人教版八年级第二学期3月份月考数学试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题
1.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为12cm ,在容器内壁离容器底部4 cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,且离容器上沿4 cm 的点A 处,若蚂蚁吃到蜂蜜需爬行的最短路径为15 cm ,则该圆柱底面周长为( )cm .
A .9
B .10
C .18
D .20
2.如图,在等边△ABC 中,AB =15,BD =6,BE =3,点P 从点E 出发沿EA 方向运动,连结PD ,以PD 为边,在PD 右侧按如图方式作等边△DPF ,当点P 从点E 运动到点A 时,点F 运动的路径长是( )
A .8
B .10
C .43
D .12
3.如图所示,用四个全等的直角三角形和一个小正方形拼成一个大正方形已知大正方形的面积为49,小正方形的面积为4.用,表示直角三角形的两直角边(),请仔细观察图案.下列关系式中不正确的是( )
A .
B .
C .
D .
4.如图,在ABC 中,CE 平分ACB ∠,CF 平分ACD ∠,且//EF BC 交AC 于M ,若3CM =,则22CE CF +的值为( )
A .36
B .9
C .6
D .18
5.在ABC 中,,,A B C ∠∠∠的对边分别是a b c 、、,下列条件中,不能说明ABC
是直角三角形的是( )
A .222b a c =-
B .;
C A B ∠=∠-∠ C .::3:4:5A B C ∠∠∠=
D .::5:12:13a b c =
6.如图,分别以直角ABC ∆三边为边向外作三个正方形,其面积分别用123,,S S S 表示,若27S =,32S =,那么1S =( )
A .9
B .5
C .53
D .45
7.如图,在△ABC 中,AB=8,BC=10,AC=6,则BC 边上的高AD 为( )
A .8
B .9
C .245
D .10
8.在ABC ∆中,::2BC AC AB =则△ABC 是( )
A .等腰三角形
B .钝角三角形
C .直角三角形
D .等腰直角三角形
9.在△ABC 中,∠A ,∠B ,∠C 的对边分别记为a ,b ,c ,下列结论中不正确的是( ) A .如果∠A ﹣∠B =∠C ,那么△ABC 是直角三角形
B .如果∠A :∠B :∠
C =1:2:3,那么△ABC 是直角三角形
C .如果 a 2:b 2:c 2=9:16:25,那么△ABC 是直角三角形
D .如果 a 2=b 2﹣c 2,那么△ABC 是直角三角形且∠A =90°
10.已知三角形的两边分别为3、4,要使该三角形为直角三角形,则第三边的长为( )
A .5
B 7
C .57
D .3或4
二、填空题
11.将一副三角板按如图所示摆放成四边形ABCD ,发现只要知道其中一边的长就可以求出其它各边的长,若已知AD =32AB 的长为__________.
12.如图,在Rt ABC 中,90ACB ∠=︒,4AC =,2BC =,以AB 为边向外作等腰直角三角形ABD ,则CD 的长可以是__________.
13.如图,四边形ABDC 中,∠ABD =120°,AB ⊥AC ,BD ⊥CD ,AB =4,CD =43,则该四边形的面积是______.
14.如图,有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆柱的下底面A 点有一只蚂蚁,它想吃到上底面上与A 点相对的C 点处的食物,需要爬行的最短路程是___________________(π的值取3).
15.在△ABC 中,AB=15,AC=13,高AD=12,则ABC ∆的周长为_______________.
16.如图,在Rt △ABC 中,∠ACB =90°,AB =7.5cm ,AC =4.5cm ,动点P 从点B 出发沿射线BC 以2cm/s 的速度移动,设运动的时间为t 秒,当△ABP 为等腰三角形时,t 的取值为_____.
17.如图,在Rt ABC ∆中,90ABC ∠=,DE 垂直平分AC ,垂足为F ,//AD BC ,且3AB =,4BC =,则AD 的长为______.
18.一块直角三角形绿地,两直角边长分别为3m ,4m ,现在要将绿地扩充成等腰三角形,且扩充时只能延长长为3m 的直角边,则扩充后等腰三角形绿地的面积为____m 2.
19.如图,由两个直角三角形和三个正方形组成的图形,已知25AB = ,24AC = 其中阴影部分面积是_____________平方单位.
20.如图,在等腰△ABC 中,AB =AC ,底边BC 上的高AD =6cm ,腰AC 上的高BE =4m ,则△ABC 的面积为_____cm 2.
三、解答题
21.在等边ABC 中,点D 是线段BC 的中点,120,EDF DE ∠=︒与线段AB 相交于点,E DF 与射线AC 相交于点F .
()1如图1,若DF AC ⊥,垂足为,4,F AB =求BE 的长;
()2如图2,将()1中的EDF ∠绕点D 顺时针旋转一定的角度,DF 仍与线段AC 相交于点F .求证:12
BE CF AB +=.
()3如图3,将()2中的EDF ∠继续绕点D 顺时针旋转一定的角度,使DF 与线段AC 的延长线交于点,F 作DN AC ⊥于点N ,若,DN FN =设,BE x CF y ==,写出y 关于x 的函数关系式.
22.如图1,在△ABC 中,AB =AC ,∠BAC =90°,D 为AC 边上一动点,且不与点A 点C 重合,连接BD 并延长,在BD 延长线上取一点E ,使AE =AB ,连接CE .
(1)若∠AED =20°,则∠DEC = 度;
(2)若∠AED =a ,试探索∠AED 与∠AEC 有怎样的数量关系?并证明你的猜想; (3)如图2,过点A 作AF ⊥BE 于点F ,AF 的延长线与EC 的延长线交于点H ,求证:EH 2+CH 2=2AE 2.
