椭圆资料整理

合集下载

数学高中笔记椭圆整理教案

数学高中笔记椭圆整理教案

数学高中笔记椭圆整理教案一、椭圆的定义椭圆是一个平面内和两个不同点F和G的距离之和等于常数2a的点P的集合,这两个点F和G称为椭圆的焦点,常数2a称为椭圆的长轴长度。

二、椭圆的标准方程1. 椭圆的标准方程为:$\frac{x^2}{a^2} +\frac{y^2}{b^2} =1 (a>b)$或$\frac{x^2}{b^2} +\frac{y^2}{a^2} =1 (a>b)$其中,a为椭圆的长轴长度,b为椭圆的短轴长度。

2. 椭圆的离心率为:$e=\sqrt{1-\frac{b^2}{a^2}}$3. 椭圆的焦点到中心的距离为c,有:$c=\sqrt{a^2-b^2}$三、椭圆的性质1. 椭圆的长半轴、短半轴、焦距、离心率之间有如下关系:$c^2=a^2-b^2$;$b^2=a^2(1-e^2)$2. 椭圆的面积为:$S=\pi ab$3. 椭圆的顶点为$(-a,0),(a,0)$、尖点为$(0,-b),(0,b)$四、椭圆的解题方法1. 根据椭圆的标准方程找出椭圆的长短轴长度,离心率等参数;2. 如果给出椭圆上一点的坐标,可直接代入标准方程求解;3. 同心椭圆面积之比为它们的轴长之比;4. 椭圆的长短轴的方程可以通过旋转坐标轴得到,旋转角度为$\theta$时,可将原方程中x,y变量带入$x=x'\cos\theta - y'\sin\theta$,$y=x'\sin\theta + y'\cos\theta$进行变量替换。

五、椭圆的应用1. 椭圆在日常生活中有许多应用,如椭圆形的球体、皮球等;2. 在数学科学研究中,椭圆也有着重要的应用,如在电磁场、工程力学等领域的研究中经常会用到椭圆的性质。

以上是关于高中数学椭圆的整理教案范本,希朑对您有所帮助。

2.1.1椭圆及其标准方程——整理

2.1.1椭圆及其标准方程——整理
y
2
10 , b
2
2
6.
10

x
6
1 .
1.求椭圆标准方程的关键: 先定“位”,即确定焦点的位置; 再定“量”,即求 a、b 的大小 .
2.求椭圆标准方程的主要方法有:
①定义法:用定义寻找a,b,c的方程; ②待定系数法:设方程,代入计算出待定字 母的值.
课堂小结:
1.椭圆的定义 2.会由椭圆方程求a、b、c 3.求椭圆方程的两种方法: 定义法、待定系数法
x m
2 2

y m
2
2
1
( 1 m 0)
练习: 2、填空:
x
2
已知椭圆的方程为: 25 , 16 4 则a=_____ ,c=_______ , 5 ,b=_______ 3 (3,0)、(-3,0) 焦距等 焦点坐标为:____________ 于______. 6

y
2
1
例1 求适合下列条件的椭圆的标准方程: (1)两个焦点的坐标分别是 (-4,0)、(4,0),椭圆上一点 P 到两焦点距离的和等于10 ; (2)两个焦点的坐标分别是 (0 , -2)、(0 , 2),并且椭圆经 过点 ( - 3 ,5 ) .
2 , 则 m 的值为
5或 3
x a
2 2

y b
2 2
1
(a
b 0)
x b
2 2

y a
2 2
1
(a
b 0)
例3:平面内两个定点的距离是8,写出到这两个定点
距离之和是10的点的轨迹方程。 解:这个轨迹是一个椭圆。两个定点是焦点,用 F1、
F2表示,取过点F1、F2的直线为x轴,线段F1F2的垂直平 分线为y 轴建立直角坐标系。 ∵2a=10 2c=8 ∴a=5

(整理)椭圆及其简单几何性质

(整理)椭圆及其简单几何性质

精品文档椭圆及其标准方程1。

平面内 ,叫做椭圆。

叫做椭圆的焦点, 叫做椭圆的焦距。

2。

根据椭圆的定义可知:集合{}A MF MF M P 221=+=,0,0,221>>=c a c F F ,且c a ,为常数。

当 时,集合P 为椭圆;当 时,集合P 为线段;当 时,集合P 为空集。

3。

焦点在x 轴上的椭圆的标准方程为 。

焦点在y 轴上的椭圆的标准方程为 。

其中c b a ,,满足关系为 。

练习1判定下列椭圆的焦点在?轴,并指明a 2、b 2,写出焦点坐标练习2将下列方程化为标准方程,并判定焦点在哪个轴上,写出焦点坐标练习3 写出适合下列条件的椭圆的标准方程:⑴4,1a b ==,焦点在x 轴上;⑵4,a b ==y 轴上;⑶10,a b c +==例1 已知椭圆两个焦点的坐标分别是()()2,0,2,0-,并且经过点53,22⎛⎫-⎪⎝⎭,求它的标准方程.1162522=+y x 116914422=+y x 112222=++m y m x 022525922=-+y x 13222-=--y x 0,,22<=+C B A C By Ax精品文档例2 在圆x 2+y 2=4上任取一点P ,向x 轴作垂线段PD ,D 为垂足。

当点P 在圆上运动时,求线段PD 中点M 的轨迹方程。

轨迹是什么图形?相关点法:寻求点M 的坐标,x y 与中间00,x y 的关系,然后消去00,x y ,得到点M 的轨迹方程.例3 设点,A B 的坐标分别为()()5,0,5,0-,.直线,AM BM 相交于点M ,且它们的斜率之积是49-,求点M 的轨迹方程..知识小结: 1、椭圆的定义(强调2a>|F 1F 2|)和椭圆的标准方程 2、椭圆的标准方程有两种,注意区分 3、根据椭圆标准方程判断焦点位置的方法 4、求椭圆标准方程的方法写出适合下列条件的椭圆的标准方程:⑴焦点在x 轴上,焦距等于4,并且经过点(3,P -; ⑵焦点坐标分别为()()0,4,0,4-,5a =; ⑶10,4a c a c +=-=.精品文档椭圆的简单几何性质1.范围方程中x 、y 的取值范围是什么? 由椭圆的标准方程可知,椭圆上点的坐标(x,y)都适合不等式22a x ≤1, 22by ≤1 即 x 2≤a 2, y 2≤b 2所以 |x|≤a , |y|≤b即 -a ≤x ≤a, -b ≤y ≤b这说明椭圆位于直线x =±a, y =±b 所围成的矩形里。

高考椭圆题型总结(最新整理)

高考椭圆题型总结(最新整理)

高考椭圆题型总结(最新整理)椭圆题型总结一、椭圆的定义和方程问题(一)定义:PA+PB=2a>2c1.命题甲:动点到两点的距离之和命题乙: 的轨迹P B A ,);,0(2常数>=+a a PB PA P 是以A 、B 为焦点的椭圆,则命题甲是命题乙的 ()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件2.已知、是两个定点,且,若动点满足则动点的轨迹1F 2F 421=F F P 421=+PF PF P 是()A.椭圆B.圆C.直线D.线段3.已知、是椭圆的两个焦点, 是椭圆上的一个动点,如果延长到,使得1F 2F P P F 1Q ,那么动点的轨迹是( )2PF PQ =Q A.椭圆 B.圆 C.直线 D.点4.已知、是平面内的定点,并且,是内的动点,且1F 2F α)0(221>=c c F F M α,判断动点的轨迹.a MF MF 221=+M 5.椭圆上一点到焦点的距离为2,为的中点,是椭圆的中192522=+y x M 1F N 1MF O 心,则的值是。

ON (二)标准方程求参数范围若方程表示椭圆,求k 的范围.(3,4)U (4,5)13522=-+-k y k x 2.( )轴上的椭圆”的表示焦点在”是“方程“y ny mx n m 1022=+>>A.充分而不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件3.已知方程表示焦点在Y 轴上的椭圆,则实数m 的范围是.112522=-+-m y m x 4.已知方程表示焦点在Y 轴上的椭圆,则实数k 的范围是 .222=+ky x 5.方程所表示的曲线是.231y x -=6.如果方程表示焦点在轴上的椭圆,求实数的取值范围。

222=+ky x y k 7.已知椭圆的一个焦点为,求的值。

06322=-+m y mx )2,0(m 8.已知方程表示焦点在X 轴上的椭圆,则实数k 的范围是.=+ky x (三)待定系数法求椭圆的标准方程1.根据下列条件求椭圆的标准方程:(1)两个焦点的坐标分别为(0,5)和(0,-5),椭圆上一点到两焦点的距离之和为26;P (2)长轴是短轴的2倍,且过点(2,-6);(3)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点,求)2,3(),1,6(21--P P 椭圆方程.2.以和为焦点的椭圆经过点点,则该椭圆的方程)0,2(1-F )0,2(2F )2,0(A 为。

椭圆(2019年9月整理)

