高考数学压轴专题最新备战高考《平面向量》经典测试题及答案解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【高中数学】数学高考《平面向量》复习资料
一、选择题
1.在△ABC 中,D 是BC 中点,E 是AD 中点,CE 的延长线交AB 于点,F 则( )
A .1162DF A
B A
C =--u u u r u u u r u u u r B .1134
DF AB AC =--u u u r u u u r u u u r
C .3142DF AB AC =-+u u u r u u u r u u u r
D .1126
DF AB AC =--u u u r u u u r u u u r
【答案】A 【解析】 【分析】
设AB AF λ=u u u r u u u r
,由平行四边形法则得出144
AE AF AC λ=+u u u r u u u r u u u r ,再根据平面向量共线定理
得出得出=3λ,由DF AF AD =-u u u r u u u r u u u r
,即可得出答案. 【详解】
设AB AF λ=u u u r u u u r ,111124444
AE AB A A C A AC D F λ==+=+u u u r u u u u u u
r u u u r r u u u r u u u r
因为C E F 、、三点共线,则1
=144
λ+,=3λ
所以1111132262
DF AF AD AB AB AC AB AC =-=--=--u u u r u u u r u u u r u u u r u u u r u u u r u u u
r u u u r
故选:A
【点睛】
本题主要考查了用基底表示向量,属于中档题.
2.在ABC ∆中,5,6,7AB BC AC ===,点E 为BC 的中点,过点E 作EF BC ⊥交
AC 所在的直线于点F ,则向量AF u u u r
在向量BC uuu r 方向上的投影为( )
A .2
B .
32
C .1
D .3
【答案】A 【解析】
【分析】
由1()2
AF AE EF AB AC EF =+=++u u u r u u u r u u u r u u u r u u u r u u u r , EF BC ⊥,得12AF BC ⋅=u u u r u u u r
,然后套用公式
向量AF u u u r 在向量BC uuu r 方向上的投影||
AF BC
BC ⋅=u u u r u u u r
u u u r ,即可得到本题答案. 【详解】
因为点E 为BC 的中点,所以1()2
AF AE EF AB AC EF =+=++u u u r u u u r u u u r u u u r u u u r u u u r

又因为EF BC ⊥,
所以()
22111()()()12222
AF BC AB AC BC AB AC AC AB AC AB ⋅=+⋅=+⋅-=
-=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u
r u u u r , 所以向量AF u u u r 在向量BC uuu r 方向上的投影为2||
AF BC
BC ⋅=u u u r u u u r
u u u r . 故选:A. 【点睛】
本题主要考查向量的综合应用问题,其中涉及平面向量的线性运算及平面向量的数量积,主要考查学生的转化求解能力.
3.已知5MN a b =+u u u u r r r ,28NP a b =-+u u u r r r ,3()PQ a b =-u u u r r r ,则( )
A .,,M N P 三点共线
B .,,M N Q 三点共线
C .,,N P Q 三点共线
D .,,M P Q 三点共线
【答案】B 【解析】 【分析】
利用平面向量共线定理进行判断即可. 【详解】
因为28NP a b =-+u u u r r r ,3()PQ a b =-u u u r r r
所以()
2835NQ NP PQ a b a b a b =+=-++-=+u u u r u u u r u u u r r r r r r r ,
因为5MN a b =+u u u u r r
r ,所以MN NQ =u u u u r u u u r
由平面向量共线定理可知,MN u u u u r 与NQ uuu
r 为共线向量,
又因为MN u u u u r 与NQ uuu
r 有公共点N ,所以,,M N Q 三点共线.
故选: B 【点睛】
本题考查利用平面向量共线定理判断三点共线;熟练掌握共线定理的内容是求解本题的关键;属于中档题、常考题型.
4.在ABC V 中,312AB AC ==,D 是AC 的中点,BD u u u r 在AC u u u r
方向上的投影为4-,则向量BA u u u r 与AC u u u r
的夹角为( ) A .45° B .60°
C .120°
D .150°
【答案】C 【解析】 【分析】
设BDC α∠=,向量BA u u u r 与AC u u u r 的夹角为θ,BD u u u r 在AC u u u
r 方向上的投影为cos =4BD α-u u u r
,利用线性代换并结合向量夹角公式即可求出夹角.
【详解】
312AB AC ==,D 是AC 的中点,
则4AC =,2AD DC ==,
向量BD u u u r 在AC u u u
r 方向上的投影为4-,
设BDA α∠=,向量BA u u u r 与AC u u u
r 的夹角为θ, 则cos =4BD α-u u u r