23.如图,△ABC 中,∠ACB =90°,AB =5cm ,BC =3cm ,若点P 从点A 出发,以每秒2cm 的速度沿折线A ﹣C ﹣B ﹣A 运动,设运动时间为t 秒(t >0).
(1)若点P 在AC 上,且满足PA =PB 时,求出此时t 的值;
(2)若点P 恰好在∠BAC 的角平分线上,求t 的值;
(3)在运动过程中,直接写出当t 为何值时,△BCP 为等腰三角形.
24.如图,将一长方形纸片OABC 放在平面直角坐标系中,(0,0)O ,(6,0)A ,(0,3)C ,动点F 从点O 出发以每秒1个单位长度的速度沿OC 向终点C 运动,运动23
秒时,动点E 从点A 出发以相同的速度沿AO 向终点O 运动,当点E 、F 其中一点到达终点时,另一点也停止运动.
设点E 的运动时间为t :(秒)
(1)OE =_________,OF =___________(用含t 的代数式表示)
(2)当1t =时,将OEF ∆沿EF 翻折,点O 恰好落在CB 边上的点D 处,求点D 的坐标及直线DE 的解析式;
(3)在(2)的条件下,点M 是射线DB 上的任意一点,过点M 作直线DE 的平行线,与x 轴交于N 点,设直线MN 的解析式为y kx b =+,当点M 与点B 不重合时,设MBN ∆的面积为S ,求S 与b 之间的函数关系式.
25.如图, ABD 为边长不变的等腰直角三角形,AB AD =,90BAD ∠=︒,在 ABD 外取一点 E ,以A 为直角顶点作等腰直角AEP △,其中 P 在
ABD 内部,90EAP ∠=︒,2AE AP ==E 、P 、D 三点共线时,7BP =
下列结论:
①E 、P 、D 共线时,点B 到直线AE 5
②E 、P 、D 共线时, 13ADP ABP S S ∆∆+=
=532
ABD S ∆+③ ④作点 A 关于 BD 的对称点 C ,在 AEP 绕点 A 旋转的过程中,PC 的最小值为5+232;
⑤AEP △绕点A 旋转,当点E 落在AB 上,当点P 落在AD 上时,取BP 上一点N ,使得AN BN =,连接 ED ,则AN ED ⊥.
其中正确结论的序号是___.
26.如图,在四边形ABCD 中,=AB AD ,=BC DC ,=60A ∠︒,点E 为AD 边上一点,连接CE ,BD . CE 与BD 交于点F ,且CE ∥AB .
(1)求证:CED ADB ∠=∠;
(2)若=8AB ,=6CE . 求BC 的长 .
27.在ABC ∆中,AB AC =,CD 是AB 边上的高,若10,45AB BC ==.
(1)求CD 的长.
(2)动点P 在边AB 上从点A 出发向点B 运动,速度为1个单位/秒;动点Q 在边AC 上从点A 出发向点C 运动,速度为v 个单位秒()v>1,设运动的时间为()0t t >,当点Q 到点C 时,两个点都停止运动.
①若当2v =时,CP BQ =,求t 的值.
②若在运动过程中存在某一时刻,使CP BQ =成立,求v 关于t 的函数表达式,并写出自变量t 的取值范围.
28.在ABC ∆中,90ACB ∠=︒,6AC BC ==,点D 是AC 的中点,点E 是射线DC 上一点,DF DE ⊥于点D ,且DE DF =,连接CF ,作FH CF ⊥于点F ,交直线AB 于点H .
(1)如图(1),当点E 在线段DC 上时,判断CF 和FH 的数量关系,并加以证明; (2)如图(2),当点E 在线段DC 的延长线上时,问题(1)中的结论是否依然成立?如果成立,请求出当ABC △和CFH △面积相等时,点E 与点C 之间的距离;如果不成立,请说明理由.
29.菱形ABCD 中,∠BAD =60°,BD 是对角线,点E 、F 分别是边AB 、AD 上两个点,且满足AE =DF ,连接BF 与DE 相交于点G .
(1)如图1,求∠BGD 的度数;
(2)如图2,作CH ⊥BG 于H 点,求证:2GH =GB +DG ;
(3)在满足(2)的条件下,且点H 在菱形内部,若GB =6,CH =43,求菱形ABCD 的面积.
30.如图,在△ABC 中,∠ACB =90°,AC =BC ,AB =2,CD 是边AB 的高线,动点E 从点A 出发,以每秒1个单位的速度沿射线AC 运动;同时,动点F 从点C 出发,以相同的速度沿射线CB 运动.设E 的运动时间为t (s )(t >0).
(1)AE = (用含t 的代数式表示),∠BCD 的大小是 度;
(2)点E 在边AC 上运动时,求证:△ADE ≌△CDF ;
(3)点E 在边AC 上运动时,求∠EDF 的度数;
(4)连结BE ,当CE =AD 时,直接写出t 的值和此时BE 对应的值.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【分析】
将容器侧面展开,建立A 关于上边沿的对称点A’,根据两点之间线段最短可知A’B 的长度为最短路径15,构造直角三角形,依据勾股定理可以求出底面周长的一半,乘以2即为所求.
【详解】
解:如图,
将容器侧面展开,作A 关于EF 的对称点'A ,连接'A B ,则'A B 即为最短距离, 根据题意:'15A B cm =,12412BD AE cm =-+=,
2222'15129A D A B BD ∴--'==.
所以底面圆的周长为9×2=18cm.
故选:C .
【点睛】
本题考查了平面展开——最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.
2.D
解析:D
【分析】
首先利用等边三角形的性质和含30°直角三角形的运用,判定△DPE ≌△FDH ,△DF 2Q ≌△ADE ,然后利用全等三角形的性质,得出点F 运动的路径长.