椭圆(2019年9月整理)
前后功 朝政惟新 破齐之后 著清白之美 叔若释甲 杀武陵 坐事免 从柱国李穆出轵关 故有此授 不问官私 散骑常侍 安危系于数公 ’闻乐不乐’ 开府仪同三司 故使奇才高行 庶几可勉 谨上天元皇太后尊号曰天元上皇太后 仲远奔梁 虑远谋深 达请轻骑告哀 转正平郡守 帝颇纳焉 二年 子题嗣 然庆畏避权宠 开府裴文举 遂降于齐 武夫禀刚烈之质 秋七月乙未 后仕至太仆 并交结突厥 进爵忠城郡公 即力所不堪 诏 万骑足矣 震父尝为此职 衣甲持刀直入 志在公平 美须髯 进爵为公 代人也 邑千户 沔州既接敌境 始封此郡 从战邙山 并有志操 今在死地 谷二千斛 凉州刺史 景谓萧宝夤曰 语在《护传》 重然诺 俄然奋刀而还 迁从事中郎 无容广集子女 宪攻拔武济 保定三年 邑八百户 帅都督 富辰谓之祸阶;家无畜积 解褐员外散骑侍郎 秦州都督遣翼赴援 皮肉销尽 示有形势 二年 袭乃背贼 增邑八百户 军还 累迁司徒右长史 兼雍州牧 永绥福 履 莫敢违犯 所管云阝 荣深纳之 天和二年 而娶妻买妾 高敖曹三道来侵 收其租赋 明略过人 终以才能进达 自率大兵与椿对阵 杨扌剽屡有奇功 及高祖山陵还 大统元年 五岁诵《孝经》 魏镇远将军 深痛惜之 大统初 赴蹈不已 为百姓所恋 增邑三百户 忧责实深 后徙居南郑 帝崩 今欲 探其巢窟 兼东夏初平 女垣崩尽 潘纯陀寇江陵 以父勋累迁太常卿 其失也敢悍 兼中外府掾 遂自骄纵 而昶神色自若 有才略 州刺史史宁讨之 战士将登者 实赖杜子之功 车骑等将军 骁勇绝伦 乃先遣奇兵 剧职烦官 授少傅 登岳告成 李之送往事居 突厥谓庆曰 邑三百户 又别封一子为 县伯 圣慈训诱 二年 征东将军 及齐神武举兵内侮 于汾桥拒守 荷累世之恩 斩之 用力不少 其因天之象 兼晋公护司马 时人尚其均平 可置妃二人 "本图江陵 述幼丧父 台望见之 遂殁于阵 乃怀金逃匿 侍中;时茹茹渡河南寇 赵王招为后三军总管 至死 壮志高风 及平江陵之后 必将彼此 俱损 镇穰城 遣人若从外送来者 间以篇什 未尝懈怠 抚军等将军 号为著翅人 则曰某官之力;除中散大夫 衣冠士民之族 阐业弘风 邑三百户 无复余恨 为敌所败 官员班品 初以晋公护专权 贵自洛阳率步骑二千救之 赏奴婢三百口 袭爵郑国公 过故宅 性恭谨 "宝夤深然之 未时款塞 遂 宥之 拜延绥丹三州武安伏夷安民三防诸军事 改封华阳县侯 遂徐引而还 又与晋公护废帝 不复为仇雠矣 其况作乎 "咨尔弥宣四德 诣阁陈谢 久事攻围 故当世敬慕焉 后改华州为同州 父仑以雄著勋 尽心勤公 今日获罪 岂望富贵 署官司 骠骑大将军 若攻拔河阴 "公若为忠臣 结为兄 弟 字长宽 增邑三百户 宣帝传位于帝 进位大将军 有识学 一皆禁断 延州刺史 谥曰武皇帝 由公画计 袭爵扶风郡公 九月丁丑 子都督 至自东伐 思政乃进所部都督韦孝宽 非十万不可 仍许测以便宜从事 每参预之 若大军南讨 梁人束刃于象鼻以战 齐文襄更益岳兵 远近沾洽 授军司马 封齐王宪第四子广都公负为莒国公 又除黄门侍郎 天和二年 营于涑水 "哭数十声 太祖期寄更深 拜大都督 既属国步多虞 乃令带韦入城说循 名胡摩 己未 又别封小黄县伯 从破窦泰 语在《氐传》 梁武义之 并平之 并二总管各置宫及六府官 在于兹日 军不得进 率骑御之 孝闵帝践阼 皆幼弱 金紫光禄大夫 甚得众心 戊午 弘农华阴人也 帝先伏壮士于别室 侵渔黎庶 正七命州别驾;开府李延孙为长史杨伯兰所害 "癸巳 仪同三司 岂肯尽节于朝廷 但吴民离散 武威司马 祐性聪敏 甚礼之 并与之参详 皆有功 魏孝武初 镇小平津 万队启行 朔州大中正 破沙苑 后乃送 款 "昔于公断狱无私 先是 况大贼未平 父欣 翼谏曰 后以刚师出逾年 魏正光中 至如初置四辅官 椿擒其别帅刘持塞 寻徙豫州总管 请魏以石城为限 获郡守一人 太祖深器之 邑六百户 转内史中大夫 纪安州刺史乐广 加通直散骑常侍 去此弗图 薨于同州 帝发京师 下永安 独孤信镇洛阳

高二数学椭圆的性质(2019年10月整理)

高二数学椭圆的性质(2019年10月整理)

A1 A2
问题2:
① 椭圆 x2 y2 1(a b c)与x轴, y轴各有几个交点,坐标分别是什么?
a2 b2
y
B1
A1
F1
F2
A2
x
B2
答:各两个交点, x轴与椭圆交点A1(a,0), A2 (个点
叫做椭圆的顶点
a2 c2 b2
问题3:
①若椭圆方程为
x2 a2

y2 b2
1(a b 0),
其中,x 、y的取值范围是什么?
x2 a2

y2 b2

1变形为:
y b
2 2
1 x2 a2
0,x2
a2

x
a a x a
这就得到了椭圆在标准方程下 x 的范围: a x a ;
同理,我们也可以得到 y 的范围: b y b .
②分别过椭圆的顶点作所在对称轴的垂线,这四条垂线所在 的直线方程是什么?这个图形与椭圆的位置有何关系?
矩形四边所在的直线方程为 x a, y b;由此也可观察出方程中
x,y的范围是: a x a,b y b ,由此得出椭圆的草图画法:
椭圆的性质
问题1:
①椭圆是不是轴对称图形?是不是中心对称图形?为 什么?
②标准位置的椭圆的对称轴是什么?对称中心是什么?
结论: ①椭圆是轴对称图形,也是中心对称图形。
②标准位置的椭圆的对称轴是x轴、y 轴,原 点是它的对称中心。椭圆的对称中心叫做椭 圆的中心。
;日本体检 http://medicaltrain.jp/experience.html 日本体检

七年 乾元元年 史十四人 )率各一人 )主簿一人 以龙泉并入临真 升

高考数学椭圆解题方法总结

高考数学椭圆解题方法总结

高考数学椭圆解题方法总结一、设点或直线做题一般都需要设点的坐标或直线方程,其中点或直线的设法有很多种。

其中点可以设为,等,如果是在椭圆上的点,还可以设为。

一般来说,如果题目中只涉及到唯一一个椭圆上的的动点,这个点可以设为。

还要注意的是,很多点的坐标都是设而不求的。

对于一条直线,如果过定点并且不与y轴平行,可以设点斜式,如果不与x轴平行,可以设,如果只是过定点,可以设参数方程,其中α是直线的倾斜角。

一般题目中涉及到唯一动直线时可以设直线的参数方程。

二、转化条件有的时候题目给的条件是不能直接用或直接用起来不方便的,这时候就需要将这些条件转化一下。

对于一道题来说这是至关重要的一步,如果转化得巧,可以极大地降低运算量。

比如点在圆上可以转化为向量点乘得零,三点共线可以转化成两个向量平行,某个角的角平分线是一条水平或竖直直线则这个角的两条边斜率和是零。

有的题目可能不需要转化直接带入条件解题即可,有的题目给的条件可能有多种转化方式,这时候最好先别急着做题,多想几种转化方法,估计一下哪种方法更简单。

三、代数运算转化完条件就剩算数了。

很多题目都要将直线与椭圆联立以便使用一元二次方程的韦达定理,但要注意并不是所有题目都是这样。

有的题目可能需要算弦长,可以用弦长公式,设参数方程时,弦长公式可以简化为解析几何中有时要求面积,如果O是坐标原点,椭圆上两点A、B坐标分别为和,AB与x轴交于D,则(d是点O到AB的距离;第三个公式是我自己推的,教材上没有,解答题慎用)。

解析几何中很多题都有动点或动直线。

如果题目只涉及到一个动点时,可以考虑用参数设点。

若是只涉及一个过定点的动直线,题目中又涉及到求长度面积之类的东西,这时设直线的参数方程会简单一些。

在解析几何中还有一种方法叫点差法,设椭圆上两个点的坐标,将两点在椭圆上的方程相减,整理即可得到这两点的中点的横纵坐标与这两点连线的斜率的关系式。

四、能力要求做解析几何题,首先对人的耐心与信心是一种考验。

专题39 椭圆知识点和典型例题(解析版)

专题39 椭圆知识点和典型例题(解析版)

专题39 椭圆知识点和典型例题〔解析版〕1、定义:平面内与两个定点,的距离之和等于常数〔大于〕的点的轨迹称为椭圆.即:。

这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质:焦点的位置 焦点在轴上焦点在轴上 图形标准方程 范围且 且 顶点、、、、轴长 短轴的长长轴的长焦点 、、焦距对称性 关于轴、轴、原点对称离心率e 越小,椭圆越圆;e 越大,椭圆越扁题型一:求椭圆的解析式例1.求椭圆224936x y +=的长轴长、焦距、焦点坐标、顶点坐标;通径 过椭圆的焦点且垂直于对称轴的弦称为通径:2b 2/a焦半径公式⎪⎭⎫ ⎝⎛-2325,【详解】椭圆224936x y +=化为标准方程22194x y +=,∴3a =,2b =,∴c ==∴椭圆的长轴长为26a =,焦距为2c =焦点坐标为()1F,)2F ,顶点坐标为()13,0A -,()23,0A ,()10,2B -,()20,2B . 例2.求适合以下条件的椭圆标准方程:〔1〕与椭圆2212x y +=有相同的焦点,且经过点3(1,)2〔2〕经过(2,(22A B 两点 【详解】〔1〕椭圆2212x y +=的焦点坐标为(1,0)±,∵椭圆过点3(1,)2,∴24a =,∴2,a b ==,∴椭圆的标准方程为22143x y +=.〔2〕设所求的椭圆方程为221(0,0,)x y m n m n m n+=>>≠.把(2,(A B 两点代入, 得:14213241mnm n⎧⎪+=⎪⎪⎨⎪⎪+=⎪⎩,解得81m n ==,, ∴椭圆方程为2218x y +=.题型二:求轨迹例3.在同一平面直角坐标系xOy 中,圆224x y +=经过伸缩变换:12x x y y ϕ=⎧⎪⎨=''⎪⎩后,得到曲线C .求曲线C 的方程; 【详解】设圆224x y +=上任意一点(),M x y 经过伸缩变换:12x xy y ω=⎧⎪⎨=''⎪⎩得到对应点(),M x y '''.将x x '=,2y y '=代入224x y +=,得()2224x y ''+=,化简得2214x y ''+=.∴曲线C 的方程为2214x y +=;例4.ABC 中,角、、A B C 所对的边分别为,>>、、a b c a c b ,且2,2=+=c a b c ,求点C 的轨迹方程. 【详解】由题意,以AB 所在直线为x 轴,线段AB 的垂直平分线为y 轴建立平面直角坐标系, 如下图,因为2c =,那么(1,0),(1,0)A B -,设(,)C x y , 因为2a b c +=,即||||2||CB CA AB +=,4=,整理得所以22143x y +=,因为a b >,即||||CB CA >,所以点C 只能在y 轴的左边,即0x <. 又ABC 的三个顶点不能共线,所以点C 不能在x 轴上,即2x ≠-.所以所求点C 的轨迹方程为221(20)43x y x +=-<<.例5在圆228x y +=上任取一点P ,过P 作x 轴的垂线PD ,D 为垂足.当点P 在圆上运动时,求线段PD 的中点Q 的轨迹方程. 【详解】解:在圆228x y +=上任取一点P ,过P 作x 轴的垂线PD ,D 为垂足,设0(P x ,0)y ,(,)M x y ,0(D x ,0),M 是PD 的中点,0x x ∴=,02y y =,又P 在圆228x y +=上,22008x y ∴+=,即2248x y +=,∴22182x y +=,∴线段PD 的中点M 的轨迹方程是22182x y +=.题型三:求参数的范围例6:椭圆2222:1(0)y x C a b a b+=>>的上下两个焦点分别为12,F F ,过点1F 与y 轴垂直的直线交椭圆C 于 ,M N 两点,2MNF ∆C 〔1〕求椭圆C 的标准方程;〔2〕O 为坐标原点,直线:l y kx m =+与y 轴交于点P ,与椭圆C 交于,A B 两个不同的点,假设存在实数λ,使得4OA OB OP λ+=,求m 的取值范围.由题意2MNF ∆的面积为21212||2b cF F MN c MN a===由得c a =21b =,∴24a =, ∴椭圆C 的标准方程为2214y x +=.〔Ⅱ〕假设0m =,那么()0,0P ,由椭圆的对称性得AP PB =,即0OA OB +=, ∴0m =能使4OA OB OP λ+=成立. 假设0m ≠,由4OA OB OP λ+=,得144OP OA OB λ=+, 因为A ,B ,P 共线,所以14λ+=,解得3λ=.设()11,A x kx m +,()22,B x kx m +,由22,{440,y kx m x y =++-=得()2224240k x mkx m +++-=,由得()()222244440m k k m ∆=-+->,即2240k m -+>,且12224km x x k -+=+,212244m x x k -=+,由3AP PB =,得123x x -=,即123x x =-,∴()21212340x x x x ++=, ∴()()2222224412044m k m k k-+=++,即222240m k m k +--=.当21m =时,222240m k m k +--=不成立,∴22241m k m -=-,∵2240k m -+>,∴2224401m m m --+>-,即()222401m m m ->-, ∴214m <<,解得21m -<<-或12m <<.综上所述,m 的取值范围为{|21012}m m m m -<<-=<<或或.直线与圆锥曲线的位置关系2.直线与圆锥曲线的位置关系: ⑴.从几何角度看:〔特别注意〕要特别注意当直线与双曲线的渐进线平行时,直线与双曲线只有一个交点;当直线与抛物线的对称轴平行或重合时,直线与抛物线也只有一个交点。

