沂水县高中2018-2019学年高二下学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沂水县高中2018-2019学年高二下学期第二次月考试卷数学
一、选择题
1. 执行如图所示的程序框图,则输出的S 等于(
)
A .19
B .42
C .47
D .89
2. 函数
y=
(x 2
﹣5x+6)的单调减区间为( )
A
.(,+∞) B .(3,+∞) C .(﹣∞
,) D .(﹣∞,2)
3. 已知函数sin(2)y x ϕ=+在6
x π
=处取得最大值,则函数cos(2)y x ϕ=+的图象( )
A .关于点(
0)6π
,对称 B .关于点(0)3
π
,对称 C .关于直线6
x π
=对称 D .关于直线3
x π
=
对称
4. 执行如图的程序框图,若输出i 的值为12,则①、②处可填入的条件分别为( )
A .
S 384,2i i ≥=+
C .S 3840,2i i ≥=+
5. 互相垂直的两条直径,现分别以OA ,OB ,OC ,OD 为直径作四个 )
A .
π
1
B .π21
C .π121-
D .π2141-
【命题意图】本题考查几何概型概率的求法,借助圆这个载体,突出了几何概型的基本运算能力,因用到圆的几何性质及面积的割补思想,属于中等难度.
6. 在《张邱建算经》中有一道题:“今有女子不善织布,逐日所织的布比同数递减,初日织五尺,
D
B
C
O 班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
末一日织一尺,计织三十日”,由此推断,该女子到第10日时,大约已经完成三十日织布总量的( ) A .33% B .49% C .62% D .88% 7. 在等差数列{}n a 中,11a =,公差0d ,n S 为{}n a 的前n 项和.若向量13(,)m a a =,133(,)n a a =-, 且0m n ?,则
216
3
n n S a ++的最小值为( )
A .4
B .3 C
.2 D .
92
【命题意图】本题考查等差数列的性质,等差数列的前n 项和,向量的数量积,基本不等式等基础知识,意在考查学生的学生运算能力,观察分析,解决问题的能力. 8. 如图所示程序框图中,输出S=( )
A .45
B .﹣55
C .﹣66
D .66
9. 下列函数中,在其定义域内既是奇函数又是减函数的是( ) A .y=|x|(x ∈R ) B .
y=(x ≠0) C .y=x (x ∈R ) D .y=﹣x 3(x ∈R ) 10.等比数列{a n }中,a 4=2,a 5=5,则数列{lga n }的前8项和等于( )
A .6
B .5
C .3
D .4
11.在圆的一条直径上,任取一点作与该直径垂直的弦,则其弦长超过该圆的内接等边三角形的边长概率为( ) A
.
B
.
C
.
D
.
12.定义在R 上的奇函数f (x ),
满足,且在(0,+∞)上单调递减,则xf (x )>0的解集为( )
A
. B
.
C
. D
.
二、填空题
13.在极坐标系中,O 是极点,设点A ,B 的极坐标分别是(
2
,
),(3
,
),则O 点到直线AB
的距离是 .
14.已知椭圆+=1(a >b >0)上一点A 关于原点的对称点为B ,F 为其左焦点,若AF ⊥BF ,设∠ABF=θ,
且θ∈[
,
],则该椭圆离心率e 的取值范围为 .
15.下图是某算法的程序框图,则程序运行后输出的结果是____.
16.曲线y =x 2+3x 在点(-1,-2)处的切线与曲线y =ax +ln x 相切,则a =________.
17()23k x =-+有两个不等实根,则的取值范围是 . 18.
如图,P 是直线x +y -5=0上的动点,过P 作圆C :x 2
+y 2
-2x +4y -4=0的两切线、切点分别为A 、B ,当
四边形P ACB 的周长最小时,△ABC 的面积为________.