【详解】
∵△ABC 为等边三角形,
∴∠B =60°,
过D 点作DE ′⊥AB ,过点F 作FH ⊥BC 于H ,如图所示:
则BE′=1
2
BD=3,
∴点E′与点E重合,
∴∠BDE=30°,DE3BE3,∵△DPF为等边三角形,
∴∠PDF=60°,DP=DF,
∴∠EDP+∠HDF=90°
∵∠HDF+∠DFH=90°,
∴∠EDP=∠DFH,
在△DPE和△FDH中,
90
PED DHF
EDP DFH
DP FD
︒⎧∠=∠=
⎪
∠=∠
⎨
⎪=
⎩
,
∴△DPE≌△FDH(AAS),
∴FH=DE3
∴点P从点E运动到点A时,点F运动的路径为一条线段,此线段到BC的距离为3当点P在E点时,作等边三角形DEF1,∠BDF1=30°+60°=90°,则DF1⊥BC,
当点P在A点时,作等边三角形DAF2,作F2Q⊥BC于Q,则四边形DF1F2Q是矩形,∵∠BDE=30°,∠ADF2=60°,
∴∠ADE+∠F2DQ=180°﹣30°﹣60°=90°,
∵∠ADE+∠DAE=90°,
∴∠F2DQ=∠DAE,
在△DF2Q和△ADE中,
2
2
2
F QD DEA90
F DQ DAE
DF AD
︒⎧∠=∠=
⎪
∠=∠
⎨
⎪=
⎩
,
∴△DF2Q≌△ADE(AAS),
∴DQ=AE=AB﹣BE=15﹣3=12,
∴F1F2=DQ=12,
∴当点P从点E运动到点A时,点F运动的路径长为12,
故选:D.
【点睛】
此题主要考查等边三角形的性质以及全等三角形的判定与性质,解题关键是作好辅助线. 3.D
【解析】
【分析】
利用勾股定理和正方形的面积公式,对公式进行合适的变形即可判断各个选项是否争取.
【详解】
A 中,根据勾股定理
等于大正方形边长的平方,它就是正方形的面积,故正确; B 中,根据小正方形的边长是2它等于三角形较长的直角边减较短的直角边即可得到,正
确;
C 中,根据四个直角三角形的面积和加上小正方形的面积即可得到,正确;
D 中,根据A 可得
,C 可得,结合完全平方公式可以求得,错误.
故选D.
【点睛】
本题考查勾股定理.在A 、B 、C 选项的等式中需理解等式的各个部分表示的几何意义,对于D 选项是由A 、C 选项联立得出的. 4.A
解析:A
【分析】
先根据角平分线的定义、角的和差可得90ECF ∠=︒,再根据平行线的性质、等量代换可得,ACE CEF ACF F ∠=∠∠=∠,然后根据等腰三角形的定义可得
,EM CM FM CM ==,从而可得6EF =,最后在Rt CEF 中,利用勾股定理即可得.
【详解】 CE 平分ACB ∠,CF 平分ACD ∠,
,1122
ACB ACD BCE ACE DCF ACF ∴∠∠=∠=∠=∠∠=, 111(90222
)ACB AC E D ACB ACD CF ACE ACF ∠=∠+∴∠+∠=∠∠∠=+=︒, //EF BC ,
,BCE CEF DCF F ∠=∴∠∠=∠,
,ACE CEF ACF F ∴∠=∠∠=∠,
3,3EM CM FM CM ∴====,
6EF EM FM ∴=+=,
在Rt CEF 中,由勾股定理得:2222636CE CF EF +===,
故选:A .
【点睛】
本题考查了角平分线的定义、平行线的性质、等腰三角形的定义、勾股定理等知识点,熟练掌握等腰三角形的定义是解题关键.
解析:C
【分析】
此题考查的是直角三角形的判定方法,大约有以下几种:
①勾股定理的逆定理,即三角形三边符合勾股定理;
②三个内角中有一个是直角,或两个内角的度数和等于第三个内角的度数;
根据上面两种情况进行判断即可.
【详解】
解:A 、由222b a c =-得a 2=b 2+c 2,符合勾股定理的逆定理,能够判定△ABC 为直角三角形,不符合题意;
B 、由
C A B ∠=∠-∠得∠C +∠B=∠A ,此时∠A 是直角,能够判定△ABC 是直角三角形,不符合题意;
C 、∠A :∠B :∠C=3:4:5,那么∠A=45°、∠B=60°、∠C=75°,△ABC 不是直角三角形,故此选项符合题意;
D 、a :b :c=5:12:13,此时c 2=b 2+ a 2,符合勾股定理的逆定理,△ABC 是直角三角形,不符合题意;
故选:C .
【点睛】
此题主要考查了直角三角形的判定方法,只有三角形的三边长构成勾股数或三内角中有一个是直角的情况下,才能判定三角形是直角三角形.
6.A
解析:A
【分析】
根据勾股定理与正方形的性质解答.
【详解】
解:在Rt △ABC 中,AB 2=BC 2+AC 2,
∵S 1=AB 2,S 2=BC 2,S 3=AC 2,
∴S 1=S 2+S 3.
∵S 2=7,S 3=2,
∴S 1=7+2=9.
故选:A .
【点睛】
本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
7.C
解析:C
【分析】
本题根据所给的条件得知,△ABC 是直角三角形,再根据三角形的面积相等即可求出BC 边上的高.
∵AB=8,BC=10,AC=6,
∴62+82=102,∴△ABC是直角三角形,∠BAC=90°,
则由面积公式可知,S△ABC=1
2
AB⋅AC=
1
2
BC⋅AD,
∴AD=24
5
.故选C.
【点睛】
本题考查了勾股定理的逆定理,需要先证得三角形为直角三角形,再利用三角形的面积公式求得AD的值.
