安徽省合肥市2015届高考数学三模试卷(文科)

合集下载

高考数学文科5年高考3年模拟精品课件全国卷1地区通用:1.1 集合

高考数学文科5年高考3年模拟精品课件全国卷1地区通用:1.1 集合

A.{1}
B.{3,5}
C.{1,2,4,6} D.{1,2,3,4,5}
答案 C ∵U={1,2,3,4,5,6},P={1,3,5}, ∴∁UP={2,4,6}, ∵Q={1,2,4}, ∴(∁UP)∪Q={1,2,4,6}. 2.(2015课标Ⅱ,1,5分)已知集合A={x|-1<x<2},B={x|0<x<3},则A∪B= ( ) A.(-1,3) B.(-1,0) C.(0,2) D.(2,3)
A.{0,2} B.{1,2}
C.{0}
D.{-2,-1,0,1,2}
答案 A 本题主要考查集合的基本运算. ∵A={0,2},B={-2,-1,0,1,2},∴A∩B={0,2},故选A.
2.(2018课标全国Ⅱ,2,5分)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B= ( )
答案 A 本题考查集合的并集. A∪B={1,2,3}∪{2,3,4}={1,2,3,4}.故选A. 5.(2017课标全国Ⅲ,1,5分)已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为 ( ) A.1 B.2 C.3 D.4 答案 B 因为集合A和集合B有共同元素2,4,所以A∩B={2,4},所以A∩B中元素的个数为2.
12.(2017浙江,1,5分)已知集合P={x|-1<x<1},Q={x|0<x<2},则P∪Q= ( ) A.(-1,2) B.(0,1) C.(-1,0) D.(1,2) 答案 A 本题考查集合的概念和集合的运算. P∪Q={x|-1<x<2}.故选A. 易错警示 把求并集看成求交集,而错选B,因为平时做得最多的集合运算是求两集合的交集, 从而形成思维定势. 13.(2015四川,1,5分)设集合A={x|-1<x<2},集合B={x|1<x<3},则A∪B= ( ) A.{x|-1<x<3} B.{x|-1<x<1} C.{x|1<x<2} D.{x|2<x<3} 答案 A 把集合A、B表示在数轴上,如图.

2015届高考数学一轮总复习 阶段性测试题9(立体几何)

2015届高考数学一轮总复习 阶段性测试题9(立体几何)

阶段性测试题九(立体几何)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分。

考试时间120分钟。

第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2014·抚顺二中期中)已知a,b,c是三条不同的直线,α,β,γ是三个不同的平面,下述命题中真命题的是()A.若a⊥c,b⊥c,则a∥b或a⊥bB.若α⊥β,β⊥γ,则α∥βC.若a⊂α,b⊂β,c⊂β,a⊥b,a⊥c,则α⊥βD.若a⊥α,b⊂β,a∥b,则α⊥β[答案] D[解析]由a⊥c,b⊥c知,a与b可平行可相交,也可异面,故A错;由直棱柱相邻两个侧面与底面都垂直知B错;当α∩β=l,a⊥l,b∥c∥l时,可满足C的条件,故C错;∵a∥b,a⊥α,∴b⊥α,又b⊂β,∴α⊥β,∴D正确.2.(2014·康杰中学、临汾一中、忻州一中、长治二中四校联考)已知不重合的两条直线l,m和不重合的两个平面α,β,下列命题正确的是()A.l∥m,l∥β,则m∥βB.α∩β=m,l⊂α,则l∥βC.α⊥β,l⊥α,则l∥βD.l⊥m,m⊥β,l⊥α,则α⊥β[答案] D[解析]l⊄β,l∥m,m⊂β时,l∥β,故A错;α∩β=m,当l⊂α且l∥m时,l∥β,当l与m 相交时,l与β相交,故B错;α⊥β,当l⊂β,l与α和β的交线垂直,l⊥α时,但l∥β不成立,故C错;∵l⊥m,l⊥α,∴m⊂α或m∥α,又m⊥β,∴α⊥β,故D正确.3.(2014·山东省博兴二中质检)某四面体的三视图如图所示,该四面体四个面的面积值最大的是()A.8B.6 2C.8 2 D.10[答案] D[解析]由三视图知,该几何体直观图如图,其中△ABC为以B为直角的直角三角形,AB=4,BC=3,高P A=4,∴S△ABC=12×4×3=6,S△P AB=12×4×4=8,S△PBC=12PB·BC=12×42×3=62,S△P AC=12AC·P A=12×5×4=10,故选D.4.(2014·河南淇县一中模拟)将正方体(如图(a)所示)截去两个三棱锥,得到图(b)所示的几何体,则该几何体的侧视图为()[答案] B[解析]在侧视图中,D1的射影为C1,A的射影为B,D的射影为C,AD1的射影BC1为实线(右下到左上),B1C为虚线,故选B.5.(文)(2014·浙北名校联盟联考)一个几何体的三视图如图所示,则该几何体的体积为()A .4B .8C .4 3D .8 3[答案] B[解析] 作出几何体的直观图如图,这是一个三棱锥P -ABC ,其中P 在底面射影为D 点,PD =23,AD =3,CD =1,E 为AC 的中点,BE ⊥AC ,BE =23,故几何体的体积V =13S △ABC ·PD =13×(12·AC ·BE )·PD =8,故选B.(理)(2014·康杰中学、临汾一中、忻州一中、长治二中四校联考)一个几何体的三视图如图所示,则该几何体的体积为( )A .1B .2C .3D .4 [答案] A[解析] 由三视图知,该几何体是一个三棱锥P -ABC ,其中底面△ABC 为直角三角形,∠A 为直角,顶点P 到A ,C 的距离相等,P 点在底面的射影D ,满足AC ∥BD ,且BD =12AC =1,PD =3,画出其直观图如图所示,其体积V =13S △ABC ·PD =13×(12×2×1)×3=1.6.(2014·辽宁师大附中期中)已知一个几何体的三视图如图所示,则该几何体的表面积为( )A .24+6πB .24+4πC .28+6πD .28+4π [答案] A[解析] 由三视图知,该几何体为组合体,其上部为半球,半球的直径为22,下部为长方体,长、宽、高为2,2,3,其表面积为2×4×3 +12×4π·(222)2+π·(222)2=24+6π,故选A.7.(2014·高州四中质量监测)已知某几何体的三视图如图所示,其中正视图中半圆的直径为2,则该几何体的体积为( )A .24-π3B .24-π2C .24-32πD .24-π[答案] C[解析] 由三视图知,该几何体是由长、宽、高分别为3、4、2的长方体内挖去一个底半径为1,高为3的半圆柱后剩余部分,其体积V =3×4×2-12(π×12×3)=24-32π.8.(2014·山西曲沃中学期中)已知球的直径SC =4,A ,B 是该球球面上的两点,AB =2.∠ASC =∠BSC =45°,则棱锥S -ABC 的体积为( )A.33B.233C.433D.533[答案] C[解析] 设球心为O ,△ABO 所在平面截球O 得截面如图,∵OA =OB =AB =OS =OC =2,∠ASC =∠BSC =45°,∴SC ⊥平面ABO ,V S -ABC =V S -ABO +V C -ABO =2V S -ABO =2×13×(34×22)×2=433,故选C.9.(文)(2014·陕西工大附中四模)如下图,某几何体的主视图与左视图都是边长为1的正方形,且体积为12,则该几何体的俯视图可以是( )[答案] C[解析] 若俯视图为A ,则该几何体是棱长为1的正方体,体积V =1;若俯视图为B ,则该几何体是底半径为12,高为1的圆柱,其体积V =π·(12)2·1=π4;若俯视图为D ,则该几何体是底半径为1,高为1的圆柱的14,其体积V =14·π·12·1=π4;若俯视图为C ,则该几何体是直三棱柱,底面直角三角形两直角边长为1,棱柱高为1,体积为V =(12×1×1)×1=12,因此选C.(理)(2014·开滦二中期中)如图,在直三棱柱ABC -A 1B 1C 1中,AB =1,AC =2,BC =3,D 、E 分别是AC 1和BB 1的中点,则直线DE 与平面BB 1C 1C 所成的角为( )A.π6B.π4C.π3D.π2[答案] A[解析] 取AC 中点F ,则DF 綊BE ,∴DE ∥BF , ∴BF 与平面BB 1C 1C 所成的角为所求, ∵AB =1,BC =3,AC =2,∴AB ⊥BC ,又AB ⊥BB 1,∴AB ⊥平面BCC 1B 1,作GF ∥AB 交BC 于G ,则GF ⊥平面BCC 1B 1,∴∠FBG 为直线BF 与平面BCC 1B 1所成的角,由条件知BG =12BC =32,GF =12AB =12,∴tan ∠FBG =GF BG =33,∴∠FBG =π6.10.(2014·绵阳市南山中学检测)设m ,n 是两条不同的直线,α,β,γ是三个不同的平面,有下列四个命题:①若m ⊂β,α⊥β,则m ⊥α; ②若α∥β,m ⊂α,则m ∥β; ③若n ⊥α,n ⊥β,m ⊥α,则m ⊥β; ④若α⊥γ,β⊥γ,m ⊥α,则m ⊥β. 其中正确命题的序号是( ) A .①③ B .①② C .③④ D .②③[答案] D[解析] 由两个平面平行的性质知②正确;∵n ⊥α,n ⊥β,∴α∥β,又m ⊥α,∴m ⊥β,∴③正确,故选D.11.(文)(2014·云南景洪市一中期末)一个几何体的三视图如图所示,其中俯视图与左视图均为半径是1的圆,则这个几何体的体积是( )A.4π3 B .π C.2π3 D.π3[答案] B[解析] 由三视图知,这是一个半径为1的球,截去14,故其体积为V =34·(4π3·13)=π.(理)(2014·吉林延边州质检)正方体ABCD -A 1B 1C 1D 1中,E 为棱BB 1的中点(如图),用过点A ,E ,C 1的平面截去该正方体的上半部分,则剩余几何体的左视图为( )[答案] C[解析] 由条件知AE ∥平面DD 1C 1C ,平面AEC 1与平面DD 1C 1C 相交,故交线与AE 平行,∵E 为BB 1的中点,故取DD 1的中点F ,∴AE 綊C 1F ,故截面为AEC 1F (如图1),截去正方体的上半部分后,剩余部分几何体直观图如图2,故其左视图形状与直角梯形FD 1A 1A 相同,且C 1E 的射影为虚线,由于B 1E =12AA 1,故E 点射影在直角梯形下底的中点,故选C.12.(文)(2014·吉林省实验中学一模)已知正三棱锥P -ABC ,点P 、A 、B 、C 都在半径为3的球面上,若P A 、PB 、PC 两两互相垂直,则球心到截面ABC 的距离为( )A. 2B. 3C.33D.233[答案] C[解析] 由条件知,以P A 、PB 、PC 为三棱作长方体P ADB -CA 1D 1B 1,则该长方体内接于球,体对角线PD 1为球的直径,由于三棱锥P -ABC 为正三棱锥,∴AB =AC =BC ,∴P A =PB =PC ,设P A =a ,则3a =23,∴a =2.设球心到截面的距离为h ,则由V A -PBC =V P -ABC 得, 13(12×2×2)×2=13×34×(22)2×(3-h ), ∴h =33. (理)(2014·成都七中模拟)平面四边形ABCD 中,AD =AB =2,CD =CB =5,且AD ⊥AB ,现将△ABD 沿着对角线BD 翻折成△A ′BD ,则在△A ′BD 折起至转到平面BCD 内的过程中,直线A ′C 与平面BCD 所成的最大角的正切值为( )A .1 B.12 C.33D. 3[答案] C[解析] 如下图,OA =1,OC =2,在△ABD 绕直线BD 旋转过程中,OA 绕点O 旋转形成半圆,显然当A ′C 与圆相切时,直线A ′C 与平面BCD 所成角最大,最大角为30°,其正切值为33,选C.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上.) 13.(2014·山西省太原五中月考)如图,在直三棱柱ABC -A 1B 1C 1中,底面为直角三角形,∠ACB =90°,AC =6,BC =CC 1=2,P 是BC 1上一动点,则CP +P A 1的最小值为________.[答案]8+2 6[解析] 由题意可知,△BCC 1为等腰直角三角形,∵AC =6,BC =CC 1=2,∠ACB =90°,∴∠A 1B =10,BC 1=2,∵A 1B 2=A 1C 21+BC 21,∴∠AC 1B 为直角,将△BCC 1与△A 1BC 1所在平面铺平如图,设A 1C 交BC 1于Q ,则当点P 与Q 重合时,CP +P A 1取到最小值,最小值为A 1C .A 1C =A 1C 21+C 1C 2-2A 1C 1·C 1C cos135° =6+2-2×6×2×(-22)=8+2 6.14.(文)(2014·抚顺市六校联合体期中)已知正四棱锥O -ABCD 的体积为322,底面边长为3,则以O 为球心,OA 为半径的球的表面积为________.[答案] 12π[解析] 由V =13Sh =13×(3)2·h =322知,h =322,设正方形ABCD 的中心为M ,则MA =62,∴OA 2=OM 2+MA 2=(322)2+(62)2=3,∴S 球=4π·OA 2=12π.(理)(2014·抚顺二中期中)右图是一个空间几何体的三视图,如果主视图和左视图都是边长为2的正三角形,俯视图为正方形,那么该几何体的体积为________.[答案]433[解析] 由三视图知,几何体是正四棱锥,底面正方形边长为2,棱锥的斜高为2,故高h =22-12=3,∴体积V =13×4×3=433.15.(文)(2014·西安市长安中学期中)一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为________.[答案]3(8-π)6[解析] 根据三视图,该几何体是一个组合体,其中左侧是半个圆锥,右侧是底面为正方形的四棱锥,由于侧视图是一个边长为2的等边三角形,所以高为 3.所以其体积为V =13·(12π·12+22)·3=3(8+π)6.(理)(2014·浙江台州中学期中)把边长为1的正方形ABCD 沿对角线BD 折起,形成三棱锥C -ABD ,它的主视图与俯视图如图所示,则二面角C -AB -D 的正切值为________.[答案] 2[解析] 三棱锥C -ABD 直观图如图,由主视图与俯视图知,平面CBD ⊥平面ABD ,CO ⊥平面ABD ,作OE ∥AD ,∵AD ⊥AB ,∴OE ⊥AB ,连结CE ,则CE ⊥AB ,∴∠CEO 为二面角C -AB -D 的平面角,在Rt △COE 中,OE =12AD =12,CO =22,∴tan ∠CEO =COOE= 2.16.(文)(2014·华安、连城、永安、漳平、泉港一中,龙海二中六校联考)点P 在正方体ABCD -A 1B 1C 1D 1的面对角线BC 1上运动,则下列四个命题:①三棱锥A -D 1PC 的体积不变; ②A 1P ∥平面ACD 1; ③DP ⊥BC 1;④平面PDB 1⊥平面ACD 1. 其中正确的命题序号是________. [答案] ①②④[解析] ①VA -D 1PC =VP -AD 1C ,∵BC 1∥AD 1,AD 1⊂平面AD 1C ,∴BC 1∥平面AD 1C ,∴无论P 在BC 1上任何位置,P 到平面AD 1C 的距离为定值,∴三棱锥A -D 1PC 的体积不变,∴①正确;②∵A 1C 1∥AC ,BC 1∥AD 1,A 1C 1∩BC 1=C 1,AC ∩AD 1=A ,∴平面A 1BC 1∥平面AD 1C ,∵A 1P ⊂平面A 1BC 1,∴A 1P ∥平面ACD 1,∴②正确;③假设DP ⊥BC 1,∵DC ⊥平面BCC 1B 1,∴DC ⊥BC 1, ∴BC 1⊥平面ABCD ,与正方体ABCD -A 1B 1C 1D 1矛盾, ∴③错误;④∵B 1B ⊥AC ,BD ⊥AC ,∴AC ⊥平面B 1BD ,∴AC ⊥B 1D ,同理可证AD 1⊥B 1D ,∴B 1D ⊥平面ACD 1,∵B 1D ⊂平面PDB 1,∴平面PDB 1⊥平面ACD 1,∴④正确.(理)(2014·成都七中模拟)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,点M 是BC 1的中点,P 是BB 1一动点,则(AP +MP )2的最小值为________.[答案] 52[解析] 将平面ABB 1A 1展开到与平面CBB 1C 1共面,如下图,易知当A 、P 、M 三点共线时(AP +MP )2最小.AM 2=AB 2+BM 2-2AB ×BM cos135°=12+(22)2-2×1×22×(-22)=52. 三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分12分)(2014·天津市六校联考)在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,已知BC =1,∠BCC 1=π3,AB =CC 1=2.(1)求证:BC 1⊥平面ABC ;(2)试在棱CC 1(不包含端点C ,C 1)上确定一点E 的位置,使得EA ⊥EB 1; (3)(理)在(2)的条件下,求AE 和平面ABC 1所成角正弦值的大小. [解析] (1)∵BC =1,∠BCC 1=π3,CC 1=2,∴BC 1=3,∴BC 2+BC 21=CC 21,∴BC 1⊥BC ,∵AB ⊥侧面BB 1C 1C ,BC 1⊂平面BB 1C 1C , ∴BC 1⊥AB 且BC ∩AB =B , ∴BC 1⊥平面ABC .(2)E 为C 1C 的中点.连接BE ,∵BC =CE =1,∠BCC 1=π3,等边△BEC 中,∠BEC =π3,同理:B 1C 1=C 1E =1,∠B 1C 1E =2π3,∴∠B 1EC 1=π6,∴∠BEB 1=π2,∴EB 1⊥EB ,∵AB ⊥侧面BB 1C 1C ,EB 1⊂平面BB 1C 1C , ∴EB 1⊥AB 且EB ∩AB =B ,∴B 1E ⊥平面ABE ,EA ⊂平面ABE ,∴EA ⊥EB 1. (3)∵AB ⊥侧面BB 1C 1C ,AB ⊂平面ABC 1, ∵平面BCC 1B 1⊥平面ABC 1,过E 作BC 1的垂线交BC 1于F ,则EF ⊥平面ABC 1, 连接AF ,则∠EAF 为所求, ∵BC ⊥BC 1,EF ⊥BC 1,∴BC ∥EF , ∵E 为C 1C 的中点,∴F 为C 1B 的中点,∴EF =12,由(2)知AE =5,∴sin ∠EAF =125=510.18.(本小题满分12分)(文)(2014·长沙市重点中学月考)如图所示,圆柱的高为2,底面半径为7,AE 、DF是圆柱的两条母线,过AD 作圆柱的截面交下底面于BC ,四边形ABCD 是正方形.(1)求证BC ⊥BE ;(2)求四棱锥E -ABCD 的体积. [解析] (1)∵AE 是圆柱的母线,∴AE ⊥底面EBC ,又BC ⊂底面EBC ,∴AE ⊥BC , 又∵截面ABCD 是正方形,所以BC ⊥AB , 又AB ∩AE =A ,∴BC ⊥平面ABE , 又BE ⊂平面ABE ,∴BC ⊥BE .(2)∵母线AE ⊥底面EBC ,∴AE 是三棱锥A -BCE 的高, 由(1)知BC ⊥平面ABE ,BC ⊂平面ABCD , ∴平面ABCD ⊥平面ABE , 过E 作EO ⊥AB ,交AB 于O ,又∵平面ABCD ∩平面ABE =AB ,EO ⊂平面ABE , ∴EO ⊥平面ABCD ,即EO 就是四棱锥E -ABCD 的高, 设正方形ABCD 的边长为x ,则AB =BC =x , BE =AB 2-AE 2=x 2-4,又∵BC ⊥BE ,∴EC 为直径,即EC =27, 在Rt △BEC 中,EC 2=BE 2+BC 2, 即(27)2=x 2+x 2-4,∴x =4, ∴S 四边形ABCD =4×4=16,OE =AE ·BE AB =2×42-44=3,∴V E -ABCD =13·OE ·S 四边形ABCD =13×3×16=1633.(理)(2014·湖南长沙实验中学、沙城一中联考)在三棱柱ABC -A 1B 1C 1中,侧面ABB 1A 1,ACC 1A 1均为正方形,∠BAC =90°,点D 是棱B 1C 1的中点.(1)求证:A 1D ⊥平面BB 1C 1C ; (2)求证:AB 1∥平面A 1DC ; (3)求二面角D -A 1C -A 的余弦值.[解析] (1)证明:因为侧面ABB 1A 1,ACC 1A 1均为正方形, 所以AA 1⊥AC ,AA 1⊥AB ,所以AA 1⊥平面ABC , 所以AA 1⊥平面A 1B 1C 1.因为A 1D ⊂平面A 1B 1C 1,所以AA 1⊥A 1D , 又因为CC 1∥AA 1,所以CC 1⊥A 1D , 又因为A 1B 1=A 1C 1,D 为B 1C 1中点, 所以A 1D ⊥B 1C 1. 因为CC 1∩B 1C 1=C 1, 所以A 1D ⊥平面BB 1C 1C .(2)证明:连结AC 1,交A 1C 于点O ,连结OD , 因为ACC 1A 1为正方形,所以O 为AC 1中点, 又D 为B 1C 1中点,所以OD 为△AB 1C 1中位线, 所以AB 1∥OD ,因为OD ⊂平面A 1DC ,AB 1⊄平面A 1DC , 所以AB 1∥平面A 1DC .(3)因为侧面ABB 1A 1,ACC 1A 1均为正方形,∠BAC =90°,所以AB ,AC ,AA 1两两互相垂直,如图所示建立直角坐标系A -xyz . 设AB =1,则C (0,1,0),B (1,0,0),A 1(0,0,1),D (12,12,1).A 1D →=(12,12,0),A 1C →=(0,1,-1),设平面A 1DC 的法向量为n =(x ,y ,z ),则有 ⎩⎪⎨⎪⎧n ·A 1D →=0,n ·A 1C →=0,∴⎩⎪⎨⎪⎧x +y =0,y -z =0,取x =1,得n =(1,-1,-1).又因为AB ⊥平面ACC 1A 1,所以平面ACC 1A 1的法向量为AB →=(1,0,0), 设二面角D -A 1C -A 的平面角为θ,则θ=π-〈n ,AB →〉, ∴cos θ=cos(π-〈n ,AB →〉) =-n ·AB →|n |·|AB →|=-13=-33,所以,二面角D -A 1C -A 的余弦值为-33. 19.(本小题满分12分)(文)(2014·黄石二中检测)如图,在直三棱柱ABC -A 1B 1C 1中,AA 1=AC =2AB =2,且BC 1⊥A 1C .(1)求证:平面ABC 1⊥平面A 1ACC 1;(2)设D 是A 1C 1的中点,判断并证明在线段BB 1上是否存在点E ,使DE ∥平面ABC 1;若存在,求三棱锥E -ABC 1的体积.[解析] (1)证明:在直三棱柱ABC -A 1B 1C 1中,有A 1A ⊥平面ABC .∴A 1A ⊥AC ,又A 1A =AC ,∴A 1C ⊥AC 1.又BC 1⊥A 1C ,∴A 1C ⊥平面ABC 1,∵A 1C ⊂平面A 1ACC 1,∴平面ABC 1⊥平面A 1ACC 1.(2)存在,E 为BB 1的中点.取A 1A 的中点F ,连EF ,FD ,当E 为B 1B 的中点时,EF ∥AB ,DF ∥AC 1, ∴平面EFD ∥平面ABC 1,则有ED ∥平面ABC 1. 当E 为BB 1的中点时,V E -ABC 1=V C1-ABE=13×2×12×1×1=13. (理)(2014·保定市八校联考)如图,在底面是直角梯形的四棱锥P -ABCD 中,∠DAB =90°,P A ⊥平面ABCD ,P A =AB =BC =3,梯形上底AD =1.(1)求证:BC ⊥平面P AB ;(2)在PC 上是否存在一点E ,使得DE ∥平面P AB ?若存在,请找出;若不存在,说明理由; (3)求平面PCD 与平面P AB 所成锐二面角的正切值. [解析] (1)证明:∵BC ∥AD 且∠DAB =90°,∴BC ⊥AB ,又P A ⊥平面ABCD ,∴BC ⊥P A , 而P A ∩AB =A ,∴BC ⊥平面P AB .(2)延长BA 、CD 相交于Q 点,假若在PC 上存在点E ,满足DE ∥平面P AB ,则由平面PCQ 经过DE 与平面P AB 相交于PQ 知DE ∥PQ ,∵AD ∥BC 且AD =1,BC =3, ∴PE CP =QD CQ =AD BC =13, 故E 为CP 的三等分点,PE =12CE .(3)过A 作AH ⊥PQ ,垂足为H ,连DH , 由(1)及AD ∥BC 知:AD ⊥平面P AQ , ∴AD ⊥PQ ,又AH ⊥PQ , ∴PQ ⊥平面HAD ,∴PQ ⊥HD .∴∠AHD 是平面PCD 与平面PBA 所成的二面角的平面角. 易知AQ =32,PQ =352,∴AH =AQ ·P A PQ =355,∴tan ∠AHD =AD AH =53,所以平面PCD 与平面P AB 所成二面角的正切值为53. 20.(本小题满分12分)(文)(2014·北京朝阳区期末)如图,在三棱锥P -ABC 中,平面P AC ⊥平面ABC ,P A ⊥AC ,AB ⊥BC .设D 、E 分别为P A 、AC 中点.(1)求证:DE∥平面PBC;(2)求证:BC⊥平面P AB;(3)试问在线段AB上是否存在点F,使得过三点D,E,F的平面内的任一条直线都与平面PBC 平行?若存在,指出点F的位置并证明;若不存在,请说明理由.[解析](1)证明:因为点E是AC中点,点D为P A的中点,所以DE∥PC.又因为DE⊄平面PBC,PC⊂平面PBC,所以DE∥平面PBC.(2)证明:因为平面P AC⊥平面ABC,平面P AC∩平面ABC=AC,又P A⊂平面P AC,P A⊥AC,所以P A⊥平面ABC.所以P A⊥BC.又因为AB⊥BC,且P A∩AB=A,所以BC⊥平面P AB.(3)当点F是线段AB中点时,过点D,E,F的平面内的任一条直线都与平面PBC平行.取AB中点F,连EF,DF.由(1)可知DE∥平面PBC.因为点E是AC中点,点F为AB的中点,所以EF∥BC.又因为EF⊄平面PBC,BC⊂平面PBC,所以EF∥平面PBC.又因为DE∩EF=E,所以平面DEF∥平面PBC,所以平面DEF内的任一条直线都与平面PBC平行.故当点F是线段AB中点时,过点D,E,F所在平面内的任一条直线都与平面PBC平行.(理)(2014·山东省博兴二中质检)如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,Q 为AD 的中点.(1)若P A =PD ,求证:平面PQB ⊥平面P AD ;(2)设点M 在线段PC 上,PM MC =12,求证:P A ∥平面MQB ;(3)在(2)的条件下,若平面P AD ⊥平面ABCD ,且P A =PD =AD =2,求二面角M -BQ -C 的大小.[解析] (1)连接BD ,∵四边形ABCD 为菱形,∠BAD =60°,∴△ABD 为正三角形, 又Q 为AD 中点,∴AD ⊥BQ .∵P A =PD ,Q 为AD 的中点,AD ⊥PQ , 又BQ ∩PQ =Q ,∴AD ⊥平面PQB ,∵AD ⊂平面P AD , ∴平面PQB ⊥平面P AD . (2)连接AC 交BQ 于点N ,由AQ ∥BC 可得,△ANQ ∽△CNB ,∴AQ BC =AN NC =12.又PM MC =12,∴PM MC =ANNC.∴P A ∥MN . ∵MN ⊂平面MQB ,P A ⊄平面MQB ,∴P A ∥平面MQB . (3)∵P A =PD =AD =2,Q 为AD 的中点,∴PQ ⊥AD . 又平面P AD ⊥平面ABCD ,∴PQ ⊥平面ABCD .以Q 为坐标原点,分别以QA 、QB 、QP 所在的直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则各点坐标为A (1,0,0),B (0,3,0),P (0,0,3).设平面MQB 的法向量n =(x ,y ,z ),可得⎩⎪⎨⎪⎧ n ·QB →=0,n ·MN →=0.∵P A ∥MN ,∴⎩⎪⎨⎪⎧n ·QB →=0,n ·P A →=0.∴⎩⎨⎧3y =0,x -3z =0,取z =1,得n =(3,0,1). 取平面ABCD 的法向量m =(0,0,1). cos 〈m ,n 〉=m ·n |m ||n |=12.故二面角M -BQ -C 的大小为60°.21.(本小题满分12分)(文)如图,E 是以AB 为直径的半圆弧上异于A ,B 的点,矩形ABCD 所在平面垂直于该半圆所在的平面,且AB =2AD =2.(1)求证:EA ⊥EC ;(2)设平面ECD 与半圆弧的另一个交点为F . ①求证:EF ∥AB ;②若EF =1,求三棱锥E -ADF 的体积.[解析] (1)∵E 是半圆上异于A ,B 的点,∴AE ⊥EB , 又∵平面ABCD ⊥平面ABE ,且CB ⊥AB , 由面面垂直性质定理得CB ⊥平面ABE , 又AE ⊂平面ABE ,∴CB ⊥AE , ∵BC ∩BE =B ,∴AE ⊥平面CBE , 又EC ⊂平面CBE ,∴AE ⊥EC .(2)①由CD ∥AB ,得CD ∥平面ABE , 又∵平面CDE ∩平面ABE =EF , ∴根据线面平行的性质定理得CD ∥EF , 又CD ∥AB ,∴EF ∥AB .②V E -ADF =V D -AEF =13×12×1×32×1=312.(理)(2014·浙江台州中学期中)如图,在Rt △ABC 中,AB =BC =4,点E 在线段AB 上,过点E作EF ∥BC 交AC 于点F ,将△AEF 沿EF 折起到△PEF 的位置(折起后的点A 记作点P ),使得∠PEB =60°.(1)求证:EF ⊥PB .(2)试问:当点E 在线段AB 上移动时,二面角P -FC -B 的平面角的余弦值是否为定值?若是,求出定值,若不是,说明理由.[解析] (1)在Rt △ABC 中,∵EF ∥BC ,∴EF ⊥AB , ∴EF ⊥EB ,EF ⊥EP ,又∵EB ∩EP =E ,∴EF ⊥平面PEB . 又∵PB ⊂平面PEB ,∴EF ⊥PB .(2)解法一:∵EF ⊥平面PEB ,EF ⊂平面BCFE ,∴平面PEB ⊥平面BCFE ,过P 作PQ ⊥BE 于点Q ,垂足为Q ,则PQ ⊥平面BCFE ,过Q 作QH ⊥FC ,垂足为H .则∠PHQ 即为所求二面角的平面角.设PE =x ,则EQ =12x ,PQ =32x ,QH =(PE +EQ )sin π4=324x ,故tan ∠PHQ =PQ QH =63,cos ∠PHQ =155,即二面角P -FC -B 的平面角的余弦值为定值155. 解法二:在平面PEB 内,经P 点作PD ⊥BE 于D , 由(1)知EF ⊥平面PEB ,∴EF ⊥PD .∴PD ⊥平面BCFE .在平面PEB 内过点B 作直线BH ∥PD ,则BH ⊥平面BCFE .以B 点为坐标原点,BC →,BE →,BH →的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.设PE =x (0<x <4)又∵AB =BC =4,∴BE =4-x ,EF =x , 在Rt △PED 中,∠PED =60°,∴PD =32x ,DE =12x , ∴BD =4-x -12x =4-32x ,∴C (4,0,0),F (x,4-x,0),P (0,4-32x ,32x ).从而CF →=(x -4,4-x,0),CP →=(-4,4-32x ,32x ).设n 1=(x 0,y 0,z 0)是平面PCF 的一个法向量,则 n 1·CF →=0,n 1·CP →=0,∴⎩⎪⎨⎪⎧x 0(x -4)+y 0(4-x )=0,-4x 0+(4-32x )y 0+32xz 0=0,∴⎩⎨⎧x 0-y 0=0,3x 0-z 0=0, 取y 0=1,得,n 1=(1,1,3).又平面BCF 的一个法向量为n 2=(0,0,1). 设二面角P -FC -B 的平面角为α,则 cos α=|cos 〈n 1,n 2〉|=155. 因此当点E 在线段AB 上移动时,二面角P -FC -B 的平面角的余弦值为定值155. 22.(本小题满分14分)(文)(2014·广东执信中学期中)某个实心零部件的形状是如图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台A 1B 1C 1D 1-ABCD ,上部是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱ABCD -A 2B 2C 2D 2.(1)证明:直线B 1D 1⊥平面ACC 2A 2;(2)现需要对该零部件表面进行防腐处理.已知AB =10,A 1B 1=20,AA 2=30,AA 1=13(单位:cm),每平方厘米的加工处理费为0.20元,需加工处理费多少元?[解析] (1)∵四棱柱ABCD -A 2B 2C 2D 2的侧面是全等的矩形, ∴AA 2⊥AB ,AA 2⊥AD ,又∵AB ∩AD =A , ∴AA 2⊥平面ABCD .连接BD ,∵BD ⊂平面ABCD ,∴AA 2⊥BD . ∵底面ABCD 是正方形,∴AC ⊥BD . ∵AA 2∩AC =A ,∴BD ⊥平面ACC 2A 2, 根据棱台的定义可知,BD 与B 1D 1共面.又已知平面ABCD ∥平面A 1B 1C 1D 1,且平面BB 1D 1D ∩平面ABCD =BD , 平面BB 1D 1D ∩平面A 1B 1C 1D 1=B 1D 1,∴B 1D 1∥BD . ∴B 1D 1⊥平面ACC 2A 2.(2)∵四棱柱ABCD -A 2B 2C 2D 2的底面是正方形,侧面是全等的矩形, ∴S 1=S 四棱柱上底面+S 四棱柱侧面=(A 2B 2)2+4AB ·AA 2=102+4×10×30=1300(cm 2). 又∵四棱台A 1B 1C 1D 1-ABCD 的上、下底面均是正方形,侧面是全等的等腰梯形, 等腰梯形的高h ′=132-(20-102)2=12.所以S 2=S 四棱台下底面+S 四棱台侧面 =(A 1B 1)2+4×12(AB +A 1B 1)h ′=202+4×12(10+20)×12=1120(cm 2).于是该实心零部件的表面积为S =S 1+S 2=1300+1120=2420(cm 2), 故所需加工处理费为0.2S =0.2×2420=484(元).(理)(2014·西安市长安中学期中)如图,在四棱锥P -ABCD 中,底面ABCD 为直角梯形,AD ∥BC ,∠ADC =90°,平面P AD ⊥底面ABCD ,Q 为AD 的中点,M 是棱PC 上的点,P A =PD =2,BC =12AD =1,CD = 3.(1)求证:平面PQB ⊥平面P AD ;(2)若M 为棱PC 的中点,求异面直线AP 与BM 所成角的余弦值. [解析] (1)∵BC =12AD ,Q 为AD 的中点,∴BC =DQ ,又∵AD ∥BC ,∴BC ∥DQ ,∴四边形BCDQ 为平行四边形,∴CD ∥BQ , ∵∠ADC =90°,∴∠AQB =90°,即QB ⊥AD ,又∵平面P AD ⊥平面ABCD ,且平面P AD ∩平面ABCD =AD ,∴BQ ⊥平面P AD ,又BQ ⊂平面PQB ,∴平面PQB ⊥平面P AD . (2)解法1:∵P A =PD ,Q 为AD 的中点,∴PQ ⊥AD .∵平面P AD ⊥平面ABCD ,且平面P AD ∩平面ABCD =AD ,∴PQ ⊥平面ABCD . 如图,以Q 为原点建立空间直角坐标系.则Q (0,0,0),A (1,0,0),P (0,0,3),B (0,3,0),C (-1,3,0), ∵M 是PC 中点,∴M (-12,32,32),∴AP →=(-1,0,3),BM →=(-12,-32,32),设异面直线AP 与BM 所成角为θ,则cos θ=|cos 〈AP →,BM →〉|=AP →·BM →|AP →|·|BM →|=277,∴异面直线AP 与BM 所成角的余弦值为277.解法2:连接AC 交BQ 于点O ,连接OM ,则OM ∥P A , 所以∠BMO 就是异面直线AP 与BM 所成的角.OM =12P A =1,BO =12BQ =32,由(1)知BQ ⊥平面P AD ,所以BQ ⊥P A ,∴BQ ⊥OM , ∴BM =BO 2+OM 2=(32)2+12=72, ∴cos ∠BMO =OM BM =172=277.。