三、解答题
19.生产A ,B 两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽
(Ⅱ)生产一件元件A ,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B ,若是正品可盈利50元,若是次品则亏损10元.在(Ⅰ)的前提下,
(ⅰ)记X 为生产1件元件A 和1件元件B 所得的总利润,求随机变量X 的分布列和数学期望; (ⅱ)求生产5件元件B 所获得的利润不少于140元的概率.
20.如图1,圆O 的半径为2,AB ,CE 均为该圆的直径,弦CD 垂直平分半径OA ,垂足为F ,沿直径AB 将半圆ACB 所在平面折起,使两个半圆所在的平面互相垂直(如图2) (Ⅰ)求四棱锥C ﹣FDEO 的体积
(Ⅱ)如图2,在劣弧BC 上是否存在一点P (异于B ,C 两点),使得PE ∥平面CDO ?若存在,请加以证明;若不存在,请说明理由.
21.已知三棱柱ABC ﹣A 1B 1C 1,底面三角形ABC 为正三角形,侧棱AA 1⊥底面ABC ,AB=2,AA 1=4,E 为AA 1的中点,F 为BC 的中点 (1)求证:直线AF ∥平面BEC 1 (2)求A 到平面BEC 1的距离.
22.已知全集U 为R ,集合A={x|0<x ≤2},B={x|x <﹣3,或x >1}
求:(I )A ∩B ;
(II )(C U A )∩(C U B );
(III )C U (A ∪B ).
23.【淮安市淮海中学2018届高三上第一次调研】已知函数()133x x a
f x b
+-+=+.
(1)当1a b ==时,求满足()3x
f x =的x 的取值;
(2)若函数()f x 是定义在R 上的奇函数
①存在t R ∈,不等式()()
2222f t t f t k -<-有解,求k 的取值范围; ②若函数()g x 满足()()()
12333
x
x f x g x -⎡⎤⋅+=-⎣⎦,
若对任意x R ∈,不等式()()211g x m g x ≥⋅-恒成立,求实数m 的最大值.
24.在平面直角坐标系xOy 中,圆C :x 2+y 2=4,A (,0),A 1(﹣
,0),点P 为平面内一动点,以
PA 为直径的圆与圆C 相切.
(Ⅰ)求证:|PA 1|+|PA|为定值,并求出点P 的轨迹方程C 1;
(Ⅱ)若直线PA 与曲线C 1的另一交点为Q ,求△POQ 面积的最大值.
25.已知p :“直线x+y ﹣m=0与圆(x ﹣1)2+y 2=1相交”;q :“方程x 2﹣x+m ﹣4=0的两根异号”.若p ∨q 为真,¬p 为真,求实数m 的取值范围.
26.(本小题满分12分)
一个盒子里装有编号为1、2、3、4、5的五个大小相同的小球,第一次从盒子里随机抽取2个小球,记下球的编号,并将小球放回盒子,第二次再从盒子里随机抽取2个小球,记下球的编号. (Ⅰ)求第一次或第二次取到3号球的概率;
(Ⅱ)设ξ为两次取球时取到相同编号的小球的个数,求ξ的分布列与数学期望.
沂水县高中2018-2019学年高二下学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】B
【解析】解:模拟执行程序框图,可得 k=1 S=1
满足条件k <5,S=3,k=2 满足条件k <5,S=8,k=3 满足条件k <5,S=19,k=4 满足条件k <5,S=42,k=5
不满足条件k <5,退出循环,输出S 的值为42. 故选:B .
【点评】本题主要考查了循环结构的程序框图,正确依次写出每次循环得到的S ,k 的值是解题的关键,属于基础题.
2. 【答案】B
【解析】解:令t=x 2
﹣5x+6=(x ﹣2)(x ﹣3)>0,可得 x <2,或 x >3,
故函数y=
(x 2
﹣5x+6)的定义域为(﹣∞,2)∪(3,+∞).
本题即求函数t 在定义域(﹣∞,2)∪(3,+∞)上的增区间.