8.D
解析:D
【分析】
根据题意设出三边分别为k、k k,然后利用勾股定理的逆定理判定三角形为直角三角形,又有BC、AC边相等,所以三角形为等腰直角三角形.
【详解】
设BC、AC、AB分别为k,k k,
∵k2+k2=k)2,
∴BC2+AC2=AB2,
∴△ABC是直角三角形,
又BC=AC,
∴△ABC是等腰直角三角形.
故选D.
【点睛】
本题主要考查了直角三角形的判定,利用设k法与勾股定理证明三角形是直角三角形是难点,也是解题的关键.
9.D
解析:D
【分析】
根据直角三角形的判定和勾股定理的逆定理解答即可.
【详解】
选项A中如果∠A﹣∠B=∠C,由∠A+∠B+∠C=180°,可得∠A=90°,那么△ABC 是直角三角形,选项正确;
选项B中如果∠A:∠B:∠C=1:2:3,由∠A+∠B+∠C=180°,可得∠A=90°,那么
△ABC 是直角三角形,选项正确;
选项C中如果 a2:b2:c2=9:16:25,满足a2+b2=c2,那么△ABC 是直角三角形,选项正确;
选项D中如果 a2=b2﹣c2,那么△ABC 是直角三角形且∠B=90°,选项错误;
【点睛】
考查直角三角形的判定,学生熟练掌握勾股定理逆定理是本题解题的关键,并结合直角三角形的定义解出此题.
10.C
解析:C
【分析】
根据勾股定理和分类讨论的方法可以求得第三边的长,从而可以解答本题.
【详解】
由题意可得,当3和45,
当斜边为4,
故选:C
【点睛】
本题考查勾股定理,解答本题的关键是明确题意,利用勾股定理和分类讨论的数学思想解答.
二、填空题
11.【分析】
利用勾股定理求出AC=6,在Rt △ABC 中,∠BAC=30°,得到12BC AB =
,再利用勾股定理得到222AC BC AB +=,即可求出AB .
【详解】
在Rt △ACD 中,CD=AD=
∴6=,
在Rt △ABC 中,∠BAC=30°, ∴12BC AB =
, ∵222AC BC AB +=, ∴222
16()2AB AB +=,
解得AB=
故答案为:
【点睛】
此题考查勾股定理,直角三角形30度角所对的直角边等于斜边的一半,正确理解勾股定理的三边的数量关系是解题的关键.
12.210或213或32
【分析】
在ABC 中计算AB ,情况一:作AE CE ⊥于E ,计算AE ,DE ,CE ,可得CD ;情况二:作BE CE ⊥于E ,计算BE ,CE ,DE ,可得CD ;情况三:作DE CE ''⊥,计算,,DF DE CE '',可得CD .
【详解】
∵90ACB ︒∠=,4,2AC BC ==,
∴25AB =, 情况一:当25AD AB ==时,作AE CE ⊥于E
∴ 1122BC AC AB AE ⋅=⋅,即45AE =,1455
DE = ∴22855CE AC AE =
-= ∴22213CD CE DE =+=
情况二:当25BD AB ==时,作BE CE ⊥于E ,
∴1122BC AC AB BE ⋅=⋅,即45BE =145DE =∴22255CE BC BE =
-= ∴22210CD CE DE =+=
情况三:当AD BD =时,作DE CE ''⊥,作BE CE ⊥于E ∴1122BC AC AB BE ⋅=⋅, ∴45BE =
355
CE ∴= ∵ABD △为等腰直角三角形 ∴152
BF DF AB === ∴955
DE DF E F DF BE ''=+=+= 25355CE EE CE BF CE ''=-=-=-
= ∴2232CD CE E D ''=+=
故答案为:1021332【点睛】
本题考查了等腰直角三角形的探索,勾股定理的计算等,熟知以上知识是解题的关键.
13.163
【分析】
延长CA 、DB 交于点E ,则60C ∠=°,30E ∠=︒,在Rt ABE ∆中,利用含30角的直角三角形的性质求出28BE AB ==,根据勾股定理求出43AE =.同理,在Rt DEC ∆中求出283CE CD ==,2212DE CE CD =-=,然后根据CDE ABE ABDC S S S ∆∆=-四边形,计算即可求解.
【详解】
解:如图,延长CA 、DB 交于点E ,
∵四边形ABDC 中,120ABD ∠=︒,AB AC ⊥,BD CD ⊥,
∴60C ∠=°,
∴30E ∠=︒,
在Rt ABE ∆中,4AB =,30E ∠=︒,
∴28BE AB ==,
2243AE BE AB ∴=-=.
在Rt DEC ∆中,30E ∠=︒,43CD =,
283CE CD ∴==,
2212DE CE CD ∴=-=,
∴1443832
ABE S ∆=⨯⨯=, 143122432
CDE S ∆=⨯⨯=, 24383=163CDE ABE ABDC S S S ∆∆∴=-=-四边形.
故答案为:163.
【点睛】
本题考查了勾股定理,含30角的直角三角形的性质,图形的面积,准确作出辅助线构造直角三角形是解题的关键.
14.15厘米
【分析】
要想求得最短路程,首先要画出圆柱的侧面展开图,把A 和C 展开到一个平面内.根据两点之间,线段最短,结合勾股定理即可求出蚂蚁爬行的最短路程.
【详解】
解:如图,展开圆柱的半个侧面是矩形,
π=厘米,矩形的宽BC=12厘米.
∴矩形的长是圆柱的底面周长的一半,即AB=39
∴蚂蚁需要爬行最短路程2222
=+=+=厘米.
12915
AC BC AB
故答案为:15厘米
【点睛】
求两个不在同一平面内的两点之间的最短距离时,一定要展开到一个平面内,根据两点之间,线段最短.