安徽2015届高三第三次模拟数学试题(文)及答案

安徽2015届高三第三次模拟数学试题(文)及答案

正视图俯视图侧视图安庆2015届高三年级第三次模拟考试数学(文科)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟。

注意事项:1.答题前,务必在试题卷答题卡规定的地方填写自己的班级、姓名、考场号、座位号。

2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦擦干净后,再选涂其他答案标号。

3.答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上书写,要求字体工整、笔迹清晰。

作图题可先用铅笔在答题卡规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。

必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效。

4.保持卡面清洁,不折叠,不破损。

第I 卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 是虚数单位,则复数324321i i i -+-等于( ) A .i 62-- B .i 22+- C .i 24+ D .i 64-2.已知集合{}04|2>-=x x A ,{}02|<-=x x B ,则()B A C R ⋂等于( ) A .)2,(-∞B .[]2,2-C .()2,2-D .)2,2[-3.“3=m ”是“函数m x x f =)(为实数集R 上的奇函数”的( ).A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件4.在区间[]0,π上随机取一个实数x ,使得1sin 0,2x ⎡⎤∈⎢⎥⎣⎦的概率为( )A .1πB .2πC .13D .235.将函数π()sin(2)3f x x =+的图象向右平移ϕ个单位,得到的图象关于原点对称,则ϕ的最小正值为( )A .π6B .π3C .5π12 6.已知某几何体的三视图,则该几何体的体积是(A .12B .24C .36D .482 3 5 5 7 920 1 4 810 3 3 4 534 1 2 2 56 97.直线10x my ++=与不等式组30,20,20x y x y x +-≥⎧⎪-≥⎨⎪-≤⎩表示的平面区域有公共点,则实数m 的取值范围是( )A .14,33⎡⎤⎢⎥⎣⎦B .41,33⎡⎤--⎢⎥⎣⎦C .3,34⎡⎤⎢⎥⎣⎦D .33,4⎡⎤--⎢⎥⎣⎦8.已知圆心为O ,半径为1的圆上有不同的三个点C B A ,,,其中0=⋅OB OA ,存在实数,λμ满足0=++OB u OA OC λ,则实数,λμ的关系为( ) A .221λμ+= B .111λμ+= C .1λμ= D .1λμ+=9.已知抛物线28y x =的准线与双曲线()222210,0x y a b a b-=>>相交于A 、B 两点,双曲线的一条渐近线方程是y x =,点F 是抛物线的焦点,且△FAB 是等边三角形,则该双曲线的标准方程是( )A .183222=-y xB .221163x y -=C .221632x y -=D .221316x y -= 10.对于函数()x f x ae x =-,若存在实数,m n ,使得()0f x ≤的解集为[](),m n m n <,则实数a 的取值范围是( )A . ()1,00,e ⎛⎫-∞⋃ ⎪⎝⎭B . ()1,00,e ⎛⎤-∞⋃ ⎥⎝⎦C .10,e ⎛⎫⎪⎝⎭D . 10,e ⎛⎤⎥⎝⎦第II 卷(非选择题,共100分)二、填空题:本大题共5小题,每小题5分,共25分,把答案填在题中横线上。

