湍流理论
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湍流理论
流体力学术语
01 起因
03 模式理论 05 参考书目
目录
02 基本方程 04 统计理论
湍流理论是一个有关湍流成因的理论学说,研究湍流的起因和特性的理论,包括两类基本问题:①湍流的起 因,即平滑的层流如何过渡到湍流;②充分发展的湍流的特性。
起因
层流过渡为湍流的主要原因是不稳定性。在多数情况下,剪切流中的扰动会逐渐增长,使流动失去稳定性而 形成湍流斑,扰动继续增强,最后导致湍流。这一类湍流称为剪切湍流。两平板间的流体受下板面加热或由上板 面冷却达到一定程度,也会形成流态失稳,猝发许多小尺度的对流;上下板间的温差继续加大,就会形成充分发 展的湍流。这一类湍流称热湍流或对流湍流。边界层、射流以及管道中的湍流属于前一类;夏天地球大气受下垫 面加热后产生的流动属于后一类。
泰勒利用这一类相关研究了一种理想湍流──均匀各向同性湍流。这种量简单的理想化湍流的定义是:平均 速度和所有平均量都对空间坐标的平移保持不变,而且各相关函数沿任何方向都是相同的。要在实验室中即使近 似地模拟这种湍流也是很困难的。但在这种湍流中,不会有平均流动对脉动的交互作用,也不会有因不均匀性造 成的湍能扩散效应和因各向异性造成的湍能重分配效应,因而可以利用这种湍流研究湍能衰减规律和湍流场中各 级旋涡间的能量分配和交换规律。由于没有湍能产生和扩散,这种湍流一旦产生就逐渐衰减。
式中yc=0.15δ~0.20δ;κ=0.40;σ=0和 射流的宽度成比例。在二元情况下可用式(4)封闭式(2)、(3)。
对于直圆管湍流,由混合长理论可以得出用对数函数近似表示的水桶型的速度分布。经过实验修正后,这个 对数分布律为:
式中称动力速度;τω为壁面摩擦力。
对充分发展的湍流,除考虑它的瞬时量外,更要考虑各种用以描述湍流概貌的平均量。从瞬时量导出平均量 的平均方法有好多种。有了平均法,就可把任一瞬时量分解成平均量和脉动量之和。例如,
ui=ūi+u′i,p=pˉ+p′,
式中ui、p为速度和压力的瞬时量;ūi、pˉ圴为其平均量;u′i和p′为其脉动量。对式(1)取平均,就得 到平均速度和平均压力所满足的雷诺方程:
泰勒在20年代初研究湍流扩散时,引进了流场同一点在不同时刻的脉动速度的相关,从而开创了湍流统计理 论的研究。这一相关称拉格朗日相关,可描述流动的扩散能力。用扩散系数εd来表示这种能力,则
式中
称为相关系数。知道了拉格朗日相关,就可以算出湍流扩散系数。1935年泰勒又引进同一时刻不同点上速度 分量的相关,用以描述湍流脉动场,此即所谓欧拉相关。相应的相关系数
为了弄清湍流过渡的机制,科学家们开展了关于流动稳定性理论(见流体运动稳定性)、分岔(bifurcation) 理论和混沌(chaos)理论的研究,还进行了大量实验研究(见湍流实验)。
对于从下加热流层而向湍流过渡的问题,原来倾向于下述观点:随着流层温差的逐渐增加,在发生第一不稳 定后,出现分岔流态;继而发生第二不稳定,流态进一步分岔;然后第三、第四以及许多更高程度的不稳定接连 发生;这种复杂的流动称为湍流。实验结果支持这一论点。但是,这一运动过程在理论上得不出带有连续谱的无 序运动,而与实验中观察到的连续谱相违。对不稳定系统的理论分析提出了另一种观点:在发生第一、第二不稳 定之后,第三不稳定就直接导致一个可解释为湍流的无序运动。这一观点也得到实验的支持。
除了混合长理论外。G.I.泰勒提出过一种模拟涡量输运的理论;T.von卡门也提出一种假定局部脉动场相似的 理论。有人称这些半经验理论为平均场封闭模式或“0”方程模式。这种模式比较简单,且计算结果也比较符合某 些工程实际。
统计理论
研究湍流一般要用统计平均概念。统计的结果是湍流细微结构的平均,描述流体运动的某些概貌,而这些概 貌对实际湍流细节应该是适当敏感的,因此可以认为,几乎所有湍流理论(包括上两节所述的理论)都是统计理 论,但一般著作中所讲的统计理论实际上是指引进多点相关后的统计理论。
谢谢观看
参考书目
,Turbulence,McGraw-Hill,New York,1975. ton, Physical Fluid Dynamics,van Nostrand Reinhold Co., New York, 1977. ,ed.,Turbulent Flows and Heat Transfer,Princeton Univ. Press, Princeton, 1959. ey and b, ed.,Hydrodynamic Instabilities and the Transition to Turbulence,Springer-verlag, Berlin, 1981.