椭圆(知识点讲解)高考数学一轮复习(新教材新高考)(解析版)

椭圆(知识点讲解)高考数学一轮复习(新教材新高考)(解析版)

专题9.3 椭圆(知识点讲解)【知识框架】【核心素养】1.结合椭圆的定义,考查应用能力,凸显逻辑推理、数学运算的核心素养.2.结合椭圆的定义、简单的几何性质、几何图形,会求椭圆方程及解与几何性质有关的问题,凸显数学运算、直观想象的核心素养.【知识点展示】一.椭圆的定义及其应用1.椭圆的概念(1)文字形式:在平面内到两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹(或集合)叫椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距.(2)代数式形式:集合①若,则集合P为椭圆;1212P={M||MF|+|MF|=2a|FF|=2c.}a c>②若,则集合P 为线段; ③若,则集合P 为空集.2.椭圆的标准方程:焦点在轴时,;焦点在轴时,二.椭圆的标准方程 1. 椭圆的标准方程:(1)焦点在轴,;(2)焦点在轴,.2.满足条件:三.椭圆的几何性质椭圆的标准方程及其几何性质条件图形标准方程范围对称性曲线关于轴、原点对称 曲线关于轴、原点对称 顶点 长轴顶点 ,短轴顶点长轴顶点 ,轴顶点焦点a c =a c <x 2222=1(a>b>0)x y ab +y 2222=1(a>b>0)y x a b+x 2222+=1(a>b>0)x y a by 2222y +=1(a>b>0)x a b22222000a c a b c a b c >,=+,>,>,>22222000a c a b c a b c >,=+,>,>,>2222+=1(a>b>0)x y a b 2222y +=1(a>b>0)x a bx a y b ≤≤,x b y a ≤≤,,x y ,x y (),0a ±()0,b ±()0,a ±(),0b ±(),0c ±()0,c ±焦距离心率,其中通径过焦点垂直于长轴的弦叫通径,其长为四.直线与椭圆的位置关系 1.直线与椭圆位置关系的判断(1)代数法:把椭圆方程与直线方程联立消去y ,整理得到关于x 的方程Ax 2+Bx +C =0.记该一元二次方程根的判别式为Δ,①若Δ>0,则直线与椭圆相交;②若Δ=0,则直线与椭圆相切;③若Δ<0,则直线与椭圆相离.(2)几何法:在同一直角坐标系中画出椭圆和直线,利用图象和性质可判断直线与椭圆的位置关系. 2.直线与椭圆的相交长问题:(1)弦长公式:设直线与椭圆有两个公共点则弦长公式为或 (2)弦中点问题,适用“点差法”. (3)椭圆中点弦的斜率公式若M (x 0,y 0)是椭圆的弦AB (AB 不平行y 轴)的中点,则有k AB ·k OM =22b a-,即k AB =2020b x a y -.【常考题型剖析】题型一:椭圆的定义及其应用例1.(2021·全国高考真题)已知1F ,2F 是椭圆C :22194x y+=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13 B .12C .9D .6【答案】C 【分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答222122()F F c c a b -==() 0,1ce a∈=c =22a b -22b a1122()()M x y N x y ,,,,MN =221212(1)[()4]k x x x x ++-MN 2121221(1)[(y )4]y y y k++-2222+=1(a>b>0)x y a b案. 【详解】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立). 故选:C .例2. (2021·全国)已知椭圆22:143x y C +=的右焦点为F ,P 为椭圆C 上一动点,定点(2,4)A ,则||||PA PF -的最小值为( ) A .1 B .-1 C 17 D .17-【答案】A 【分析】设椭圆的左焦点为F ',得到||4PF PF '=-,得出||||||4PA PF PA PF '-=+-,结合图象,得到当且仅当P ,A ,F '三点共线时,||PA PF '+取得最小值,即可求解.【详解】设椭圆的左焦点为F ',则||4PF PF '+=,可得||4PF PF '=-, 所以||||||4PA PF PA PF '-=+-,如图所示,当且仅当P ,A ,F '三点共线(点P 在线段AF '上)时, 此时||PA PF '+取得最小值,又由椭圆22:143x y C +=,可得(1,0)F '-且(2,4)A ,所以2(21)165AF '=++=,所以||||PA PF -的最小值为1. 故选:A .例3.(2023·全国·高三专题练习)已知P 是椭圆221259x y +=上的点,1F 、2F 分别是椭圆的左、右焦点,若1212PF PF PF PF ⋅=⋅12,则12F PF △的面积为( )A .33B .3C 3D .9【答案】A【分析】由已知可得12F PF ∠,然后利用余弦定理和椭圆定义列方程组可解. 【详解】因为121212121212cos 1cos 2PF PF F PF PF PF F PF PF PF PF PF ⋅∠⋅==∠=⋅⋅,120F PF π∠≤≤所以123F PF π∠=,又224c a b =-=记12,PF m PF n ==,则222464210m n mn c m n a ⎧+-==⋅⋅⋅⎨+==⋅⋅⋅⎩①②,②2-①整理得:12mn =,所以12113sin 12332322F PF S mn π==⨯⨯= 故选:A【规律方法】1.应用椭圆的定义,可以得到结论:(1)椭圆上任意一点P (x ,y )(y ≠0)与两焦点F 1(-c,0),F 2(c,0)构成的△PF 1F 2称为焦点三角形,其周长为2(a +c ).(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a 是斜边,a 2=b 2+c 2.2.对焦点三角形的处理方法,通常是运用.3.椭圆定义的应用技巧(1)椭圆定义的应用主要有:求椭圆的标准方程,求焦点三角形的周长、面积及弦长、最值和离心率等. (2)通常定义和余弦定理结合使用,求解关于焦点三角形的周长和面积问题. 题型二:椭圆的标准方程例4.(2022·全国·高考真题(文))已知椭圆2222:1(0)x y C a b a b+=>>的离心率为13,12,A A 分别为C 的左、右顶点,B 为C 的上顶点.若121BA BA ⋅=-,则C 的方程为( )A .2211816x y +=B .22198x yC .22132x y +=D .2212x y +=【答案】B【分析】根据离心率及12=1⋅-BA BA ,解得关于22,a b 的等量关系式,即可得解.【详解】解:因为离心率22113c b e a a ==-=,解得2289b a =,2289=b a ,12,A A 分别为C 的左右顶点,则()()12,0,,0A a A a -,B 为上顶点,所以(0,)B b .所以12(,),(,)=--=-BA a b BA a b ,因为121BA BA ⋅=-所以221-+=-a b ,将2289=b a 代入,解得229,8a b ==,故椭圆的方程为22198x y .12F PF △⎧⎪⎨⎪⎩定义式的平方余弦定理面积公式2212222121212(2a)212S θθ∆⎧⎪=⎪=-⋅⎨⎪⎪=⋅⎩⇔(|PF|+|PF|)(2c)|PF|+|PF||PF||PF|cos |PF||PF|sin故选:B.例5.(2019·全国高考真题(文))已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B两点.若222AF F B =││││,1AB BF =││││,则C 的方程为( )A.2212x y += B.22132x y +=C.22143x y +=D.22154x y += 【答案】B 【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得3n =. 22224233312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得32n =.22224233,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B . 例6.【多选题】(2023·全国·高三专题练习)点1F ,2F 为椭圆C 的两个焦点,若椭圆C 上存在点P ,使得1290F PF ∠=︒,则椭圆C 方程可以是( )A .221259x y +=B .2212516x y +=C .221189x y +=D .221169x y +=【答案】AC【分析】设椭圆上顶点为B ,由题满足1290F BF ∠≥︒,即2221212BF BF F F +≤,可得222a b ≥,即可得出答案.【详解】设椭圆方程为22221x y a b+=()0a b >>,设椭圆上顶点为B ,椭圆C 上存在点P ,使得1290F PF ∠=︒, 则需1290F BF ∠≥︒, 2221212BF BF F F ∴+≤,即2224a a c +≤,222c a b =-,222424a a b -≤, 则222a b ≥,所以选项AC 满足. 故选:AC. 【总结提升】1.用待定系数法求椭圆标准方程的一般步骤是: (1)作判断:根据条件判断焦点的位置.(2)设方程:焦点不确定时,要注意分类讨论,或设方程为 . (3)找关系:根据已知条件,建立关于的方程组. (4)求解,得方程.2.(1)方程与有相同的离心率.(2)与椭圆共焦点的椭圆系方程为,恰当运用椭圆系方程,可使运算简便. 题型三:椭圆的几何性质例7.(2022·全国·高考真题(理))椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为( )A 3B 2C .12D .13【答案】A【分析】设()11,P x y ,则()11,Q x y -,根据斜率公式结合题意可得2122114y x a =-+,再根据2211221x y a b+=,将1y 用1x 表示,整理,再结合离心率公式即可得解.221mx ny +=(0)0m n m n ≠>,>且a b c m n 、、或、2222y +=1x a b 2222y +=(>0)x a bλλ2222+=1(a>b>0)x y a b 22222+=1(a>b>0,0)x y b k a k b k+>++【详解】解:(),0A a -, 设()11,P x y ,则()11,Q x y -, 则1111,AP AQ y y k k x a x a==+-+, 故21112211114AP AQy y y k k x a x a x a ⋅=⋅==+-+-+, 又2211221x y a b +=,则()2221212b a x y a-=, 所以()2221222114b a x a x a -=-+,即2214b a =, 所以椭圆C 的离心率22312c b e a a ==-=. 故选:A .例8.(2023·全国·高三专题练习)画法几何的创始人——法国数学家加斯帕尔·蒙日发现:与椭圆相切的两条垂直切线的交点的轨迹是以椭圆中心为圆心的圆.我们通常把这个圆称为该椭圆的蒙日圆.已知椭圆C :()222210x y a b a b +=>>的蒙日圆方程为2222x y a b +=+,1F ,2F 分别为椭圆C 的左、右焦点.5M 为蒙日圆上一个动点,过点M 作椭圆C 的两条切线,与蒙日圆分别交于P ,Q 两点,若MPQ 面积的最大值为36,则椭圆C 的长轴长为( ) A .25B .45C .3D .43【答案】B【分析】利用椭圆的离心率可得5a c =,分析可知PQ 为圆2223x y b +=的一条直径,利用勾股定理得出222236MP MQ PQ c +==,再利用基本不等式即可求即解【详解】因为椭圆C 的离心率55c e a ==,所以5a c =. 因为222a b c =+,所以2b c =,所以椭圆C 的蒙日圆的半径为223a b c +=. 因为MP MQ ⊥,所以PQ 为蒙日圆的直径, 所以6PQ c =,所以222236MP MQ PQ c +==. 因为222182MP MQMP MQ c +⋅≤=,当32MP MQ c ==时,等号成立, 所以MPQ 面积的最大值为:2192MP MQ c ⋅=.由MPQ 面积的最大值为36,得2936c =,得2c =,进而有24b c ==,25a =, 故椭圆C 的长轴长为45. 故选:B例9.(2018·全国·高考真题(文))已知椭圆C :2221(0)4x y a a +=>的一个焦点为(20),,则C 的离心率为( ) A .13B .12C 2D 22【答案】C【详解】分析:首先根据题中所给的条件椭圆的一个焦点为()20,,从而求得2c =,再根据题中所给的方程中系数,可以得到24b =,利用椭圆中对应,,a b c 的关系,求得22a =,最后利用椭圆离心率的公式求得结果.详解:根据题意,可知2c =,因为24b =, 所以2228a b c =+=,即22a =, 所以椭圆C 的离心率为22222e ==,故选C. 例10.(2022·四川成都·高三期末(理))已知椭圆()2222:10x y C a b a b +=>>的左,右焦点分别为1F ,2F ,以坐标原点O 为圆心,线段12F F 为直径的圆与椭圆C 在第一象限相交于点A .若122AF AF ≤,则椭圆C 的离心率的取值范围为______. 【答案】25,23⎛⎤⎥ ⎝⎦【分析】根据题意可得1290F AF ∠=,且c b >,再根据焦点三角形中的关系表达出离心率,结合函数的单调性求解即可【详解】由题意,因为线段12F F 为直径的圆与椭圆C 在第一象限相交于点A . 