结合二次函数的性质可得,函数t 在(﹣∞,2)∪(3,+∞)上的增区间为 (3,+∞), 故选B .
3. 【答案】A 【解析】∵22,6
2
k k Z π
π
ϕπ⨯
+=+
∈,∴2,6
k k Z π
ϕπ=+
∈,
∴cos(2)cos(22)cos(2)66
y x x k x π
π
ϕπ=+=++=+, 当6
x π
=
时,cos(2)066
y π
π
=⨯
+=,故选A .
4. 【答案】D
【解析】如果②处填入2i i =+,
则12468103840S =⨯⨯⨯⨯⨯=,故选D . 5. 【答案】C
【解析】设圆O 的半径为2,根据图形的对称性,可以选择在扇形OAC 中研究问题,过两个半圆的交点分别向OA ,OC 作垂线,则此时构成一个以1为边长的正方形,则这个正方形内的阴影部分面积为
12
-π
,扇形
OAC 的面积为π,所求概率为π
π
π
12112
-=
-=P . 6. 【答案】B 【
解
析
】
7. 【答案】A
【
解
析
】
8. 【答案】B
【解析】解:由程序框图知,第一次运行T=(﹣1)2•12
=1,S=0+1=1,n=1+1=2;
第二次运行T=(﹣1)3•22
=﹣4,S=1﹣4=﹣3,n=2+1=3;
第三次运行T=(﹣1)4•32
=9,S=1﹣4+9=6,n=3+1=4; …
直到n=9+1=10时,满足条件n >9,运行终止,此时T=(﹣1)10•92
,
S=1﹣4+9﹣16+…+92﹣102=1+(2+3)+(4+5)+(6+7)+(8+9)﹣
100=×9﹣100=﹣55.
故选:B .
【点评】本题考查了循环结构的程序框图,判断算法的功能是解答本题的关键.
9. 【答案】D
【解析】解:y=|x|(x ∈R )是偶函数,不满足条件,
y=(x ≠0)是奇函数,在定义域上不是单调函数,不满足条件, y=x (x ∈R )是奇函数,在定义域上是增函数,不满足条件, y=﹣x 3(x ∈R )奇函数,在定义域上是减函数,满足条件, 故选:D
10.【答案】D
【解析】解:∵等比数列{a n}中a4=2,a5=5,
∴a4•a5=2×5=10,
∴数列{lga n}的前8项和S=lga1+lga2+…+lga8
=lg(a1•a2…a8)=lg(a4•a5)4
=4lg(a4•a5)=4lg10=4
故选:D.
【点评】本题考查等比数列的性质,涉及对数的运算,基本知识的考查.
11.【答案】C
【解析】解:如图所示,△BCD是圆内接等边三角形,
过直径BE上任一点作垂直于直径的弦,设大圆的半径为2,则等边三角形BCD的内切圆的半径为1,显然当弦为CD时就是△BCD的边长,
要使弦长大于CD的长,就必须使圆心O到弦的距离小于|OF|,
记事件A={弦长超过圆内接等边三角形的边长}={弦中点在内切圆内},
由几何概型概率公式得P(A)=,
即弦长超过圆内接等边三角形边长的概率是.
故选C.
【点评】本题考查了几何概型的运用;关键是找到事件A对应的集合,利用几何概型公式解答.12.【答案】B
【解析】解:∵函数f(x)是奇函数,在(0,+∞)上单调递减,且f ()=0,
∴f (﹣)=0,且在区间(﹣∞,0)上单调递减,
∵当x<0,当﹣<x<0时,f(x)<0,此时xf(x)>0
当x>0,当0<x<时,f(x)>0,此时xf(x)>0
综上xf(x)>0的解集为
故选B
二、填空题
13.【答案】 .
【解析】解:根据点A ,B 的极坐标分别是(2,
),(3,
),可得A 、B 的直角坐标分别是(3,
)、(﹣,),
故AB 的斜率为﹣
,故直线AB 的方程为 y ﹣
=﹣
(x ﹣3),即x+3
y ﹣12=0,
所以O 点到直线AB 的距离是=
,
故答案为:
.