2020-2021学年高三数学(文科)三校联考高考模拟试题及答案解析

2020-2021学年高三数学(文科)三校联考高考模拟试题及答案解析

三校联考高考数学模拟试卷(文科)(解析版)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x|x2+3x+2<0},集合,则M∪N=()A.{x|x≥﹣2} B.{x|x>﹣1} C.{x|x<﹣1} D.{x|x≤﹣2}2.命题p:∃x∈N,x3<x2;命题q:∀a∈(0,1)∪(1,+∞),函数f(x)=loga (x﹣1)的图象过点(2,0),则下列命题是真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q3.已知平面向量,的夹角为,且||=1,|+2|=2,则||=()A.2 B.C.1 D.34.已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y= B.y=C.y=±x D.y=5.执行如图所示的程序框图,则输出的S的值为()A.7 B.8 C.9 D.106.已知函数f(x)=2sin(2x+),把函数f(x)的图象沿x轴向左平移个单位,得到函数g(x)的图象.关于函数g(x),下列说法正确的是()A .在[,]上是增函数B .其图象关于直线x=﹣对称C .函数g (x )是奇函数D .当x ∈[0,]时,函数g (x )的值域是[﹣1,2]7.已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 是数列{a n }前n 项的和,则(n ∈N +)的最小值为( ) A .4B .3C .2﹣2 D .8.一个棱锥的三视图如图(尺寸的长度单位为m ),则该棱锥的全面积是(单位:m 2).( )A .B .C .D .9.已知函数f (x )=,则方程f (x )=ax 恰有两个不同实数根时,实数a的取值范围是( )(注:e 为自然对数的底数) A .(0,)B .[,]C .(0,)D .[,e]10.已知双曲线C :﹣=1的左、右焦点分别是F 1,F 2,正三角形△AF 1F 2的顶点A在y 轴上,边AF 1与双曲线左支交于点B ,且=4,则双曲线C 的离心率的值是( )A .+1 B .C .+1 D .11.已知一个平放的棱长为4的三棱锥内有一小球O (重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,若注入的水的体积是该三棱锥体积的时,小球与该三棱锥各侧面均相切(与水面也相切),则球的表面积等于( ) A .π B .π C .π D .π12.若定义在区间[﹣2016,2016]上的函数f (x )满足:对于任意的x 1,x 2∈[﹣2016,2016],都有f (x 1+x 2)=f (x 1)+f (x 2)﹣2016,且x >0时,有f (x )<2016,f (x )的最大值、最小值分别为M ,N ,则M+N 的值为( ) A .2015 B .2016C .4030D .4032二、填空题:本大题共4小题,每小题5分. 13.设i 为虚数单位,则复数= .14.已知函数f (x )=2x 2﹣xf ′(2),则函数f (x )的图象在点(2,f (2))处的切线方程是 . 15.若x ,y 满足若z=x+my 的最大值为,则实数m= .16.在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,且a 2=b 2+c 2+bc ,a=,S为△ABC 的面积,则S+cosBcosC 的最大值为 .三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知正项数列{a n }的前n 项和为S n ,且S n ,a n ,成等差数列. (1)证明数列{a n }是等比数列; (2)若b n =log 2a n +3,求数列{}的前n 项和T n .18.从甲、乙两部门中各任选10名员工进行职业技能测试,测试成绩(单位:分)数据的茎叶图如图1所示:(Ⅰ)分别求出甲、乙两组数据的中位数,并从甲组数据频率分布直方图如图2所示,求a ,b ,c 的值;(Ⅱ)从甲、乙两组数据中各任取一个,求所取两数之差的绝对值大于20的概率. 19.如图所示,在四棱锥P ﹣ABCD 中,底面是直角梯形ABCD ,其中AD ⊥AB ,CD ∥AB ,AB=4,CD=2,侧面PAD 是边长为2的等边三角形,且与底面ABCD 垂直,E 为PA 的中点.(1)求证:DE ∥平面PBC ; (2)求三棱锥A ﹣PBC 的体积.20.已知椭圆E :(a >b >0),F 1(﹣c ,0),F 2(c ,0)为椭圆的两个焦点,M 为椭圆上任意一点,且|MF 1|,|F 1F 2|,|MF 2|构成等差数列,过椭圆焦点垂直于长轴的弦长为3. (1)求椭圆E 的方程;(2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且⊥,求出该圆的方程.21.设函数f (x )=x 2﹣(a+b )x+ablnx (其中e 为自然对数的底数,a ≠e ,b ∈R ),曲线y=f (x )在点(e ,f (e ))处的切线方程为y=﹣e 2. (1)求b ;(2)若对任意x∈[,+∞),f(x)有且只有两个零点,求a的取值范围.请考生在(22)、(23)、(24)三题中任选一题作答.如果多做,则按所做第一个题目记分.作答时,请写清题号.[选修4-1:几何证明选讲]22.如图,AB是⊙O的直径,弦CA、BD的延长线相交于点E,EF垂直BA的延长线于点F.求证:(1)∠DEA=∠DFA;(2)AB2=BEBD﹣AEAC.[选修4-4:坐标系与参数方程]23.(2016福安市校级模拟)极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知曲线C1的极坐标方程为ρ=2sin(θ+),曲线C 2的极坐标方程为ρsinθ=a(a>0),射线θ=φ,θ=φ﹣,θ=φ+,与曲线C1分别交异于极点O的四点A、B、C、D.(Ⅰ)若曲线C1关于曲线C2对称,求a的值,并把曲线C1和曲线C2化成直角坐标方程;(Ⅱ)求|OA||OC|+|OB||OD|的值.[选修4-5:不等式选讲]24.=|x+m|.(Ⅰ)解关于m的不等式f(1)+f(﹣2)≥5;(Ⅱ)当x≠0时,证明:.参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x|x2+3x+2<0},集合,则M∪N=()A.{x|x≥﹣2} B.{x|x>﹣1} C.{x|x<﹣1} D.{x|x≤﹣2}【分析】根据题意先求出集合M和集合N,再求M∪N.【解答】解:∵集合M={x|x2+3x+2<0}={x|﹣2<x<﹣1},集合={x|2﹣x≤22}={x|﹣x≤2}={x|x≥﹣2},∴M∪N={x|x≥﹣2},故选A.【点评】本题考查集合的运算,解题时要认真审题,仔细解答.2.命题p:∃x∈N,x3<x2;命题q:∀a∈(0,1)∪(1,+∞),函数f(x)=loga (x﹣1)的图象过点(2,0),则下列命题是真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q【分析】分别判断出p,q的真假,从而判断出复合命题的真假.【解答】解:命题p:∃x∈N,x3<x2,是假命题;命题q:∀a∈(0,1)∪(1,+∞),令x﹣1=1,解得:x=2,此时f(2)=0,(x﹣1)的图象过点(2,0),是真命题;故函数f(x)=loga故¬p∧q真是真命题;故选:C.【点评】本题考查了不等式以及对数函数的性质,考查复合命题的判断,是一道基础题.3.已知平面向量,的夹角为,且||=1,|+2|=2,则||=()【分析】根据向量的数量积的运算和向量的模计算即可.【解答】解:∵|+2|=2,∴+4+4=||2+4||||cos+4||2=||2+2||+4=12,解得||=2,故选:A.【点评】本题考查了向量的数量积的运算和向量的模的计算,属于基础题.4.已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y= B.y=C.y=±x D.y=【分析】由离心率和abc的关系可得b2=4a2,而渐近线方程为y=±x,代入可得答案.【解答】解:由双曲线C:(a>0,b>0),则离心率e===,即4b2=a2,故渐近线方程为y=±x=x,故选:D.【点评】本题考查双曲线的简单性质,涉及的渐近线方程,属基础题.5.执行如图所示的程序框图,则输出的S的值为()【分析】由已知中的程序语句可知该框图的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:模拟执行程序框图,由程序框图可知该程序的功能是利用循环结构计算并输出变量S=﹣12+22﹣32+42的值,∵S=﹣12+22﹣32+42=10故选:D.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,属于基础题.6.已知函数f(x)=2sin(2x+),把函数f(x)的图象沿x轴向左平移个单位,得到函数g(x)的图象.关于函数g(x),下列说法正确的是()A.在[,]上是增函数B.其图象关于直线x=﹣对称C.函数g(x)是奇函数D.当x∈[0,]时,函数g(x)的值域是[﹣1,2]【分析】由条件利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再利用余弦函数的图象性质,得出结论.【解答】解:把函数f(x)=2sin(2x+)的图象沿x轴向左平移个单位,得到函数g(x)=2sin[2(x+)+]=2cos2x的图象,显然,函数g(x)是偶函数,故排除C.当x∈[,],2x∈[,π],函数g(x)为减函数,故排除A.当x=﹣时,g (x )=0,故g (x )的图象不关于直线x=﹣对称,故排除B .当x ∈[0,]时,2x ∈[0,],cos2x ∈[﹣,1],函数g (x )的值域是[﹣1,2],故选:D .【点评】本题主要考查函数y=Asin (ωx+φ)的图象变换规律,余弦函数的图象性质,属于基础题.7.已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 是数列{a n }前n 项的和,则(n ∈N +)的最小值为( ) A .4B .3C .2﹣2 D .【分析】由题意得(1+2d )2=1+12d ,求出公差d 的值,得到数列{a n }的通项公式,前n 项和,从而可得,换元,利用基本不等式,即可求出函数的最小值.【解答】解:∵a 1=1,a 1、a 3、a 13成等比数列, ∴(1+2d )2=1+12d . 得d=2或d=0(舍去), ∴a n =2n ﹣1, ∴S n ==n 2, ∴=.令t=n+1,则=t+﹣2≥6﹣2=4当且仅当t=3,即n=2时,∴的最小值为4.故选:A .【点评】本题主要考查等比数列的定义和性质,等比数列的通项公式,考查基本不等式,属于中档题.8.一个棱锥的三视图如图(尺寸的长度单位为m),则该棱锥的全面积是(单位:m2).()A.B.C.D.【分析】由三视图可以看出,此几何体是一个侧面与底面垂直的三棱锥,垂直于底面的侧面是一个高为2,底连长也为2的等腰直角三角形,底面与垂直于底面的侧面全等,此两面的面积易求,另两个与底面不垂直的侧面是全等的,可由顶点在底面上的射影作出此两侧面底边的高,将垂足与顶点连接,此线即为侧面三角形的高线,求出侧高与底面的连长,用三角形面积公式求出此两侧面的面积,将四个面的面积加起来即可【解答】解:由三视图可以看出,此几何体是一个侧面与底面垂直且底面与垂直于底面的侧面全等的三棱锥由图中数据知此两面皆为等腰直角三角形,高为2,底面连长为2,故它们的面积皆为=2,由顶点在底面的投影向另两侧面的底边作高,由等面积法可以算出,此二高线的长度长度相等,为,将垂足与顶点连接起来即得此两侧面的斜高,由勾股定理可以算出,此斜高为2,同理可求出侧面底边长为,可求得此两侧面的面积皆为=,故此三棱锥的全面积为2+2++=,故选A.【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查对三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是三棱锥的全面积,做本题时要注意本题中的规律应用,即四个侧面两两相等,注意到这一点,可以大大降低运算量.三视图的投影规则是主视、俯视 长对正;主视、左视高平齐,左视、俯视 宽相等.9.已知函数f (x )=,则方程f (x )=ax 恰有两个不同实数根时,实数a的取值范围是( )(注:e 为自然对数的底数) A .(0,)B .[,]C .(0,)D .[,e]【分析】由题意,方程f (x )=ax 恰有两个不同实数根,等价于y=f (x )与y=ax 有2个交点,又a 表示直线y=ax 的斜率,求出a 的取值范围. 【解答】解:∵方程f (x )=ax 恰有两个不同实数根, ∴y=f (x )与y=ax 有2个交点, 又∵a 表示直线y=ax 的斜率, ∴y ′=,设切点为(x 0,y 0),k=,∴切线方程为y ﹣y 0=(x ﹣x 0),而切线过原点,∴y 0=1,x 0=e ,k=, ∴直线l 1的斜率为, 又∵直线l 2与y=x+1平行, ∴直线l 2的斜率为,∴实数a 的取值范围是[,). 故选:B .【点评】本题考查了函数的图象与性质的应用问题,解题时应结合图象,以及函数与方程的关系,进行解答,是易错题.10.已知双曲线C:﹣=1的左、右焦点分别是F1,F2,正三角形△AF1F2的顶点A在y轴上,边AF1与双曲线左支交于点B,且=4,则双曲线C的离心率的值是()A.+1 B.C.+1 D.【分析】不妨设△AF1F2的边长为4,求得c=2,由向量共线可得|BF1|=1,在△BF1F2中,由余弦定理求得|BF2|=,再由双曲线的定义和离心率公式计算即可得到所求值.【解答】解:不妨设△AF1F2的边长为4,则|F1F2|=2c=4,c=2.由,可得|BF1|=1,在△BF1F2中,由余弦定理可得|BF2|2=|BF1|2+|F1F2|2﹣2|BF1||F1F2|cos∠BF1F2=1+16﹣2×1×4×=13,|BF2|=,由双曲线的定义可得2a=|BF2|﹣|BF1|=﹣1,解得a=,则e==.故选:B.【点评】本题考查双曲线的离心率的求法,注意运用双曲线的定义和余弦定理,考查运算能力,属于中档题.11.已知一个平放的棱长为4的三棱锥内有一小球O(重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,若注入的水的体积是该三棱锥体积的时,小球与该三棱锥各侧面均相切(与水面也相切),则球的表面积等于()A.πB.πC.πD.π【分析】先求出没有水的部分的体积是,再求出棱长为2,可得小球的半径,即可求出球的表面积.【解答】解:由题意,没有水的部分的体积是正四面体体积的,∵正四面体的各棱长均为4, ∴正四面体体积为=,∴没有水的部分的体积是,设其棱长为a ,则=, ∴a=2,设小球的半径为r ,则4×r=,∴r=,∴球的表面积S=4=.故选:C .【点评】本题考查球的表面积,考查体积的计算,考查学生分析解决问题的能力,正确求出半径是关键.12.若定义在区间[﹣2016,2016]上的函数f (x )满足:对于任意的x 1,x 2∈[﹣2016,2016],都有f (x 1+x 2)=f (x 1)+f (x 2)﹣2016,且x >0时,有f (x )<2016,f (x )的最大值、最小值分别为M ,N ,则M+N 的值为( ) A .2015B .2016C .4030D .4032【分析】特殊值法:令x 1=x 2=0,得f (0)=2016,再令x 1+x 2=0,将f (0)=2014代入可得f (x )+f (﹣x )=4032.根据条件x >0时,有f (x )<2016,得出函数的单调性,根据单调性求出函数的最值.【解答】解:∵对于任意的x 1,x 2∈[﹣2016,2016],都有f (x 1+x 2)=f (x 1)+f (x 2)﹣2016,∴令x 1=x 2=0,得f (0)=2016,再令x 1+x 2=0,将f (0)=2014代入可得f (x )+f (﹣x )=4032. 设x 1<x 2,x 1,x 2∈[﹣2016,2016],则x 2﹣x 1>0,f (x 2﹣x 1)=f (x 2)+f (﹣x 1)﹣2016,∴f(x2)+f(﹣x1)﹣2016<2016.又∵f(﹣x1)=4032﹣f(x1),∴f(x2)<f(x1),即函数f(x)是递减的,∴f(x)max=f(﹣2016),f(x)min=f(2016).又∵f(2016)+f(﹣2016)=4032,∴M+N的值为4032.故选D.【点评】考查了抽象函数中特殊值的求解方法,得出函数的性质.二、填空题:本大题共4小题,每小题5分.13.设i为虚数单位,则复数= i .【分析】直接由复数代数形式的乘除运算化简复数,则答案可求.【解答】解:=,故答案为:i.【点评】本题考查了复数代数形式的乘除运算,是基础题.14.已知函数f(x)=2x2﹣xf′(2),则函数f(x)的图象在点(2,f(2))处的切线方程是4x﹣y﹣8=0 .【分析】求导函数,确定切点处的斜率与切点的坐标,即可求得函数f(x)的图象在点(2,f(2))处的切线方程.【解答】解:∵函数f(x)=2x2﹣xf′(2),∴f′(x)=4x﹣f′(2),∴f′(2)=8﹣f′(2),∴f′(2)=4∴f(2)=8﹣2×4=0∴函数f(x)的图象在点(2,f(2))处的切线方程是y﹣0=4(x﹣2)即4x﹣y﹣8=0故答案为:4x﹣y﹣8=0【点评】本题考查导数知识的运用,考查导数的几何意义,确定切点处的斜率与切点的坐标是关键.15.若x,y满足若z=x+my的最大值为,则实数m= 2 .【分析】画出满足约束条件的可行域,求出目标函数的最大值,从而建立关于m的等式,即可得出答案.【解答】解:由z=x+my得y=x,作出不等式组对应的平面区域如图:∵z=x+my的最大值为,∴此时z=x+my=,此时目标函数过定点C(,0),作出x+my=的图象,由图象知当直线x+my=,经过但A时,直线AC的斜率k=>﹣1,即m>1,由平移可知当直线y=x,经过点A时,目标函数取得最大值,此时满足条件,由,解得,即A(,),同时,A也在直线x+my=上,代入得+m=,解得m=2,故答案为:2.【点评】本题主要考查线性规划的应用,根据目标函数的几何意义确定取得最大值的最优解是解决本题的关键.16.在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,且a 2=b 2+c 2+bc ,a=,S为△ABC 的面积,则S+cosBcosC 的最大值为.【分析】先利用余弦定理求得A ,进而通过正弦定理表示出c ,代入面积公式求得S+cosBcosC 的表达式,利用两角和与差的余弦函数公式化简求得其最大值.【解答】解:∵a 2=b 2+c 2+bc , ∴cosA==﹣,∴A=,由正弦定理 c=a ==2sinC , ∴S===sinBsinC ∴S+cosBcosC=sinBsinC+cosBcosC=cos (B ﹣C )≤,故答案为:.【点评】本题主要考查了正弦定理和余弦定理的应用.求得面积的表达式是解决问题的关键,属于中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知正项数列{a n }的前n 项和为S n ,且S n ,a n ,成等差数列. (1)证明数列{a n }是等比数列;(2)若b n =log 2a n +3,求数列{}的前n 项和T n .【分析】(1)由题意得2a n =S n +,易求,当n ≥2时,S n =2a n ﹣,S n ﹣1=2a n﹣1﹣,两式相减得a n =2a n ﹣2a n ﹣1(n ≥2),由递推式可得结论;(2)由(1)可求=2n ﹣2,从而可得b n ,进而有=,利用裂项相消法可得T n ;【解答】解:(1)证明:由S n ,a n ,成等差数列,知2a n =S n +, 当n=1时,有,∴,当n ≥2时,S n =2a n ﹣,S n ﹣1=2a n ﹣1﹣, 两式相减得a n =2a n ﹣2a n ﹣1(n ≥2),即a n =2a n ﹣1, 由于{a n }为正项数列,∴a n ﹣1≠0,于是有=2(n ≥2),∴数列{a n }从第二项起,每一项与它前一项之比都是同一个常数2, ∴数列{a n }是以为首项,以2为公比的等比数列. (2)解:由(1)知==2n ﹣2,∴b n =log 2a n +3==n+1,∴==,∴T n =()+()+…+()==.【点评】本题考查等差数列、等比数列的概念、数列的求和,裂项相消法是高考考查的重点内容,应熟练掌握.18.从甲、乙两部门中各任选10名员工进行职业技能测试,测试成绩(单位:分)数据的茎叶图如图1所示:(Ⅰ)分别求出甲、乙两组数据的中位数,并从甲组数据频率分布直方图如图2所示,求a,b,c的值;(Ⅱ)从甲、乙两组数据中各任取一个,求所取两数之差的绝对值大于20的概率.【分析】(Ⅰ)根据茎叶图能求出甲部门数据的中位数和乙部门数据的中位数,再求出甲部门的成绩在70~80的频率为0.5,由此能求出a,b,c.(Ⅱ)利用列举法求出从“甲、乙两组数据中各任取一个”的所有可能情况和其中所取“两数之差的绝对值大于20”的情况,由此能求出所取两数之差的绝对值大于20的概率.【解答】解:(Ⅰ)根据茎叶图得甲部门数据的中位数是78.5,乙部门数据的中位数是78.5;∵甲部门的成绩在70~80的频率为0.5,∴a=0.05,在80~90的频率为0.2,∴b=0.02在60~70的频率为0.1,∴c=0.01.(Ⅱ)从“甲、乙两组数据中各任取一个”的所有可能情况是:(63,67),(63,68),(63,69),(63,73),(63,75),…,(96,86),(96,94),(96,97)共有100种;其中所取“两数之差的绝对值大于20”的情况是:(63,85),(63,86),(63,94),(63,97),(72,94),(72,97),(74,97),(76,97),(91,67),(91,68),(91,69),(96,67),(96,68),(96,69),(96,73),(96,75)共有16种,故所求的概率为.【点评】本题考查概率的求法,考查频率分布直方图的应用,是基础题,解题时要认真审题,注意列举法的合理运用.19.如图所示,在四棱锥P﹣ABCD中,底面是直角梯形ABCD,其中AD⊥AB,CD∥AB,AB=4,CD=2,侧面PAD是边长为2的等边三角形,且与底面ABCD垂直,E为PA的中点.(1)求证:DE∥平面PBC;(2)求三棱锥A﹣PBC的体积.【分析】(1)(法一)取PB的中点F,连接EF,CF,由已知得EF∥AB,且,从而四边形CDEF是平行四边形,由此能证明DE∥平面PBC.(1)(法二):取AB的中点F,连接DF,EF,由已知得四边形BCDF为平行四边形,从而DF∥BC,由此能证明DE∥平面PBC.(2)取AD的中点O,连接PO,由已知得PO⊥平面ABCD,由此能求出三棱锥A﹣PBC 的体积.【解答】(1)证明:(方法一):取PB的中点F,连接EF,CF.∵点E,F分别是PA,PB的中点∴EF∥AB,且又CD∥AB,且∴EF∥CD,且EF=CD∴四边形CDEF是平行四边形,∴DE∥CF.又DE⊄平面PBC,CF⊂平面PBC∴DE∥平面PBC.(1)证明:(方法二):取AB的中点F,连接DF,EF.在直角梯形ABCD中,CD∥AB,且AB=4,CD=2,所以BF∥CD,且BF=CD.所以四边形BCDF为平行四边形,所以DF∥BC.在△PAB中,PE=EA,AF=FB,所以EF∥PB.又DF∩EF=F,PB∩BC=B,所以平面DEF∥平面PBC.因为DE⊂平面DEF,所以DE∥平面PBC.(2)解:取AD的中点O,连接PO.在△PAD中,PA=PD=AD=2,所以PO⊥AD,PO=又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以PO⊥平面ABCD,所以PO就是三棱锥P﹣ABC的高.在直角梯形ABCD中,CD∥AB,且AB=4,AD=2,AB⊥AD,所以.故.【点评】本题考查直线与平面平行的证明,考查三棱锥的体积的求法,解题时要注意空间思维能力的培养.20.已知椭圆E :(a >b >0),F 1(﹣c ,0),F 2(c ,0)为椭圆的两个焦点,M 为椭圆上任意一点,且|MF 1|,|F 1F 2|,|MF 2|构成等差数列,过椭圆焦点垂直于长轴的弦长为3. (1)求椭圆E 的方程;(2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且⊥,求出该圆的方程.【分析】(1)通过|MF 1|,|F 1F 2|,|MF 2|构成等差数列,过椭圆焦点垂直于长轴的弦长为3.列出方程,求出a 、b ,即可求椭圆E 的方程;(2)假设以原点为圆心,r 为半径的圆满足条件.(ⅰ)若圆的切线的斜率存在,并设其方程为y=kx+m ,则r=,然后联立直线方程与椭圆方程,设A (x 1,y 1),B (x 2,y 2),结合x 1x 2+y 1y 2=0,即可求圆的方程.(ⅱ)若AB 的斜率不存在,设A (x 1,y 1),则B (x 1,﹣y 1),利用⊥,求出半径,得到结果.【解答】解:(1)由题知2|F 1F 2|=|MF 1|+|MF 2|, 即2×2c=2a ,得a=2c .①又由,得②且a 2=b 2+c 2,综合解得c=1,a=2,b=.∴椭圆E 的方程为+=1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(2)假设以原点为圆心,r 为半径的圆满足条件.(ⅰ)若圆的切线的斜率存在,并设其方程为y=kx+m ,则r=,r 2=,①消去y ,整理得(3+4k 2)x 2+8kmx+4(m 2﹣3)=0,设A (x 1,y 1),B (x 2,y 2),又∵⊥,∴x1x2+y1y2=0,即4(1+k2)(m2﹣3)﹣8k2m2+3m2+4k2m2=0,化简得m2=(k2+1),②由①②求得r2=.所求圆的方程为x2+y2=.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)(ⅱ)若AB的斜率不存在,设A(x1,y1),则B(x1,﹣y1),∵⊥,∴=0,得x=.此时仍有r2=|x|=.综上,总存在以原点为圆心的圆x2+y2=满足题设条件.【点评】考查椭圆的方程和基本性质,与向量相结合的综合问题.考查分析问题解决问题的能力.21.设函数f(x)=x2﹣(a+b)x+ablnx(其中e为自然对数的底数,a≠e,b∈R),曲线y=f(x)在点(e,f(e))处的切线方程为y=﹣e2.(1)求b;(2)若对任意x∈[,+∞),f(x)有且只有两个零点,求a的取值范围.【分析】(1)求导,从而求b;(2)由(1)得,,从而①当时,要使得f(x)在上有且只有两个零点,只需=,②当时,求导确定零点个数,③当a>e时,求导确定零点个数.【解答】解:(1),∵f′(e)=0,a≠e,∴b=e;(2)由(1)得,,①当时,由f′(x)>0得x>e;由f′(x)<0得.此时f(x)在上单调递减,在(e,+∞)上单调递增.∵,;∴要使得f(x)在上有且只有两个零点,则只需=,即;②当时,由f′(x)>0得或x>e;由f′(x)<0得a<x<e.此时f(x)在(a,e)上单调递减,在和(e,+∞)上单调递增.此时,∴此时f(x)在[e,+∞)至多只有一个零点,不合题意;③当a>e时,由f′(x)>0得或x>a,由f′(x)<0得e<x<a,此时f(x)在和(a,+∞)上单调递增,在(e,a)上单调递减,且,∴f(x)在至多只有一个零点,不合题意.综上所述,a的取值范围为.【点评】本题考查了导数的综合应用及导数的几何意义的应用,同时考查了分类讨论的思想应用,属于中档题.请考生在(22)、(23)、(24)三题中任选一题作答.如果多做,则按所做第一个题目记分.作答时,请写清题号.[选修4-1:几何证明选讲]22.如图,AB是⊙O的直径,弦CA、BD的延长线相交于点E,EF垂直BA的延长线于点F.求证:(1)∠DEA=∠DFA;(2)AB2=BEBD﹣AEAC.【分析】(1)连接AD,利用AB为圆的直径结合EF与AB的垂直关系,通过证明A,D,E,F四点共圆即可证得结论;(2)由(1)知,BDBE=BABF,再利用△ABC∽△AEF得到比例式,最后利用线段间的关系即求得AB2=BEBD﹣AEAC.【解答】证明:(1)连接AD,因为AB为圆的直径,所以∠ADB=90°,(1分)又EF⊥AB,∠AFE=90°,(1分)则A,D,E,F四点共圆(2分)∴∠DEA=∠DFA(1分)(2)由(1)知,BDBE=BABF,(1分)又△ABC∽△AEF∴,即ABAF=AEAC(2分)∴BEBD﹣AEAC=BABF﹣ABAF=AB(BF﹣AF)=AB2(2分)【点评】本小题主要考查与圆有关的比例线段、四点共圆的证明方法、三角形相似等基础知识,考查运算求解能力、化归与转化思想.属于中档题.[选修4-4:坐标系与参数方程]23.(2016福安市校级模拟)极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知曲线C1的极坐标方程为ρ=2sin(θ+),曲线C 2的极坐标方程为ρsinθ=a(a>0),射线θ=φ,θ=φ﹣,θ=φ+,与曲线C1分别交异于极点O的四点A、B、C、D.(Ⅰ)若曲线C1关于曲线C2对称,求a的值,并把曲线C1和曲线C2化成直角坐标方程;(Ⅱ)求|OA||OC|+|OB||OD|的值.【分析】(Ⅰ)曲线C1的极坐标方程为ρ=2sin(θ+),展开可得:,把ρ2=x2+y2,x=ρcosθ,y=ρsinθ代入可得直角坐标方程.把C2的方程化为直角坐标方程为y=a,根据曲线C1关于曲线C2对称,故直线y=a经过圆心解得a,即可得出.(Ⅱ)由题意可得,|OA|,|OB|,|OC|,|OD|,代入利用和差公式即可得出.【解答】解:(Ⅰ)曲线C1的极坐标方程为ρ=2sin(θ+),展开可得:,化为直角坐标方程为(x﹣1)2+(y﹣1)2=2.把C2的方程化为直角坐标方程为y=a,∵曲线C1关于曲线C2对称,故直线y=a经过圆心(1,1),解得a=1,故C2的直角坐标方程为y=1.(Ⅱ)由题意可得,,,,,.【点评】本题考查了直角坐标与极坐标的互化、圆的对称性、直线与圆相交弦长问题,考查了推理能力与计算能力,属于中档题.[选修4-5:不等式选讲]24.=|x+m|.(Ⅰ)解关于m的不等式f(1)+f(﹣2)≥5;(Ⅱ)当x≠0时,证明:.【分析】(Ⅰ)问题等价于|m+1|+|m﹣2|≥5,通过讨论m的范围,求出不等式的解集即可;(Ⅱ)根据绝对值的性质证明即可.【解答】解:(Ⅰ)不等式f(1)+f(﹣2)≥5等价于|m+1|+|m﹣2|≥5,可化为,解得m≤﹣2;或,无解;或,解得m≥3;综上不等式解集为(﹣∞,﹣2]∪[3,+∞)…(5分)(Ⅱ)证明:当x≠0时,,|x|>0,,…(10分)【点评】本题考查了解绝对值不等式问题,考查绝对值的性质,是一道中档题.。