∴()
cos ===BD DA AC BA AC BD AC DA AC
BA AC BA AC BA AC θ+⋅⋅⋅+⋅⋅⋅⋅u u u r u u u r u u u r u u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u r u u u r u u u r u u u r u u u r
()()cos cos180444211===1242BD AC DA AC AB AC
α⋅+⋅⨯+-⨯-⨯︒⨯⋅-u u u u u r u u u r u u u u r u u u r
u ur r u
, 故夹角为120°, 故选:C . 【点睛】
本题考查向量的投影,利用数量积求两个向量的夹角,属于中等题.
5.在平面直角坐标系中,()1,2A -,(),1B a -,(),0C b -,,a b ∈R .当,,A B C 三点共线时,AB BC ⋅u u u r u u u r
的最小值是( ) A .0 B .1
C
D .2
【答案】B 【解析】 【分析】
根据向量共线的坐标表示可求得12b a =-,根据数量积的坐标运算可知所求数量积为
()
2
11a -+,由二次函数性质可得结果.
【详解】
由题意得:()1,1AB a =-u u u r ,(),1BC b a =--u u u r

,,A B C Q 三点共线,()()111a b a ∴⨯-=⨯--,即12b a =-,()1,1BC a ∴=-u u u r
, ()2
111AB BC a ∴⋅=-+≥u u u r u u u r ,即AB BC ⋅u u u r u u u r 的最小值为1.
故选:B . 【点睛】
本题考查平面向量的坐标运算,涉及到向量共线的坐标表示和数量积的坐标运算形式,属于基础题.
6.已知向量,a b r r
满足||a =r ||4=r b ,且()4a b b +⋅=r r r ,则a r 与b r
的夹角为( )
A .
6
π B .
3
π C .
23
π D .
56
π 【答案】D 【解析】 【分析】
由()4a b b +⋅=r r r ,求得12a b ⋅=-r r
,再结合向量的夹角公式,求得cos ,2
a b 〈〉=-r r
,即可求得向量a r 与b r
的夹角. 【详解】
由题意,向量,a b r r
满足||a =r
||4=r b ,
因为()4a b b +⋅=r r r ,可得2164a b b a b ⋅+=⋅+=r r r r r
,解得12a b ⋅=-r r ,
所以cos ,2||||a b a b a b ⋅〈〉===-r r
r r r r
又因a r 与b r 的夹角[0,]π∈,所以a r 与b r
的夹角为56
π
. 故选:D . 【点睛】
本题主要考查了向量的数量积的应用,其中解答中熟记向量的数量积的计算公式,以及向量的夹角公式,准确计算是解答的关键,着重考查了计算能力.
7.
已知a =r 2b =r ,且()(2)b a a b -⊥+r r
r r ,则向量a r 在向量b r 方向上的投影为
( ) A .-4 B .-2
C .2
D .4
【答案】D 【解析】 【分析】
根据向量垂直,数量积为0,求出a b r r g ,即求向量a r 在向量b r
方向上的投影a b b
⋅r r r .
【详解】
()(2),()(2)0b a a b b a a b -⊥+∴-+=r r r r r r r r Q g , 即2220b a a b -+=r r r r g . 6,2,8
a b a b ==∴=r r r r Q g ,
所以a r 在b r
方向上的投影为4a b b
⋅=r r r .
故选:D . 【点睛】
本题考查向量的投影,属于基础题.
8.如图,AB ,CD 是半径为1的圆O 的两条直径,3AE EO =u u u v u u u v ,则•EC ED u u u v u u u v
的值是( )
A .4
5
-
B .1516
-
C .14
-
D .58
-
【答案】B 【解析】 【分析】
根据向量表示化简数量积,即得结果. 【详解】
()()()()
•••EC ED EO OC EO OD EO OC EO OC =++=+-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v
222115
1416EO OC ⎛⎫=-=-=- ⎪⎝⎭
u u u v u u u v ,选B.
【点睛】
本题考查向量数量积,考查基本分析求解能力,属基础题.
9.已知A ,B ,C 是抛物线24y x =上不同的三点,且//AB y 轴,90ACB ∠=︒,点C 在AB 边上的射影为D ,则CD =( ) A .4 B .2
C .2
D 2
【答案】A 【解析】
【分析】
画出图像,设
222
112
112 ,,,,, 444
y
y y
A y
B y
C y
⎛⎫⎛⎫⎛⎫
-
⎪ ⎪ ⎪
⎝⎭⎝⎭⎝⎭
,12
y y
>,由90
ACB
∠=︒可求
22
12
16
y y
-=,结合
22
12
44
y y
CD=-即可求解
【详解】
如图:设
222
112
112
,,,,,
444
y y y
A y
B y
C y
⎛⎫⎛⎫⎛⎫
-
⎪ ⎪ ⎪
⎝⎭⎝⎭⎝⎭
,12
y y
>,由90
ACB
∠=︒可得0
CA CB
⋅=
u u u r u u u r