【点评】本题主要考查把点的极坐标化为直角坐标的方法,点到直线的距离公式的应用,属于基础题.
14.【答案】 [,﹣1] .
【解析】解:设点A (acos α,bsin α),则B (﹣acos α,﹣bsin α)(0≤α≤);
F (﹣c ,0); ∵AF ⊥BF ,
∴
=0,
即(﹣c ﹣acos α,﹣bsin α)(﹣c+acos α,bsin α)=0,
故c 2﹣a 2cos 2α﹣b 2sin 2
α=0,
cos 2α==2﹣,
故cos α=,
而|AF|=,
|AB|==2c ,
而sin θ=
==
,
∵θ∈[
,
],
∴sin θ∈[,],
∴≤
≤,
∴
≤
+
≤,
∴,
即,
解得,≤e
≤﹣1; 故答案为:[
,
﹣1].
【点评】本题考查了圆锥曲线与直线的位置关系的应用及平面向量的应用,同时考查了三角函数的应用.
15.【答案】27
【解析】由程序框图可知:
43>符合,跳出循环. 16.【答案】
【解析】由y =x 2+3x 得y ′=2x +3, ∴当x =-1时,y ′=1,
则曲线y =x 2+3x 在点(-1,-2)处的切线方程为y +2=x +1, 即y =x -1,设直线y =x -1与曲线y =ax +ln x 相切于点(x 0,y 0),
由y =ax +ln x 得y ′=a +1
x
(x >0),
∴⎩⎪⎨⎪
⎧a +1x 0
=1y 0=x 0
-1y 0
=ax 0
+ln x
,解之得x 0
=1,y 0
=0,a =0. ∴a =0. 答案:0 17.【答案】53,124⎛⎤
⎥⎝
⎦ 【解析】
试题分析:作出函数
24y x =
-和
()23y k x =-+的图象,
如图所示,函数24y x =-的图象是一个半圆,直线()23y k x =-+的图象恒过定点()2,3,结合图象,可知,当过点()2,0-时,303
224
k -=
=+,当直线()23y k x =-+与圆相切时,即
2
(02)3021k k -+-=+,解得512k =,所以实数的取值范围是53,124⎛⎤
⎥⎝⎦.111]
考点:直线与圆的位置关系的应用.
【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、两点间的斜率公式,以及函数的图像的应用等知识点的综合考查,着重考查了转化与化归思想和学生的分析问题和解答问题的能力,属于中档试题,本题的解答中把方程的根转化为直线与半圆的交点是解答的关键. 18.【答案】
【解析】解析:圆x 2+y 2-2x +4y -4=0的标准方程为(x -1)2+(y +2)2=9. 圆心C (1,-2),半径为3,连接PC ,
∴四边形P ACB 的周长为2(P A +AC ) =2
PC 2-AC 2+2AC =2
PC 2-9+6.
当PC 最小时,四边形P ACB 的周长最小. 此时PC ⊥l .
∴直线PC 的斜率为1,即x -y -3=0,
由⎩
⎪⎨⎪⎧x +y -5=0
x -y -3=0,解得点P 的坐标为(4,1), 由于圆C 的圆心为(1,-2),半径为3,所以两切线P A ,PB 分别与x 轴平行和y 轴平行, 即∠ACB =90°,
∴S △ABC =12AC ·BC =12×3×3=9
2
.
即△ABC 的面积为9
2
.
答案:92
三、解答题
19.【答案】
【解析】解:(Ⅰ)元件A为正品的概率约为.
元件B为正品的概率约为.
(Ⅱ)(ⅰ)∵生产1件元件A和1件元件B可以分为以下四种情况:两件正品,A次B正,A正B次,A 次B次.