剪切流中湍流的发生情况更为复杂。实验发现,平滑剪切流向湍流过渡常会伴有突然发生的、作奇特波状运 动的湍流斑或称过渡斑。
基本方程
充分发展的湍流流动图像极其复杂,虽经一百多年的研究,成果并不显著。大多数学者都是从纳维-斯托克 斯方程
出发进行研究;有人从统计物理学中的玻耳兹曼方程或BBGKY谱系方程出发进行研究。
式中最后一项是雷诺方程对纳维-斯托克斯方程的附加项,体现了脉动场对平均场的作用,。式中最后一项中 的量实质上是新未知量,所以式(2)和连续性方程
所组成的方程组关于ūi和pˉ圴是不封闭的,因而无法求解。学者们一直努力寻求封闭方程组的办法;早年 的普朗特混合长理论是一种尝试,后来发展的模式理论也是一种尝试。
模式理论
J.V.布森涅斯克早在1877年作出假设:二元湍流的雷诺应力正比于平均速度梯度,即
式中ετ为涡粘性系数。这一假设是仿照牛顿粘性定律作出的。实际上,ετ不是单由物性决定的常数,而 是和流动有关的变量,尤其在近壁区,它的变化很大。后来,L.普朗特仿照气体分子运动论,提出了混合长理论, 即令
式中取x、y坐标;u′、v′为相应脉动速度分量;l称为混合长。根据平板边界层的测量,l和离壁之距y的 关系可近似地表示为:
流体力学术语
01 起因
03 模式理论 05 参考书目
目录
02 基本方程 04 统计理论
湍流理论是一个有关湍流成因的理论学说,研究湍流的起因和特性的理论,包括两类基本问题:①湍流的起 因,即平滑的层流如何过渡到湍流;②充分发展的湍流的特性。
起因
层流过渡为湍流的主要原因是不稳定性。在多数情况下,剪切流中的扰动会逐渐增长,使流动失去稳定性而 形成湍流斑,扰动继续增强,最后导致湍流。这一类湍流称为剪切湍流。两平板间的流体受下板面加热或由上板 面冷却达到一定程度,也会形成流态失稳,猝发许多小尺度的对流;上下板间的温差继续加大,就会形成充分发 展的湍流。这一类湍流称热湍流或对流湍流。边界层、射流以及管道中的湍流属于前一类;夏天地球大气受下垫 面加热后产生的流动属于后一类。
泰勒利用这一类相关研究了一种理想湍流──均匀各向同性湍流。这种量简单的理想化湍流的定义是:平均 速度和所有平均量都对空间坐标的平移保持不变,而且各相关函数沿任何方向都是相同的。要在实验室中即使近 似地模拟这种湍流也是很困难的。但在这种湍流中,不会有平均流动对脉动的交互作用,也不会有因不均匀性造 成的湍能扩散效应和因各向异性造成的湍能重分配效应,因而可以利用这种湍流研究湍能衰减规律和湍流场中各 级旋涡间的能量分配和交换规律。由于没有湍能产生和扩散,这种湍流一旦产生就逐渐衰减。
式中yc=0.15δ~0.20δ;κ=0.40;σ=0和 射流的宽度成比例。在二元情况下可用式(4)封闭式(2)、(3)。
对于直圆管湍流,由混合长理论可以得出用对数函数近似表示的水桶型的速度分布。经过实验修正后,这个 对数分布律为:
式中称动力速度;τω为壁面摩擦力。
对充分发展的湍流,除考虑它的瞬时量外,更要考虑各种用以描述湍流概貌的平均量。从瞬时量导出平均量 的平均方法有好多种。有了平均法,就可把任一瞬时量分解成平均量和脉动量之和。例如,
ui=ūi+u′i,p=pˉ+p′,
式中ui、p为速度和压力的瞬时量;ūi、pˉ圴为其平均量;u′i和p′为其脉动量。对式(1)取平均,就得 到平均速度和平均压力所满足的雷诺方程:
泰勒在20年代初研究湍流扩散时,引进了流场同一点在不同时刻的脉动速度的相关,从而开创了湍流统计理 论的研究。这一相关称拉格朗日相关,可描述流动的扩散能力。用扩散系数εd来表示这种能力,则