2222
1212
1212
,,,
44
y y y y
CA y y CB y y
⎛⎫⎛⎫
--
=-=--
⎪ ⎪
⎝⎭⎝⎭
u u u r u u u r

()
2
22
22
12
12
00
4
y y
CA CB y y
⎛⎫
-
⋅=⇔--=

⎝⎭
u u u r u u u r
,即
()()
2
22
1222
12
16
y y
y y
-
--=
解得22
12
16
y y
-=(0舍去),所以
2222
12124
444
y y y y
CD
-
=-==
故选:A
【点睛】
本题考查抛物线的几何性质与向量的综合应用,计算能力,逻辑推理能力,属于中档题10.在菱形ABCD中,4
AC=,2
BD=,E,F分别为AB,BC的中点,则
DE DF
⋅=
u u u r u u u r
()
A.
13
4
-B.
5
4
C.5 D.
15
4
【答案】B
【解析】
【分析】
据题意以菱形对角线交点O为坐标原点建立平面直角坐标系,用坐标表示出,
DE DF
u u u r u u u r
,再根据坐标形式下向量的数量积运算计算出结果.
【详解】
设AC 与BD 交于点O ,以O 为原点,BD u u u r
的方向为x 轴,CA u u u r 的方向为y 轴,建立直角
坐标系,
则1,12E ⎛⎫
- ⎪⎝⎭,1,12F ⎛⎫-- ⎪⎝⎭,(1,0)D ,3,12DE ⎛⎫=- ⎪⎝⎭u u u r ,3,12DF ⎛⎫=-- ⎪⎝⎭
u u u r ,
所以95144
DE DF ⋅=-=u u u r u u u r .
故选:B. 【点睛】
本题考查建立平面直角坐标系解决向量的数量积问题,难度一般.长方形、正方形、菱形中的向量数量积问题,如果直接计算较麻烦可考虑用建系的方法求解.
11.如图,在ABC V 中,已知D 是BC 边延长线上一点,若2B C C D =u u u v u u u v
,点E 为线段
AD 的中点,34
AE AB AC λ=+
u u u v
u u u v u u u v
,则λ=( )
A .
1
4
B .14
-
C .
13
D .13
-
【答案】B 【解析】 【分析】
由12AE AD =u u u r u u u r ,AD BD BA =-u u u r u u u r u u u r ,AC BC BA =-u u u
r u u u r u u u r ,32
BD BC =u u u r u u u r ,代入化简即可得出.
【详解】
13,,,22AE AD AD BD BA BD BC BC AC
AB ==-==-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v
,带人可得
()
13132244AE AC AB AB AB AC ⎡⎤=-+=-+⎢⎥⎣⎦
u u u v u u u v u u u v u u u v u u u v u u u v ,可得14λ=-,
故选B. 【点睛】
本题考查了向量共线定理、向量的三角形法则,考查了推理能力与计算能力,属于中档题.
12.已知椭圆C :2
212
x y +=的右焦点为F ,直线l :2x =,点∈A l ,线段AF 交椭圆C
于点B ,若3FA FB =u u u v u u u v
,则AF u u u v =( )
A .2
B .2
C .3
D .3
【答案】A 【解析】 【分析】
设点()2,A n ,()00,B x y ,易知F (1,0),根据3FA FB =u u u v u u u v
,得043x =
,01
3
y n =,根据点B 在椭圆上,求得n=1,进而可求得
2AF =u u u v
【详解】 根据题意作图:
设点()2,A n ,()00,B x y .
由椭圆C :2
212
x y += ,知22a =,21b =,21c =,
即1c =,所以右焦点F (1,0).
由3FA FB =u u u v u u u v
,得()()001,31,n x y =-.
所以()0131x =-,且03n y =. 所以043x =
,013
y n =. 将x 0,y 0代入2
212
x y +=,
得22
1411233n ⎛⎫⎛⎫
⨯+= ⎪ ⎪⎝⎭⎝⎭.解得21n =,
所以AF u u u v ===
故选A 【点睛】
本题考查了椭圆的简单性质,考查了向量的模的求法,考查了向量在解析几何中的应用;正确表达出各点的坐标是解答本题的关键.
13.已知向量(cos ,sin )a αα=r ,(cos ,sin )b ββ=r ,a b ⊥r r
,则当,1[]2t ∈-时,a tb
-r r 的最大值为( )
A B
C .2
D 【答案】D 【解析】 【分析】
根据(cos ,sin )a αα=r ,(cos ,sin )b ββ=r ,a b ⊥r r
,得到1a =r ,1b =r ,0a b ⋅=r r ,再利
用a tb -==r r 求解.
【详解】
因为(cos ,sin )a αα=r ,(cos ,sin )b ββ=r ,a b ⊥r r