15.32或42
【分析】
根据题意画出图形,分两种情况:△ABC是钝角三角形或锐角三角形,分别求出边BC,即可得到答案
【详解】
当△ABC是钝角三角形时,
∵∠D=90°,AC=13,AD=12,
∴2222
=-=-=,
13125
CD AC AD
∵∠D=90°,AB=15,AD=12,
∴2222
=-=-=,
BD AB AD
15129
∴BC=BD-CD=9-5=4,
∴△ABC的周长=4+15+13=32;
当△ABC是锐角三角形时,
∵∠ADC=90°,AC=13,AD=12,
∴2222
CD AC AD
-=-=,
13125
∵∠ADB=90°,AB=15,AD=12,
∴2222
=-=-,
BD AB AD
15129
∴BC=BD-CD=9+5=14,
∴△ABC的周长=14+15+13=42;
综上,△ABC的周长是32或42,
故答案为:32或42.
【点睛】
此题考查勾股定理的实际应用,能依据题意正确画出图形分类讨论是解题的关键.
16.75或6或9 4
【分析】
当△ABP为等腰三角形时,分三种情况:①当AB=BP时;②当AB=AP时;③当BP=AP 时,分别求出BP的长度,继而可求得t值.
【详解】
在Rt△ABC中,BC2=AB2﹣AC2=7.52﹣4.52=36,
∴BC=6(cm);
①当AB=BP=7.5cm时,如图1,t=7.5
2
=3.75(秒);
②当AB=AP=7.5cm时,如图2,BP=2BC=12cm,t=6(秒);
③当BP=AP时,如图3,AP=BP=2tcm,CP=(4.5﹣2t)cm,AC=4.5cm,在Rt△ACP中,AP2=AC2+CP2,
所以4t2=4.52+(4.5﹣2t)2,
解得:t=9
4
,
综上所述:当△ABP为等腰三角形时,t=3.75或t=6或t=9
4
.
故答案为:3.75或6或9
4
.
【点睛】
此题是等腰三角形与动点问题,考查等腰三角形的性质,勾股定理,解题中应根据每两条边相等分情况来解答,不要漏解.
17.25 8
【分析】
先根据勾股定理求出AC的长,再根据DE垂直平分AC得出FA的长,根据相似三角形的判定定理得出△AFD∽△CBA,由相似三角形的对应边成比例即可得出结论.
【详解】
∵Rt△ABC中,∠ABC=90°,AB=3,BC=4,∴AC=2222
AB+BC=3+4=5;
∵DE垂直平分AC,垂足为F,
∴FA=1
2
AC=
5
2
,∠AFD=∠B=90°,
∵AD∥BC,∴∠A=∠C,∴△AFD∽△CBA,
∴AD
AC
=
FA
BC
,即
AD
5
=
2.5
4
,解得AD=
25
8
;故答案为
25
8
.
【点睛】
本题考查的是勾股定理及相似三角形的判定与性质,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.
18.8或10或12或25 3
【详解】
解:①如图1:
当BC=CD=3m时,AB=AD=5m,AC⊥BD,
此时等腰三角形绿地的面积:1
2
×6×4=12(m2);
②如图2:
当AC=CD=4m时,AC⊥CB,
此时等腰三角形绿地的面积:1
2
×4×4=8(m2);
③如图3:
当AD=BD时,设AD=BD=xm,
在Rt△ACD中,CD=(x-3)m,AC=4m,
由勾股定理,得AD2=DC2+CA2,即(x-3)2+42=x2,
解得x=25
6
,
此时等腰三角形绿地的面积:1
2
BD·AC=
1
2
×
25
6
×4=
25
3
(m2);
④如图4,
延长BC到D,使BD=AB=5m,故CD=2m,
此时等腰三角形绿地的面积:1
2
BD·AC=
1
2
×5×4=10(m2);
综上所述,扩充后等腰三角形绿地的面积为8m2或12m2或10m2或25
3
m2.
点睛:此题主要考查了等腰三角形的性质以及勾股定理的应用,解决问题的关键是根据题意正确画出图形.
19.49
【分析】
先计算出BC 的长,再由勾股定理求出阴影部分的面积即可.
【详解】
∵∠ACB=90︒,25AB = ,24AC =,
∴22222252449BC AB AC =-=-=,
∴阴影部分的面积=249BC =,
故答案为:49.
【点睛】
此题考查勾股定理,能利用根据直角三角形计算得到所需的边长,题中根据勾股定理的图形得到阴影部分面积等于BC 的平方是解题的关键.
20.
【分析】 根据三角形等面积法求出
32AC BC = ,在Rt△ACD 中根据勾股定理得出AC 2=14
BC 2+36,依据这两个式子求出AC 、BC 的值.
【详解】 ∵AD 是BC 边上的高,BE 是AC 边上的高, ∴
12AC•BE=12
BC•AD, ∵AD=6,BE =4, ∴AC BC =32, ∴22AC BC =94, ∵AB=AC ,AD⊥BC,
∴BD=DC =
12
BC , ∵AC 2﹣CD 2=AD 2,
∴AC 2=14BC 2+36, ∴22
1364BC BC +=94, 整理得,BC 2=3648
⨯, 解得:BC
=
∴△ABC 的面积为12
×
cm 2
故答案为:92. 【点睛】 本题考查了三角形的等面积法以及勾股定理的应用,找出AC 与BC 的数量关系是解答此题的关键.