安徽省合肥市2015届高考数学三模试卷文(含解析)

安徽省合肥市2015届高考数学三模试卷文(含解析)

安徽省合肥市2015届高考数学三模试卷(文科)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知复数z满足方程z2+3=0,则z•(表示复数z的共扼复数)的值是()A.﹣3i B.3i C.﹣3 D.32.(5分)设集合M={x∈R|y=},N={y∈R|y=x2﹣1,x∈R},则集合M和N的关系是()A.M=N B.M∪N=R C.N⊊M D.M⊈N3.(5分)双曲线=1(a>0,b>0)的一条渐近线的斜率为2,则该双曲线的离心率为()A.B.C.D.4.(5分)执行如图所示的程序框图,输出的结果是()A.4 B.8 C.16 D.2165.(5分)已知a=sin2,b=log2,c=log,则()A.a>b>c B.c>a>b C.a>c>b D.c>b>a6.(5分)等比数列{a n}中,a2=,a6=4,记{a n}的前n项积为T n,则T7=()A.1 B.1或一1 C.2 D.2或一27.(5分)=()A.B.C.D.18.(5分)某三棱锥的三视图如图所示,则该三棱锥各面中,最小的面积为()A.B.C.1 D.9.(5分)在△ABC中,∠ABC=30°,AB=,BC边上的中线AD=1,则AC的长度为()A.1或B.C.D.1或10.(5分)已知函数f(x)=,则关于x的方程f(x)=f(x﹣2)解的个数为()A.1 B.2 C.3 D.4二、填空题(本大题共5}J题,每小题5分,共25分.把答案填在答题卡的相应位置)11.(5分)命题“若|x|=1,则x=1”的否命题为.12.(5分)已知点A(1,2),B(a,4),向量=(2,1),若∥,则实数a的值为.13.(5分)已知实数x,y满足条件,则z=x﹣2y的最大值与最小值之差为.14.(5分)已知函数f(x)对任意实数x,y满足f(x+y)=f(x)+f(y),且f(1)≥2.若存在整数m,使得f(﹣2)﹣m2﹣m+4=0,则m取值的集合为.15.(5分)已知B,C两点在圆O:x2+y2=1上,A(a,0)为x轴上一点,且a>l.给出以下命题:①•的最小值为一1;②△OBC面积的最大值为1;③若a=,且直线AB,AC都与圆O相切,则△ABC为正三角形;④若a=,且=λ(λ>0),则当△OBC面积最大时,|AB|=;⑤若a=,且=,圆O上的点D满足,则直线BC的斜率是.其中正确的是(写出所有正确命题的编号).三、解答题(本大题共6个小题,共75分.解答应写出文字说明、证明过程和演算步骤)16.(12分)已知函数f(x)=sinωx+cos(ωx+)(ω>0)的最小正周期T=4π(I)求ω;(Ⅱ)当x∈时,求函数:y=f(x)﹣的零点.17.(12分)某集团公司生产所需原材料中的一种管材由两家配套厂提供,已知该管材的内径设计标准为500mm,内径尺寸满足20.(13分)已知函数f(x)=(e是自然对数的底数,其中常数a,n满足a>b,且a+b=1,函数y=f(x)的图象在点(1,f(1))处的切线斜率是2﹣.(Ⅰ)求a,b的值;(Ⅱ)求函数f(x)的单调区间.21.(13分)已知动直线l:y=kx+k恒过椭圆E:=1(a>b>0)的一个顶点A,顶点B与A关于坐标原点O对称,该椭圆的一个焦点F满足∠FAB=30°.(Ⅰ)求椭圆E的标准方程;(Ⅱ)如果点C满足3+2=,当k=时,记直线l与椭圆E的另一个公共点为P,求∠BPC 平分线所在直线的方程.安徽省合肥市2015届高考数学三模试卷(文科)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知复数z满足方程z2+3=0,则z•(表示复数z的共扼复数)的值是()A.﹣3i B.3i C.﹣3 D.3考点:复数的代数表示法及其几何意义.专题:数系的扩充和复数.分析:直接计算即可.解答:解:∵z2+3=0,∴z=±i,∴z•=﹣3i2=3,故选:D.点评:本题考查复数的相关知识,注意解题方法的积累,属于基础题.2.(5分)设集合M={x∈R|y=},N={y∈R|y=x2﹣1,x∈R},则集合M和N的关系是()A.M=N B.M∪N=R C.N⊊M D.M⊈N考点:函数的值域;集合的包含关系判断及应用;函数的定义域及其求法.专题:函数的性质及应用.分析:求出函数的大电影与值域,即可判断两个集合的关系.解答:解:集合M={x∈R|y=}={x|x≥﹣1}=考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:利用双曲线的渐近线,转化求解离心率即可.解答:解:双曲线=1(a>0,b>0)的一条渐近线的斜率为2,可得,即b=2a,c2﹣a2=4a2,可得e=.故选:C.点评:本题考查双曲线的简单性质的应用,离心率的求法,考查计算能力.4.(5分)执行如图所示的程序框图,输出的结果是()A.4 B.8 C.16 D.216考点:程序框图.专题:算法和程序框图.分析:根据程序框图进行模拟运算即可.解答:解:第一次1≤6,b=2,a=1+2=3,第二次3≤6,b=4,a=3+2=5,第三次5≤6,b=24=16,a=5+2=7,第四次7≤6不成立,输出b=16,故选:C点评:本题主要考查了程序框图和算法,属于基本知识的考查5.(5分)已知a=sin2,b=log2,c=log,则()A.a>b>c B.c>a>b C.a>c>b D.c>b>a考点:对数值大小的比较.专题:函数的性质及应用.分析:利用指数函数与对数函数、三角函数的单调性即可得出.解答:解:∵0<a=sin2<1,b=log2<0,c=log=log23>1,∴c>a>b.故选:B.点评:本题考查了指数函数与对数函数、三角函数的单调性,属于基础题.6.(5分)等比数列{a n}中,a2=,a6=4,记{a n}的前n项积为T n,则T7=()A.1 B.1或一1 C.2 D.2或一2考点:等比数列的前n项和.专题:等差数列与等比数列.分析:利用等比中项的性质计算即得结论.解答:解:设等比数列{a n}的公比为q,则q==2或﹣2,∴a4==1,∴a1a7=a2a6=a3a5==1,∴T7=1,故选:A.点评:本题考查等比数列的前几项的积,利用等比中项的性质是解决本题的关键,注意解题方法的积累,属于中档题.7.(5分)=()A.B.C.D.1考点:三角函数的化简求值.专题:计算题;三角函数的求值.分析:由倍角公式和和差化积公式化简后即可求值.解答:解:===1.故选:D.点评:本题主要考查了倍角公式和和差化积公式的应用,熟记相关公式是解题的关键,属于基础题.8.(5分)某三棱锥的三视图如图所示,则该三棱锥各面中,最小的面积为()A.B.C.1 D.考点:由三视图求面积、体积.专题:综合题;空间位置关系与距离.分析:根据几何体的三视图,得出该几何体是直三棱锥,根据图中的数据,求出该三棱锥的4个面的面积,得出面积最大的三角形的面积.解答:解:根据几何体的三视图,得该几何体是如图所示的直三棱锥,且侧棱PA⊥底面ABC,PA=1,AC=2,点B到AC的距离为1,∴底面△ABC的面积为S1=×2×1=1,侧面△PAB的面积为S2=××1=,侧面△PAC的面积为S3=×2×1=1,在侧面△PBC中,BC=,PB=,PC=,∴△PBC是Rt△,∴△PBC的面积为S4=××=,∴三棱锥P﹣A BC的所有面中,面积最小的是△PAB,为.故选:B.点评:本题考查了空间几何体的三视图的应用问题,也考查了空间中的位置关系与距离的计算问题,是基础题目.9.(5分)在△ABC中,∠ABC=30°,AB=,BC边上的中线AD=1,则AC的长度为()A.1或B.C.D.1或考点:余弦定理.专题:解三角形.分析:在三角形ABD中,利用余弦定理列出关系式,把AB与AD,cos∠ABC的值代入求出BD的长,进而确定出BC的长,在三角形ABC中,利用余弦定理求出AC的长即可.解答:解:在△ABD中,∠ABC=30°,AB=,AD=1,由余弦定理得:AD2=AB2+BD2﹣2AB•BD•cos∠A BC,即1=3+BD2﹣3BD,解得:BD=1或BD=2,若BD=1,则BC=2CD=2,在△ABC中,由余弦定理得:AC2=AB2+BC2﹣2AB•BC•cos∠ABC=3+4﹣6=1,解得:AC=1;若BD=2,则BC=2CD=4,在△ABC中,由余弦定理得:AC2=AB2+BC2﹣2AB•BC•cos∠ABC=3+16﹣12=7,解得:AC=,综上,AC的长为1或.故选:A.点评:此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.10.(5分)已知函数f(x)=,则关于x的方程f(x)=f(x﹣2)解的个数为()A.1 B.2 C.3 D.4考点:根的存在性及根的个数判断;分段函数的应用.专题:函数的性质及应用.分析:由题意可得本题即求函数y=f(x)的图象和y=f(x﹣2)的图象的交点个数,数形结合可得结论.解答:解:由函数f(x)=,可得f(x﹣2)=,关于x的方程f(x)=f(x﹣2)解的个数,即函数y=f(x)的图象和y=f(x﹣2)的图象的交点个数,如图所示:数形结合可得函数y=f(x)的图象和y=f(x﹣2)的图象的交点个数为3,故选:C.点评:本题主要考查函数的图象特征,方程根的存在性以及个数判断,体现了数形结合、转化的数学思想,属于中档题.二、填空题(本大题共5}J题,每小题5分,共25分.把答案填在答题卡的相应位置)11.(5分)命题“若|x|=1,则x=1”的否命题为若|x|≠1,则x≠1.考点:四种命题间的逆否关系.专题:简易逻辑.分析:直接利用四种命题的逆否关系,写出结果即可.解答:解:有否命题的定义可知:命题“若|x|=1,则x=1”的否命题为:“若|x|≠1,则x≠1”.故答案为:若|x|≠1,则x≠1.点评:本题考查四种命题的逆否关系,基本知识的考查.12.(5分)已知点A(1,2),B(a,4),向量=(2,1),若∥,则实数a的值为5.考点:平面向量的坐标运算.专题:平面向量及应用.分析:根据平面向量平行的坐标表示,列出方程,求出a的值.解答:解:∵点A(1,2),B(a,4),向量=(2,1),∴=(a﹣1,2);又∥,∴(a﹣1)﹣2×2=0,解得a=5,∴实数a的值为5.故答案为:5.点评:本题考查了平面向量的坐标表示与平面向量的平行问题,是基础题目.13.(5分)已知实数x,y满足条件,则z=x﹣2y的最大值与最小值之差为3.考点:简单线性规划.专题:不等式的解法及应用.分析:由题意作出其平面区域,将z=x﹣2y化为y=x﹣,z相当于直线的纵截距,由几何意义可得.解答:解:由题意作出其平面区域,将z=x﹣2y化为y=x﹣z,显然直线过(1,0)时,z最大,z最大值=1,直线过(0,1)时,z最小,z最小值=﹣2,故答案为:3.点评:本题考查了简单线性规划,作图要细致认真,属于中档题.14.(5分)已知函数f(x)对任意实数x,y满足f(x+y)=f(x)+f(y),且f(1)≥2.若存在整数m,使得f(﹣2)﹣m2﹣m+4=0,则m取值的集合为{﹣1,0}.考点:抽象函数及其应用.专题:函数的性质及应用.分析:根据抽象函数,判断函数的奇偶性,结合一元二次不等式的性质进行求解即可.解答:解:令x=y=0得f(0)=f(0)+f(0),解得f(0)=0,令y=﹣x,则f(x﹣x)=f(x)+f(﹣x)=f(0)=0,即f(﹣x)=﹣f(x),∴函数f(x)是奇函数,若存在整数m,使得f(﹣2)﹣m2﹣m+4=0,则﹣f(2)﹣m2﹣m+4=0,即f(2)=﹣m2﹣m+4=﹣(m+)2+,令x=y=1,则f(1+1)=f(1)+f(1),即f(2)=2f(1)≥4,即﹣m2﹣m+4≥4,即﹣m2﹣m≥0.则m2+m≤0,解得﹣1≤m≤0,∵m是整数,∴m=﹣1或0,故m取值的集合为{﹣1,0},故答案为:{﹣1,0}.点评:本题主要考查抽象函数的应用,根据条件判断函数的奇偶性是解决本题的关键.综合考查函数的性质.15.(5分)已知B,C两点在圆O:x2+y2=1上,A(a,0)为x轴上一点,且a>l.给出以下命题:①•的最小值为一1;②△OBC面积的最大值为1;③若a=,且直线AB,AC都与圆O相切,则△ABC为正三角形;④若a=,且=λ(λ>0),则当△OBC面积最大时,|AB|=;⑤若a=,且=,圆O上的点D满足,则直线BC的斜率是.其中正确的是⑤(写出所有正确命题的编号).考点:命题的真假判断与应用.专题:直线与圆;简易逻辑.分析:①设C(cosθ,sinθ)(θ∈(cosθ,sinθ),θ∈时,求函数:y=f(x)﹣的零点.考点:两角和与差的正弦函数;三角函数的周期性及其求法.专题:三角函数的图像与性质.分析:(I)由条件利用三角恒等变换函数f(x)的解析式,为f(x)=sin(ωx+),由函数f(x)的最小正周期T==4π,求得ω=的值.(Ⅱ)当条件求得sin(x+)=,可得x+=2kπ+或x+=2kπ+,由此求得x的值.解答:解:(I)函数f(x)=sinωx+cos(ωx+)=sinωx+cosωx﹣sinωx=sinωx++cosωx=sin(ωx+),且函数f(x)的最小正周期T==4π,∴ω=,f(x)=sin(x+).(Ⅱ)当x∈时,由f(x)﹣,可得sin(x+)=,∴x+=2kπ+或x+=2kπ+,求得x=4kπ﹣,或 x=4kπ+π,k∈z,∵x∈,∴x=﹣,或x=π.点评:本题主要考查三角恒等变换,根据三角函数的值求角,属于中档题.17.(12分)某集团公司生产所需原材料中的一种管材由两家配套厂提供,已知该管材的内径设计标准为500mm,内径尺寸满足∴AD∥MF,AD=MF,∴四边形ADFM是平行四边形,∴AM∥DF,∵AM⊂面ABE,DF⊄面ABE,∴DF∥面ABE;(Ⅱ)解:由△BCE为等边三角形,面BCE⊥面ABCD,BC=2,可得点E到平面ABCD的距离为,∴点F到平面ABCD的距离为,∵ABCD为等腰梯形,且AB=AD=DC=1,BC=2,∴S△BCD=,∴V B﹣CDF=V F﹣BCD=.点评:本题考查线面平行的判定,考查求三棱锥B一CDF的体积,证明四边形ADFM是平行四边形是关键.19.(13分)已知数列{a n}的前n项和为S n,满足2S n=n(a n+4)(n∈N*)(I)设a2=5,求a4;(Ⅱ)设a2=t,若当且仅当n=5时S n取得最大值,求实数t的取值范围.考点:数列递推式.专题:点列、递归数列与数学归纳法.分析:(I)通过对2S n=n(a n+4)(n∈N*)中令n=1,3,4,结合a2=5计算即得结论;(Ⅱ)通过2S n=n(a n+4)(n∈N*)可得当n≥2时,有2S n﹣1=(n﹣1)(a n﹣1+4)(n∈N*),两者相减可得(n﹣2)a n=(n﹣1)a n﹣1﹣4,进而有(n﹣1)a n+1=na n﹣4,两者相减可得数列{a n}为等差数列,计算即得结论.解答:解:(I)∵2S n=n(a n+4)(n∈N*),a2=5,∴当n=1时,可得a1=4;当n=3时,2(a1+a2+a3)=2(4+5+a3)=3(a3+4),即a3=6;当n=4时,可得2(a1+a2+a3+a4)=2(4+5+6+a4)=3(4+a4),即a4=7;(Ⅱ)∵2S n=n(a n+4)(n∈N*),∴当n≥2时,有2S n﹣1=(n﹣1)(a n﹣1+4)(n∈N*),两式相减可得:2a n=na n﹣(n﹣1)a n﹣1+4,即(n﹣2)a n=(n﹣1)a n﹣1﹣4,又∵(n﹣1)a n+1=na n﹣4,两式相减可得:(n﹣1)a n+1+(n﹣1)a n﹣1=(2n﹣2)a n(n≥2),∴a n+1+a n﹣1=2a n(n≥2),即a n+1﹣a n=a n﹣a n﹣1(n≥2),即数列{a n}为等差数列,在2S n=n(a n+4)中令n=1可得a1=4,又a2=t,∴数列{a n}的公差为t﹣4,∴a n=(t﹣4)n+8﹣t,当且仅当n=5时,S n取得最大值,等价于a5>0且a6<0,即t>3,且t<,故t∈(3,).点评:本题考查是一道关于数列的综合题,考查运算求解能力,注意解题方法的积累,属于中档题.20.(13分)已知函数f(x)=(e是自然对数的底数,其中常数a,n满足a>b,且a+b=1,函数y=f(x)的图象在点(1,f(1))处的切线斜率是2﹣.(Ⅰ)求a,b的值;(Ⅱ)求函数f(x)的单调区间.考点:利用导数研究曲线上某点切线方程;利用导数研究函数的单调性.专题:导数的概念及应用;导数的综合应用.分析:(Ⅰ)求出函数的导数,由条件可得a,b的方程,解方程可得a=e,b=1﹣e;(Ⅱ)求出f(x)的导数,由x=e,求得导数,再由x>e,结合对数的性质可得减区间,由0<x<e可得增区间.解答:解:(Ⅰ)f(x)=的导数为f′(x)=(x>0),由f′(1)=2﹣,得=2﹣,由a+b=1,可得=2﹣,即=,由a>b,a,则a=e,b=1﹣e;(Ⅱ)由(Ⅰ)可得f′(x)=(x>0),即f′(x)=(x>0),由x=e时,f′(e)=0,且x>e,e﹣x>0,ex(1﹣lnx)<0,故f′(x)<0,同理0<x<e,f′(x)>0,于是函数的单调增区间为(0,e),减区间为(e,+∞).点评:本题考查导数的运用:求切线方程和单调区间,主要考查导数的几何意义,正确求导和运用函数的性质是解题的关键,属于中档题.21.(13分)已知动直线l:y=kx+k恒过椭圆E:=1(a>b>0)的一个顶点A,顶点B与A关于坐标原点O对称,该椭圆的一个焦点F满足∠FAB=30°.(Ⅰ)求椭圆E的标准方程;(Ⅱ)如果点C满足3+2=,当k=时,记直线l与椭圆E的另一个公共点为P,求∠BPC 平分线所在直线的方程.考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:综合题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)先求出b,再利用求∠FAB=30°,求出c,可得a,即可求出椭圆E的标准方程;(Ⅱ)当k=时,将直线l:y=x+与椭圆E的方程联立并整理得2x2+x﹣1=0,求出P,B,C的坐标,可得直线PB,PC的方程,利用Q到PB,PC的距离相等,求出Q的坐标,即可求出求∠BPC平分线所在直线的方程.解答:解:(Ⅰ)由题意,A(﹣1,0),所以b=1,因为tan∠FAB==,所以c=,所以a2=,所以椭圆E的标准方程为;(Ⅱ)当k=时,将直线l:y=x+与椭圆E的方程联立并整理得2x2+x﹣1=0,所以P的横坐标为,即P(,1).因为B(1,0),3+2=0,所以C(﹣1.5,0),所以直线PB的方程为2x+y﹣2=0,直线PC的方程为x﹣2y+1.5=0.令Q(t,0)为∠BPC平分线与x轴的交点,则Q到PB,PC的距离相等,即,所以t=或t=.考虑到Q在B,C之间,则t=,即Q(,0),所以∠BPC平分线所在直线的方程为6x﹣2y﹣1=0.点评:本题考查椭圆的方程与性质,考查直线与椭圆的位置关系,考查直线方程,考查学生的计算能力,属于中档题.。

