万年县高中2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

万年县高中2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1.直线x+y﹣1=0与2x+2y+3=0的距离是()
A.B.C.D.
2.下列结论正确的是()
A.若直线l∥平面α,直线l∥平面β,则α∥β.
B.若直线l⊥平面α,直线l⊥平面β,则α∥β.
C.若直线l1,l2与平面α所成的角相等,则l1∥l2
D.若直线l上两个不同的点A,B到平面α的距离相等,则l∥α
3.如果a>b,那么下列不等式中正确的是()
A.B.|a|>|b|C.a2>b2D.a3>b3
4.已知a=5,b=log2,c=log5,则()
A.b>c>a B.a>b>c C.a>c>b D.b>a>c
5.已知d为常数,p:对于任意n∈N*,a n+2﹣a n+1=d;q:数列{a n}是公差为d的等差数列,则¬p是¬q的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
6.设M={x|﹣2≤x≤2},N={y|0≤y≤2},函数f(x)的定义域为M,值域为N,则f(x)的图象可以是(

A.B.
C.D.
7. 设集合A={x|y=ln (x ﹣1)},集合B={y|y=2x },则A B ( )
A .(0,+∞)
B .(1,+∞)
C .(0,1)
D .(1,2)
8. 幂函数y=f (x )的图象经过点(﹣2,﹣),则满足f (x )=27的x 的值是( )
A .
B .﹣
C .3
D .﹣3
9. 下列计算正确的是( )
A 、
B 、
C 、
D 、213
3
x x x ÷=4554
()x x =455
4
x x x =4455
x x -
=10.已知全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},则集合{0,1}可以表示为(

A .M ∪N
B .(∁U M )∩N
C .M ∩(∁U N )
D .(∁U M )∩(∁U N )
11.阅读如下所示的程序框图,若运行相应的程序,则输出的的值是( )
S A .39
B .21
C .81
D .102
12.在二项式的展开式中,含x 4的项的系数是( )A .﹣10B .10
C .﹣5
D .5
二、填空题
13.在(2x+
)6的二项式中,常数项等于 (结果用数值表示).
14.设,实数,满足,若,则实数的取值范围是___________.
R m ∈x y 23603260y m x y x y ≥⎧⎪
-+≥⎨⎪--≤⎩
182≤+y x m 【命题意图】本题考查二元不等式(组)表示平面区域以及含参范围等基础知识,意在考查数形结合的数学思想与运算求解能力.
15.函数的定义域是,则函数的定义域是__________.111]
()y f x =[]0,2()1y f x =+16.已知向量若,则( )
(1,),(1,1),
a x
b x ==- (2)a b a -⊥ |2|a b -=
A .
B .
C .2
D 23【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力.17.已知f (x )=,则f (﹣)+f ()等于 .
18.不等式
的解集为 .
三、解答题
19.(本小题满分12分)设f (x )=-x 2+ax +a 2ln x (a ≠0).(1)讨论f (x )的单调性;
(2)是否存在a >0,使f (x )∈[e -1,e 2]对于x ∈[1,e]时恒成立,若存在求出a 的值,若不存在说明理由.
20.证明:f (x )是周期为4的周期函数;(2)若f (x )=
(0<x ≤1),求x ∈[﹣5,﹣4]时,函数f (x )的解析式.
18.已知函数f (x )=
是奇函数.
21.在平面直角坐标系xOy中,点P(x,y)满足=3,其中=(2x+3,y),=(2x﹣﹣3,3y).(1)求点P的轨迹方程;
(2)过点F(0,1)的直线l交点P的轨迹于A,B两点,若|AB|=,求直线l的方程.
22.已知集合A={x|2≤x≤6},集合B={x|x≥3}.
(1)求C R(A∩B);
(2)若C={x|x≤a},且A C,求实数a的取值范围.
23.设M是焦距为2的椭圆E:+=1(a>b>0)上一点,A、B是椭圆E的左、右顶点,直线MA 与MB的斜率分别为k1,k2,且k1k2=﹣.
(1)求椭圆E的方程;
(2)已知椭圆E:+=1(a>b>0)上点N(x0,y0)处切线方程为+=1,若P 是直线x=2上任意一点,从P向椭圆E作切线,切点分别为C、D,求证直线CD恒过定点,并求出该定点坐标.
24.设{a n}是公比小于4的等比数列,S n为数列{a n}的前n项和.已知a1=1,且a1+3,3a2,a3+4构成等差数列.
(1)求数列{a n}的通项公式;
(2)令b n=lna3n+1,n=12…求数列{b n}的前n项和T n.
万年县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1.【答案】A
【解析】解:直线x+y﹣1=0与2x+2y+3=0的距离,就是直线2x+2y﹣2=0与2x+2y+3=0的距离是:=