三、解答题
21.(1)BE =1;(2)见解析;(3)()23y x =-
【分析】
(1)如图1,根据等边三角形的性质和四边形的内角和定理可得∠BED =90°,进而可得∠BDE =30°,然后根据30°角的直角三角形的性质即可求出结果;
(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,根据AAS 易证△MBD ≌△NCD ,则有BM =CN ,DM =DN ,进而可根据ASA 证明△EMD ≌△FND ,可得EM =FN ,再根据线段的和差即可推出结论;
(3)过点D 作DM ⊥AB 于M ,如图3,同(2)的方法和已知条件可得DM =DN =FN =EM ,然后根据线段的和差关系可得BE +CF =2DM ,BE ﹣CF =2BM ,在Rt △BMD 中,根据30°角的直角三角形的性质可得DM =3BM ,进而可得BE +CF =3(BE ﹣CF ),代入x 、y 后整理即得结果.
【详解】
解:(1)如图1,∵△ABC 是等边三角形,
∴∠B =∠C =60°,BC =AC =AB =4.
∵点D 是线段BC 的中点,
∴BD =DC =12
BC =2. ∵DF ⊥AC ,即∠AFD =90°,
∴∠AED =360°﹣60°﹣90°﹣120°=90°,
∴∠BED =90°,∴∠BDE =30°,
∴BE =12
BD =1;
(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,
则有∠AMD =∠BMD =∠AND =∠CND =90°.
∵∠A =60°,
∴∠MDN =360°﹣60°﹣90°﹣90°=120°.
∵∠EDF =120°,
∴∠MDE =∠NDF .
在△MBD 和△NCD 中,
∵∠BMD =∠CND ,∠B =∠C ,BD =CD ,
∴△MBD ≌△NCD (AAS ),
∴BM =CN ,DM =DN .
在△EMD 和△FND 中,
∵∠EMD =∠FND ,DM =DN ,∠MDE =∠NDF ,
∴△EMD ≌△FND (ASA ),
∴EM =FN ,
∴BE +CF =BM +EM +CN -FN =BM +CN =2BM =BD =12BC =12
AB ;
(3)过点D 作DM ⊥AB 于M ,如图3,同(2)的方法可得:BM =CN ,DM =DN ,EM =FN .
∵DN =FN ,
∴DM =DN =FN =EM ,
∴BE +CF =BM +EM +FN -CN =NF +EM =2DM =x +y ,
BE ﹣CF =BM +EM ﹣(FN -CN )=BM +NC =2BM =x -y ,
在Rt △BMD 中,∵∠BDM =30°,∴BD =2BM ,
∴DM =22=3BD BM BM -,
∴()3x y x y +=-,整理,得()
23y x =-.
【点睛】
本题考查了等边三角形的性质、四边形的内角和定理、全等三角形的判定与性质、30°角的直角三角形的性质以及勾股定理等知识,具有一定的综合性,正确添加辅助线、熟练掌握
上述知识是解题的关键.
22.(1)45度;(2)∠AEC﹣∠AED=45°,理由见解析;(3)见解析
【分析】
(1)由等腰三角形的性质可求∠BAE=140°,可得∠CAE=50°,由等腰三角形的性质可得∠AEC=∠ACE=65°,即可求解;
(2)由等腰三角形的性质可求∠BAE=180°﹣2α,可得∠CAE=90°﹣2α,由等腰三角形的性质可得∠AEC=∠ACE=45°+α,可得结论;
(3)如图,过点C作CG⊥AH于G,由等腰直角三角形的性质可得EH=2EF,CH=
2CG,由“AAS”可证△AFB≌△CGA,可得AF=CG,由勾股定理可得结论.
【详解】
解:(1)∵AB=AC,AE=AB,
∴AB=AC=AE,
∴∠ABE=∠AEB,∠ACE=∠AEC,
∵∠AED=20°,
∴∠ABE=∠AED=20°,
∴∠BAE=140°,且∠BAC=90°
∴∠CAE=50°,
∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,
∴∠AEC=∠ACE=65°,
∴∠DEC=∠AEC﹣∠AED=45°,
故答案为:45;
(2)猜想:∠AEC﹣∠AED=45°,
理由如下:∵∠AED=∠ABE=α,
∴∠BAE=180°﹣2α,
∴∠CAE=∠BAE﹣∠BAC=90°﹣2α,
∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,
∴∠AEC=45°+α,
∴∠AEC﹣∠AED=45°;
(3)如图,过点C作CG⊥AH于G,
∵∠AEC﹣∠AED=45°,
∴∠FEH=45°,
∵AH⊥BE,
∴∠FHE=∠FEH=45°,
∴EF =FH ,且∠EFH =90°,
∴EH EF ,
∵∠FHE =45°,CG ⊥FH ,
∴∠GCH =∠FHE =45°,
∴GC =GH ,
∴CH CG ,
∵∠BAC =∠CGA =90°,
∴∠BAF +∠CAG =90°,∠CAG +∠ACG =90°,
∴∠BAF =∠ACG ,且AB =AC ,∠AFB =∠AGC ,
∴△AFB ≌△CGA (AAS )
∴AF =CG ,
∴CH AF ,
∵在Rt △AEF 中,AE 2=AF 2+EF 2,
AF )2+EF )2=2AE 2,
∴EH 2+CH 2=2AE 2.
【点睛】
本题是综合了等腰直角三角形的性质,全等三角形的性质与判定的动点问题,三个问题由易到难,在熟练掌握各个相关知识的基础上找到问题之间的内部联系,层层推进去解答是关键.