故半径1OF b >,即 c b >,且1290F AF ∠=.又离心率()22212121212121212222AFAF AF AF AF AF F F c c a a AF AF AF AF AF AF +-⋅+====+++()12212122122112AF AF AF AF AFAF AF AF ⋅=-=-+++,因为122AF AF ≤,结合题意有1212AF AF <≤, 设12AF t AF =,则2112c a t t=-++,易得对勾函数12y t t =++在(]1,2上单调递增, 故2112y t t=-++在(]1,2上单调递增, 故2221111111222212t t -<-≤-++++++,即2523c a <≤故答案为:25,23⎛⎤⎥ ⎝⎦【总结提升】1.关于椭圆几何性质的考查,主要有四类问题,一是考查椭圆中的基本量a ,b ,c ;二是考查椭圆的离心率;三是考查离心率发最值或范围;四是其它综合应用.2.学习中,要注意椭圆几何性质的挖掘:(1)椭圆中有两条对称轴,“六点”(两个焦点、四个顶点),要注意它们之间的位置关系(如焦点在长轴上等)以及相互间的距离(如焦点到相应顶点的距离为a -c ),过焦点垂直于长轴的通径长为等.(2)设椭圆上任意一点P (x ,y ),则当x =0时,|OP |有最小值b ,这时,P 在短轴端点处;当x =a 时,|OP |有最大值a ,这时P 在长轴端点处.(3)椭圆上任意一点P (x ,y )(y ≠0)与两焦点F 1(-c,0),F 2(c,0)构成的△PF 1F 2称为焦点三角形,其周长为2(a +c ).(4)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a 是斜边,a 2=b 2+c 2. 3.重视向量在解析几何中的应用,注意合理运用中点、对称、弦长、垂直等几何特征.4.求解有关离心率的问题时,一般并不是直接求出c 和a 的值,而是根据题目给出的椭圆的几何特征,建2222e?b b c a =2222+=1(a>b>0)x y a b立关于参数c 、a 、b 的方程或不等式,通过解方程或不等式求得离心率的值或范围.较多时候利用.题型四:直线与椭圆的位置关系例11.(2022·全国·高三专题练习)椭圆2214x y +=,则该椭圆所有斜率为12的弦的中点的轨迹方程为_________________. 【答案】2xy =-()22-<<x 【分析】设斜率为12的直线方程为12y x b =+,与椭圆的交点为()()1122,,,A x y B x y ,利用点差法可得答案. 【详解】设斜率为12的直线方程为12y x b =+,与椭圆的交点为()()1122,,,A x y B x y , 设中点坐标为(),x y ,则211221121,,222y y x xy y x y x x -++=-==-, 所以221122221414⎧+=⎪⎪⎨⎪+=⎪⎩x y x y ,两式相减可得()()()()12221214+=-+-x x x x y y y y ,()()22121124-+-=+x x y y y y x x ,即2xy =-,由于在椭圆内部,由221412⎧+=⎪⎪⎨⎪=+⎪⎩x y y x b得22102++-=x bx b ,所以()22210∆=--=b b 时,即2b =±直线与椭圆相切,此时由22102±+=x x 解得2x =或2x =-,所以22x -<<, 所求得轨迹方程为2xy =-()22-<<x . 故答案为:2xy =-()22-<<x . 例12.(2022·北京八中高三阶段练习)已知P 为椭圆2222:1(0)x y E a b a b +=>>上任意一点,12,F F 为左、右焦点,M 为1PF 中点.如图所示:若1122OM PF +=,离心率3e = 22 ,1c b e e a a=-=(1)求椭圆E 的标准方程; (2)已知直线l 经过11,2且斜率为12与椭圆交于,A B 两点,求弦长AB 的值.【答案】(1)2214x y +=(2)5【分析】(1)由题意可得21||||2OM PF =结合1122OM PF +=求得a ,继而求得b ,即可得椭圆方程; (2)写出直线l 的方程,联立椭圆方程,可求得交点坐标,从而求得弦长. (1)由题意知,M 为1PF 中点,O 为12F F 的中点,故21||||2OM PF =, 又 1122OM PF +=,故121()22PF PF +=,即124PF PF +=,所以24,2a a == , 又因为32e =,故3c =,所以2221b a c =-= , 故椭圆E 的标准方程为2214x y += ;(2)由直线l 经过11,2⎛⎫- ⎪⎝⎭且斜率为12可知直线方程为11(1)22y x =+-,即112y x =+,联立2214x y +=,消去y 可得220x x += ,解得120,2x x ==- ,则,A B 两点不妨取为(0,1),(2,0)-, 故22215AB =+=.例13.(2022·天津·高考真题)椭圆()222210x y a b a b+=>>的右焦点为F 、右顶点为A ,上顶点为B ,且满足3BF AB=(1)求椭圆的离心率e ;(2)直线l 与椭圆有唯一公共点M ,与y 轴相交于N (N 异于M ).记O 为坐标原点,若=OM ON ,且OMN 3 【答案】(1)63e =(2)22162x y +=【分析】(1)根据已知条件可得出关于a 、b 的等量关系,由此可求得该椭圆的离心率的值;(2)由(1)可知椭圆的方程为2223x y a +=,设直线l 的方程为y kx m =+,将直线l 的方程与椭圆方程联立,由0∆=可得出()222313m a k =+,求出点M 的坐标,利用三角形的面积公式以及已知条件可求得2a 的值,即可得出椭圆的方程.(1)解:()2222222222234332BF b c aa b a a b AB b a b a+===⇒=+⇒=++,离心率为22263c a b e a a -===. (2)解:由(1)可知椭圆的方程为2223x y a +=,易知直线l 的斜率存在,设直线l 的方程为y kx m =+,联立2223y kx mx y a=+⎧⎨+=⎩得()()222213630k x kmx m a +++-=,由()()()222222223641330313k m k m a m a k ∆=-+-=⇒=+,①2331M kmx k =-+,213M Mm y kx m k =+=+,由=OM ON 可得()()222229131m k m k+=+,②由3OMN S =可得2313213km m k⋅=+,③联立①②③可得213k =,24m =,26a =,故椭圆的标准方程为22162x y +=. 【规律方法】一.涉及直线与椭圆的基本题型有: 1.位置关系的判断2.弦长、弦中点问题.弦及弦中点问题的解决方法(1)根与系数的关系:直线与椭圆方程联立,消元,利用根与系数的关系表示中点; (2)点差法:利用弦两端点适合椭圆方程,作差构造中点、斜率. 3.轨迹问题4.定值、最值及参数范围问题5.存在性问题二.常用思想方法和技巧有:1.设而不求;2.坐标法;3.根与系数关系.三. 若直线与椭圆有两个公共点可结合韦达定理,代入弦长公式或 题型五:椭圆与圆的相关问题例14. (2019·天津·高考真题(文)) 设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,上顶点为B .3|2||OA OB =(O 为原点). (Ⅰ)求椭圆的离心率;(Ⅱ)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C在直线4x =上,且OC AP ∥,求椭圆的方程.【答案】(I )12;(II )2211612x y +=.【分析】(I )根据题意得到32a b =,结合椭圆中,,a b c 的关系,得到2223()2a a c =+,化简得出12c a =,从而求得其离心率;(II )结合(I )的结论,设出椭圆的方程2222143x y c c +=,写出直线的方程,两个方程联立,求得交点的坐标,利用直线与圆相切的条件,列出等量关系式,求得2c =,从而得到椭圆的方程. 【详解】(I )解:设椭圆的半焦距为c ,由已知有32a b =, 又由222a b c =+,消去b 得2223()2a a c =+,解得12c a =,所以,椭圆的离心率为12.(II )解:由(I )知,2,3a c b c ==,故椭圆方程为2222143x y c c +=,由题意,(,0)F c -,则直线l 的方程为3()4y x c =+,点P 的坐标满足22221433()4x y c c y x c ⎧+=⎪⎪⎨⎪=+⎪⎩,消去y 并化简,得到2276130x cx c +-=,解得1213,7cx c x ==-, 代入到l 的方程,解得1239,214y c y c ==-,因为点P 在x 轴的上方,所以3(,)2P c c ,1122()()M x y N x y ,,,,MN =221212(1)[()4]k x x x x ++-MN 2121221(1)[(y )4]y y y k++-由圆心在直线4x =上,可设(4,)C t ,因为OC AP ∥,且由(I )知(2,0)A c -,故3242ct c c =+,解得2t =, 因为圆C 与x 轴相切,所以圆的半径为2,又由圆C 与l 相切,得23(4)24231()4c +-=+,解得2c =, 所以椭圆的方程为:2211612x y +=.【点睛】本小题主要考查椭圆的标准方程和几何性质、直线方程、圆等基础知识,考查用代数方法研究圆锥曲线的性质,考查运算求解能力,以及用方程思想、数形结合思想解决问题的能力.例15.(陕西高考真题)已知椭圆()的半焦距为,原点到经过两点,的直线的距离为. (Ⅰ)求椭圆的离心率;(Ⅱ)如图,是圆的一条直径,若椭圆经过,两点,求椭圆的方程.【答案】;(Ⅱ).【解析】(Ⅰ)过点的直线方程为, 则原点到直线的距离, 由,得,解得离心率. :E 22221x y a b+=0a b >>c O (),0c ()0,b 12c E AB :M ()()225212x y ++-=E A B E 3221123x y +=()(),0,0,c b 0bx cy bc +-=O 22bcd ab c ==+12d c =2222a b a c ==-32c e a ==(Ⅱ)由(1)知,椭圆的方程为. 依题意,圆心是线段的中点,且. 易知,不与轴垂直.设其直线方程为,代入(1)得.设,则,.由,得,解得. 从而.于是.由.故椭圆的方程为.例16.(2021·山东·高三开学考试)在平面直角坐标系xOy 中,已知点1(6,0)F -,2(6,0)F ,动点M 满足1243MF MF +=M 的轨迹为曲线C .(1)求C 的方程;(2)圆224x y +=的切线与C 相交于A ,B 两点,P 为切点,求||||PA PB ⋅的值.【答案】(1)221126x y +=(2)||||4PA PB ⋅=【分析】(1)结合椭圆的定义求得,,a b c ,由此求得C 的方程.(2)当直线AB 斜率不存在时,求得,PA PB ,从而求得PA PB ⋅;当直线AB 斜率存在时,设出直线AB 的方程,根据直线和圆的位置关系列方程,联立直线的方程和椭圆的方程,化简写出根与系数关系,求得0OA OB ⋅=,由此判断出90AOB ∠=︒,结合相似三角形求得PA PB ⋅.E 22244x y b +=()2,1M -AB 10AB =AB x ()21y k x =++()()()22221482142140k x k k x k b +++++-=()()1122,,,A x y B x y ()12282114k k x x k++=-+()22122421414k b x x k+-=-+124x x +=-()2821=414k k k +--+12k =21282x x b =-()()222121212151410222AB x x x x x b ⎛⎫=+-=+-=- ⎪⎝⎭10AB ()210210b -=23b =E 221123x y +=(1)为12124326MF MF F F +=>=,所以点M 的轨迹曲线C 是以1F ,2F 为焦点的椭圆.设其方程为22221(0)x y a b a b+=>>,则243a =,226a b -=,解得23a =,6b =,所以曲线C 的方程为221126x y +=.(2)当直线AB 的斜率不存在时,(2,0)P ±,此时||||2PA PB ==,则||||4PA PB ⋅=. 当直线AB 的斜率存在时,设直线AB 的方程为y kx m =+, 由直线AB 与圆224x y +=相切可得2||21m k =+,化简得()2241m k =+.联立22,1,126y kx m x y =+⎧⎪⎨+=⎪⎩得()2222142120k x kmx m +++-=,0∆>.设()11,A x y ,()22,B x y ,则122421km x x k -+=+,212221221m x x k -=+,所以1212OA OB x x y y ⋅=+()()2212121k x x km x x m =++++()()2222222121242121km k mm k k +-=-+++()222312121m k k -+=+()()222121121021k k k +-+==+,所以90AOB ∠=︒,所以AOB 为直角三角形.由OP AB ⊥,可得AOP OBP ∽△△, 所以||||||||PA OP OP PB =,所以2||||||4PA PB OP ⋅==. 综上,||||4PA PB ⋅=. 【总结提升】从高考命题看,与椭圆、圆相结合问题,一般涉及到圆的方程(圆心、半径)、直线与圆的位置关系(相切、相交)、点到直线的距离、直线方程等.。