∴随机变量X的所有取值为90,45,30,﹣15.
∵P(X=90)==;P(X=45)==;P(X=30)==;
P(X=﹣15)==.
∴随机变量X的分布列为:
EX=.
(ⅱ)设生产的5件元件B中正品有n件,则次品有5﹣n件.
依题意得50n﹣10(5﹣n)≥140,解得.
所以n=4或n=5.
设“生产5件元件B所获得的利润不少于140元”为事件A,
则P(A)==.
20.【答案】
【解析】解:(Ⅰ)如图1,∵弦CD垂直平分半径OA,半径为2,
∴CF=DF,OF=,
∴在Rt△COF中有∠COF=60°,CF=DF=,
∵CE为直径,∴DE⊥CD,
∴OF∥DE,DE=2OF=2,
∴,
图2中,平面ACB⊥平面ADE,平面ACB∩平面ADE=AB,
又CF⊥AB,CF⊂平面ACB,
∴CF⊥平面ADE,则CF是四棱锥C﹣FDEO的高,
∴.
(Ⅱ)在劣弧BC上是存在一点P(劣弧BC的中点),使得PE∥平面CDO.
证明:分别连接PE,CP,OP,
∵点P为劣弧BC弧的中点,∴,
∵∠COF=60°,∴∠COP=60°,则△COP为等边三角形,
∴CP∥AB,且,又∵DE∥AB且DE=,
∴CP∥DE且CP=DE,
∴四边形CDEP为平行四边形,
∴PE∥CD,
又PE⊄面CDO,CD⊂面CDO,
∴PE∥平面CDO.
【点评】本题以空间几何体的翻折为背景,考查空间几何体的体积,考查空间点、线、面的位置关系、线面平行及线面垂直等基础知识,考查空间想象能力,求解运算能力和推理论证能力,考查数形结合,化归与数学转化等思想方法,是中档题.
21.【答案】
【解析】解:(1)取BC1的中点H,连接HE、HF,
则△BCC1中,HF∥CC1且HF=CC1
又∵平行四边形AA1C1C中,AE∥CC1且AE=CC1
∴AE∥HF且AE=HF,可得四边形AFHE为平行四边形,
∴AF∥HE,
∵AF⊄平面REC1,HE⊂平面REC1
∴AF∥平面REC1.…
(2)等边△ABC中,高AF==,所以EH=AF=
由三棱柱ABC﹣A
B1C1是正三棱柱,得C1到平面AA1B1B的距离等于
1
∵Rt△A1C1E≌Rt△ABE,∴EC1=EB,得EH⊥BC1
可得S
△=BC1•EH=××=,
而S△ABE=AB×BE=2
由等体积法得V A﹣BEC1=V C1﹣BEC,
∴S△×d=S△ABE×,(d为点A到平面BEC1的距离)
即××d=×2×,解之得d=
∴点A 到平面BEC 1的距离等于
.…
【点评】本题在正三棱柱中求证线面平行,并求点到平面的距离.着重考查了正三棱柱的性质、线面平行判定定理和等体积法求点到平面的距离等知识,属于中档题.
22.【答案】
【解析】解:如图:
(I )A ∩B={x|1<x ≤2};
(II )C U A={x|x ≤0或x >2},C U B={x|﹣3≤x ≤1}
(C U A )∩(C U B )={x|﹣3≤x ≤0};
(III )A ∪B={x|x <﹣3或x >0},C U (A ∪B )={x|﹣3≤x ≤0}.
【点评】本题考查集合的运算问题,考查数形集合思想解题.属基本运算的考查.
