进行程度分级,得出电网电能质量的评估结论;
(4)确定最适合的无功补偿和谐波治理方案,给出预期的 补偿和治理效果;
(5)研制开发无功补偿和谐波治理装置,在用户侧进行就地 补偿;
(6)无功补偿和谐波治理装置安装、调试,投入运行,效果 评估。
• 准备的实施方案有以下几种:
推广应用前景
通过系统地、全面地研究用户侧 供用电线路的电气设备谐波的产生、 无功功率的实际情况,该项目研究和 实施后,使谐波得到治理、无功获得 补偿,经济效益和社会效益显著,具 有良好的推广应用前景。
科研经费估算
项目概算科研投入资金共计80万元,其中科研经费30万 元,配套资金50万元; 一、科研经费明细:30万元
经济效益预测
本项目的实施将大大改善用户侧电网 的供电质量(谐波含量降低、电压稳定、 电压闪变的减少、提高功率因数等),减 少电能损耗,提高电能的利用率,降低电 气设备因谐波所造成的故障和损坏,为企 业节约成本,降低设备维修费用,具有良 好的直接或间接经济效益。
社会效益预测
该项目的实施改善了用户侧的电能 品质,延长了用户设备的使用寿命,提 高用电企业的产品质量,企业连续安全 生产得到了保证,提高了设备和人员用 电的安全性,减少了通讯干扰等,具有 良好的社会效益。
采用有源滤波或无源滤波技术,无功补偿时采用静态补偿 或动态补偿方式;
• 通过无功补偿和谐波治理后,使系统功率因数提高到0.95
以上,使用户侧电网中谐波含量低于国标要求,即6kV和 10KV系统总畸变率小于4%,35KV系统总畸变率小于3% 。
谐波畸变率
THDU=
UH U1
X100%
THDU 电压谐波总畸变率 UH 谐波电压含量 U1 基波电压有效值
功及无功负载。
谐波治理的意义:
消除谐波,减少危害; 对电力电子技术自身发展有积极影响; 治理环境污染,清洁电网环境。
国内外发展现状
目前国内外对谐波治理普遍采用:
一、装设谐波补偿装置来补偿谐波,对各种谐波源都适用。 1.采用LC调谐滤波器; 2.采用有源电力滤波器;
二、对电力电子装置本身进行改造,使其不产生谐波,且功率因数 为1 ,适用于电力电子装置。 1.采用多重化技术;
2.采用PWM整流技术; 3.双PWM变流器; 4.二极管加PWM斩波方式; 5.采用矩阵式变频器;
目前国内外对无功补偿普遍采用:
1.同步调相机; 2.并联电容器; 3.静止无功补偿装置(SVC),包括TCR和TSC; 4.静止无功发生器(SVG) ;
谐波补偿装置
TCR的结构及特性
TSC的基本原理
高压无功补偿与谐波治理
包钢西创电气公司
2011年2月
高压无功补偿与谐波治理
一、项目的目的、意义及国内外发展现状 二、实施方案和技术路线 三、计划进度 四、经济效益、社会效益预测及推广应用前景 五、科研经费估算
项目的目的
由于电力电子装置的应用日益广泛,使得无功和谐波的问题引 发出以下危害: 使电能的生产、传输和利用效率降低; 使电气设备过热,产生振动和噪音,并使绝缘老化,缩短设备
计划进度
项目分阶段实施内容和具体目标以及年度进展计划: (1)2011年3月,完成现场谐波测试工作; (2) 2011年4月,完成数据分析; (3)2011年5月,完成电能质量评估报告; (4)2011年6月,技术及方案的研究与确定; (5)2011年7月,无功补偿与谐波治理装置研制; (6)2011年8月,装置安装调试及试运行 ; (7)2011年9月,效果评估及项目验收;
单相结构图
分组投切的 电压-电流特性
SVG电路基本结构
SVG电路基本结构(电压型)
SVG等效电路及工作原理
I
Us~
UL
~ Ui
I
Us UL Ui
Us UI UL
I
SVG等效电路
电流超前
电流滞后
SVG相量图
实施方案
(1)选择具有代表性的电弧炉进行电网无功分析和谐波测 试;
(2)分析电弧炉产生的谐波引起母线电压畸变及造成的影 响;
•
态连续补偿;
技术路线
• 先通过检测和理论分析掌握电弧炉产生谐波的机理和谐波
的构成、变化规律及相互影响;
• 然后对照国家标准分析用户侧电能质量状况并得出评估结
论;
• 再研究治理用户侧电网谐波的技术和措施,确定适合现场
实际的治理方案和治理指标,研制开发谐波治理装置;
• 根据项目实施中针对实际系统的谐波状况,在谐波治理时