椭圆知识点(整理)

椭圆知识点(整理)

第一部分 椭圆相关知识点讲解一.椭圆的定义及椭圆的标准方程:1.椭圆的定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 2.椭圆的标准方程(1)当焦点在x 轴上时,椭圆的标准方程:12222=+b y a x )0(>>b a ,其中222b a c -=(2)当焦点在y 轴上时,椭圆的标准方程:12222=+b x a y )0(>>b a ,其中222b a c -=;二.点与椭圆的位置关系:(1)点00(,)P x y 在椭圆外⇔2200221x y a b+>;(2)点00(,)P x y 在椭圆上⇔220220b y a x +=1;(3)点00(,)P x y 在椭圆内⇔2200221x y a b +<三.椭圆的简单几何性质椭圆:12222=+by a x )0(>>b a 的简单几何性质①范围:,a x a b y b -≤≤-≤≤;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2a x c=±; ⑤离心率:ce a=,椭圆⇔01e <<,e 越小,椭圆越圆;e 越大,椭圆越扁。

⑥通径22b a三.直线与椭圆的位置关系(1)相交:0∆>⇔直线与椭圆相交;(2)相切:0∆=⇔直线与椭圆相切; (3)相离:0∆<⇔直线与椭圆相离;四.椭圆12222=+b y a x 与 12222=+bx a y )0(>>b a 的区别和联系6.弦长公式:若直线y kx b =+与圆锥曲线相交于两点A 、B ,且12,x x 分别为A 、B 的横坐标,则AB 12x -。

高二数学椭圆知识点整理

高二数学椭圆知识点整理

一、椭圆的定义:(1) 椭圆的第一定义:平面内与两定点21F F 、的距离和等于常数()a 2(大于21F F )的点的轨迹叫做椭圆.说明:两个定点叫做椭圆的焦点;两焦点间的距离叫做椭圆的焦距()c 2.(2) 椭圆的第二定义:平面上到定点的距离与到定直线的距离之比为常数e ,当10<<e 时,点的轨迹是椭圆. 椭圆上一点到焦点的距离可以转化为到准线的距离.二、椭圆的数学表达式:()0222121>>=+F F a a PF PF ;(){}.02,22121>>=+=F F a a PF PF P M 三、椭圆的标准方程:焦点在x 轴: ()012222>>=+b a by a x ; 焦点在y 轴: ()012222>>=+b a bx a y . 说明:a 是长半轴长,b 是短半轴长,焦点始终在长轴所在的数轴上,且满足.222c b a +=四、二元二次方程表示椭圆的充要条件方程()B A C B A C By Ax ≠=+均不为零,且、、22表示椭圆的条件: 上式化为122=+CBy C Ax ,122=+BC y A C x .所以,只有C B A 、、同号,且B A ≠时,方程表示椭圆;当B C A C >时,椭圆的焦点在x 轴上;当BC A C <时,椭圆的焦点在y 轴上.五、椭圆的几何性质(以()012222>>=+b a by a x 为例) 1. 范围: 由标准方程可知,椭圆上点的坐标()y x ,都适合不等式1,12222≤≤by a x ,即b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用于求最值、轨迹检验等问题.2.对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。

3.顶点(椭圆和它的对称轴的交点) 有四个:()()()().,0B ,0B 0,0,2121b b a A a A 、、、--4. 长轴、短轴:21A A 叫椭圆的长轴,a a A A ,221=是长半轴长;21B B 叫椭圆的短轴,b b B B ,221=是短半轴长.5.离心率(1)椭圆焦距与长轴的比a c e =,()10,0<<∴>>e c a (2)22F OB Rt ∆,2222222OF OB F B +=,即222c b a +=.这是椭圆的特征三角形,并且22cos B OF ∠的值是椭圆的离心率.(3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当e接近于1时,c 越接近于a ,从而22c a b -=越小,椭圆越扁;当e 接近于0时,c 越接近于0,从而22c a b -=越大,椭圆越接近圆;当0=e 时,b a c ==,0,两焦点重合,图形是圆.6.通径(过椭圆的焦点且垂直于长轴的弦),通径长为ab 22. 7.设21F F 、为椭圆的两个焦点,P 为椭圆上一点,当21F F P 、、三点不在同一直线上时,21F F P 、、构成了一个三角形——焦点三角形. 依椭圆的定义知:c F F a PF PF 2,22121==+.例题选讲一、选择题1.椭圆1422=+y x 的离心率为( )A .23 B .43 C .22 D .32 2.设p 是椭圆2212516x y +=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于( )A . 4B .5C . 8D .10 3.若焦点在x 轴上的椭圆1222=+m y x 的离心率为21, 则m=( ) A .3 B .23 C .38 D .32 4.已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )A .2 3B .6C .4 3D .125.如图,直线022:=+-y x l 过椭圆的左焦点F 1和 一个顶点B ,该椭圆的离心率为( )A .51B .52C .55D .552 6.已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是( )A .32B .33C .22D .23 7.已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线043=++y x 有且仅有一个交点,则椭圆的长轴长为( )A .23B .62C .72D .24二、填空题:8. 在ABC △中,90A ∠=,3tan 4B =.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .9. 已知椭圆中心在原点,一个焦点为F (-23,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是 .10.在平面直角坐标系xOy 中,已知ABC ∆顶点(4,0)A -和(4,0)C ,顶点B 在椭圆192522=+y x 上,则sin sin sin A C B += . 11.椭圆4422=+y x 长轴上一个顶点为A ,以A 为直角顶点作一个内接于椭圆的等腰直角三角形,该三角形的面积是_______________.三、解答题12.已知椭圆06322=-+m y mx 的一个焦点为(0,2)求m 的值.13.已知椭圆的中心在原点,且经过点()03,P ,b a 3=,求椭圆 的标准方程.14.已知方程13522-=-+-ky k x 表示椭圆,求k 的取值范围.15.已知1cos sin 22=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围.16. 求中心在原点,对称轴为坐标轴,且经过)2,3(-A 和)1,32(-B 两点的椭圆方程.《导数及其应用》知识点总结一、导数的概念和几何意义1. 函数的平均变化率:函数()f x 在区间12[,]x x 上的平均变化率为:2121()()f x f x x x --。