评2015高考备考合肥市高三第三次模考作文命题:过度追求思辨不如没有思辨(整理精校版)

评2015高考备考合肥市高三第三次模考作文命题:过度追求思辨不如没有思辨(整理精校版)

评2015年合肥市高三第三次模考作文命题:过度追求思辨不如没有思辨作文辅导0513 2214评2015年合肥市高三第三次模考作文命题:过度追求思辨不如没有思辨阜阳市城郊中学李卫全近日,合肥市高三三模作文试题引起不少高三语文老师的关注,且看作文试题:阅读下面的材料,根据要求写一篇不少于800字的文章。

(60分)美国哲学家约翰·杜威曾经说过:“一件事若过于注重实用,就反为不切实用。

”诺贝尔文学奖得主莫言说:“文学和科学相比较,的确是没有什么用处,但是,文学的最大的用处,也许就是它没有用处。

”要求:选好角度,确定立意,明确文体(诗歌除外),自拟标题;不要脱离材料内容及含意的范围作文;不要套作,不得抄袭,不得透露个人相关信息;书写规范,正确使用标点符号。

从作文命题材料的选择上,可以看出:命题者是颇费一番心机的,亦步亦趋紧跟安徽卷高考作文,命题形式力图完全模仿2015年安徽卷高考作文命题的技巧,因此,本次合肥三模作文命题可谓已经把安徽卷作文命题的技法发挥到淋漓尽致的地步。

重视思辨性是其作文命题的内核:前一个材料谈不可过度重视实用,后一个材料说“无用”就是大用,两个内容必须完美结合,考生才能够得到一个可怜的一类立意,然而,当千万考生中几匹幸运的黑马碰巧得到了一个一类立意之后,他们又不得不搜肠刮肚寻找素材,凑出一篇无病呻吟的一类作文。

作文写完了,考生究竟得到了什么呢?是幸运,是灵光乍现之后的幸运与庆幸。

更多的考生,可能在考试之后仍然于惴惴不安中纠结着自己的作文立意是否恰当。

这种现象的出现,就在于作文命题的意图从一开始就站在违背作文写作的基本规律的路上,这种命题的目的就是要让作文过多的承担本不该由作文写作必须承担的哲学的思辨能力。

这种现象的出现,就在于作文命题往往是由一班很少从事写作的命题高手把持,缺少了写作的具体感受,就只有在命题技巧上精益求精,于是,作文命题变成了形而上的哲学思辨,于是,作文写作变成了哲学思辨能力的考查。

2015年合肥三模文科综合答案

2015年合肥三模文科综合答案

合肥市2015年高三第三次教学质量检测文科综合试题参考答案及评分标准第Ⅰ卷(共132分,每小题4分)题号1234567891011答案D A B A D B B C B B D题号1213141516171819202122答案C B A D C D D D B B B题号2324252627282930313233答案D C A D A C C D A B B第Ⅱ卷(共168分)34.(共32分)(1)盆地(或 平原 )(2分)理由:从(向心状)水系或河流分布状况判断,该地形区北㊁东㊁西三面高(3分);再从等高线判断,该地形区为盆地(3分)㊂(或答:从等高线数值200米以内判断,地势较低(3分);从等高线稀疏判断,地形开阔平坦(3分)㊂)(2)阿德莱德位于南半球地中海气候区(或答: 南纬30ʎ~40ʎ大陆西岸 )(2分),6-8月为冬季,昼长较短(2分);冬季受西风带控制,从海上带来大量水汽㊂(或答:且位于西风的迎风海岸,容易形成地形雨)(2分),阴雨天气对太阳辐射削弱作用强,故日照时数较少(2分)㊂堪培拉位于南半球亚热带大陆东岸,6-8月为冬季,陆地为高压,风从陆地吹向海洋(2分);地处山地(或大分水岭)背风坡,气流干燥,降水较少(2分)㊂(3)地理环境是各要素相互联系㊁相互渗透和相互影响的整体㊂(3分)过度灌溉导致下游地表径流减少,地下水水位下降;海水倒灌,土壤盐碱化加剧,水质变差;来水来沙减少,使沿岸土地肥力下降;河口附近海域营养物质减少,渔业资源减少;海水入侵,海岸线侵蚀加剧;湿地减少,影响动植物的生长与栖息,生物多样性减少,下游生态环境趋向恶化㊂(9分,每小点3分,任答3小点即可)高三文科综合试题答案㊀第1页(共4页)35.(24分)(1)东北㊀华北(4分)特点:A地区钢铁产量占全国百分比持续下降,B地区钢铁产量占全国百分比持续上升(4分)㊂原因:东北煤炭和铁矿过度消耗(钢铁工业发展滞后)(2分);华北地区交通运输便利;消费市场广阔;科技相对发达;铁矿和煤炭资源充足㊂(4分,每小点2分,任答2小点即可)(2)淘汰落后产能(关闭整合小型钢铁企业);调整产业结构;加强环保技术的研究和推广,减少废弃物排放;推行清洁生产(循环经济)将废弃物充分资源化(建立钢铁工业的循环链)㊂(10分,任答1小点得4分,2小点得7分,3小点得满分)36.(30分)(1)治国理想:建立大同社会㊂(2分)太平天国的‘天朝田亩制度“㊁康有为的大同思想;孙中山民主思想的相关内容(天下为公㊁民生主义)㊂(任举两例均可,4分)(2)近代民族资本主义的发展;民族危机严重;近代仁人志士屡次探索的失败;中国传统儒学为之准备了丰富的历史文化条件;俄国十月革命的影响㊂(10分)(3)特点:修己㊁治人(或加强自我修养㊁加强法治)㊂(4分)原因:儒学的自身价值和发展更新;在东南亚地区具有稳定性和历史渊源;政府的有效推动;社会对多元文化的包容;西方文化的缺陷为儒学提供再生的契机㊂(10分,答出三点即可) 37.(26分)(1)第一种方式是从手工业生产领域中发展出资本主义(或手工业者在商品生产中分化为资本家和雇佣工人)㊂第二种方式是商业资本转化为生产资本(或商人成为包买主,使小生产者丧失独立性,变为其控制的雇佣劳动者)(8分)(2)看法一:革命不如改良(或改良优于革命)(4分)史实:1861年农奴制改革废除了农奴制,推动俄国资本主义发展㊂1868年日本明治维新废除了封建体制,促进资本主义发展,挽救了民族危机,并逐步成为亚洲强国㊂(8分)由此可见,改良是社会矛盾发展的结果,取决于国内外主客观条件㊂改良以渐进㊁和平的手段来进行政策和制度的调整,避免了激烈的社会动荡,促进了社会的发展和进步㊂(6分)看法二:革命优于改良(或改良主义走不通)㊂(4分)史实:1789年法国大革命摧毁封建制度,最终确立了共和制度,并震撼了欧洲大陆封建秩序㊂北美独立战争推翻了英国殖民统治,赢得了民高三文科综合试题答案㊀第2页(共4页)族独立,建立了美洲第一个独立国家,为资本主义迅速发展奠定基础㊂(8分)由此可见,革命是社会矛盾尖锐化的产物,取决于国内外主客观条件的成熟㊂革命是历史的火车头,它使社会发展实现飞跃和进步㊂(6分)38.(28分)(1)政治生活:①社会主义民主的本质是人民当家作主,全面推进依法治国是新时期坚持人民民主专政的新要求,有利于切实保障人民当家作主的地位㊂(3分)②发展社会主义民主政治要求扩大公民有序的政治参与,全面推进依法治国可以从法治上保障公民依法参与民主选举㊁民主决策㊁民主管理和民主监督,提高公民的民主法治观念和实际参与政治生活的能力㊂(3分)③全面推进依法治国有利于规范和约束政府的行为,促进政府正确履行职能,依法行使权力,科学民主依法决策,从而打造为人民服务的政府㊂(3分)④中国特色社会主义制度,要求把根本政治制度㊁基本政治制度同基本经济制度以及各方面体制机制等具体制度有机结合起来,把国家层面的民主制度同基层民主制度有机结合起来,把党的领导㊁人民当家作主㊁依法治国有机结合起来㊂全面推进依法治国有利于为我国各项制度提供法治保障,充分体现中国特色社会主义的特点和优势㊂(3分)哲学:①社会存在决定社会意识,社会意识具有相对独立性,先进的社会意识对社会发展起推动作用㊂ 四个全面 的提出既符合中国实际又对社会发展起促进作用㊂(2分)②生产关系一定要适合生产力状况的规律,上层建筑一定要适合经济基础状况的规律,是任何社会中都起作用的普遍规律㊂ 四个全面 的提出遵循社会发展规律,为目标实现奠定基础㊂(2分)③社会主义社会仍然存在基本矛盾,但是非对抗性的矛盾,可以通过社会主义的自我发展㊁自我完善加以解决㊂ 四个全面 的提出就是着眼于社会矛盾的解决,是对我国治国理政总体框架的完善与发展,是发展中国特色社会主义的强大动力㊂(2分)④人民群众是历史的创造者,要坚持群众路线和群众观点㊂ 四个全面 的提出反映了人民群众的热切期待,以全面建成小康社会为目标,符合最广大人民群众的根本利益㊂(2分)(2)2011-2014年以来,我国城乡居民可支配收入不断增长,但城乡差距较大,近年来差距有所缩小,基尼系数有所下降,但贫富差距仍然严重,居民收入的相对公平还有待提高㊂(2分)措施:①完善我国分配制度,坚持健全生产要素按贡献参与分配,激活农村要素资源,增加农民收入㊂(2分)②处理好效率与公平关系,调动农民积极性同时将收入差距控制在合理范围,发展成果让人民共享㊂(2分)③发挥财政作用,优化财政支出结构,促进社会公平㊂(2分)(若其他观点符合题意亦可酌情给分)高三文科综合试题答案㊀第3页(共4页)39.(28分)(1)①在文化遗产的保护上,要发挥市场在资源配置中的决定性作用,充分运用市场机制,给予市场主体一定的经济支撑,调动其积极性,让居民成为遗产保护的 发掘者 和 践行者 ㊂(4分)②文化遗产作为公益性很强的资源,不能单靠市场来调节,保护文化遗产资源需要加强政府调控与管理,综合运用经济㊁法律和行政手段处理好开发与保护的关系,以弥补市场缺陷㊂(4分)(2)①同一性和斗争性是矛盾的两个基本属性㊂(2分)文化产业发展在一定程度上加大了文化遗产保护的难度,这是矛盾斗争性的体现㊂(2分)文化遗产保护是为了文化产业发展,文化产业发展依托于文化遗产保护, 保护 与 发展 相互依存,两者之间相辅相成㊁相得益彰,这是矛盾同一性的体现㊂(2分)矛盾双方既对立又统一,由此推动事物的运动㊁变化和发展㊂要把文化遗产保护与文化产业发展统一起来,在文化遗产得到保护的同时,与文化产业发展科学对接,更好地发挥文化遗产的现实价值,让文化遗产活起来㊂(2分)(3)依据:①保护文化遗产有利于树立民族自信心和自豪感,促进中华民族的伟大复兴㊂(2分)②保护文化遗产是发展本民族文化的内在要求,是繁荣世界文化的必然要求㊂(3分)③文化遗产是中华民族历史文化成就的重要标志,对于研究人类文明的演进和展现世界文化的多样性具有独特作用㊂(3分)建议:挖掘文化遗产蕴涵的传统美德,促进思想道德建设;扩大文化遗产的影响,扩大中华文化在全球的影响;赋予文化遗产新的时代内容,更好地发挥其精神纽带作用㊂(答出其中两点即可得4分)(若其他观点符合题意亦可酌情给分)高三文科综合试题答案㊀第4页(共4页)。

2015年全国统一高考数学试卷(文科)(新课标ⅱ)(含答案及解析)

2015年全国统一高考数学试卷(文科)(新课标ⅱ)(含答案及解析)