故选:A.
2.【答案】B
【解析】解:A选项中,两个平面可以相交,l与交线平行即可,故不正确;
B选项中,垂直于同一平面的两个平面平行,正确;
C选项中,直线与直线相交、平行、异面都有可能,故不正确;
D中选项也可能相交.
故选:B.
【点评】本题考查平面与平面,直线与直线,直线与平面的位置关系,考查学生分析解决问题的能力,比较基础.
3.【答案】D
【解析】解:若a>0>b,则,故A错误;
若a>0>b且a,b互为相反数,则|a|=|b|,故B错误;
若a>0>b且a,b互为相反数,则a2>b2,故C错误;
函数y=x3在R上为增函数,若a>b,则a3>b3,故D正确;
故选:D
【点评】本题以命题的真假判断与应用为载体,考查了函数的单调性,难度不大,属于基础题.
4.【答案】C
【解析】解:∵a=5>1,b=log2<log5=c<0,
∴a>c>b.
故选:C.
5.【答案】A
【解析】解:p:对于任意n∈N*,a n+2﹣a n+1=d;q:数列{a n}是公差为d的等差数列,
则¬p:∃n∈N*,a n+2﹣a n+1≠d;¬q:数列{a n}不是公差为d的等差数列,
由¬p⇒¬q,即a n+2﹣a n+1不是常数,则数列{a n}就不是等差数列,
若数列{a n}不是公差为d的等差数列,则不存在n∈N*,使得a n+2﹣a n+1≠d,
即前者可以推出后者,前者是后者的充分条件,
即后者可以推不出前者,
故选:A.
【点评】本题考查等差数列的定义,是以条件问题为载体的,这种问题注意要从两个方面入手,看是不是都能够成立.
6.【答案】B
【解析】解:A项定义域为[﹣2,0],D项值域不是[0,2],C项对任一x都有两个y与之对应,都不符.
故选B.
【点评】本题考查的是函数三要素,即定义域、值域、对应关系的问题.
7.【答案】A
【解析】解:集合A={x|y=ln(x﹣1)}=(1,+∞),集合B={y|y=2x}=(0,+∞)
则A∪B=(0,+∞)
故选:A.
【点评】本题考查了集合的化简与运算问题,是基础题目.
8.【答案】A
【解析】解:设幂函数为y=xα,因为图象过点(﹣2,﹣),所以有=(﹣2)α,解得:α=﹣3
所以幂函数解析式为y=x﹣3,由f(x)=27,得:x﹣3=27,所以x=.
故选A.
9.【答案】B
【解析】
()a aβααβ⋅=
试题分析:根据可知,B正确。

考点:指数运算。

10.【答案】B
【解析】解:全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},
∴∁U M={0,1},
∴N ∩(∁U M )={0,1},故选:B .
【点评】本题主要考查集合的子交并补运算,属于基础题. 
11.【答案】]【解析】
试题分析:第一次循环:;第二次循环:;第三次循环:.结束循环,2,3==n S 3,21==n S 4,102==n S 输出.故选D. 1102=S 考点:算法初步.12.【答案】B 【解析】解:对于,
对于10﹣3r=4,∴r=2,
则x 4的项的系数是C 52(﹣1)2=10故选项为B
【点评】二项展开式的通项是解决二项展开式的特定项问题的工具. 
二、填空题
13.【答案】 240 
【解析】解:由(2x+
)6,得
=