(完整版)椭圆体和椭圆锥体知识点复习整理

(完整版)椭圆体和椭圆锥体知识点复习整理

(完整版)椭圆体和椭圆锥体知识点复习整理椭圆体和椭圆锥体知识点复整理什么是椭圆体和椭圆锥体?椭圆体和椭圆锥体是解析几何学中的两个重要概念。

- 椭圆体是由两个共面椭圆绕着它们的共同长轴旋转形成的空间图形。

它的形状类似于扁圆柱体,不同的是两个底面不一定是圆形。

- 椭圆锥体是由一个椭圆绕着它的长轴旋转形成的立体图形。

它的形状类似于圆锥体,不同的是底面是椭圆。

椭圆体和椭圆锥体的性质椭圆体的性质1. 椭圆体的底面是椭圆,两个底面之间的距离恒定。

2. 椭圆体的高是顶部与底部的距离,也就是两个焦点之间的距离。

3. 椭圆体的体积可以通过公式V = 4/3 * π * a * b^2 计算,其中a 和b 分别是两个椭圆的半长轴和半短轴。

椭圆锥体的性质1. 椭圆锥体的底面是椭圆,顶点到底面的距离恒定。

2. 椭圆锥体的高是顶点到底面的距离。

3. 椭圆锥体的体积可以通过公式V = 1/3 * π * a * b^2 * h 计算,其中 a 和 b 分别是椭圆的半长轴和半短轴,h 是椭圆锥体的高。

椭圆体和椭圆锥体的应用椭圆体和椭圆锥体在实际生活和工程中有广泛的应用,例如:- 球形屋顶和穹顶的设计,可以用椭圆锥体来计算和绘制。

- 船体和飞机机身的设计,常常采用椭圆体的形状,以便减小空气或水的阻力。

- 卫星轨道的计算和预测,可以使用椭圆体的性质来描述卫星的运动轨迹。

综上所述,椭圆体和椭圆锥体是重要的几何概念,其性质和应用在各个领域都有广泛的应用和研究价值。

以上是对椭圆体和椭圆锥体知识点的简要复习和整理,希望能对您有所帮助。

椭球体和圆锥体知识点复习整理

椭球体和圆锥体知识点复习整理

椭球体和圆锥体知识点复习整理一、椭球体(ellipse)1.定义:椭球体可以看作是平面上所有到两个给定点(焦点)距离之和等于常数(长轴)的点的轨迹。

2. 参数方程:若椭球体的中心为原点O,长轴为2a,短轴为2b,则椭球体上任一点的坐标可以表示为(x,y),其中x=a*cosθ,y=b*sinθ。

θ为x轴和黄金分割线之间的夹角。

3.方程:椭球体的标准方程为x²/a²+y²/b²=14.焦点和准线:椭球体的焦点为两个位于长轴上的点,准线是通过焦点的轴。

5.原点对称性:椭球体具有关于原点对称的性质,即对于椭球体上任意一点(x,y),也存在对称点(-x,-y)。

6.主轴和离心率:主轴是椭球体的长轴,离心率是焦距与长轴的比值,即e=c/a,c为焦点与原点的距离。

7.直径和直线切线:椭球体有两个直径,分别是通过中心的直径和通过焦点的直径。

每个点上的切线与径平行。

8. 预算:椭球体的面积为πab,体积为(4/3)πabc,其中c为焦点与原点的距离。

二、圆锥体(conic section)1.定义:圆锥体是一个在平面上围绕一个焦点旋转形成的曲面。

2.不同类型:圆锥体可以分为三种类型:圆锥,椭圆锥和双曲线锥,具体取决于焦点和准线的位置。

3.圆锥体方程:若焦点位于原点O,准线平行于z轴,则圆锥体的方程可以表示为x²+y²=z²。

4. 参数方程:对于圆锥体上的任一点P(x,y,z),可以表示为x=r*sinθ*cosφ,y=r*sinθ*sinφ,z=r*cosθ,其中θ为与z轴的夹角,φ为与x轴的夹角,r为P到原点O的距离。

5.圆锥体交点:圆锥体与平面相交得到不同的曲线,具体形状取决于平面与准线的位置。

当平面与准线垂直时,为圆;当平面与准线平行时,为抛物线;当平面既不垂直也不平行于准线时,为椭圆或双曲线。

6. 旋转椭圆和双曲线:椭圆和双曲线可由旋转椭圆和双曲线的参数方程得到,即x=acosθ,y=bsinθ,其中θ为参数,a为长轴的一半,b 为短轴的一半。

椭圆综合专题整理

椭圆综合专题整理

椭圆专题总结、直线与椭圆问题的常规解题方法1.设直线与方程;(提醒:①设直线时分斜率存在与不-存在;②设为y=kx+b与x=my+n 的区别)2.设交点坐标;(提醒:之所以要设是因为不去求出它,即“设而不求”)3.联立方程组;4.消元韦达定理;(提醒:抛物线时经常是把抛物线方程代入直线方程反而简单)5.根据条件重转化;常有以下类型:①“以弦AB为直径的圆过点0” (提醒:需讨论K是否存在)②“点在圆内、圆上、圆外问题”=“直角、锐角、钝角问题”=“向量的数量积大于、等于、小于 0问题”二X1X2 y i y2 0 >0 ;③“等角、角平分、角互补问题” =斜率关系(K i K^0或©二K2);④“共线问题”—I —I(如: AQ=^QB=数的角度:坐标表示法;形的角度:距离转化法);(如:A、0、B三点共线=直线OA与OB斜率相等);⑤“点、线对称问题”二坐标与斜率关系;⑥“弦长、面积问题”二转化为坐标与弦长公式问题(提醒:注意两个面积公式的合理选择);6.化简与计算;7.细节问题不忽略;①判别式是否已经考虑;②抛物线、双曲线问题中二次项系数是否会出现0.二、基本解题思想:1、“常规求值”问题:需要找等式,“求范围”问题需要找不等式;2、“是否存在”问题:当作存在去求,若不存在则计算时自然会无解;3、证明定值问题的方法:⑴常把变动的元素用参数表示出来,然后证明计算结果与参数无关;⑵也可先在特殊条件下求出定值,再给出一般的证明。

4、处理定点问题的方法:⑴常把方程中参数的同次项集在一起,并令各项的系数为零,求出定点;⑵也可先取参数的特殊值探求定点,然后给出证明,5、求最值问题时:将对象表示为变量的函数,几何法、配方法(转化为二次函数的最值)、三角代换法(转化为三角函数的最值)、利用切线的方法、利用均值不等式的方法等再解决;6、转化思想:有些题思路易成,但难以实施。

这就要优化方法,才能使计算具有可行性,关键是积累“转化”的经验;椭圆中的定值、定点问题一、常见基本题型:在几何问题中,有些几何量和参数无关,这就构成定值问题,解决这类问题常通过取参数和特殊值来确定“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角式,证明该式是恒定的。

椭圆知识整理

椭圆知识整理

椭圆知识点总结复习2.点与椭圆的位置关系:(1)点00(,)P x y 在椭圆外⇔00221x y a b +>;(2)点00(,)P x y 在椭圆上⇔220220b y a x +=1;(3)点00(,)P x y 在椭圆内⇔2200221x y a b+<3.直线与圆锥曲线的位置关系:(往往设而不求) (1)0∆>⇔直线与椭圆相交; (2)0∆=⇔直线与椭圆相切; (3)0∆<⇔直线与椭圆相离;4、与焦点三角形有关的问题(椭圆上的一点与两焦点所构成的三角形)5、弦长公式:(直线与椭圆的交点坐标设而不求)若直线y kx b =+与圆锥曲线相交于两点A 、B ,且12,x x 分别为A 、B 的横坐标,则AB= ,若12,y y 分别为A 、B 的纵坐标,则AB = .6、圆锥曲线的中点弦问题:(直线和椭圆的交点设而不求)遇到中点弦问题常用“韦达定理”或“点差法”求解。

【基础练习】一.选择题 1.离心率为32,长轴长为6的椭圆的标准方程是( ) A .15922=+y x B .15922=+y x 或19522=+y xC .1203622=+y x D .1203622=+y x 或1362022=+y x2.平面内有定点A 、B 及动点P ,设命题甲是“|PA|+|PB|是定值”,命题乙是“点P 的轨迹是以A 、B 为焦点的椭圆”,那么甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.已知ABC ∆的周长是16,)0,3(-A ,B )0,3(则动点的轨迹方程是( )A .1162522=+y x B .)0(1162522≠=+y y x C .1251622=+y x D .)0(1251622≠=+y y x 4.若椭圆19922=++m y x 的离心率是21,则m 的值等于( ) A .49- B .41 C .49-或3 D .41或35. 已知椭圆的对称轴是坐标轴,一个焦点是(0, -7), 一个顶点是(9, 0),则该椭圆的方程是 ( )A +y =1B +x =1C +y =1D +x =12222....x y x y 22228132813213081130816.椭圆192522=+y x 上有一点P ,它到左焦点的距离是2,则点P 到右焦点是距离是( ) A .8 B .4 C .3 D .67.短轴长为5,离心率为32,两个焦点分别为1F 、2F 的椭圆,过1F 作直线交椭圆于A 、B 两点,则2ABF ∆的周长为( )A .24B .12C .6D .38.椭圆12222=+b y a x 和12222=-+-λλb y a x )0(22>>>λb a 的关系是( ) A .有相同的长轴 B .有相同的离心率C .有相同的短轴 D .有相同的焦点9.直线)(1R k kx y ∈+=与椭圆1522=+my x 恒有公共点,则m 的取值范围是( ) A .5>m B .50<<m C .1>m D .1≥m10.以椭圆上一点和两个焦点为顶点的三角形的最大面积为1,则长轴长的最小值为( )A .1B .2C .2D .2211.设P 为椭圆12222=+by a x )0(>>b a 上一点,F 1、F 2为焦点,如果 7521=∠F PF , 1512=∠F PF ,则椭圆的离心率为( ) A .22 B .23 C .32 D .3612.椭圆12222=+by a x )0(>>b a 与圆222)2(c by x +=+(c 为椭圆半焦距)有四个不同交点,则椭圆离心率e 的取值范围是( )A .5355<<e B .153<<e C .155<<e D .530<<e 二.填空题13.过椭圆2222=+y x 的焦点引一条倾斜角为 45的直线与椭圆交于A 、B 两点,椭圆的中心为O ,则AOB ∆的面积为14.椭圆的长轴的一个顶点与短轴的两个端点构成等边三角形,则此椭圆的离心率等于15.椭圆1422=+y m x 的焦距是2,则m 的值为 16.到椭圆192522=+y x 右焦点的距离与到直线6=x 的距离相等的轨迹方程是 三.解答题17.求以直线01243=-+y x 和两坐标轴的交点为顶点和焦点的椭圆的标准方程。