2015年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本大题共12小题,每小题5分1.(5分)已知集合A={x|﹣1<x<2},B={x|0<x<3},则A∪B=()A.(﹣1,3)B.(﹣1,0)C.(0,2)D.(2,3)2.(5分)若为a实数,且=3+i,则a=()A.﹣4B.﹣3C.3D.43.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关4.(5分)=(1,﹣1),=(﹣1,2)则(2+)=()A.﹣1B.0C.1D.25.(5分)已知S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=()A.5B.7C.9D.116.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.7.(5分)已知三点A(1,0),B(0,),C(2,)则△ABC外接圆的圆心到原点的距离为()A.B.C.D.8.(5分)如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a,b分别为14,18,则输出的a=()A.0B.2C.4D.149.(5分)已知等比数列{a n}满足a1=,a3a5=4(a4﹣1),则a2=()A.2B.1C.D.10.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π11.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()A.B.C.D.12.(5分)设函数f(x)=ln(1+|x|)﹣,则使得f(x)>f(2x﹣1)成立的x的取值范围是()A.(﹣∞,)∪(1,+∞)B.(,1)C.()D.(﹣∞,﹣,)二、填空题13.(3分)已知函数f(x)=ax3﹣2x的图象过点(﹣1,4)则a=.14.(3分)若x,y满足约束条件,则z=2x+y的最大值为.15.(3分)已知双曲线过点且渐近线方程为y=±x,则该双曲线的标准方程是.16.(3分)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=.三.解答题17.△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC(Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.18.某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表B地区用户满意度评分的频数分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100)频数2814106(1)做出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可)(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个不等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意估计哪个地区用户的满意度等级为不满意的概率大?说明理由.19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F 分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形(Ⅰ)在图中画出这个正方形(不必说出画法和理由)(Ⅱ)求平面α把该长方体分成的两部分体积的比值.20.椭圆C:=1,(a>b>0)的离心率,点(2,)在C上.(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与l的斜率的乘积为定值.21.设函数f(x)=lnx+a(1﹣x).(Ⅰ)讨论:f(x)的单调性;(Ⅱ)当f(x)有最大值,且最大值大于2a﹣2时,求a的取值范围.四、选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.五、选修4-4:坐标系与参数方程23.(10分)在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.六、选修4-5不等式选讲24.(10分)设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.2015年全国统一高考数学试卷(文科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分1.(5分)已知集合A={x|﹣1<x<2},B={x|0<x<3},则A∪B=()A.(﹣1,3)B.(﹣1,0)C.(0,2)D.(2,3)【考点】1D:并集及其运算.【专题】5J:集合.【分析】根据集合的基本运算进行求解即可.【解答】解:∵A={x|﹣1<x<2},B={x|0<x<3},∴A∪B={x|﹣1<x<3},故选:A.【点评】本题主要考查集合的基本运算,比较基础.2.(5分)若为a实数,且=3+i,则a=()A.﹣4B.﹣3C.3D.4【考点】A1:虚数单位i、复数.【专题】5N:数系的扩充和复数.【分析】根据复数相等的条件进行求解即可.【解答】解:由,得2+ai=(1+i)(3+i)=2+4i,则a=4,故选:D.【点评】本题主要考查复数相等的应用,比较基础.3.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关【考点】B8:频率分布直方图.【专题】5I:概率与统计.【分析】A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量减少的最多,故A正确;B从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,与年份负相关,故D错误.【解答】解:A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量明显减少,且减少的最多,故A正确;B2004﹣2006年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D错误.故选:D.【点评】本题考查了学生识图的能力,能够从图中提取出所需要的信息,属于基础题.4.(5分)=(1,﹣1),=(﹣1,2)则(2+)=()A.﹣1B.0C.1D.2【考点】9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】利用向量的加法和数量积的坐标运算解答本题.【解答】解:因为=(1,﹣1),=(﹣1,2)则(2+)=(1,0)•(1,﹣1)=1;故选:C.【点评】本题考查了向量的加法和数量积的坐标运算;属于基础题目.5.(5分)已知S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=()A.5B.7C.9D.11【考点】85:等差数列的前n项和.【专题】35:转化思想;4A:数学模型法;54:等差数列与等比数列.【分析】由等差数列{a n}的性质,a1+a3+a5=3=3a3,解得a3.再利用等差数列的前n项和公式即可得出.【解答】解:由等差数列{a n}的性质,a1+a3+a5=3=3a3,解得a3=1.则S5==5a3=5.故选:A.【点评】本题考查了等差数列的通项公式及其性质、前n项和公式,考查了推理能力与计算能力,属于中档题.6.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.【考点】L!:由三视图求面积、体积.【专题】11:计算题;5F:空间位置关系与距离.【分析】由三视图判断,正方体被切掉的部分为三棱锥,把相关数据代入棱锥的体积公式计算即可.【解答】解:设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥,∴正方体切掉部分的体积为×1×1×1=,∴剩余部分体积为1﹣=,∴截去部分体积与剩余部分体积的比值为.故选:D.【点评】本题考查了由三视图判断几何体的形状,求几何体的体积.7.(5分)已知三点A(1,0),B(0,),C(2,)则△ABC外接圆的圆心到原点的距离为()A.B.C.D.【考点】J1:圆的标准方程.【专题】5B:直线与圆.【分析】利用外接圆的性质,求出圆心坐标,再根据圆心到原点的距离公式即可求出结论.【解答】解:因为△ABC外接圆的圆心在直线BC垂直平分线上,即直线x=1上,可设圆心P(1,p),由PA=PB得|p|=,得p=圆心坐标为P(1,),所以圆心到原点的距离|OP|===,故选:B.【点评】本题主要考查圆性质及△ABC外接圆的性质,了解性质并灵运用是解决本题的关键.8.(5分)如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a,b分别为14,18,则输出的a=()A.0B.2C.4D.14【考点】EF:程序框图.【专题】27:图表型;5K:算法和程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的a,b的值,当a=b=2时不满足条件a≠b,输出a的值为2.【解答】解:模拟执行程序框图,可得a=14,b=18满足条件a≠b,不满足条件a>b,b=4满足条件a≠b,满足条件a>b,a=10满足条件a≠b,满足条件a>b,a=6满足条件a≠b,满足条件a>b,a=2满足条件a≠b,不满足条件a>b,b=2不满足条件a≠b,输出a的值为2.故选:B.【点评】本题主要考查了循环结构程序框图,属于基础题.9.(5分)已知等比数列{a n}满足a1=,a3a5=4(a4﹣1),则a2=()A.2B.1C.D.【考点】88:等比数列的通项公式.【专题】54:等差数列与等比数列.【分析】利用等比数列的通项公式即可得出.【解答】解:设等比数列{a n}的公比为q,∵,a3a5=4(a4﹣1),∴=4,化为q3=8,解得q=2则a2==.故选:C.【点评】本题考查了等比数列的通项公式,属于基础题.10.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为36,求出半径,即可求出球O的表面积.【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,设球O的半径为R,此时V O﹣ABC=V C﹣AOB===36,故R=6,则球O的表面积为4πR2=144π,故选:C.【点评】本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大是关键.11.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()A.B.C.D.【考点】HC:正切函数的图象.【分析】根据函数图象关系,利用排除法进行求解即可.【解答】解:当0≤x≤时,BP=tanx,AP==,此时f(x)=+tanx,0≤x≤,此时单调递增,当P在CD边上运动时,≤x≤且x≠时,如图所示,tan∠POB=tan(π﹣∠POQ)=tanx=﹣tan∠POQ=﹣=﹣,∴OQ=﹣,∴PD=AO﹣OQ=1+,PC=BO+OQ=1﹣,∴PA+PB=,当x=时,PA+PB=2,当P在AD边上运动时,≤x≤π,PA+PB=﹣tanx,由对称性可知函数f(x)关于x=对称,且f()>f(),且轨迹为非线型,排除A,C,D,故选:B.【点评】本题主要考查函数图象的识别和判断,根据条件先求出0≤x≤时的解析式是解决本题的关键.12.(5分)设函数f(x)=ln(1+|x|)﹣,则使得f(x)>f(2x﹣1)成立的x的取值范围是()A.(﹣∞,)∪(1,+∞)B.(,1)C.()D.(﹣∞,﹣,)【考点】6B:利用导数研究函数的单调性.【专题】33:函数思想;49:综合法;51:函数的性质及应用.【分析】根据函数的奇偶性和单调性之间的关系,将不等式进行转化即可得到结论.【解答】解:∵函数f(x)=ln(1+|x|)﹣为偶函数,且在x≥0时,f(x)=ln(1+x)﹣,导数为f′(x)=+>0,即有函数f(x)在[0,+∞)单调递增,∴f(x)>f(2x﹣1)等价为f(|x|)>f(|2x﹣1|),即|x|>|2x﹣1|,平方得3x2﹣4x+1<0,解得:<x<1,所求x的取值范围是(,1).故选:B.【点评】本题主要考查函数奇偶性和单调性的应用,综合考查函数性质的综合应用,运用偶函数的性质是解题的关键.二、填空题13.(3分)已知函数f(x)=ax3﹣2x的图象过点(﹣1,4)则a=﹣2.【考点】36:函数解析式的求解及常用方法.【专题】11:计算题;51:函数的性质及应用.【分析】f(x)是图象过点(﹣1,4),从而该点坐标满足函数f(x)解析式,从而将点(﹣1,4)带入函数f(x)解析式即可求出a.【解答】解:根据条件得:4=﹣a+2;∴a=﹣2.故答案为:﹣2.【点评】考查函数图象上的点的坐标和函数解析式的关系,考查学生的计算能力,比较基础.14.(3分)若x,y满足约束条件,则z=2x+y的最大值为8.【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线y=﹣2x+z的截距最大,此时z最大.由,解得,即A(3,2)将A(3,2)的坐标代入目标函数z=2x+y,得z=2×3+2=8.即z=2x+y的最大值为8.故答案为:8.【点评】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.15.(3分)已知双曲线过点且渐近线方程为y=±x,则该双曲线的标准方程是x2﹣y2=1.【考点】KB:双曲线的标准方程.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】设双曲线方程为y2﹣x2=λ,代入点,求出λ,即可求出双曲线的标准方程.【解答】解:设双曲线方程为y2﹣x2=λ,代入点,可得3﹣=λ,∴λ=﹣1,∴双曲线的标准方程是x2﹣y2=1.故答案为:x2﹣y2=1.【点评】本题考查双曲线的标准方程,考查学生的计算能力,正确设出双曲线的方程是关键.16.(3分)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=8.【考点】6H:利用导数研究曲线上某点切线方程.【专题】26:开放型;53:导数的综合应用.【分析】求出y=x+lnx的导数,求得切线的斜率,可得切线方程,再由于切线与曲线y=ax2+(a+2)x+1相切,有且只有一切点,进而可联立切线与曲线方程,根据△=0得到a的值.【解答】解:y=x+lnx的导数为y′=1+,曲线y=x+lnx在x=1处的切线斜率为k=2,则曲线y=x+lnx在x=1处的切线方程为y﹣1=2x﹣2,即y=2x﹣1.由于切线与曲线y=ax2+(a+2)x+1相切,故y=ax2+(a+2)x+1可联立y=2x﹣1,得ax2+ax+2=0,又a≠0,两线相切有一切点,所以有△=a2﹣8a=0,解得a=8.故答案为:8.【点评】本题考查导数的运用:求切线方程,主要考查导数的几何意义:函数在某点处的导数即为曲线在该点处的导数,设出切线方程运用两线相切的性质是解题的关键.三.解答题17.△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC(Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.【考点】HP:正弦定理.【专题】58:解三角形.【分析】(Ⅰ)由题意画出图形,再由正弦定理结合内角平分线定理得答案;(Ⅱ)由∠C=180°﹣(∠BAC+∠B),两边取正弦后展开两角和的正弦,再结合(Ⅰ)中的结论得答案.【解答】解:(Ⅰ)如图,由正弦定理得:,∵AD平分∠BAC,BD=2DC,∴;(Ⅱ)∵∠C=180°﹣(∠BAC+∠B),∠BAC=60°,∴,由(Ⅰ)知2sin∠B=sin∠C,∴tan∠B=,即∠B=30°.【点评】本题考查了内角平分线的性质,考查了正弦定理的应用,是中档题.18.某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表B地区用户满意度评分的频数分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100)频数2814106(1)做出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可)(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个不等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意估计哪个地区用户的满意度等级为不满意的概率大?说明理由.【考点】B8:频率分布直方图;CB:古典概型及其概率计算公式.【专题】5I:概率与统计.【分析】(I)根据分布表的数据,画出频率直方图,求解即可.(II)计算得出C A表示事件:“A地区用户的满意度等级为不满意”,C B表示事件:“B地区用户的满意度等级为不满意”,P(C A),P(C B),即可判断不满意的情况.【解答】解:(Ⅰ)通过两个地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值,B 地区的用户满意度评分的比较集中,而A地区的用户满意度评分的比较分散.(Ⅱ)A地区用户的满意度等级为不满意的概率大.记C A表示事件:“A地区用户的满意度等级为不满意”,C B表示事件:“B地区用户的满意度等级为不满意”,由直方图得P(C A)=(0.01+0.02+0.03)×10=0.6得P(C B)=(0.005+0.02)×10=0.25∴A地区用户的满意度等级为不满意的概率大.【点评】本题考查了频率直方图,频率表达运用,考查了阅读能力,属于中档题.19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F 分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形(Ⅰ)在图中画出这个正方形(不必说出画法和理由)(Ⅱ)求平面α把该长方体分成的两部分体积的比值.【考点】LF:棱柱、棱锥、棱台的体积;LJ:平面的基本性质及推论.【专题】15:综合题;5F:空间位置关系与距离.【分析】(Ⅰ)利用平面与平面平行的性质,可在图中画出这个正方形;(Ⅱ)求出MH==6,AH=10,HB=6,即可求平面a把该长方体分成的两部分体积的比值.【解答】解:(Ⅰ)交线围成的正方形EFGH如图所示;(Ⅱ)作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为EFGH为正方形,所以EH=EF=BC=10,于是MH==6,AH=10,HB=6.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为.【点评】本题考查平面与平面平行的性质,考查学生的计算能力,比较基础.20.椭圆C:=1,(a>b>0)的离心率,点(2,)在C上.(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与l的斜率的乘积为定值.【考点】K3:椭圆的标准方程;KH:直线与圆锥曲线的综合.【专题】5D:圆锥曲线的定义、性质与方程.【分析】(1)利用椭圆的离心率,以及椭圆经过的点,求解椭圆的几何量,然后得到椭圆的方程.(2)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),联立直线方程与椭圆方程,通过韦达定理求解K OM,然后推出直线OM的斜率与l的斜率的乘积为定值.【解答】解:(1)椭圆C:=1,(a>b>0)的离心率,点(2,)在C上,可得,,解得a2=8,b2=4,所求椭圆C方程为:.(2)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),把直线y=kx+b代入可得(2k2+1)x2+4kbx+2b2﹣8=0,故x M==,y M=kx M+b=,于是在OM的斜率为:K OM==,即K OM•k=.∴直线OM的斜率与l的斜率的乘积为定值.【点评】本题考查椭圆方程的综合应用,椭圆的方程的求法,考查分析问题解决问题的能力.21.设函数f(x)=lnx+a(1﹣x).(Ⅰ)讨论:f(x)的单调性;(Ⅱ)当f(x)有最大值,且最大值大于2a﹣2时,求a的取值范围.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】26:开放型;53:导数的综合应用.【分析】(Ⅰ)先求导,再分类讨论,根据导数即可判断函数的单调性;(2)先求出函数的最大值,再构造函数(a)=lna+a﹣1,根据函数的单调性即可求出a的范围.【解答】解:(Ⅰ)f(x)=lnx+a(1﹣x)的定义域为(0,+∞),∴f′(x)=﹣a=,若a≤0,则f′(x)>0,∴函数f(x)在(0,+∞)上单调递增,若a>0,则当x∈(0,)时,f′(x)>0,当x∈(,+∞)时,f′(x)<0,所以f(x)在(0,)上单调递增,在(,+∞)上单调递减,(Ⅱ),由(Ⅰ)知,当a≤0时,f(x)在(0,+∞)上无最大值;当a>0时,f(x)在x=取得最大值,最大值为f()=﹣lna+a﹣1,∵f()>2a﹣2,∴lna+a﹣1<0,令g(a)=lna+a﹣1,∵g(a)在(0,+∞)单调递增,g(1)=0,∴当0<a<1时,g(a)<0,当a>1时,g(a)>0,∴a的取值范围为(0,1).【点评】本题考查了导数与函数的单调性最值的关系,以及参数的取值范围,属于中档题.四、选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.【考点】N4:相似三角形的判定.【专题】26:开放型;5F:空间位置关系与距离.【分析】(1)通过AD是∠CAB的角平分线及圆O分别与AB、AC相切于点E、F,利用相似的性质即得结论;(2)通过(1)知AD是EF的垂直平分线,连结OE、OM,则OE⊥AE,利用S△ABC﹣S△AEF计算即可.【解答】(1)证明:∵△ABC为等腰三角形,AD⊥BC,∴AD是∠CAB的角平分线,又∵圆O分别与AB、AC相切于点E、F,∴AE=AF,∴AD⊥EF,∴EF∥BC;(2)解:由(1)知AE=AF,AD⊥EF,∴AD是EF的垂直平分线,又∵EF为圆O的弦,∴O在AD上,连结OE、OM,则OE⊥AE,由AG等于圆O的半径可得AO=2OE,∴∠OAE=30°,∴△ABC与△AEF都是等边三角形,∵AE=2,∴AO=4,OE=2,∵OM=OE=2,DM=MN=,∴OD=1,∴AD=5,AB=,∴四边形EBCF的面积为×﹣××=.【点评】本题考查空间中线与线之间的位置关系,考查四边形面积的计算,注意解题方法的积累,属于中档题.五、选修4-4:坐标系与参数方程23.(10分)在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,把代入可得直角坐标方程.同理由C3:ρ=2cosθ.可得直角坐标方程,联立解出可得C2与C3交点的直角坐标.(2)由曲线C1的参数方程,消去参数t,化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),利用|AB|=即可得出.【解答】解:(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,∴x2+y2=2y.同理由C3:ρ=2cosθ.可得直角坐标方程:,联立,解得,,∴C2与C3交点的直角坐标为(0,0),.(2)曲线C1:(t为参数,t≠0),化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),∵A,B都在C1上,∴A(2sinα,α),B.∴|AB|==4,当时,|AB|取得最大值4.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、曲线的交点、两点之间的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.六、选修4-5不等式选讲24.(10分)设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.【考点】29:充分条件、必要条件、充要条件;R6:不等式的证明.【专题】59:不等式的解法及应用;5L:简易逻辑.【分析】(1)运用不等式的性质,结合条件a,b,c,d均为正数,且a+b=c+d,ab>cd,即可得证;(2)从两方面证,①若+>+,证得|a﹣b|<|c﹣d|,②若|a﹣b|<|c﹣d|,证得+>+,注意运用不等式的性质,即可得证.【解答】证明:(1)由于(+)2=a+b+2,(+)2=c+d+2,由a,b,c,d均为正数,且a+b=c+d,ab>cd,则>,即有(+)2>(+)2,则+>+;(2)①若+>+,则(+)2>(+)2,即为a+b+2>c+d+2,由a+b=c+d,则ab>cd,于是(a﹣b)2=(a+b)2﹣4ab,(c﹣d)2=(c+d)2﹣4cd,即有(a﹣b)2<(c﹣d)2,即为|a﹣b|<|c﹣d|;②若|a﹣b|<|c﹣d|,则(a﹣b)2<(c﹣d)2,即有(a+b)2﹣4ab<(c+d)2﹣4cd,由a+b=c+d,则ab>cd,则有(+)2>(+)2.综上可得,+>+是|a﹣b|<|c﹣d|的充要条件.【点评】本题考查不等式的证明,主要考查不等式的性质的运用,同时考查充要条件的判断,属于基础题.。

安徽省合肥市高考数学三模试卷文(含解析)

安徽省合肥市高考数学三模试卷文(含解析)