23.(1) 2516;(2)83t =或6;(3)当153,5,210t =或194
时,△BCP 为等腰三角形. 【分析】
(1)设存在点P ,使得PA PB =,此时2PA PB t ==,42PC t =-,根据勾股定理列方程即可得到结论;
(2)当点P 在CAB ∠的平分线上时,如图1,过点P 作PE AB ⊥于点E ,此时72BP t =-,24PE PC t ==-,541BE =-=,根据勾股定理列方程即可得到结论; (3)在Rt ABC 中,根据勾股定理得到4AC cm =,根据题意得:2AP t =,当P 在AC 上时,BCP 为等腰三角形,得到PC BC =,即423t -=,求得12
t =,当P 在AB 上时,BCP 为等腰三角形,若CP PB =,点P 在BC 的垂直平分线上,如图2,过P 作PE BC ⊥于E ,求得194
t =,若PB BC =,即2343t --=,解得5t =,PC BC =③,如图3,过C 作CF AB ⊥于F ,由射影定理得;2BC BF AB =⋅,列方程
2234352
t --=
⨯,即可得到结论. 【详解】 解:在Rt ABC 中,5AB cm =,3BC cm =,
4AC cm ∴=,
(1)设存在点P ,使得PA PB =,
此时2PA PB t ==,42PC t =-,
在Rt PCB 中,222PC CB PB +=,
即:222(42)3(2)t t -+=, 解得:2516t =, ∴当2516
t =时,PA PB =; (2)当点P 在BAC ∠的平分线上时,如图1,过点P 作PE AB ⊥于点E ,
此时72BP t =-,24PE PC t ==-,541BE =-=,
在Rt BEP 中,222PE BE BP +=,
即:222(24)1(72)t t -+=-,
解得:83
t =, 当6t =时,点P 与A 重合,也符合条件,
∴当83
t =或6时,P 在ABC ∆的角平分线上; (3)根据题意得:2AP t =,
当P 在AC 上时,BCP 为等腰三角形,
PC BC ∴=,即423t -=,
12
t ∴=, 当P 在AB 上时,BCP 为等腰三角形,
CP PB =①,点P 在BC 的垂直平分线上,
如图2,过P 作PE BC ⊥于E ,
1322BE
BC ∴=
=, 12PB AB ∴=,即52342t --=,解得:194
t =, PB BC =②,即2343t --=,
解得:5t =,
PC BC =③,如图3,过C 作CF AB ⊥于F ,
12
BF BP ∴=, 90ACB ∠=︒,
由射影定理得;2BC BF AB =⋅, 即2234352t --=⨯, 解得:5310t =
, ∴当15319,5,2104
t =或时,BCP 为等腰三角形. 【点睛】
本题考查了等腰三角形的判定,三角形的面积,难度适中.利用分类讨论的思想是解(3)题的关键.
24.(1)6-t ,t+23;(2)D(1,3),y=34-x+154;(3)1515215()4215215()2b b S b b ⎧-+≤<⎪⎪=⎨⎪->⎪⎩
【分析】
(1)根据点E ,F 的运动轨迹和速度,即可得到答案;
(2)由题意得:DF=OF=53
,DE=OE=5,过点E 作EG ⊥BC 于点G ,根据勾股定理得DG=4,进而得D(1,3),根据待定系数法,即可得到答案;
(3)根据题意得直线直线MN 的解析式为:34y x b =-
+,从而得M(443
b -,3),分2种情况:①当点M 在线段DB 上时, ②当点M 在DB 的延长线上时,分别求出S 与b 之
间的函数关系式,即可.
【详解】
∵(0,0)O ,(6,0)A ,(0,3)C ,
∴OA=6,OC=3,
∵AE=t×
1= t , ∴OE =6-t ,OF =(t+
23)×1=t+23, 故答案是:6-t ,t+23
; (2)当1t =时,OE =6-t=5,OF =t+
23=53, ∵将OEF ∆沿EF 翻折,点O 恰好落在CB 边上的点D 处,
∴DF=OF=53
,DE=OE=5, 过点E 作EG ⊥BC 于点G ,则EG=OC=3,CG=OE=5,
∴
4=,
∴CD=CG-DG=5-4=1,
∴D(1,3),
设直线DE 的解析式为:y=kx+b ,
把D(1,3),E(5,0)代入y=kx+b ,得350k b k b +=⎧⎨+=⎩ ,解得:34154k b ⎧=-⎪⎪⎨⎪=⎪⎩
, ∴直线DE 的解析式为:y=34-x+154; (3)∵MN ∥DE ,
∴直线直线MN 的解析式为:34y x b =-
+, 令y=3,代入34y x b =-
+,解得:x=443b -, ∴M(443
b -,3). ①当点M 在线段DB 上时,BM=6-(
443b -)=4103b -+, ∴1143(10)223
S BM AB b =⋅=⨯⨯-+=215b -+, ②当点M 在DB 的延长线上时,BM=443b --6=4103
b -,
∴114
3(
10)
2
23
S BM AB b
=⋅=⨯⨯-=215
b-,
综上所述:
1515
215()
42
15
215()
2
b b
S
b b
⎧
-+≤<
⎪⎪
=⎨
⎪->
⎪⎩
.
【点睛】
本题主要考查一次函数与几何图形的综合,掌握勾股定理与一次函数的待定系数法,是解题的关键.
25.②③⑤
【分析】
①先证得ABE ADP
≅,利用邻补角和等腰直角三角形的性质求得90
PEB
∠=︒,利用勾股定理求出BE,即可求得点B到直线AE的距离;
②根据①的结论,利用APD ABP ABE APB
S S S S
∆∆∆
+=+
AEP BEP
S S
∆∆
=+即可求得结论;
③在Rt AHB中,利用勾股定理求得2
AB,再利用三角形面积公式即可求得ABD
S
∆
;
④当A P C
、、共线时,PC最小,利用对称的性质,AB BC
=的长,再求得AC的长,即可求得结论;
⑤先证得ABP ADE
≅,得到ABP ADE
∠=∠,根据条件得到ABP NAB
∠=∠,利用互余的关系即可证得结论.