所以1a =r ,1b =r ,0a b ⋅=r r ,
所以a tb -==r r
当[]2,1t ∈-时,max
a tb
-=r r
故选:D 【点睛】
本题考查向量的模以及数量积的运算,还考查运算求解能力,属于中档题.
14.已知AB 是圆22:(1)1C x y -+=的直径,点P 为直线10x y -+=上任意一点,则
PA PB ⋅u u u v u u u v
的最小值是( )
A 1- B
C .0
D .1
【答案】D 【解析】
试题分析:由题意得,设

,
,又因为
,所以
,所以PA PB ⋅u u u r u u u r
的最小值为1,故答
案选D.
考点:1.圆的性质;2.平面向量的数量积的运算.
15.设()1,a m =r ,()2,2b =r
,若()
2a mb b +⊥r r r ,则实数m 的值为( )
A .
12
B .2
C .13
-
D .-3
【答案】C 【解析】 【分析】
计算()222,4a mb m m +=+r r
,根据向量垂直公式计算得到答案.
【详解】
()222,4a mb m m +=+r r

∵()2a mb b +⊥r r r ,∴()
20a mb b +⋅=r r r ,即()22280m m ⋅++=,解得13
m =-.
故选:C . 【点睛】
本题考查了根据向量垂直求参数,意在考查学生的计算能力.
16.在复平面内,虚数z 对应的点为A ,其共轭复数z 对应的点为B ,若点A 与B 分别在
24y x =与y x =-上,且都不与原点O 重合,则OA OB ⋅=u u u v u u u v
( )
A .-16
B .0
C .16
D .32
【答案】B 【解析】 【分析】
先求出(4,4)OA =u u u r ,(4,4)OB =-u u u r
,再利用平面向量的数量积求解.
【详解】
∵在复平面内,z 与z 对应的点关于x 轴对称, ∴z 对应的点是2
4y x =与y x =-的交点.
由24y x y x
⎧=⎨=-⎩得(4,4)-或(0,0)(舍),即44z i =-, 则44z i =+,(4,4)OA =u u u r ,(4,4)OB =-u u u r