式中
称为相关系数。知道了拉格朗日相关,就可以算出湍流扩散系数。1935年泰勒又引进同一时刻不同点上速度 分量的相关,用以描述湍流脉动场,此即所谓欧拉相关。相应的相关系数
为了弄清湍流过渡的机制,科学家们开展了关于流动稳定性理论(见流体运动稳定性)、分岔(bifurcation) 理论和混沌(chaos)理论的研究,还进行了大量实验研究(见湍流实验)。
对于从下加热流层而向湍流过渡的问题,原来倾向于下述观点:随着流层温差的逐渐增加,在发生第一不稳 定后,出现分岔流态;继而发生第二不稳定,流态进一步分岔;然后第三、第四以及许多更高程度的不稳定接连 发生;这种复杂的流动称为湍流。实验结果支持这一论点。但是,这一运动过程在理论上得不出带有连续谱的无 序运动,而与实验中观察到的连续谱相违。对不稳定系统的理论分析提出了另一种观点:在发生第一、第二不稳 定之后,第三不稳定就直接导致一个可解释为湍流的无序运动。这一观点也得到实验的支持。
除了混合长理论外。G.I.泰勒提出过一种模拟涡量输运的理论;T.von卡门也提出一种假定局部脉动场相似的 理论。有人称这些半经验理论为平均场封闭模式或“0”方程模式。这种模式比较简单,且计算结果也比较符合某 些工程实际。
统计理论
研究湍流一般要用统计平均概念。统计的结果是湍流细微结构的平均,描述流体运动的某些概貌,而这些概 貌对实际湍流细节应该是适当敏感的,因此可以认为,几乎所有湍流理论(包括上两节所述的理论)都是统计理 论,但一般著作中所讲的统计理论实际上是指引进多点相关后的统计理论。
谢谢观看
参考书目
,Turbulence,McGraw-Hill,New York,1975. ton, Physical Fluid Dynamics,van Nostrand Reinhold Co., New York, 1977. ,ed.,Turbulent Flows and Heat Transfer,Princeton Univ. Press, Princeton, 1959. ey and b, ed.,Hydrodynamic Instabilities and the Transition to Turbulence,Springer-verlag, Berlin, 1981.
剪切流中湍流的发生情况更为复杂。实验发现,平滑剪切流向湍流过渡常会伴有突然发生的、作奇特波状运 动的湍流斑或称过渡斑。
基本方程
充分发展的湍流流动图像极其复杂,虽经一百多年的研究,成果并不显著。大多数学者都是从纳维-斯托克 斯方程
出发进行研究;有人从统计物理学中的玻耳兹曼方程或BBGKY谱系方程出发进行研究。
式中最后一项是雷诺方程对纳维-斯托克斯方程的附加项,体现了脉动场对平均场的作用,。式中最后一项中 的量实质上是新未知量,所以式(2)和连续性方程
所组成的方程组关于ūi和pˉ圴是不封闭的,因而无法求解。学者们一直努力寻求封闭方程组的办法;早年 的普朗特混合长理论是一种尝试,后来发展的模式理论也是一种尝试。
模式理论
J.V.布森涅斯克早在1877年作出假设:二元湍流的雷诺应力正比于平均速度梯度,即
式中ετ为涡粘性系数。这一假设是仿照牛顿粘性定律作出的。实际上,ετ不是单由物性决定的常数,而 是和流动有关的变量,尤其在近壁区,它的变化很大。后来,L.普朗特仿照气体分子运动论,提出了混合长理论, 即令
式中取x、y坐标;u′、v′为相应脉动速度分量;l称为混合长。根据平板边界层的测量,l和离壁之距y的 关系可近似地表示为: