高考数学压轴专题新备战高考《三角函数与解三角形》易错题汇编附答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新数学复习题《三角函数与解三角形》专题解析
一、选择题
1.已知函数()()sin 3cos 0x f x x ωωω=->,若集合()(){}
0,1x f x π∈=-含有4个元素,则实数ω的取值范围是( ) A .35,
22⎡⎫
⎪⎢⎣⎭
B .35,22⎛⎤
⎥⎝⎦
C .725,
26⎡⎫
⎪⎢⎣⎭
D .725,26⎛⎤
⎥⎝⎦
【答案】D 【解析】 【分析】
化简f (x )的解析式,作出f (x )的函数图象,利用三角函数的性质求出直线y=﹣1与y=f (x )在(0,+∞)上的交点坐标,则π介于第4和第5个交点横坐标之间. 【详解】 f (x )=2sin (ωx ﹣
3
π
), 作出f (x )的函数图象如图所示:
令2sin (ωx ﹣
3π)=﹣1得ωx ﹣3π=﹣6π+2kπ,或ωx ﹣3π=
76
π
+2kπ, ∴x=6πω+2k πω,或x=32πω+2k πω
,k ∈Z , 设直线y=﹣1与y=f (x )在(0,+∞)上从左到右的第4个交点为A ,第5个交点为B , 则x A =
322ππωω+,x B =46ππ
ωω
+, ∵方程f (x )=﹣1在(0,π)上有且只有四个实数根, ∴x A <π≤x B ,

322ππωω+<π≤46ππωω+,解得72526ω≤<. 故选B .
【点睛】
本题考查了三角函数的恒等变换,三角函数的图象与性质,属于中档题.
2.能使sin(2))y x x θθ=+++为奇函数,且在0,4⎡⎤
⎢⎥⎣⎦
π上是减函数的θ的一个值是( ) A .
5π3
B .
43
π C .
23
π D .
3
π
【答案】C 【解析】 【分析】
首先利用辅助角公式化简函数,然后根据函数的奇偶性和单调性求得θ的值. 【详解】
依题意π2sin 23y x θ⎛⎫=++


⎭,由于函数为奇函数,故ππ
π,π33
k k θθ+==-,当1,2k =时,2π3θ=
或5π3θ=,由此排除B,D 两个选项.当2π3
θ=时,()2sin 2π2sin 2y x x =+=-在0,4⎡⎤
⎢⎥⎣⎦π上是减函数,符合题意.当5π3θ=时,
()2sin 22π2sin 2y x x =+=,在0,4⎡⎤
⎢⎥⎣⎦
π上是增函数,不符合题意.
故选C. 【点睛】
本小题主要考查诱导公式的运用,考查三角函数的奇偶性和单调性,属于基础题.
3.在ABC ∆中,角,,A B C 所对应的边分别为,,a b c ,已知cos cos 2b C c B b +=,则
a
b
=( )
A .
B .2
C
D .1
【答案】B 【解析】 【分析】
由正弦定理及题设可知,sin cos sin cos 2sin B C C B B +=,即sin()2sin B C B +=,又
A B C π++=,可得sin 2sin A B =,再由正弦定理,可得解
【详解】
由正弦定理:
2sin sin b c
R B C
==,又cos cos 2b C c B b += 得到sin cos sin cos 2sin B C C B B +=,即sin()2sin B C B +=
在ABC ∆中,A B C π++=
故sin()2sin A B π-=,即sin 2sin A B =

sin 2sin a A b B == 故选:B 【点睛】
本题考查了正弦定理在边角互化中的应用,考查了学生综合分析,转化划归,数学运算能力,属于中档题
4.在ABC ∆中,角,,A B C 所对的边分别为,,a b c 满足,222b c a bc +-=,
0AB BC ⋅>u ur u u r u u
,2
a =,则
b
c +的取值范围是( ) A .31,2⎛⎫ ⎪⎝⎭
B
.32⎫⎪⎪⎝⎭
C .13,22⎛⎫
⎪⎝⎭
D .31,2
⎛⎤ ⎥⎝⎦
【答案】B 【解析】 【分析】
利用余弦定理222
cos 2b c a A bc
+-=,可得3A π=,由
|||cos()|0AB BC AB BC B π⋅=⋅->u u u u u u u u r u ur u r u r
,可得B
为钝角,由正弦定理可得
sin sin(120)30)o o b c B B B ∴+=+-=+,结合B 的范围,可得解
【详解】
由余弦定理有:222
cos 2b c a A bc
+-=,又222b c a bc +-=
故2221
cos 222
b c a bc A bc bc +-===
又A 为三角形的内角,故3
A π
=
又2
a
=sin sin sin(120)o
b c c B C B ==
- 又|||cos()|0AB BC AB BC B π⋅=⋅->u u u u u u u u r u ur u r u r
故cos 0B B <∴为钝角
3sin sin(120)sin 30)2o o b c B B B B B ∴+=+-=+=+
(90,120)o o B ∈Q ,可得
13
30(120150)sin(30)(,)22o o o o B B +∈∴+∈,
333sin(30)(
,)22
o b c B ∴+=+∈ 故选:B 【点睛】
本题考查了正弦定理、余弦定理和向量的综合应用,考查了学生综合分析,转化划归,数学运算能力,属于中档题
5.函数()[]()
cos 2,2f x x x ππ=∈-的图象与函数()sin g x x =的图象的交点横坐标的和为( ) A .
53
π B .2π
C .
76
π D .π
【答案】B 【解析】 【分析】
根据两个函数相等,求出所有交点的横坐标,然后求和即可. 【详解】
令sin cos2x x =,有2sin 12sin x x =-,所以sin 1x =-或1
sin 2
x =.又[],2x ππ∈-,所以2x π=-
或32x π=或6x π=或56
x π=,所以函数()[]()cos 2,2f x x x ππ=∈-的图象与函数()sin g x x =的图象交点的横坐标的和3522
266
s π
πππ
π=-+
++=,故选B. 【点睛】
本题主要考查三角函数的图象及给值求角,侧重考查数学建模和数学运算的核心素养.
6.上世纪末河南出土的以鹤的尺骨(翅骨)制成的“骨笛”(图1),充分展示了我国古代高超的音律艺术及先进的数学水平,也印证了我国古代音律与历法的密切联系.图2为骨笛测量“春(秋)分”,“夏(冬)至”的示意图,图3是某骨笛的部分测量数据(骨笛的弯曲忽略不计),夏至(或冬至)日光(当日正午太阳光线)与春秋分日光(当日正午太阳光线)的夹角等于黄赤交角.
由历法理论知,黄赤交角近1万年持续减小,其正切值及对应的年代如下表: 黄赤交角 2341︒'
2357︒'
2413︒'
2428︒'
2444︒'
正切值 0.439 0.444 0.450 0.455 0.461 年代
公元元年
公元前2000年
公元前4000年
公元前6000年
公元前8000年
根据以上信息,通过计算黄赤交角,可估计该骨笛的大致年代是( ) A .公元前2000年到公元元年 B .公元前4000年到公元前2000年 C .公元前6000年到公元前4000年 D .早于公元前6000年
【答案】D 【解析】 【分析】
先理解题意,然后根据题意建立平面几何图形,在利用三角函数的知识计算出冬至日光与春秋分日光的夹角,即黄赤交角,即可得到正确选项. 【详解】
解:由题意,可设冬至日光与垂直线夹角为α,春秋分日光与垂直线夹角为β, 则αβ-即为冬至日光与春秋分日光的夹角,即黄赤交角, 将图3近似画出如下平面几何图形:
则16tan 1.610α=
=,169.4tan 0.6610
β-==, tan tan 1.60.66
tan()0.4571tan tan 1 1.60.66
αβαβαβ---=
=≈++⨯g .
0.4550.4570.461<<Q ,
∴估计该骨笛的大致年代早于公元前6000年.
故选:D . 【点睛】
本题考查利用三角函数解决实际问题的能力,运用了两角和与差的正切公式,考查了转化思想,数学建模思想,以及数学运算能力,属中档题.
7.{}n a 为等差数列,公差为d ,且01d <<,5()2
k a k Z π

∈,223557sin 2sin cos sin a a a a +⋅=,函数()sin(4)(0)f x d wx d w =+>在20,
3
π⎛⎫
⎪⎝

上单调且存在020,
3
x π⎛⎫
∈ ⎪⎝
⎭,使得()f x 关于0(,0)x 对称,则w 的取值范围是( ) A .20,
3⎛⎤ ⎥⎝⎦
B .30,2⎛⎤ ⎥⎝

C .24,33⎛⎤
⎥⎝⎦
D .33,42⎛⎤ ⎥⎝⎦
【答案】D 【解析】 【分析】
推导出sin4d =1,由此能求出d ,可得函数解析式,利用在203
x π⎛

∈ ⎪⎝


上单调且存在()()0020203
x f x f x x π⎛⎫
∈+-= ⎪⎝⎭

,,即可得出结论. 【详解】
∵{a n }为等差数列,公差为d ,且0<d <1,a 52
k π
≠(k ∈Z ), sin 2a 3+2sin a 5•cos a 5=sin 2a 7, ∴2sin a 5cos a 5=sin 2a 7﹣sin 2a 3=
2sin 372a a +cos 732a a -•2cos 372a a +sin 7
3
2a a -=2sin a 5cos2d •2cos a 5sin2d , ∴sin4d =1,
∴d 8
π
=

∴f (x )8
π
=
cosωx ,
∵在203
x π⎛⎫
∈ ⎪⎝

,上单调 ∴
23
ππω≥, ∴ω32

; 又存在()()0020203x f x f x x π⎛⎫∈+-= ⎪⎝⎭
,,, 所以f (x )在(0,
23
π
)上存在零点,

223ππω<,得到ω34
>. 故答案为 33,42⎛⎤
⎥⎝⎦
故选D 【点睛】
本题考查等差数列的公差的求法,考查三角函数的图象与性质,准确求解数列的公差是本题关键,考查推理能力,是中档题.
8.设函数f (x )=cos (x +
3
π
),则下列结论错误的是 A .f(x)的一个周期为−2π B .y=f(x)的图像关于直线x=
83
π
对称 C .f(x+π)的一个零点为x=6
π D .f(x)在(
2
π
,π)单调递减 【答案】D 【解析】
f (x )的最小正周期为2π,易知A 正确; f 8π3⎛⎫
⎪⎝⎭=cos 8ππ33⎛⎫
+ ⎪⎝⎭
=cos3π=-1,为f (x )的最小值,故B 正确; ∵f (x +π)=cos ππ3x ⎛
⎫++ ⎪⎝
⎭=-cos π3x ⎛⎫+ ⎪⎝⎭,∴f ππ6⎛⎫+ ⎪⎝⎭=-cos ππ63⎛⎫
+ ⎪
⎝⎭
=-cos 2π=0,故C 正确; 由于f 2π3⎛⎫
⎪⎝⎭=cos 2ππ33⎛⎫+ ⎪
⎝⎭
=cosπ=-1,为f (x )的最小值,故f (x )在,2ππ⎛⎫ ⎪⎝⎭上不单调,故D 错误. 故选D.
9.函数2()sin cos 2cos f x a x a x x =+-的图象关于直线4
π
x =-对称,则()f x 的最大值为( )
A .2
B
C .
D 或【答案】D 【解析】 【分析】
根据函数2
()sin cos 2cos f x a x a x x =+-的图象关于直线4
π
x =-对称,则有()(0)2
f f π
-=,解得a ,得到函数再求最值.
【详解】
因为函数2
()sin cos 2cos f x a x a x x =+-的图象关于直线4
π
x =-对称, 所以()(0)2f f π
-=,
即220a a +-=, 解得2a =-或1a =,
当2a =-时,()sin 2cos 2cos 42sin 44f x x x x x π⎛⎫
=--=-
⎪⎝

,此时()f x 的最大值为42;
当1a =时,()sin cos 2cos 2sin 4f x x x x x π⎛
⎫=+-=- ⎪⎝
⎭,此时()f x 的最大值为2;
综上()f x 的最大值为2或42. 故选:D 【点睛】
本题主要考查三角函数的性质,还考查了分类讨论的思想和运算求解的能力,属于中档题.
10.在ABC ∆中,若2
sin sin cos 2
C
A B =,则ABC ∆是( ) A .等边三角形 B .等腰三角形
C .不等边三角形
D .直角三角形
【答案】B 【解析】
试题分析:因为2
sin sin cos
2C
A B =,所以,1cos sin sin 2
C A B +=,即
2sin sin 1cos[()],cos()1A B A B A B π=+-+-=,故A=B ,三角形为等腰三角形,选B 。

考点:本题主要考查和差倍半的三角函数,三角形内角和定理,诱导公式。

点评:简单题,判断三角形的形状,一般有两种思路,一种是从角入手,一种是从边入手。

11.如图,在等腰直角ABC ∆中,D ,E 分别为斜边BC 的三等分点(D 靠近点B ),过E 作AD 的垂线,垂足为F ,则AF =u u u v
( )
A .3155A
B A
C +u u u
v u u u v
B .2155
AB AC +u u u
v u u u v
C .481515AB AC +u u u
v u u u v D .841515
AB AC +u u u
v u u u v 【答案】D 【解析】 【分析】
设出等腰直角三角形ABC 的斜边长,由此结合余弦定理求得各边长,并求得
cos DAE ∠,由此得到45
AF AD =u u u r u u u r
,进而利用平面向量加法和减法的线性运算,将
45AF AD =u u u r u u u r 表示为以,AB AC u u u r u u u r
为基底来表示的形式.
【详解】
设6BC =
,则2AB AC BD DE EC =====,
AD AE ==
=,101044cos 2105DAE +-∠=
=⨯, 所以
4
5AF AF AD AE ==,所以45AF AD =u u u r u u u r . 因为()
1133AD AB BC AB AC AB =+=+
-u u u r u u u r u u u r u u u r u u u r u u u r 2133
AB AC =+u u u
r u u u r , 所以421845331515AF AB AC AB AC ⎛⎫=⨯+=
+ ⎪⎝⎭
u u u r u u u r u u u r u u u r u u u r
. 故选:D 【点睛】
本小题主要考查余弦定理解三角形,考查利用基底表示向量,属于中档题.
12.若函数()y f x =同时满足下列三个性质:①最小正周期为π;②图象关于直线
3
x π
=
对称;③在区间,63ππ⎡⎤
-
⎢⎥⎣
⎦上单调递增,则()y f x =的解析式可以是( ) A .sin 26y x π⎛

=- ⎪⎝

B .sin 26x y π⎛⎫=-
⎪⎝⎭ C .cos 26y x π⎛⎫
=- ⎪⎝

D .cos 23y x π⎛⎫
=+
⎪⎝

【答案】A 【解析】 【分析】
利用性质①可排除B ,利用性质②可排除C ,利用性质③可排除D ,通过验证选项A 同时满足三个性质. 【详解】
逐一验证,由函数()f x 的最小正周期为π,而B 中函数最小正周期为241
2
π
π
=,故排除B ;
又cos 2cos 0362πππ⎛⎫⨯-== ⎪

⎭,所以cos 26y x π⎛
⎫=- ⎪⎝⎭的图象不关于直线3x π=对称,故排除C ; 若63x ππ-
≤≤,则023x ππ≤+≤,故函数cos 23y x π⎛
⎫=+ ⎪⎝
⎭在,63ππ⎡⎤-⎢⎥⎣⎦上单调递减,
故排除D ; 令22
6
2
x π
π
π
-
≤-

,得63x ππ-
≤≤,所以函数sin 26y x π⎛
⎫=- ⎪⎝
⎭在,63ππ⎡⎤-⎢⎥⎣⎦上单调递
增.由周期公式可得22T π
π=
=,当3x π=时,sin(2)sin 1362
πππ⨯-==, 所以函数sin 26y x π⎛
⎫=- ⎪⎝
⎭同时满足三个性质.
故选A . 【点睛】
本题考查了三角函数的周期性,对称性,单调性,属于中档题.
13.将函数cos y x =的图象先左移4
π,再纵坐标不变,横坐标缩为原来的1
2,所得图象
的解析式为( ) A .sin 24y x π⎛

=+ ⎪⎝

B .1
3sin 2
4y x π⎛⎫=+
⎪⎝⎭
C .1
sin 2
4y x π⎛⎫=+ ⎪⎝⎭
D .3sin 24y x π⎛
⎫=+ ⎪⎝
⎭ 【答案】D 【解析】 【分析】
根据三角函数的平移伸缩变换法则得到答案. 【详解】
cos sin 2y x x π⎛⎫==+ ⎪⎝
⎭向左平移4π个单位,故变为3sin 4y x π⎛
⎫=+ ⎪⎝⎭,
纵坐标不变,横坐标缩为原来的12
,变为3sin 24y x π⎛
⎫=+ ⎪⎝⎭. 故选:D . 【点睛】
本题考查了三角函数的平移伸缩变换,意在考查学生对于平移伸缩变换的理解和掌握.
14.已知双曲线()22
2210,0x y a b a b
-=>>的左右焦点分别为1F ,2F ,M 为双曲线上一点,若121cos 4
F MF ∠=,122MF MF =,则此双曲线渐近线方程为( ) A
.y =
B
.3y x =± C .y x =± D .2y x =±
【答案】A
【解析】
【分析】 因为M 为双曲线上一点,可得122MF MF a -=,在12F MF ∆使用余弦定理,结合已知条件即可求得答案.
【详解】
Q 双曲线()222210,0x y a b a b
-=>>的左右焦点分别为1F ,2F ,M 为双曲线上一点 ∴ 1212
22MF MF a MF MF ⎧-=⎪⎨=⎪⎩,解得:14MF a =,22MF a = 在12F MF ∆中,根据余弦定理可得:
∴ 12121222122c 2os F F MF MF M MF MF F F ∠=+-⋅⋅
可得:2221(2)(4)(2)2424
c a a a a =+-⋅⋅⋅
化简可得:2c a =
由双曲线性质可得:22222243b c a a a a =-=-=
可得
:b = Q 双曲线渐近线方程为:b y x a
=± 则双曲线渐近线方程为
: y =
故选:A.
【点睛】
本题考查了求双曲线渐近线方程问题,解题关键是掌握双曲线的基本知识,数形结合,考查分析能力和计算能力,属于中档题.
15.设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=()
A
.B
. C
D
【答案】B
【解析】
【分析】
由辅助角公式可确定()max f x =sin 2cos θθ-=平方关系可构造出方程组求得结果.
【详解】
()()
sin 2cos f x x x x ϕ=-=+Q ,其中tan 2ϕ=-
()
max f x ∴sin 2cos θθ-=
又22sin cos 1θθ+= cos θ∴=【点睛】
本题考查根据三角函数的最值求解三角函数值的问题,关键是能够确定三角函数的最值,从而得到关于所求三角函数值的方程,结合同角三角函数关系构造方程求得结果.
16.已知函数()()sin x f x x R ωφ+=∈,,其中0ωπφπ>-<,≤.若函数()f x 的最小正周期为4π,且当23
x π=时,()f x 取最大值,是( ) A .()f x 在区间[]2ππ--,上是减函数 B .()f x 在区间[]0π-,
上是增函数 C .()f x 在区间[]0π,
上是减函数 D .()f x 在区间[]02π,
上是增函数 【答案】B
【解析】
【分析】 先根据题目所给已知条件求得()f x 的解析式,然后求函数的单调区间,由此得出正确选项.
【详解】
由于函数()f x 的最小正周期为4π,故2π14π2ω==,即()1sin 2f x x φ⎛⎫=+ ⎪⎝⎭,2ππsin 1,33π6f φφ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭=⎭⎝.所以()1πsin 2
6f x x ⎛⎫=+ ⎪⎝⎭.由π1ππ2π2π2262k x k -≤+≤+,解得4π2π4π4π33
k x k -≤≤+,故函数的递增区间是4π2π4π,4π33k k ⎡⎤-+⎢⎥⎣⎦,令0k =,则递增区间为4π2π,33⎡⎤-⎢⎥⎣⎦
,故B 选项正确.所以本小题选B.
【点睛】
本小题主要考查三角函数解析式的求法,考查三角函数单调区间的求法,属于基础题.
17.某船开始看见灯塔A 时,灯塔A 在船南偏东30o 方向,后来船沿南偏东60︒的方向航行45km 后,看见灯塔A 在船正西方向,则这时船与灯塔A 的距离是( )
A .152
km
B .30km
C .15km
D .153km 【答案】D
【解析】
【分析】
如图所示,设灯塔位于A 处,船开始的位置为B ,船行45km 后处于C ,根据题意求出BAC ∠与BAC ∠的大小,在三角形ABC 中,利用正弦定理算出AC 的长,可得该时刻船与灯塔的距离.
【详解】
设灯塔位于A 处,船开始的位置为B ,船行45km 后处于C ,如图所示,
可得60DBC ∠=︒,30ABD ∠=︒,45BC =
30ABC ∴∠=︒,120BAC ∠=︒
在三角形ABC 中,利用正弦定理可得:
sin sin AC BC ABC BAC
=∠∠, 可得sin 1153sin 2
3BC ABC AC km BAC ∠===∠ 故选D
【点睛】
本题主要考查的是正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解决本题的关键,属于基础题.
18.已知向量m =r (1,cosθ),(sin ,2)n θ=-r ,且m r ⊥n r
,则sin 2θ+6cos 2θ的值为( ) A .12 B .2 C .2D .﹣2 【答案】B
【解析】
【分析】
根据m r ⊥n r 可得tanθ,而sin 2θ+6cos 2θ22226sin cos cos sin cos θθθθθ
+=+,分子分母同除以cos 2θ,
代入tanθ可得答案.
【详解】
因为向量m =r (1,cosθ),n =r (sinθ,﹣2),
所以sin 2cos m n θθ⋅=-u r r
因为m r ⊥n r