∴444(4)0OA OB ⋅=⨯+⨯-=u u u r u u u r
.
故选B
【点睛】
本题主要考查共轭复数和数量积的坐标运算,考查直线和抛物线的交点的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.
17.如图,在直角梯形ABCD 中,AB ∥DC ,AD ⊥DC ,AD =DC =2AB ,E 为AD 的中点,若(,)CA CE DB R λμλμ=+∈u u u r u u u r u u u r ,则λ+μ的值为( )
A .6
5 B .85 C .2 D .83
【答案】B
【解析】
【分析】 建立平面直角坐标系,用坐标表示,,CA CE DB u u u r u u u r u u u r ,利用(,)CA CE DB R λμλμ=+∈u u u r u u u r u u u r ,列出方程组求解即可.
【详解】
建立如图所示的平面直角坐标系,则D (0,0).
不妨设AB =1,则CD =AD =2,所以C (2,0),A (0,2),B (1,2),E (0,1),
(2,2),(2,1),(1,2)CA CE DB ∴=-=-=u u u r u u u r u u u r CA CE DB λμ=+u u u r u u u r u u u r Q
∴(-2,2)=λ(-2,1)+μ(1,2), 2222λμλμ-+=-⎧∴⎨+=⎩解得652
5λμ⎧=⎪⎪⎨⎪=⎪⎩
则85λμ+=. 故选:B
【点睛】
本题主要考查了由平面向量线性运算的结果求参数,属于中档题.
18.若O 为ABC ∆所在平面内任一点,且满足()()0OB OC OC OA CA AB -⋅-++=u u u r u u u r u u u r u u u r u u r u u u r ,
则ABC ∆的形状为( )
A .直角三角形
B .等腰三角形
C .等腰直角三角形
D .等边三角形 【答案】A
【解析】
【分析】
利用平面向量加法和减法的三角形法则以及向量数量积的性质即可进行判断.
【详解】 由()()0OB OC OC OA CA AB -⋅-++=u u u r u u u r u u u r u u u r u u u r u u u r ,即()
0CB AC CB CB AB ⋅+=⋅=u u u r u u u r u u u r u u u r u u u r , 所以,CB AB ⊥,即2B π∠=
,故ABC ∆为直角三角形.
故选:A.
【点睛】 本题主要考查了平面向量加法和减法的三角形法则以及向量数量积的性质的简单应用,属于基础题.
19.如图,向量a b -r r 等于
A .1224e e --u r u u r
B .1242e e --u r u u r
C .123e e -r u u r
D .123e e -+r u u r 【答案】D
【解析】
【分析】
【详解】 由向量减法的运算法则可得123a e b e -=-+r r r u u r ,
20.已知,A B 是圆22:16O x y +=的两个动点,524,33
AB OC OA OB ==
-u u u v u u u v u u u v ,若M 分别是线段AB 的中点,则·OC OM =u u u v u u u u v ( )
A
.8+B
.8-C .12 D .4
【答案】C
【解析】
【分析】
【详解】 由题意1122
OM OA OB =+u u u u r u u u r u u u r ,则22521151133226
32OC OM OA OB OA OB OA OB OA OB ⎛⎫⎛⎫⋅=-⋅+=-+⋅ ⎪ ⎪⎝⎭⎝⎭u u u v u u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v ,又圆的半径为4,4AB =uu u r ,则,OA OB u u u r u u u r 两向量的夹角为π3.则8OA OB ⋅=u u u v u u u v ,2216OA OB ==u u u v u u u v ,所以12OC OM ⋅=u u u r u u u u r .故本题答案选C .
点睛:本题主要考查平面向量的基本定理.用平面向量的基本定理解决问题的一般思路是:先选择一组基底,并且运用平面向量的基本定理将条件和结论表示成基底的线性组合,在基底未给出的情况下进行向量的运算,合理地选取基底会给解题带来方便.进行向量运算时,要尽可能转化到平行四边形或三角形中.。

相关文档
最新文档