【详解】
①∵ABD与AEP都是等腰直角三角形,
∴90
BAD
∠=︒,90
EAP
∠=︒,AB AD
=,AE AP
=,45
APE AEP
∠=∠=︒,
∴EAB PAD
∠=∠,
∴()
ABE ADP SAS
≅,
∴180********
AEB APD APE
∠=∠=︒-∠=︒-︒=︒,
∴1354590
PEB AEB AEP
∠=∠-∠=︒-︒=︒,
∴222
PE BE PB
+=,
∵2
AE AP
==90
EAP
∠=︒,
∴22
PE==,
∴
2
22
27
BE
+=,
解得:3BE =,
作BH ⊥AE 交AE 的延长线于点H ,
∵45AEP ∠=︒,90PEB ∠=︒,
∴180180904545HEB PEB AEP ∠=︒-∠-∠=︒-︒-︒=︒, ∴26sin 453
HB BE =︒==, ∴点B 到直线AE 6,故①错误; ②由①知:ABE ADP ≅,2EP =,3BE =
∴APD ABP ABE APB S S S S ∆∆∆∆+=+
AEP BEP S S ∆∆=+ 1122
AE AP PE EB =⨯⨯+⨯⨯ 11222322
=⨯ 13=,故②正确;
③在Rt AHB 中,由①知:6EH HB ==
∴62AH AE EH =+=, 22
22225662322AB AH BH ⎛⎫=+=+=+ ⎪ ⎪⎭⎝⎭, 21153222
ABD S AB AD AB ∆=
⋅==+ ④因为AC 是定值,所以当A P C 、、共线时,PC 最小,如图,连接BC ,
∵A C 、关于 BD 的对称, ∴523AB BC =
=+,
∴225231043AC BC ==+=+,
∴ min PC AC AP =-,
10432=+-,故④错误;
⑤∵
ABD 与AEP 都是等腰直角三角形,
∴90BAD ∠=︒,90EAP ∠=︒,AB AD =,AE AP =, 在ABP 和ADE 中,AB AD BAP DAE AP AE =⎧⎪∠=∠⎨⎪=⎩
,
∴()ABP ADE SAS ≅,
∴ABP ADE ∠=∠,
∵AN BN =,
∴ABP NAB ∠=∠,
∴EAN ADE ∠=∠,
∵90EAN DAN ∠+∠=︒,
∴90ADE DAN ∠+∠=︒,
∴AN DE ⊥,故⑤正确;
综上,②③⑤正确,
故答案为:②③⑤.
【点睛】
本题是三角形的综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,
勾股定理的应用,三角形的面积公式,综合性强,全等三角形的判定和性质的灵活运用是解题的关键.
26.(1)见解析;(2)27BC =.
【分析】
(1)由等边三角形的判定定理可得△ABD 为等边三角形,又由平行进行角度间的转化可得出结论.
(2)连接AC 交BD 于点O ,由题意可证AC 垂直平分BD ,△ABD 是等边三角形,可得∠BAO=∠DAO=30°,AB=AD=BD=8,BO=OD=4,通过证明△EDF 是等边三角形,可得DE=EF=DF=2,由勾股定理可求OC ,BC 的长.
【详解】
(1)证明:∵AB AD =,=60A ∠︒,
∴△ABD 是等边三角形.
∴60ADB ∠=︒.
∵CE ∥AB ,
∴60CED A ∠=∠=︒.
∴CED ADB ∠=∠.
(2)解:连接AC 交BD 于点O ,
∵AB AD =,BC DC =,
∴AC 垂直平分BD .
∴30BAO DAO ∠=∠=︒.
∵△ABD 是等边三角形,8AB =
∴8AD BD AB ===,
∴4BO OD ==.
∵CE ∥AB ,
∴ACE BAO ∠=∠.
∴6AE CE ==, 2DE AD AE =-=.
∵60CED ADB ∠=∠=︒.
∴60EFD ∠=︒.
∴△EDF 是等边三角形.
∴2EF DF DE ===,
∴4CF CE EF =-=,2OF OD DF =-=.
在Rt △COF 中, ∴2223OC CF OF =-=.
在Rt △BOC 中, ∴22224(23)27BC BO OC =
+=+=. 【点睛】
本题考查了等边三角形的性质和判定,勾股定理,熟练运用等边三角形的判定是本题的关键.
27.(1)CD=8;(2)t=4;(3)12-=
t v t (26t ≤<) 【分析】
(1)作AE ⊥BC 于E ,根据等腰三角形三线合一的性质可得BE=
12
BC ,然后利用勾股定理求出AE ,再用等面积法可求出CD 的长;
(2)①过B 作BF ⊥AC 于F ,易得BF=CD ,分别讨论Q 点在AF 和FC 之间时,根据△BQF ≌△CPD ,得到PD=QF ,建立方程即可求出t 的值;
(3)同(2)建立等式关系即可得出关系式,再根据Q 在FC 之间求出t 的取值范围即可.
【详解】
解:(1)如图,作AE ⊥BC 于E ,
∵AB=AC ,
∴BE=12
BC=25在Rt △ABE 中,
()2
222
AE=AB BE=1025=45
--
∵△ABC的面积=11
BC AE=AB CD 22
⋅⋅
∴
BC AE4545 CD===8
AB10
⋅⨯
(2)过B作BQ⊥AC,当Q在AF之间时,如图所示,
∵△ABC的面积=11
AC BF=AB CD
22
⋅⋅,AB=AC
∴BF=CD
在Rt△CPD和Rt△BQF中
∵CP=BQ,CD=BF,
∴Rt△CPD≌Rt△BQF(HL)
∴PD=QF
在Rt△ACD中,CD=8,AC=AB=10∴22
AD=AC CD=6
-
同理可得AF=6
∴PD=AD=AP=6-t,QF=AF-AQ=6-2t 由PD=QF得6-t=6-2t,解得t=0,∵t>0,
∴此种情况不符合题意,舍去;当Q点在FC之间时,如图所示,
此时PD=6-t,QF=2t-6。