23.【答案】(1)1x =-(2)①()1,-+∞,②6
【解析】
试题
解析:(1)由题意,1
31
331x x x +-+=+,化简得()2332310x x ⋅+⋅-= 解得()1
3133
x x =-=舍或,
所以1x =-
(2)因为()f x 是奇函数,所以()()0f x f x -+=,所以1
133033x x x x a a
b b
-++-+-++=++ 化简并变形得:()()
333260x x a b ab --++-=
要使上式对任意的x 成立,则30260a b ab -=-=且 解得:11{
{ 33a a b b ==-==-或,因为()f x 的定义域是R ,所以1
{ 3
a b =-=-舍去 所以1,3a b ==,所以()131
33
x x f x +-+=+
①()131********x x x f x +-+⎛⎫
==-+ ⎪++⎝⎭
对任意1212,,x x R x x ∈<有:
()()()()
21
12
12121222333313133131x x x x x x f x f x ⎛⎫-⎛⎫
⎪-=-=
⎪ ⎪++++⎝⎭
⎝
⎭
因为12x x <,所以21330x x
->,所以()()12f x f x >, 因此()f x 在R 上递减.
因为()()
2222f t t f t k -<-,所以2222t t t k ->-, 即220t t k +-<在
时有解
所以440t ∆=+>,解得:1t >-, 所以的取值范围为()1,-+∞
②因为()()()
12333x x
f x
g x -⎡⎤⋅+=-⎣⎦,所以()()
3323x x g x f x --=-
即()33x
x
g x -=+
所以()()
2
22233332x x x x
g x --=+=+-
不等式()()211g x m g x ≥⋅-恒成立, 即()
()
2
3323311x x
x x m --+-≥⋅+-,
即:9
3333
x x x x
m --≤++
+恒成立 令33,2x x
t t -=+≥,则9m t t
≤+在2t ≥时恒成立
令()9h t t t =+,()29
'1h t t
=-,
()2,3t ∈时,()'0h t <,所以()h t 在()2,3上单调递减
()3,t ∈+∞时,()'0h t >,所以()h t 在()3,+∞上单调递增
所以()()min 36h t h ==,所以6m ≤ 所以,实数m 的最大值为6
考点:利用函数性质解不等式,不等式恒成立问题
【思路点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题。
24.【答案】
【解析】(Ⅰ)证明:设点P(x,y),记线段PA的中点为M,则
两圆的圆心距
d=|OM|=|PA1|=R
﹣|PA|,
所以,|PA1|+|PA|=4>
2,
故点P的轨迹是以A,A1为焦点,以4为长轴的椭圆,
所以,点P的轨迹方程C1
为:=1.…
(Ⅱ)解:设P(x1,y1),Q(x2,y2),直线PQ的方程为:
x=my+,…
代入=1消去x,整理得:(m2+4)y2
+2my﹣1=0,
则y1+y2=
﹣,y1y2=
﹣,…
△POQ面积
S=|OA||y1﹣y2
|=2…
令
t=(
0,则
S=2≤1(当且仅当
t=时取等号)
所以,△POQ面积的最大值1.…25.【答案】
【解析】解:若命题p是真命题:“直线x+y﹣m=0与圆(x﹣1)2+y2=1相交”,则<1,解得1
﹣
;
若命题q是真命题:“方程x2﹣x+m﹣4=0的两根异号”,则m﹣4<0,解得m<4.
若p∨q为真,¬p为真,
则p为假命题,q为真命题.
∴.
∴实数m 的取值范围是或.
【点评】本题考查了复合命题真假的判定方法、直线与圆的位置关系、一元二次的实数根与判别式的关系,考查了推理能力与计算能力,属于中档题.
26.【答案】
【解析】解:(Ⅰ)事件“第一次或第二次取到3号球的概率”的对立事件为“二次取球都没有取到3号球”,
∴所求概率为
22
44
22
55
16
1
25
C C
P
C C
=-⋅=(6分)
(Ⅱ)0,1,2,ξ= 23253(0)10C P C ξ===,1123253(1)5C C P C ξ⋅===,2
22
51
(2)10
C P C ξ===,(9分) 故
的分布列为:
(10分)
∴3314
012105105
E ξ=⨯+⨯+⨯= (12分)。