由6﹣3r=0,得r=2.
∴常数项等于.
故答案为:240. 
14.【答案】.[3,6]-【



-
15.【答案】[]1,1
【解析】
考点:函数的定义域.
16.【答案】A
【解析】
17.【答案】 4 .
【解析】解:由分段函数可知f()=2×=.
f (﹣)=f (﹣+1)=f (﹣)=f (﹣)=f ()=2×=,
∴f ()+f (﹣)=+.
故答案为:4. 
18.【答案】 (0,1] .
【解析】解:不等式,即,求得0<x ≤1,
故答案为:(0,1].
【点评】本题主要考查分式不等式、一元二次不等式的解法,属于基础题. 
三、解答题
19.【答案】
【解析】解:(1)f (x )=-x 2+ax +a 2ln x 的定义域为{x |x >0},f ′(x )=-2x +a +a 2
x
=.
-2(x +a
2
)(x -a )
x
①当a <0时,由f ′(x )<0得x >-,
a 2
由f ′(x )>0得0<x <-.
a 2此时f (x )在(0,-)上单调递增,a 2
在(-,+∞)上单调递减;
a
2
②当a >0时,由f ′(x )<0得x >a ,由f ′(x )>0得0<x <a ,
此时f (x )在(0,a )上单调递增,在(a ,+∞)上单调递减.(2)假设存在满足条件的实数a ,∵x ∈[1,e]时,f (x )∈[e -1,e 2],∴f (1)=-1+a ≥e -1,即a ≥e ,①由(1)知f (x )在(0,a )上单调递增,∴f (x )在[1,e]上单调递增,
∴f (e )=-e 2+a e +e 2≤e 2,即a ≤e ,②由①②可得a =e ,故存在a =e ,满足条件.
20.【答案】
【解析】(1)证明:由函数f(x)的图象关于直线x=1对称,
有f(x+1)=f(1﹣x),即有f(﹣x)=f(x+2).
又函数f(x)是定义在R上的奇函数,有f(﹣x)=﹣f(x).故f(x+2)=﹣f(x).
从而f(x+4)=﹣f(x+2)=f(x).即f(x)是周期为4的周期函数.
(2)解:由函数f(x)是定义在R上的奇函数,有f(0)=0.x∈[﹣1,0)时,﹣x∈(0,1],
.故x∈[﹣1,0]时,.x∈[﹣5,﹣4]时,x+4∈[﹣1,0],

从而,x∈[﹣5,﹣4]时,函数f(x)的解析式为.
【点评】本题考查函数奇偶性的性质,函数解析式的求解常用的方法,本题解题的关键是根据函数是一个奇函数对函数式进行整理,本题是一个中档题目.
21.【答案】
【解析】解:(1)由题意,=(2x+3)(2x﹣3)+3y2=3,
可化为4x2+3y2=12,即:;
∴点P的轨迹方程为;
(2)①当直线l的斜率不存在时,|AB|=4,不合要求,舍去;
②当直线l的斜率存在时,设方程为y=kx+1,A(x1,y1),B(x2,y2),
代入椭圆方程可得:(4+3k2)x2+6kx﹣9=0,
∴x1+x2=,x1x2=,
∴|AB|=•|x1﹣x2|==,
∴k=±,
∴直线l的方程y=±x+1.
【点评】本题考查了与直线有关的动点的轨迹方程,考查了直线与圆锥曲线的关系,考查了向量的坐标运算,训练了利用数量积,属于中档题.
22.【答案】
【解析】解:(1)由题意:集合A={x|2≤x≤6},集合B={x|x≥3}.
那么:A∩B={x|6≥x≥3}.
∴C R(A∩B)={x|x<3或x>6}.
(2)C={x|x≤a},
∵A C,
∴a≥6
∴故得实数a的取值范围是[6,+∞).
【点评】本题主要考查集合的基本运算,比较基础.
23.【答案】
【解析】(1)解:设A(﹣a,0),B(a,0),M(m,n),则+=1,
即n2=b2•,
由k1k2=﹣,即•=﹣,
即有=﹣,
即为a2=2b2,又c2=a2﹣b2=1,
解得a2=2,b2=1.
即有椭圆E的方程为+y2=1;
(2)证明:设点P(2,t),切点C(x1,y1),D(x2,y2),
则两切线方程PC,PD分别为:+y1y=1,+y2y=1,
由于P点在切线PC,PD上,故P(2,t)满足+y1y=1,+y2y=1,
得:x1+y1t=1,x2+y2t=1,
故C(x1,y1),D(x2,y2)均满足方程x+ty=1,
即x+ty=1为CD的直线方程.
令y=0,则x=1,
故CD过定点(1,0).
【点评】本题主要考查椭圆的简单性质、直线与椭圆的位置关系,导数的几何意义等基本知识,考查运算能力和综合解题能力.解题时要注意运算能力的培养.
24.【答案】
【解析】解:(1)设等比数列{a n}的公比为q<4,∵a1+3,3a2,a3+4构成等差数列.
∴2×3a2=a1+3+a3+4,∴6q=1+7+q2,解得q=2.(2)由(1)可得:a n=2n﹣1.
b n=lna3n+1=ln23n=3nln2.
∴数列{b n}的前n项和T n=3ln2×(1+2+…+n)=ln2.。

相关文档
最新文档