所以sin 2cos 0θθ-=,即tanθ=2,
所以sin 2θ+6cos 2θ22222626226141
sin cos cos tan sin cos tan θθθθθθθ++⨯+====+++ 2. 故选:B.
【点睛】 本题主要考查平面向量的数量积与三角恒等变换,还考查运算求解的能力,属于中档题.
19.在ABC V 中,角A 的平分线交边BC 于D ,4AB =,8AC =,2BD =,则ABD △的面积是( )
A .15
B .315
C .1
D .3
【答案】A 【解析】
【分析】
先根据正弦定理求得DC ,再结合余弦定理求得cos B ,进而求出ABD S V ,即可求得结论.
【详解】
如图:
()sin sin sin ADC ADB ADB π∠=-∠=∠,
在ABD △中,由正弦定理得sin sin BD AB BAD ADB
=∠∠,同理可得sin sin CD AC CAD ADC
=∠∠, 因为ABC V 中,角A 的平分线交边BC 于D ,上述两个等式相除得BD AB CD AC =, 4AB =Q ,8AC =,2BD =,8244
AC BD CD AB ⋅⨯∴===,6BC ∴=. 2222224681cos 22464AB BC AC B AB BC +-+-∴===-⋅⨯⨯,2115sin 144B ⎛⎫=--= ⎪⎝⎭
.
1
sin 2
ABD S AB BD B ∴=⋅⋅=V 故选:A .
【点睛】
本题考查三角形面积的求法以及角平分线的性质应用,是中档题,解题时要注意余弦定理的合理运用,考查计算能力,属于中等题.
20.关于函数()()()sin tan cos tan f x x x =-有下述四个结论:
①()f x 是奇函数;
②()f x 在区间0,4π⎛⎫ ⎪⎝⎭
单调递增; ③π是()f x 的周期;
④()f x 的最大值为2.
其中所有正确结论的个数是( )
A .4
B .3
C .2
D .1
【答案】C
【解析】
【分析】
计算()()()sin tan cos tan f x x x -=--得到①错误,根据复合函数单调性判断法则判断②正确,()()f x f x π+=③正确,假设()f x 的最大值为2,取()2f a =,得到矛盾,④错误,得到答案.
【详解】 ()()()sin tan cos tan f x x x =-,
()()()sin tan cos tan f x x x -=---⎡⎤⎡⎤⎣⎦⎣⎦()()sin tan cos tan x x =--,
所以()f x 为非奇非偶函数,①错误; 当0,4x π⎛
⎫∈ ⎪⎝⎭
时,令tan t x =,()0,1t ∈, 又()0,1t ∈时sin y t =单调递增,cos y t =单调递减,根据复合函数单调性判断法则, 当0,4x π⎛
⎫∈ ⎪⎝⎭
时,()sin tan y x =,()cos tan y x =-均为增函数, 所以()f x 在区间0,
4π⎛⎫ ⎪⎝⎭单调递增,所以②正确; ()()()sin tan cos tan f x x x πππ+=+-+⎡⎤⎡⎤⎣⎦⎣⎦()()()sin tan cos tan x x f x =-=, 所以π是()f x 的周期,所以③正确;
假设()f x 的最大值为2,取()2f a =,必然()sin tan 1a =,()cos tan 1a =-, 则tan 22a k π
π=+,k Z ∈与tan 2a k ππ=+,k Z ∈矛盾,所以()f x 的最大值小于
2,所以④错误.
故选:C .
【点睛】
本题考查了三角函数奇偶性,单调性,周期,最值,意在考查学生对于三角函数知识的综合应用.。

相关文档
最新文档