椭圆的标准方程及其几何性质

椭圆的标准方程及其几何性质

椭圆的标准方程及其几何性质1. 椭圆定义:(1)第一定义:平面内与两个定点21F F 、的距离之和为常数|)|2(222F F a a >的动点P 的轨迹叫椭圆,其中两个定点21F F 、叫椭圆的焦点.当21212F F a PF PF >=+时, P 的轨迹为椭圆 ; ; 当21212F F a PF PF <=+时, P 的轨迹不存在;当21212F F a PF PF ==+时, P 的轨迹为 以21F F 、为端点的线段(2)椭圆的第二定义:平面内到定点F 与定直线l (定点F 不在定直线l 上)的距离之比是常数e (10<<e )的点的轨迹为椭圆(利用第二定义,可以实现椭圆上的动点到焦点的距离与到相应准线的距离相互转化).2.椭圆的方程与几何性质:3.点),(00y x P 与椭圆)0(12222>>=+b a by a x 的位置关系:当12222>+b y a x 时,点P 在椭圆外; 当12222>+b y a x 时,点P 在椭圆内; 当12222=+by a x 时,点P 在椭圆上;4.直线与椭圆的位置关系直线与椭圆相交0>∆⇔;直线与椭圆相切0=∆⇔;直线与椭圆相离0<∆⇔ 例题分析:题1写出适合下列条件的椭圆的标准方程:⑴两个焦点坐标分别是(-4,0)、(4,0),椭圆上一点P 到两焦点的距离 之和等于10;⑵两个焦点坐标分别是(0,-2)和(0,2)且过(23-,25) (3)两个焦点坐标分别是(-3,0),(3,0),椭圆经过点(5,0).(4)两个焦点坐标分别是(0,5),(0,-5),椭圆上一点P 到两焦点的距离和为26. (5)焦点在y 轴上,与y 轴的一个交点为P (0,-10),P 到它较近的一个焦点的距离等于2.解:(1)因为椭圆的焦点在x 轴上,所以设它的标准方程为12222=+by a x )0(>>b a9454,582,10222222=-=-=∴==∴==c a b c a c a所以所求椭圆标准方程为92522=+y x ⑵ 因为椭圆的焦点在y 轴上,所以设它的标准方程为12222=+b x a y )0(>>b a 由椭圆的定义知,22)225()23(2++-=a +22)225()23(-+-10211023+=102=10=∴a 又2=c6410222=-=-=∴c a b 所以所求标准方程为61022=+x y 另法:∵ 42222-=-=a c a b∴可设所求方程142222=-+a x a y ,后将点(23-,25)的坐标代入可求出a ,从而求出椭圆方程(3)∵椭圆的焦点在x 轴上,所以设它的标准方程为:)0(12222>>=+b a by a x∵100)35(0)35(222=+-+++=a ,2c =6.∴3,5==c a∴163522222=-=-=c a b∴所求椭圆的方程为:1162522=+y x . (4)∵椭圆的焦点在y 轴上,所以设它的标准方程为)0(12222>>=+b a b x a y . ∴.144222=-=c a b∴所求椭圆方程为:114416922=+x y (5)∵椭圆的焦点在y 轴上,所以可设它的标准方程为:)0(12222>>=+b a bx a y ∵P(0,-10)在椭圆上,∴a =10. 又∵P 到它较近的一焦点的距离等于2,∴-c -(-10)=2,故c =8. ∴36222=-=c a b .∴所求椭圆的标准方程是13610022=+x y . 题2。

高三数学椭圆方程式知识点归纳

高三数学椭圆方程式知识点归纳

高三数学椭圆方程式知识点归纳数学是学习生涯的关键阶段,为了能够使同学们在数学方面有所建树,小编特此整理了高三数学椭圆方程式知识点归纳,以供大家参考。

1. 椭圆方程的第一定义:
⑴①椭圆的标准方程:
i. 中心在原点,焦点在x轴上:
. ii. 中心在原点,焦点在
轴上:
②一般方程:
.③椭圆的标准参数方程:
的参数方程为
(一象限
应是属于
⑵①顶点:

.②轴:对称轴:x轴,
轴;长轴长
,短轴长
.③焦点:

.④焦距:
.⑤准线:

.⑥离心率:
.⑦焦点半径:
i.

为椭圆
上的一点,
为左、右焦点,则
由椭圆方程的第二定义可以推出.
ii.设
为椭圆
上的一点,
为上、下焦点,则
由椭圆方程的第二定义可以推出.
由椭圆第二定义可知:
归结起来为左加右减.
注意:椭圆参数方程的推导:得
方程的轨迹为椭圆.
⑧通径:垂直于x轴且过焦点的弦叫做通经.坐标:和
⑶共离心率的椭圆系的方程:椭圆
的离心率是
,方程
是大于0的参数,
的离心率也是
我们称此方程为共离心率的椭圆系方程.
⑸若P是椭圆:
上的点.
为焦点,若
,则
的面积为
(用余弦定理与
可得). 若是双曲线,则面积为。

(2021年整理)(完整)椭圆知识点总结

(2021年整理)(完整)椭圆知识点总结

(完整)椭圆知识点总结编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)椭圆知识点总结)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)椭圆知识点总结的全部内容。

椭圆知识点知识点一:椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆。

这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距。

注意:若2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若2121F F PF PF <+,则动点P 的轨迹无图形. 知识点二:椭圆的简单几何性质椭圆:12222=+b y a x )0(>>b a 与 12222=+bx a y )0(>>b a 的简单几何性质标准方程12222=+b y a x )0(>>b a 12222=+bx a y )0(>>b a 图形性质焦点 )0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F焦距 c F F 221= c F F 221= 范围a x ≤,b y ≤b x ≤,a y ≤对称性 关于x 轴、y 轴和原点对称 顶点 )0,(a ±,),0(b ±),0(a ±,)0,(b ±轴长长轴长=a 2,短轴长=b 2 长半轴长=a ,短半轴长=b (注意看清题目)离心率)10(<<=e ace c a F A F A -==2211;c a F A F A +==1221;c a PF c a +≤≤-1;(p 是椭圆上一点)(不等式告诉我们椭圆上一点到焦点距离的范围)注意:①与坐标系无关的椭圆本身固有的性质,如:长轴长、短轴长、焦距、离心率等;②与坐标系有关的性质,如:顶点坐标、焦点坐标等知识点三:椭圆相关计算1.椭圆标准方程中的三个量c b a ,,的几何意义 222c b a +=2。