安徽省合肥市2015届高考数学三模试卷(文科)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知复数z满足方程z2+3=0,则z•(表示复数z的共扼复数)的值是()A.﹣3i B.3i C.﹣3 D.32.(5分)设集合M={x∈R|y=},N={y∈R|y=x2﹣1,x∈R},则集合M和N的关系是()A.M=N B.M∪N=R C.N⊊M D.M⊈N3.(5分)双曲线=1(a>0,b>0)的一条渐近线的斜率为2,则该双曲线的离心率为()A.B.C.D.4.(5分)执行如图所示的程序框图,输出的结果是()A.4 B.8 C.16 D.2165.(5分)已知a=sin2,b=log2,c=log,则()A.a>b>c B.c>a>b C.a>c>b D.c>b>a6.(5分)等比数列{a n}中,a2=,a6=4,记{a n}的前n项积为T n,则T7=()A.1 B.1或一1 C.2 D.2或一27.(5分)=()A.B.C.D.18.(5分)某三棱锥的三视图如图所示,则该三棱锥各面中,最小的面积为()A.B.C.1 D.9.(5分)在△ABC中,∠ABC=30°,AB=,BC边上的中线AD=1,则AC的长度为()A.1或B.C.D.1或10.(5分)已知函数f(x)=,则关于x的方程f(x)=f(x﹣2)解的个数为()A.1 B.2 C.3 D.4二、填空题(本大题共5}J题,每小题5分,共25分.把答案填在答题卡的相应位置)11.(5分)命题“若|x|=1,则x=1”的否命题为.12.(5分)已知点A(1,2),B(a,4),向量=(2,1),若∥,则实数a的值为.13.(5分)已知实数x,y满足条件,则z=x﹣2y的最大值与最小值之差为.14.(5分)已知函数f(x)对任意实数x,y满足f(x+y)=f(x)+f(y),且f(1)≥2.若存在整数m,使得f(﹣2)﹣m2﹣m+4=0,则m取值的集合为.15.(5分)已知B,C两点在圆O:x2+y2=1上,A(a,0)为x轴上一点,且a>l.给出以下命题:①•的最小值为一1;②△OBC面积的最大值为1;③若a=,且直线AB,AC都与圆O相切,则△ABC为正三角形;④若a=,且=λ(λ>0),则当△OBC面积最大时,|AB|=;⑤若a=,且=,圆O上的点D满足,则直线BC的斜率是.其中正确的是(写出所有正确命题的编号).三、解答题(本大题共6个小题,共75分.解答应写出文字说明、证明过程和演算步骤)16.(12分)已知函数f(x)=sinωx+cos(ωx+)(ω>0)的最小正周期T=4π(I)求ω;(Ⅱ)当x∈时,求函数:y=f(x)﹣的零点.17.(12分)某集团公司生产所需原材料中的一种管材由两家配套厂提供,已知该管材的内径设计标准为500mm,内径尺寸满足20.(13分)已知函数f(x)=(e是自然对数的底数,其中常数a,n满足a>b,且a+b=1,函数y=f(x)的图象在点(1,f(1))处的切线斜率是2﹣.(Ⅰ)求a,b的值;(Ⅱ)求函数f(x)的单调区间.21.(13分)已知动直线l:y=kx+k恒过椭圆E:=1(a>b>0)的一个顶点A,顶点B与A关于坐标原点O对称,该椭圆的一个焦点F满足∠FAB=30°.(Ⅰ)求椭圆E的标准方程;(Ⅱ)如果点C满足3+2=,当k=时,记直线l与椭圆E的另一个公共点为P,求∠BPC 平分线所在直线的方程.安徽省合肥市2015届高考数学三模试卷(文科)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知复数z满足方程z2+3=0,则z•(表示复数z的共扼复数)的值是()A.﹣3i B.3i C.﹣3 D.3考点:复数的代数表示法及其几何意义.专题:数系的扩充和复数.分析:直接计算即可.解答:解:∵z2+3=0,∴z=±i,∴z•=﹣3i2=3,故选:D.点评:本题考查复数的相关知识,注意解题方法的积累,属于基础题.2.(5分)设集合M={x∈R|y=},N={y∈R|y=x2﹣1,x∈R},则集合M和N的关系是()A.M=N B.M∪N=R C.N⊊M D.M⊈N考点:函数的值域;集合的包含关系判断及应用;函数的定义域及其求法.专题:函数的性质及应用.分析:求出函数的大电影与值域,即可判断两个集合的关系.解答:解:集合M={x∈R|y=}={x|x≥﹣1}=考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:利用双曲线的渐近线,转化求解离心率即可.解答:解:双曲线=1(a>0,b>0)的一条渐近线的斜率为2,可得,即b=2a,c2﹣a2=4a2,可得e=.故选:C.点评:本题考查双曲线的简单性质的应用,离心率的求法,考查计算能力.4.(5分)执行如图所示的程序框图,输出的结果是()A.4 B.8 C.16 D.216考点:程序框图.专题:算法和程序框图.分析:根据程序框图进行模拟运算即可.解答:解:第一次1≤6,b=2,a=1+2=3,第二次3≤6,b=4,a=3+2=5,第三次5≤6,b=24=16,a=5+2=7,第四次7≤6不成立,输出b=16,故选:C点评:本题主要考查了程序框图和算法,属于基本知识的考查5.(5分)已知a=sin2,b=log2,c=log,则()A.a>b>c B.c>a>b C.a>c>b D.c>b>a考点:对数值大小的比较.专题:函数的性质及应用.分析:利用指数函数与对数函数、三角函数的单调性即可得出.解答:解:∵0<a=sin2<1,b=log2<0,c=log=log23>1,∴c>a>b.故选:B.点评:本题考查了指数函数与对数函数、三角函数的单调性,属于基础题.6.(5分)等比数列{a n}中,a2=,a6=4,记{a n}的前n项积为T n,则T7=()A.1 B.1或一1 C.2 D.2或一2考点:等比数列的前n项和.专题:等差数列与等比数列.分析:利用等比中项的性质计算即得结论.解答:解:设等比数列{a n}的公比为q,则q==2或﹣2,∴a4==1,∴a1a7=a2a6=a3a5==1,∴T7=1,故选:A.点评:本题考查等比数列的前几项的积,利用等比中项的性质是解决本题的关键,注意解题方法的积累,属于中档题.7.(5分)=()A.B.C.D.1考点:三角函数的化简求值.专题:计算题;三角函数的求值.分析:由倍角公式和和差化积公式化简后即可求值.解答:解:===1.故选:D.点评:本题主要考查了倍角公式和和差化积公式的应用,熟记相关公式是解题的关键,属于基础题.8.(5分)某三棱锥的三视图如图所示,则该三棱锥各面中,最小的面积为()A.B.C.1 D.考点:由三视图求面积、体积.专题:综合题;空间位置关系与距离.分析:根据几何体的三视图,得出该几何体是直三棱锥,根据图中的数据,求出该三棱锥的4个面的面积,得出面积最大的三角形的面积.解答:解:根据几何体的三视图,得该几何体是如图所示的直三棱锥,且侧棱PA⊥底面ABC,PA=1,AC=2,点B到AC的距离为1,∴底面△ABC的面积为S1=×2×1=1,侧面△PAB的面积为S2=××1=,侧面△PAC的面积为S3=×2×1=1,在侧面△PBC中,BC=,PB=,PC=,∴△PBC是Rt△,∴△PBC的面积为S4=××=,∴三棱锥P﹣A BC的所有面中,面积最小的是△PAB,为.故选:B.点评:本题考查了空间几何体的三视图的应用问题,也考查了空间中的位置关系与距离的计算问题,是基础题目.9.(5分)在△ABC中,∠ABC=30°,AB=,BC边上的中线AD=1,则AC的长度为()A.1或B.C.D.1或考点:余弦定理.专题:解三角形.分析:在三角形ABD中,利用余弦定理列出关系式,把AB与AD,cos∠ABC的值代入求出BD的长,进而确定出BC的长,在三角形ABC中,利用余弦定理求出AC的长即可.解答:解:在△ABD中,∠ABC=30°,AB=,AD=1,由余弦定理得:AD2=AB2+BD2﹣2AB•BD•cos∠A BC,即1=3+BD2﹣3BD,解得:BD=1或BD=2,若BD=1,则BC=2CD=2,在△ABC中,由余弦定理得:AC2=AB2+BC2﹣2AB•BC•cos∠ABC=3+4﹣6=1,解得:AC=1;若BD=2,则BC=2CD=4,在△ABC中,由余弦定理得:AC2=AB2+BC2﹣2AB•BC•cos∠ABC=3+16﹣12=7,解得:AC=,综上,AC的长为1或.故选:A.点评:此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.10.(5分)已知函数f(x)=,则关于x的方程f(x)=f(x﹣2)解的个数为()A.1 B.2 C.3 D.4考点:根的存在性及根的个数判断;分段函数的应用.专题:函数的性质及应用.分析:由题意可得本题即求函数y=f(x)的图象和y=f(x﹣2)的图象的交点个数,数形结合可得结论.解答:解:由函数f(x)=,可得f(x﹣2)=,关于x的方程f(x)=f(x﹣2)解的个数,即函数y=f(x)的图象和y=f(x﹣2)的图象的交点个数,如图所示:数形结合可得函数y=f(x)的图象和y=f(x﹣2)的图象的交点个数为3,故选:C.点评:本题主要考查函数的图象特征,方程根的存在性以及个数判断,体现了数形结合、转化的数学思想,属于中档题.二、填空题(本大题共5}J题,每小题5分,共25分.把答案填在答题卡的相应位置)11.(5分)命题“若|x|=1,则x=1”的否命题为若|x|≠1,则x≠1.考点:四种命题间的逆否关系.专题:简易逻辑.分析:直接利用四种命题的逆否关系,写出结果即可.解答:解:有否命题的定义可知:命题“若|x|=1,则x=1”的否命题为:“若|x|≠1,则x≠1”.故答案为:若|x|≠1,则x≠1.点评:本题考查四种命题的逆否关系,基本知识的考查.12.(5分)已知点A(1,2),B(a,4),向量=(2,1),若∥,则实数a的值为5.考点:平面向量的坐标运算.专题:平面向量及应用.分析:根据平面向量平行的坐标表示,列出方程,求出a的值.解答:解:∵点A(1,2),B(a,4),向量=(2,1),∴=(a﹣1,2);又∥,∴(a﹣1)﹣2×2=0,解得a=5,∴实数a的值为5.故答案为:5.点评:本题考查了平面向量的坐标表示与平面向量的平行问题,是基础题目.13.(5分)已知实数x,y满足条件,则z=x﹣2y的最大值与最小值之差为3.考点:简单线性规划.专题:不等式的解法及应用.分析:由题意作出其平面区域,将z=x﹣2y化为y=x﹣,z相当于直线的纵截距,由几何意义可得.解答:解:由题意作出其平面区域,将z=x﹣2y化为y=x﹣z,显然直线过(1,0)时,z最大,z最大值=1,直线过(0,1)时,z最小,z最小值=﹣2,故答案为:3.点评:本题考查了简单线性规划,作图要细致认真,属于中档题.14.(5分)已知函数f(x)对任意实数x,y满足f(x+y)=f(x)+f(y),且f(1)≥2.若存在整数m,使得f(﹣2)﹣m2﹣m+4=0,则m取值的集合为{﹣1,0}.考点:抽象函数及其应用.专题:函数的性质及应用.分析:根据抽象函数,判断函数的奇偶性,结合一元二次不等式的性质进行求解即可.解答:解:令x=y=0得f(0)=f(0)+f(0),解得f(0)=0,令y=﹣x,则f(x﹣x)=f(x)+f(﹣x)=f(0)=0,即f(﹣x)=﹣f(x),∴函数f(x)是奇函数,若存在整数m,使得f(﹣2)﹣m2﹣m+4=0,则﹣f(2)﹣m2﹣m+4=0,即f(2)=﹣m2﹣m+4=﹣(m+)2+,令x=y=1,则f(1+1)=f(1)+f(1),即f(2)=2f(1)≥4,即﹣m2﹣m+4≥4,即﹣m2﹣m≥0.则m2+m≤0,解得﹣1≤m≤0,∵m是整数,∴m=﹣1或0,故m取值的集合为{﹣1,0},故答案为:{﹣1,0}.点评:本题主要考查抽象函数的应用,根据条件判断函数的奇偶性是解决本题的关键.综合考查函数的性质.15.(5分)已知B,C两点在圆O:x2+y2=1上,A(a,0)为x轴上一点,且a>l.给出以下命题:①•的最小值为一1;②△OBC面积的最大值为1;③若a=,且直线AB,AC都与圆O相切,则△ABC为正三角形;④若a=,且=λ(λ>0),则当△OBC面积最大时,|AB|=;⑤若a=,且=,圆O上的点D满足,则直线BC的斜率是.其中正确的是⑤(写出所有正确命题的编号).考点:命题的真假判断与应用.专题:直线与圆;简易逻辑.分析:①设C(cosθ,sinθ)(θ∈(cosθ,sinθ),θ∈时,求函数:y=f(x)﹣的零点.考点:两角和与差的正弦函数;三角函数的周期性及其求法.专题:三角函数的图像与性质.分析:(I)由条件利用三角恒等变换函数f(x)的解析式,为f(x)=sin(ωx+),由函数f(x)的最小正周期T==4π,求得ω=的值.(Ⅱ)当条件求得sin(x+)=,可得x+=2kπ+或x+=2kπ+,由此求得x的值.解答:解:(I)函数f(x)=sinωx+cos(ωx+)=sinωx+cosωx﹣sinωx=sinωx++cosωx=sin(ωx+),且函数f(x)的最小正周期T==4π,∴ω=,f(x)=sin(x+).(Ⅱ)当x∈时,由f(x)﹣,可得sin(x+)=,∴x+=2kπ+或x+=2kπ+,求得x=4kπ﹣,或 x=4kπ+π,k∈z,∵x∈,∴x=﹣,或x=π.点评:本题主要考查三角恒等变换,根据三角函数的值求角,属于中档题.17.(12分)某集团公司生产所需原材料中的一种管材由两家配套厂提供,已知该管材的内径设计标准为500mm,内径尺寸满足∴AD∥MF,AD=MF,∴四边形ADFM是平行四边形,∴AM∥DF,∵AM⊂面ABE,DF⊄面ABE,∴DF∥面ABE;(Ⅱ)解:由△BCE为等边三角形,面BCE⊥面ABCD,BC=2,可得点E到平面ABCD的距离为,∴点F到平面ABCD的距离为,∵ABCD为等腰梯形,且AB=AD=DC=1,BC=2,∴S△BCD=,∴V B﹣CDF=V F﹣BCD=.点评:本题考查线面平行的判定,考查求三棱锥B一CDF的体积,证明四边形ADFM是平行四边形是关键.19.(13分)已知数列{a n}的前n项和为S n,满足2S n=n(a n+4)(n∈N*)(I)设a2=5,求a4;(Ⅱ)设a2=t,若当且仅当n=5时S n取得最大值,求实数t的取值范围.考点:数列递推式.专题:点列、递归数列与数学归纳法.分析:(I)通过对2S n=n(a n+4)(n∈N*)中令n=1,3,4,结合a2=5计算即得结论;(Ⅱ)通过2S n=n(a n+4)(n∈N*)可得当n≥2时,有2S n﹣1=(n﹣1)(a n﹣1+4)(n∈N*),两者相减可得(n﹣2)a n=(n﹣1)a n﹣1﹣4,进而有(n﹣1)a n+1=na n﹣4,两者相减可得数列{a n}为等差数列,计算即得结论.解答:解:(I)∵2S n=n(a n+4)(n∈N*),a2=5,∴当n=1时,可得a1=4;当n=3时,2(a1+a2+a3)=2(4+5+a3)=3(a3+4),即a3=6;当n=4时,可得2(a1+a2+a3+a4)=2(4+5+6+a4)=3(4+a4),即a4=7;(Ⅱ)∵2S n=n(a n+4)(n∈N*),∴当n≥2时,有2S n﹣1=(n﹣1)(a n﹣1+4)(n∈N*),两式相减可得:2a n=na n﹣(n﹣1)a n﹣1+4,即(n﹣2)a n=(n﹣1)a n﹣1﹣4,又∵(n﹣1)a n+1=na n﹣4,两式相减可得:(n﹣1)a n+1+(n﹣1)a n﹣1=(2n﹣2)a n(n≥2),∴a n+1+a n﹣1=2a n(n≥2),即a n+1﹣a n=a n﹣a n﹣1(n≥2),即数列{a n}为等差数列,在2S n=n(a n+4)中令n=1可得a1=4,又a2=t,∴数列{a n}的公差为t﹣4,∴a n=(t﹣4)n+8﹣t,当且仅当n=5时,S n取得最大值,等价于a5>0且a6<0,即t>3,且t<,故t∈(3,).点评:本题考查是一道关于数列的综合题,考查运算求解能力,注意解题方法的积累,属于中档题.20.(13分)已知函数f(x)=(e是自然对数的底数,其中常数a,n满足a>b,且a+b=1,函数y=f(x)的图象在点(1,f(1))处的切线斜率是2﹣.(Ⅰ)求a,b的值;(Ⅱ)求函数f(x)的单调区间.考点:利用导数研究曲线上某点切线方程;利用导数研究函数的单调性.专题:导数的概念及应用;导数的综合应用.分析:(Ⅰ)求出函数的导数,由条件可得a,b的方程,解方程可得a=e,b=1﹣e;(Ⅱ)求出f(x)的导数,由x=e,求得导数,再由x>e,结合对数的性质可得减区间,由0<x<e可得增区间.解答:解:(Ⅰ)f(x)=的导数为f′(x)=(x>0),由f′(1)=2﹣,得=2﹣,由a+b=1,可得=2﹣,即=,由a>b,a,则a=e,b=1﹣e;(Ⅱ)由(Ⅰ)可得f′(x)=(x>0),即f′(x)=(x>0),由x=e时,f′(e)=0,且x>e,e﹣x>0,ex(1﹣lnx)<0,故f′(x)<0,同理0<x<e,f′(x)>0,于是函数的单调增区间为(0,e),减区间为(e,+∞).点评:本题考查导数的运用:求切线方程和单调区间,主要考查导数的几何意义,正确求导和运用函数的性质是解题的关键,属于中档题.21.(13分)已知动直线l:y=kx+k恒过椭圆E:=1(a>b>0)的一个顶点A,顶点B与A关于坐标原点O对称,该椭圆的一个焦点F满足∠FAB=30°.(Ⅰ)求椭圆E的标准方程;(Ⅱ)如果点C满足3+2=,当k=时,记直线l与椭圆E的另一个公共点为P,求∠BPC 平分线所在直线的方程.考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:综合题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)先求出b,再利用求∠FAB=30°,求出c,可得a,即可求出椭圆E的标准方程;(Ⅱ)当k=时,将直线l:y=x+与椭圆E的方程联立并整理得2x2+x﹣1=0,求出P,B,C的坐标,可得直线PB,PC的方程,利用Q到PB,PC的距离相等,求出Q的坐标,即可求出求∠BPC平分线所在直线的方程.解答:解:(Ⅰ)由题意,A(﹣1,0),所以b=1,因为tan∠FAB==,所以c=,所以a2=,所以椭圆E的标准方程为;(Ⅱ)当k=时,将直线l:y=x+与椭圆E的方程联立并整理得2x2+x﹣1=0,所以P的横坐标为,即P(,1).因为B(1,0),3+2=0,所以C(﹣1.5,0),所以直线PB的方程为2x+y﹣2=0,直线PC的方程为x﹣2y+1.5=0.令Q(t,0)为∠BPC平分线与x轴的交点,则Q到PB,PC的距离相等,即,所以t=或t=.考虑到Q在B,C之间,则t=,即Q(,0),所以∠BPC平分线所在直线的方程为6x﹣2y﹣1=0.点评:本题考查椭圆的方程与性质,考查直线与椭圆的位置关系,考查直线方程,考查学生的计算能力,属于中档题.。

2015届高考数学总复习 第三章 函数y=Asin(ωx+φ)的图象及三角函数模型的应用课时精练试题 文(含解析)

2015届高考数学总复习 第三章 函数y=Asin(ωx+φ)的图象及三角函数模型的应用课时精练试题 文(含解析)