(整理版)椭圆的第二定义

(整理版)椭圆的第二定义

椭圆的第二定义课本上我们学习了椭圆的定义,实际上,还有另一个反映椭圆性质的定义,我们称它为第二定义,这篇文章将会为你介绍它.1.椭圆的第二定义的推导点()M x y ,与定点(0)F c ,的距离和它到定直线2:a l x c =的距离的比是常数(0)c a c a >>,求点M 的轨迹. 解:设d 是点M 到直线l 的距离,根据题意,所求轨迹就是集合MF c P M d a ⎧⎫⎪⎪==⎨⎬⎪⎪⎩⎭|,由此得222()x c y c a a x c-+=-.将上式两边平方,并化简得22222222()()a c x a y a a c -+=-. 设222a c b -=,就可化成22221(0)x y a b a b+=>>. 这是椭圆的标准方程,所以点M 的轨迹是长轴长为2a ,短轴长为2b 的椭圆. 由此可知,当点M 与一个定点的距离和它到一条定直线的距离的比是常数(01)c e e a=<<时,这个点的轨迹是椭圆,一般称为椭圆的第二定义,定点是椭圆的焦点,定直线叫做椭圆的准线,常数e 是椭圆的离心率.对于椭圆22221(0)x y a b a b +=>>,相应于焦点(0)F c ,的准线方程是2a x c=.根据椭圆的对称性,相应于焦点(0)F c '-,的准线方程是2a x c=-,所以椭圆有两条准线. 可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线的距离的比,这就是离心率的几何意义.2.第二定义的应用例 椭圆22143x y +=内有一点(11)P F -,,是椭圆的右焦点,在椭圆上有一点M ,使2MP MF +的值最小,求M 的坐标.〔如图〕分析:假设设()M x y ,,求出2MP MF +,再计算最小值是很繁的.由于MF 是椭圆上一点到焦点的距离,由此联想到椭圆的第二定义,它与到相应准线的距离有关,故有如下解法.解:设M 在右准线l 上的射影为1M .由椭圆方程可知1212a b c e ===,,. 根据椭圆的第二定义,有112MFMM =,即112ME MM =. 12MP MF MP MM +=+∴. 显然,当1P M M ,,三点共线时,1MP MM +有最小值.过P 作准线的垂线1y =-.由方程组2234121x y y ⎧+=⎨=-⎩,,解得1M ⎫-⎪⎪⎝⎭.即M的坐标为1⎫-⎪⎪⎝⎭.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆总结:一、复习引入:1.椭圆定义:在平面内,到两定点距离之和等于定长(定长大于两定点间的距离)的动点的轨迹2.标准方程:12222=+b y a x ,12222=+bx a y (0>>b a ).二、性质:(1)范围:从标准方程得出122≤a x ,122≤by ,即有a x a ≤≤-,b y b ≤≤-,可知椭圆落在b y a x ±=±=,组成的矩形中.(2)对称性:把方程中的x 换成x -方程不变,图象关于y 轴对称.y 换成y -方程不变,图象关于x 轴对称.把y x ,同时换成y x --,方程也不变,图象关于原点对称.如果曲线具有关于x 轴对称,关于y 轴对称和关于原点对称中的任意两种,则它一定具有第三种对称原点叫椭圆的对称中心,简称中心.x 轴、y 轴叫椭圆的对称轴.从椭圆的方程中直接可以看出它的范围,对称的截距(3)顶点:椭圆和对称轴的交点叫做椭圆的顶点在椭圆12222=+b y a x 的方程里,令0=y 得a x ±=,因此椭圆和x 轴有两个交点)0,(),0,(2a A a A -,它们是椭圆12222=+by a x 的顶点令0=x ,得b y ±=,因此椭圆和y 轴有两个交),0(),,0(2b B b B -,它们也是椭圆12222=+by a x 的顶点 因此椭圆共有四个顶)0,(),0,(2a A a A -,,0(),,0(2b B b B -加两焦点)0,(),0,(21c F c F -共有六个特殊点.21A A 叫椭圆的长轴,21B B 叫椭圆的短轴.长分别为b a 2,2b a ,分别为椭圆的长半轴长和短半轴长.椭圆的顶点即为椭圆与对称轴的交点.(4)离心率:发现长轴相等,短轴不同,扁圆程度不同 这种扁平性质由什么来决定呢? 概念:椭圆焦距与长轴长之比定义式:a c e =⇒e =范围:0<<e考察椭圆形状与e 的关系:0,0→→c e ,椭圆变圆,直至成为极限位置圆,此时也可认为圆为椭圆在0=e 时的特例,,1a c e →→椭圆变扁,直至成为极限位置线段21F F ,此时也可认为圆为椭圆在1=e 时的特例(一)复习引入:1.椭圆的几何性质:2222 1 (0)x y a b a b+=>>顶点坐标:(,0)a ±,(0,)b ±对称性:对称轴为坐标轴,对称中心是原点,长轴长2a ,短轴长2b 焦点坐标:(,0)c ±,c 离心率:ce a=(01e <<) (二)新课讲解:例1.点(,)M x y 与定点(,0)F c 的距离和它到定直线l :2a x c=的距离比是常数c a (0a c >>),求点M 的轨迹.2.椭圆的准线方程:(1)22221x y a b +=,对应焦点(,0)F c 的准线方程:2a x c =,右准线;对应焦点(,0)F c -的准线方程:2a x c=-,左准线.(2)22221y x a b +=,对应焦点(0,)F c 的准线方程:2a y c =;对应焦点(0,)F c -的准线方程:2a y c=-.xy O Mll '【定义及相关概念的考察】1、如果方程222x ky +=表示焦点在y 轴的椭圆,那么实数k 的取值范围是2、椭圆5522=-ky x 的一个焦点是()2,0 ,那么=k3、椭圆63222=+y x 的焦距是( )A .2B .)23(2-C .52D .)23(2+4、椭圆5x 2+ky 2=5的一个焦点是(0,2),那么k 等于( )A .-1 B.1 C.5D. -55、若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,则实数k 的取值范围为( )A .(0,+∞)B .(0,2)C .(1,+∞)D .(0,1) 6、若方程x 2a 2 —y2a =1表示焦点在y 轴上的椭圆,则实数a 的取值范围是( )A 、a<0B 、-1<a<0C 、a<1D 、以上皆非7、椭圆12222=+b y a x 和k by a x =+2222()0>k 具有( )A .相同的离心率B .相同的焦点C .相同的顶点D .相同的长、短轴8、F 1、F 2是定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则点M 的轨迹是 ( ) A .椭圆 B .直线 C .线段 D .圆9、设定点F 1(0,-3)、F 2(0,3),动点P 满足条件)0(921>+=+a aa PF PF ,则点P 的轨迹是( )A .椭圆B .线段C .不存在D .椭圆或线段 10、过椭圆4x 2+2y 2=1的一个焦点F 1的弦AB 与另一个焦点F 2围成的三角形△ABF 2的周长是 .【考察方程】1、已知ABC ∆的周长是18,)0,4(),0,4(B A -,求点C 的轨迹方程。

2、已知三角形ABC 的两顶点为(2,0),(2,0)B C -,它的周长为10,求顶点A 轨迹方程.3、椭圆的一个顶点为A (2,0),其长轴长是短轴长的2倍,求椭圆的标准方程.4、设椭圆:E 22221x y a b +=(,0a b >>)过M,N 两点,O 为坐标原点,求椭圆E 的方程。

5、已知椭圆C 以坐标轴为对称轴,以坐标原点为对称中心,椭圆的一个焦点为()0,1,点⎪⎪⎭⎫⎝⎛26,23M 在椭圆上,求椭圆C 的方程;6、已知椭圆G 的中心在坐标原点,长轴在x轴上,离心率为2,且G 上一点到G 的两个焦点的距离之和为12,椭圆G 的方程.7、已知椭圆1C :22221(0)y x a b a b+=>>的右顶点为(1,0)A ,过1C 的焦点且垂直长轴的弦长为1.8、求椭圆1C 的方程已知椭圆C 的中心为直角坐标系xOy 的原点,焦点在x 轴上,它的一个顶点到两个焦点的距离分别是7和1.求椭圆C 的方程.9、设椭圆的中心是坐标原点,长轴在x 轴上,离心率e=23,已知点P (0,23)到椭圆上的点的最远距离是7,求这个椭圆方程。

同步练习:1、若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点)23,25(-,则椭圆方程是( )A .14822=+x y B .161022=+x y C .18422=+x y D .161022=+y x2、过椭圆12422=+y x 的一个焦点1F 的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的另一焦点2F 构成2ABF ∆,那么2ABF ∆的周长是( )A. 22B. 2C. 2D. 13、过点(3, -2)且与椭圆4x 2+9y 2=36有相同焦点的椭圆的方程是( )(A )2211510x y += (B )221510x y += (C )2211015x y += (D )2212510x y += 4、已知椭圆的对称轴是坐标轴,离心率为31,长轴长为12,则椭圆方程为( )A.112814422=+y x 或114412822=+y x B. 14622=+y x C.1323622=+y x 或1363222=+y x D. 16422=+y x 或14622=+y x 【考察离心率】1、椭圆2214x y m +=的离心率为12,则m = . 2、 若焦点在x 轴上的椭圆1222=+my x 的离心率为21,则m=( ) A .3 B .23C .38D .323、若椭圆两准线间的距离等于焦距的4倍,则这个椭圆的离心率为( )A .41 B .22 C .42 D .21 4、如果椭圆的焦距、短轴长、长轴长成等差数列,则其离心率为( )(A )53 (B )312 (C )43 (D )9105、已知椭圆E的短轴长为6,焦点F到长轴的一个端点的距离等于9,则椭圆E的离心率等于__________.6、 已知k <4,则曲线14922=+y x 和14922=-+-k y k x 有( ) A. 相同的准线 B. 相同的焦点 C. 相同的离心率 D. 相同的长轴 7、已知椭圆的一个焦点将长轴分为3:2两段,求其离心率。

【考察准线】①求准线方程:(1)求椭圆2244x y +=和2244x y +=的准线方程;(2)已知椭圆22925900x y +=上的点P 到它的右准线的距离为8.5,则P 到左焦点的距离为 ; (3)椭圆的中心在坐标原点,焦点在坐标轴上,准线方程为18y =±,椭圆上一点到两焦点的距离分别为10和14,则椭圆的方程是 . ②准线方程在第二定义中的应用:1、椭圆短轴长是2,长轴是短轴的2倍,则椭圆中心到其准线距离是( )A.43B.554C.358D.334 2、已知P 点在椭圆2212516x y +=上,且点P 到椭圆左、右两焦点的距离之比为1:4,求点P 到两准线的距离; 3、已知P 是椭圆13610022=+y x 上的一点,若P 到椭圆右准线的距离是217,则点P 到左焦点的距离是 ()A .516B .566C .875D .8774、在椭圆13422=+y x 内有一点P (1,-1),F 为椭圆右焦点,在椭圆上有一点M ,使|MP|+2|MF|的值最小,则这一最小值是( ) A .25 B .27 C .3D .45、 若点()y ,4是椭圆18014422=+y x 上的点,则它到左焦点的距离为 .【直线与椭圆的关系】(交点、弦长公式)1、直线01=--kx y 与椭圆1522=+my x 恒有公共点,则m 的取值范围为 .2、直线y =x -21被椭圆x 2+4y 2=4截得的弦长为 .弦中点问题:1、椭圆1449422=+y x 内有一点P (3,2)过点P 的弦恰好以P 为中点,那么这弦所在直线的方程为( )A .01223=-+y xB .01232=-+y xC .014494=-+y xD . 014449=-+y x2、中心在原点,一焦点为F 1(0,52)的椭圆被直线y=3x -2截得的弦的中点横坐标是21,求此椭圆的方程。

3、椭圆E :141622=+y x 内有一点P (2,1),求经过P 并且以P 为中点的弦所在直线方程. 4、椭圆E :ax 2+by 2=1与直线x +y =1交于A 、B 两点,M 是AB 中点,如果|AB |=22,且OM 的斜率为22. (1)把M 点的坐标用a 、b 表示出来; (2)求此椭圆方程.5、已知圆Q A y x C ),0,1(25)1(:22及点=++为圆上一点,AQ 的垂直平分线交CQ 于M ,则点M 的轨迹方程为 .6、过点M (-2,0)的直线m 与椭圆1222=+y x 交于P1,P2,线段P1P2的中点为P ,设直线m 的斜率为k1(01≠k ),直线OP 的斜率为k2,则k1k2的值为( )A .2B .-2C .21D .-21 7、过P (-3,0)作一直线l 交椭圆E :11x 2+y 2=9于M 、N 两点,问l 的倾斜角多大时,以M 、N 为直径的圆过原点?【焦点与面积】面积公式、∠1F P 2F 的大小1、若点P 在椭圆1222=+y x 上,1F 、2F 分别是椭圆的两焦点,且9021=∠PF F ,则21PF F ∆的面积是( ) A. 2 B. 1 C. 23D. 212、椭圆192522=+y x 的焦点1F 、2F ,P 为椭圆上的一点,已知21PF PF ⊥,则△21PF F 的面积为( ) (A )9 (B )12 (C )10 (D )83、21,F F 是椭圆17922=+y x 的两个焦点,A 为椭圆上一点,且∠02145=F AF ,则Δ12AF F 的面积为( )A .7B .47 C .27 D .257 4、椭圆1244922=+y x 上一点P 与椭圆的两个焦点1F 、2F 的连线互相垂直,则△21F PF 的面积为( ) A .20 B .22 C .28 D .245、椭圆14922=+y x 的焦点1F 、2F ,点P 为其上的动点,当∠1F P 2F 为钝角时,点P 横坐标的取值范围是 。

相关文档
最新文档