1.如图,单摆从某点开始来回摆动,离开平衡位置O 的距离s (单位:cm)和时间t (单位:s)的函数关系式为s =6sin ⎝⎛⎭⎪⎫2πt +π6,那么单摆来回摆动一次所需的时间为( )A .2πsB .πsC .0.5 sD .1 s解析:单摆来回摆动一次所需的时间即为函数的周期,∴T =2π2π=1.故选D.答案:D2.(2013·山东卷)将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为( )A.3π4B.π4 C .0 D .- π4解析:把函数y =sin(2x +φ)沿x 轴向左平移π8个单位后得到函数y =sin2⎝⎛⎭⎪⎫x +φ2+π8=sin ⎝⎛⎭⎪⎫2x +φ+π4为偶函数,则φ=π4. 答案:B3.已知函数f (x )=A tan(ωx +φ)ω>0,|φ|<π2,y =f (x )的部分图象如下图所示,则f ⎝ ⎛⎭⎪⎫π24=( )A .2+ 3 B. 3 C.33D .2- 3答案:B4. (2013·梅州一模)把函数y =sin ⎝⎛⎭⎪⎫x +π6图象上各点的横坐标缩短到原来的12倍(纵坐标不变),再将图象向右平移π3个单位,那么所得图象的一条对称轴方程为( )A .x =-π2B .x =-π4C .x =π8D .x =π4解析:y =sin ⎝⎛⎭⎪⎫x +π6图象上各点的横坐标缩短到原来的12倍(纵坐标不变),得到函数y=sin ⎝ ⎛⎭⎪⎫2x +π6;再将图象向右平移π3个单位,得函数y =sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π3+π6=sin ⎝ ⎛⎭⎪⎫2x -π2,x =-π2是其图象的一条对称轴方程.故选A.答案:A5.(2013·东北三省三校一联)已知函数y =A sin(ωx +φ)+k 的最大值为4,最小值为0,最小正周期为π2,直线x =π3是其图象的一条对称轴,则下面各式中符合条件的解析式为( )A .y =4sin ⎝⎛⎭⎪⎫4x +π6 B .y =2sin ⎝⎛⎭⎪⎫2x +π3+2 C .y =2sin ⎝⎛⎭⎪⎫4x +π3+2 D .y =2sin ⎝⎛⎭⎪⎫4x +π6 +2解析:A =2,k =2,ω=4,把x =π3代入选项C 、D 可知,选项D 中的函数取得最小值,故选D.答案:D6.设函数f (x )=cos ωx (ω>0),将y =f (x )的图象向右平移π3个单位长度后,所得的图象与原图象重合,则ω的最小值等于( )A.13 B .3 C .6 D .9解析:将y =f (x )的图象向右平移π3个单位长度后得到的图象与原图象重合,则π3=2πωk ,k ∈Z ,得ω=6k ,k ∈Z .又ω>0,则ω的最小值等于6.故选C.答案:C7.(2013·湖北卷)将函数y =3cos x +sin x (x ∈R )的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )A.π12B.π6C.π3D.5π6解析:y =3cos x +sin x =2sin ⎝⎛⎭⎪⎫x +π3向左平移m 个单位长度后得到y =2sin ⎝ ⎛⎭⎪⎫x +π3+m ,该函数的图象关于y 轴对称,所以sin ⎝ ⎛⎭⎪⎫π3+m =±1,所以π3+m =k π+π2,k ∈Z ,即m =k π+π6,k ∈Z ,因为m >0,所以m 的最小值为π6.答案:B8.(2012·湛江一中模拟)函数f (x )=A sin ωx 的图象如图所示,若f (θ)=32,θ∈⎝ ⎛⎭⎪⎫π4,π2,则cos θ-sin θ=________________.解析:由题意知,A =2,T 2=π2,∴T =π,T =2πω=π.得ω=2,f (x )=2sin 2x .当f (θ)=2sin 2θ=32时,得sin 2θ=34.∵θ∈⎝⎛⎭⎪⎫π4,π2,∴cos θ-sin θ<0.∴cos θ-sin θ=-θ-sin θ2=-1-sin 2θ=-12.答案:-129.(2012·大纲全国卷)当函数y =sin x -3cos x (0≤x <2π)取得最大值时,x =________.解析:由y =sin x -3cos x =2sin ⎝⎛⎭⎪⎫x -π3,∵0≤x <2π,∴x -π3∈⎣⎢⎡⎭⎪⎫-π3,5π3,当x -π3=π2,即x =5π6时,函数取得最大值为2.答案:5π610.设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3,现有下列结论: ①f (x )的图象关于直线x =π3对称;②f (x )的图象关于点⎝ ⎛⎭⎪⎫π4,0对称; ③把f (x )的图象向左平移π12个单位长度,得到一个偶函数的图象;④f (x )的最小正周期为π,且在⎣⎢⎡⎦⎥⎤0,π6上为增函数.其中正确的结论有____________(把你认为正确的序号都填上).答案:③11.(2013·陕西卷)已知向量a =⎝⎛⎭⎪⎫cos x ,-12b =(3sin x ,cos 2x ),x ∈R ,设函数f (x )=a ·b .(1)求f (x )的最小正周期.(2)求f (x )在⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值.解析:(1)f (x )=a ·b =cos x ·3sin x -12cos 2x =32sin 2x -12cos 2x =sin ⎝⎛⎭⎪⎫2x -π6. 最小正周期T =2π2=π.所以f (x )=sin ⎝⎛⎭⎪⎫2x -π6最小正周期为π.(2)当x ∈⎣⎢⎡⎦⎥⎤0,π2,⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,由函数y =sin x 在⎣⎢⎡⎦⎥⎤-π6,5π6上的图象知,f (x )=sin ⎝⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫-π6,f ⎝ ⎛⎭⎪⎫π2=⎣⎢⎡⎦⎥⎤-12,1. 所以,f (x )在⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值分别为1,-12.12.(2013·山东卷)设函数f (x )=32-3sin 2ωx -sin ωx cos ωx (ω>0),且y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4,(1)求ω的值;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值.解析:(1)f (x )=32-3sin 2ωx -sin ωx cos ωx=32-3×1-cos 2ωx 2-12sin 2ωx =32cos 2ωx -12sin 2ωx =-sin ⎝⎛⎭⎪⎫2ωx -π3.依题意知2π2ω=4×π4,ω>0,所以ω=1.(2)由(1)知f (x )=-sin ⎝⎛⎭⎪⎫2x -π3. 当π≤x ≤3π2时,5π3≤2x -π3≤8π3.所以-32≤sin ⎝⎛⎭⎪⎫2x -π3≤1.所以-1≤f (x )≤32. 故f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值分别为32,-1.13.(2013·汕头二模)已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A ,ω>0,|φ|<π2的图象与y 轴交于(0,32),它在y 轴右侧的第一个最高点和第一个最低点的坐标分别为(m,6)和⎝ ⎛⎭⎪⎫m +π2,-6. (1)求函数f (x )的解析式及m 的值;(2)若锐角θ满足tan θ=22,求f (θ).解析:(1)由函数的图象在y 轴右侧的第一个最高点和第一个最低点的坐标分别为(m,6)和⎝ ⎛⎭⎪⎫m +π2,-6,可得A =6,12·T =12·2πω=⎝ ⎛⎭⎪⎫m +π2-m =π2,求得ω=2.把点(0,32)代入函数的解析式可得6sin(2×0+φ)=32,解得sin φ=22,再由|φ|<π2,求得φ=π4. 故f (x )=6sin ⎝ ⎛⎭⎪⎫2x +π4. 函数在y 轴右侧的第一个最高点的坐标分别为(m,6),故2m +π4=π2,解得m =π8.(2)若锐角θ满足tan θ=22,θ∈⎝ ⎛⎭⎪⎫0,π2,∴sin θ=223,cos θ=13.f (θ)=6sin ⎝ ⎛⎭⎪⎫2θ+π4 =6sin 2θ·cos π4+6 cos 2θ·sin π4=62sin θcos θ+32(2cos 2θ-1)=62×223×13+32⎝ ⎛⎭⎪⎫2×19-1 =8-723.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安徽省合肥市2015届高考数学三模试卷(文科)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知复数z满足方程z2+3=0,则z•(表示复数z的共扼复数)的值是()A.﹣3i B.3i C.﹣3 D.32.(5分)设集合M={x∈R|y=},N={y∈R|y=x2﹣1,x∈R},则集合M和N的关系是()A.M=N B.M∪N=R C.N⊊M D.M⊈N3.(5分)双曲线=1(a>0,b>0)的一条渐近线的斜率为2,则该双曲线的离心率为()A.B.C.D.4.(5分)执行如图所示的程序框图,输出的结果是()A.4B.8C.16 D.2165.(5分)已知a=sin2,b=log2,c=log,则()A.a>b>c B.c>a>b C.a>c>b D.c>b>a6.(5分)等比数列{a n}中,a2=,a6=4,记{a n}的前n项积为T n,则T7=()A.1B.1或一1 C.2D.2或一27.(5分)=()A.B.C.D.18.(5分)某三棱锥的三视图如图所示,则该三棱锥各面中,最小的面积为()A.B.C.1D.9.(5分)在△ABC中,∠ABC=30°,AB=,BC边上的中线AD=1,则AC的长度为()A.1或B.C.D.1或10.(5分)已知函数f(x)=,则关于x的方程f(x)=f(x﹣2)解的个数为()A.1B.2C.3D.4二、填空题(本大题共5}J题,每小题5分,共25分.把答案填在答题卡的相应位置)11.(5分)命题“若|x|=1,则x=1”的否命题为.12.(5分)已知点A(1,2),B(a,4),向量=(2,1),若∥,则实数a的值为.13.(5分)已知实数x,y满足条件,则z=x﹣2y的最大值与最小值之差为.14.(5分)已知函数f(x)对任意实数x,y满足f(x+y)=f(x)+f(y),且f(1)≥2.若存在整数m,使得f(﹣2)﹣m2﹣m+4=0,则m取值的集合为.15.(5分)已知B,C两点在圆O:x2+y2=1上,A(a,0)为x轴上一点,且a>l.给出以下命题:①•的最小值为一1;②△OBC面积的最大值为1;③若a=,且直线AB,AC都与圆O相切,则△ABC为正三角形;④若a=,且=λ(λ>0),则当△OBC面积最大时,|AB|=;⑤若a=,且=,圆O上的点D满足,则直线BC的斜率是.其中正确的是(写出所有正确命题的编号).三、解答题(本大题共6个小题,共75分.解答应写出文字说明、证明过程和演算步骤)16.(12分)已知函数f(x)=sinωx+cos(ωx+)(ω>0)的最小正周期T=4π(I)求ω;(Ⅱ)当x∈时,求函数:y=f(x)﹣的零点.17.(12分)某集团公司生产所需原材料中的一种管材由两家配套厂提供,已知该管材的内径设计标准为500mm,内径尺寸满足20.(13分)已知函数f(x)=(e是自然对数的底数,其中常数a,n满足a>b,且a+b=1,函数y=f(x)的图象在点(1,f(1))处的切线斜率是2﹣.(Ⅰ)求a,b的值;(Ⅱ)求函数f(x)的单调区间.21.(13分)已知动直线l:y=kx+k恒过椭圆E:=1(a>b>0)的一个顶点A,顶点B与A关于坐标原点O对称,该椭圆的一个焦点F满足∠FAB=30°.(Ⅰ)求椭圆E的标准方程;(Ⅱ)如果点C满足3+2=,当k=时,记直线l与椭圆E的另一个公共点为P,求∠BPC 平分线所在直线的方程.安徽省合肥市2015届高考数学三模试卷(文科)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知复数z满足方程z2+3=0,则z•(表示复数z的共扼复数)的值是()A.﹣3i B.3i C.﹣3 D.3考点:复数的代数表示法及其几何意义.专题:数系的扩充和复数.分析:直接计算即可.解答:解:∵z2+3=0,∴z=±i,∴z•=﹣3i2=3,故选:D.点评:本题考查复数的相关知识,注意解题方法的积累,属于基础题.2.(5分)设集合M={x∈R|y=},N={y∈R|y=x2﹣1,x∈R},则集合M和N的关系是()A.M=N B.M∪N=R C.N⊊M D.M⊈N考点:函数的值域;集合的包含关系判断及应用;函数的定义域及其求法.专题:函数的性质及应用.分析:求出函数的大电影与值域,即可判断两个集合的关系.解答:解:集合M={x∈R|y=}={x|x≥﹣1}=考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:利用双曲线的渐近线,转化求解离心率即可.解答:解:双曲线=1(a>0,b>0)的一条渐近线的斜率为2,可得,即b=2a,c2﹣a2=4a2,可得e=.故选:C.点评:本题考查双曲线的简单性质的应用,离心率的求法,考查计算能力.4.(5分)执行如图所示的程序框图,输出的结果是()A.4B.8C.16 D.216考点:程序框图.专题:算法和程序框图.分析:根据程序框图进行模拟运算即可.解答:解:第一次1≤6,b=2,a=1+2=3,第二次3≤6,b=4,a=3+2=5,第三次5≤6,b=24=16,a=5+2=7,第四次7≤6不成立,输出b=16,故选:C点评:本题主要考查了程序框图和算法,属于基本知识的考查5.(5分)已知a=sin2,b=log2,c=log,则()A.a>b>c B.c>a>b C.a>c>b D.c>b>a考点:对数值大小的比较.专题:函数的性质及应用.分析:利用指数函数与对数函数、三角函数的单调性即可得出.解答:解:∵0<a=sin2<1,b=log2<0,c=log=log23>1,∴c>a>b.故选:B.点评:本题考查了指数函数与对数函数、三角函数的单调性,属于基础题.6.(5分)等比数列{a n}中,a2=,a6=4,记{a n}的前n项积为T n,则T7=()A.1B.1或一1 C.2D.2或一2考点:等比数列的前n项和.专题:等差数列与等比数列.分析:利用等比中项的性质计算即得结论.解答:解:设等比数列{a n}的公比为q,则q==2或﹣2,∴a4==1,∴a1a7=a2a6=a3a5==1,∴T7=1,故选:A.点评:本题考查等比数列的前几项的积,利用等比中项的性质是解决本题的关键,注意解题方法的积累,属于中档题.7.(5分)=()A.B.C.D.1考点:三角函数的化简求值.专题:计算题;三角函数的求值.分析:由倍角公式和和差化积公式化简后即可求值.解答:解:===1.故选:D.点评:本题主要考查了倍角公式和和差化积公式的应用,熟记相关公式是解题的关键,属于基础题.8.(5分)某三棱锥的三视图如图所示,则该三棱锥各面中,最小的面积为()A.B.C.1D.考点:由三视图求面积、体积.专题:综合题;空间位置关系与距离.分析:根据几何体的三视图,得出该几何体是直三棱锥,根据图中的数据,求出该三棱锥的4个面的面积,得出面积最大的三角形的面积.解答:解:根据几何体的三视图,得该几何体是如图所示的直三棱锥,且侧棱PA⊥底面ABC,PA=1,AC=2,点B到AC的距离为1,∴底面△ABC的面积为S1=×2×1=1,侧面△PAB的面积为S2=××1=,侧面△PAC的面积为S3=×2×1=1,在侧面△PBC中,BC=,PB=,PC=,∴△PBC是Rt△,∴△PBC的面积为S4=××=,∴三棱锥P﹣A BC的所有面中,面积最小的是△PAB,为.故选:B.点评:本题考查了空间几何体的三视图的应用问题,也考查了空间中的位置关系与距离的计算问题,是基础题目.9.(5分)在△ABC中,∠ABC=30°,AB=,BC边上的中线AD=1,则AC的长度为()A.1或B.C.D.1或考点:余弦定理.专题:解三角形.分析:在三角形ABD中,利用余弦定理列出关系式,把AB与AD,cos∠ABC的值代入求出BD的长,进而确定出BC的长,在三角形ABC中,利用余弦定理求出AC的长即可.解答:解:在△ABD中,∠ABC=30°,AB=,AD=1,由余弦定理得:AD2=AB2+BD2﹣2AB•BD•cos∠ABC,即1=3+BD2﹣3BD,解得:BD=1或BD=2,若BD=1,则BC=2CD=2,在△ABC中,由余弦定理得:AC2=AB2+BC2﹣2AB•BC•cos∠ABC=3+4﹣6=1,解得:AC=1;若BD=2,则BC=2CD=4,在△ABC中,由余弦定理得:AC2=AB2+BC2﹣2AB•BC•cos∠ABC=3+16﹣12=7,解得:AC=,综上,AC的长为1或.故选:A.点评:此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.10.(5分)已知函数f(x)=,则关于x的方程f(x)=f(x﹣2)解的个数为()A.1B.2C.3D.4考点:根的存在性及根的个数判断;分段函数的应用.专题:函数的性质及应用.分析:由题意可得本题即求函数y=f(x)的图象和y=f(x﹣2)的图象的交点个数,数形结合可得结论.解答:解:由函数f(x)=,可得f(x﹣2)=,关于x的方程f(x)=f(x﹣2)解的个数,即函数y=f(x)的图象和y=f(x﹣2)的图象的交点个数,如图所示:数形结合可得函数y=f(x)的图象和y=f(x﹣2)的图象的交点个数为3,故选:C.点评:本题主要考查函数的图象特征,方程根的存在性以及个数判断,体现了数形结合、转化的数学思想,属于中档题.二、填空题(本大题共5}J题,每小题5分,共25分.把答案填在答题卡的相应位置)11.(5分)命题“若|x|=1,则x=1”的否命题为若|x|≠1,则x≠1.考点:四种命题间的逆否关系.专题:简易逻辑.分析:直接利用四种命题的逆否关系,写出结果即可.解答:解:有否命题的定义可知:命题“若|x|=1,则x=1”的否命题为:“若|x|≠1,则x≠1”.故答案为:若|x|≠1,则x≠1.点评:本题考查四种命题的逆否关系,基本知识的考查.12.(5分)已知点A(1,2),B(a,4),向量=(2,1),若∥,则实数a的值为5.考点:平面向量的坐标运算.专题:平面向量及应用.分析:根据平面向量平行的坐标表示,列出方程,求出a的值.解答:解:∵点A(1,2),B(a,4),向量=(2,1),∴=(a﹣1,2);又∥,∴(a﹣1)﹣2×2=0,解得a=5,∴实数a的值为5.故答案为:5.点评:本题考查了平面向量的坐标表示与平面向量的平行问题,是基础题目.13.(5分)已知实数x,y满足条件,则z=x﹣2y的最大值与最小值之差为3.考点:简单线性规划.专题:不等式的解法及应用.分析:由题意作出其平面区域,将z=x﹣2y化为y=x﹣,z相当于直线的纵截距,由几何意义可得.解答:解:由题意作出其平面区域,将z=x﹣2y化为y=x﹣z,显然直线过(1,0)时,z最大,z最大值=1,直线过(0,1)时,z最小,z最小值=﹣2,故答案为:3.点评:本题考查了简单线性规划,作图要细致认真,属于中档题.14.(5分)已知函数f(x)对任意实数x,y满足f(x+y)=f(x)+f(y),且f(1)≥2.若存在整数m,使得f(﹣2)﹣m2﹣m+4=0,则m取值的集合为{﹣1,0}.考点:抽象函数及其应用.专题:函数的性质及应用.分析:根据抽象函数,判断函数的奇偶性,结合一元二次不等式的性质进行求解即可.解答:解:令x=y=0得f(0)=f(0)+f(0),解得f(0)=0,令y=﹣x,则f(x﹣x)=f(x)+f(﹣x)=f(0)=0,即f(﹣x)=﹣f(x),∴函数f(x)是奇函数,若存在整数m,使得f(﹣2)﹣m2﹣m+4=0,则﹣f(2)﹣m2﹣m+4=0,即f(2)=﹣m2﹣m+4=﹣(m+)2+,令x=y=1,则f(1+1)=f(1)+f(1),即f(2)=2f(1)≥4,即﹣m2﹣m+4≥4,即﹣m2﹣m≥0.则m2+m≤0,解得﹣1≤m≤0,∵m是整数,∴m=﹣1或0,故m取值的集合为{﹣1,0},故答案为:{﹣1,0}.点评:本题主要考查抽象函数的应用,根据条件判断函数的奇偶性是解决本题的关键.综合考查函数的性质.15.(5分)已知B,C两点在圆O:x2+y2=1上,A(a,0)为x轴上一点,且a>l.给出以下命题:①•的最小值为一1;②△OBC面积的最大值为1;③若a=,且直线AB,AC都与圆O相切,则△ABC为正三角形;④若a=,且=λ(λ>0),则当△OBC面积最大时,|AB|=;⑤若a=,且=,圆O上的点D满足,则直线BC的斜率是.其中正确的是⑤(写出所有正确命题的编号).考点:命题的真假判断与应用.专题:直线与圆;简易逻辑.分析:①设C(cosθ,sinθ)(θ∈(cosθ,sinθ),θ∈时,求函数:y=f(x)﹣的零点.考点:两角和与差的正弦函数;三角函数的周期性及其求法.专题:三角函数的图像与性质.分析:(I)由条件利用三角恒等变换函数f(x)的解析式,为f(x)=sin(ωx+),由函数f(x)的最小正周期T==4π,求得ω=的值.(Ⅱ)当条件求得sin(x+)=,可得x+=2kπ+或x+=2kπ+,由此求得x的值.解答:解:(I)函数f(x)=sinωx+cos(ωx+)=sinωx+cosωx﹣sinωx=sinωx++cosωx=sin(ωx+),且函数f(x)的最小正周期T==4π,∴ω=,f(x)=sin(x+).(Ⅱ)当x∈时,由f(x)﹣,可得sin(x+)=,∴x+=2kπ+或x+=2kπ+,求得x=4kπ﹣,或x=4kπ+π,k∈z,∵x∈,∴x=﹣,或x=π.点评:本题主要考查三角恒等变换,根据三角函数的值求角,属于中档题.17.(12分)某集团公司生产所需原材料中的一种管材由两家配套厂提供,已知该管材的内径设计标准为500mm,内径尺寸满足∴AD∥MF,AD=MF,∴四边形ADFM是平行四边形,∴AM∥DF,∵AM⊂面ABE,DF⊄面ABE,∴DF∥面ABE;(Ⅱ)解:由△BCE为等边三角形,面BCE⊥面ABCD,BC=2,可得点E到平面ABCD的距离为,∴点F到平面ABCD的距离为,∵ABCD为等腰梯形,且AB=AD=DC=1,BC=2,∴S△BCD=,∴V B﹣CDF=V F﹣BCD=.点评:本题考查线面平行的判定,考查求三棱锥B一CDF的体积,证明四边形ADFM是平行四边形是关键.19.(13分)已知数列{a n}的前n项和为S n,满足2S n=n(a n+4)(n∈N*)(I)设a2=5,求a4;(Ⅱ)设a2=t,若当且仅当n=5时S n取得最大值,求实数t的取值范围.考点:数列递推式.专题:点列、递归数列与数学归纳法.分析:(I)通过对2S n=n(a n+4)(n∈N*)中令n=1,3,4,结合a2=5计算即得结论;(Ⅱ)通过2S n=n(a n+4)(n∈N*)可得当n≥2时,有2S n﹣1=(n﹣1)(a n﹣1+4)(n∈N*),两者相减可得(n﹣2)a n=(n﹣1)a n﹣1﹣4,进而有(n﹣1)a n+1=na n﹣4,两者相减可得数列{a n}为等差数列,计算即得结论.解答:解:(I)∵2S n=n(a n+4)(n∈N*),a2=5,∴当n=1时,可得a1=4;当n=3时,2(a1+a2+a3)=2(4+5+a3)=3(a3+4),即a3=6;当n=4时,可得2(a1+a2+a3+a4)=2(4+5+6+a4)=3(4+a4),即a4=7;(Ⅱ)∵2S n=n(a n+4)(n∈N*),∴当n≥2时,有2S n﹣1=(n﹣1)(a n﹣1+4)(n∈N*),两式相减可得:2a n=na n﹣(n﹣1)a n﹣1+4,即(n﹣2)a n=(n﹣1)a n﹣1﹣4,又∵(n﹣1)a n+1=na n﹣4,两式相减可得:(n﹣1)a n+1+(n﹣1)a n﹣1=(2n﹣2)a n(n≥2),∴a n+1+a n﹣1=2a n(n≥2),即a n+1﹣a n=a n﹣a n﹣1(n≥2),即数列{a n}为等差数列,在2S n=n(a n+4)中令n=1可得a1=4,又a2=t,∴数列{a n}的公差为t﹣4,∴a n=(t﹣4)n+8﹣t,当且仅当n=5时,S n取得最大值,等价于a5>0且a6<0,即t>3,且t<,故t∈(3,).点评:本题考查是一道关于数列的综合题,考查运算求解能力,注意解题方法的积累,属于中档题.20.(13分)已知函数f(x)=(e是自然对数的底数,其中常数a,n满足a>b,且a+b=1,函数y=f(x)的图象在点(1,f(1))处的切线斜率是2﹣.(Ⅰ)求a,b的值;(Ⅱ)求函数f(x)的单调区间.考点:利用导数研究曲线上某点切线方程;利用导数研究函数的单调性.专题:导数的概念及应用;导数的综合应用.分析:(Ⅰ)求出函数的导数,由条件可得a,b的方程,解方程可得a=e,b=1﹣e;(Ⅱ)求出f(x)的导数,由x=e,求得导数,再由x>e,结合对数的性质可得减区间,由0<x<e可得增区间.解答:解:(Ⅰ)f(x)=的导数为f′(x)=(x>0),由f′(1)=2﹣,得=2﹣,由a+b=1,可得=2﹣,即=,由a>b,a,则a=e,b=1﹣e;(Ⅱ)由(Ⅰ)可得f′(x)=(x>0),即f′(x)=(x>0),由x=e时,f′(e)=0,且x>e,e﹣x>0,ex(1﹣lnx)<0,故f′(x)<0,同理0<x<e,f′(x)>0,于是函数的单调增区间为(0,e),减区间为(e,+∞).点评:本题考查导数的运用:求切线方程和单调区间,主要考查导数的几何意义,正确求导和运用函数的性质是解题的关键,属于中档题.21.(13分)已知动直线l:y=kx+k恒过椭圆E:=1(a>b>0)的一个顶点A,顶点B与A关于坐标原点O对称,该椭圆的一个焦点F满足∠FAB=30°.(Ⅰ)求椭圆E的标准方程;(Ⅱ)如果点C满足3+2=,当k=时,记直线l与椭圆E的另一个公共点为P,求∠BPC 平分线所在直线的方程.考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:综合题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)先求出b,再利用求∠FAB=30°,求出c,可得a,即可求出椭圆E的标准方程;(Ⅱ)当k=时,将直线l:y=x+与椭圆E的方程联立并整理得2x2+x﹣1=0,求出P,B,C的坐标,可得直线PB,PC的方程,利用Q到PB,PC的距离相等,求出Q的坐标,即可求出求∠BPC平分线所在直线的方程.解答:解:(Ⅰ)由题意,A(﹣1,0),所以b=1,因为tan∠FAB==,所以c=,所以a2=,所以椭圆E的标准方程为;(Ⅱ)当k=时,将直线l:y=x+与椭圆E的方程联立并整理得2x2+x﹣1=0,所以P的横坐标为,即P(,1).因为B(1,0),3+2=0,所以C(﹣1.5,0),所以直线PB的方程为2x+y﹣2=0,直线PC的方程为x﹣2y+1.5=0.令Q(t,0)为∠BPC平分线与x轴的交点,则Q到PB,PC的距离相等,即,所以t=或t=.考虑到Q在B,C之间,则t=,即Q(,0),所以∠BPC平分线所在直线的方程为6x﹣2y﹣1=0.点评:本题考查椭圆的方程与性质,考查直线与椭圆的位置关系,考查直线方程,考查学生的计算能力,属于中档题.。

相关文档
最新文档