2019-2020数学中考一模试卷(及答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020数学中考一模试卷(及答案)
一、选择题
1.在全民健身环城越野赛中,甲乙两选手的行程y (千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有( )
A .1 个
B .2 个
C .3 个
D .4个 2.下列四个实数中,比1-小的数是( )
A .2-
B .0
C .1
D .2
3.如图,将△ABC 绕点C (0,1)旋转180°得到△A'B'C ,设点A 的坐标为(,)a b ,则点
的坐标为( )
A .(,)a b --
B .(,1)a b ---
C .(,1)a b --+
D .(,2)a b --+
4.如图,⊙O 的半径为5,AB 为弦,点C 为»AB 的中点,若∠ABC=30°,则弦AB 的长为( )
A .
1
2
B .5
C 53
D .35.下列图形是轴对称图形的有( )
A .2个
B .3个
C .4个
D .5个
6.函数21y x =-中的自变量x 的取值范围是( )
A .x ≠
12 B .x ≥1
C .x >
12
D .x ≥
12
7.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( ) A .﹣3
B .﹣5
C .1或﹣3
D .1或﹣5
8.若点P 1(x 1,y 1),P 2(x 2,y 2)在反比例函数k
y x
=(k >0)的图象上,且x 1=﹣x 2,则( ) A .y 1<y 2
B .y 1=y 2
C .y 1>y 2
D .y 1=﹣y 2
9.如图,在⊙O 中,AE 是直径,半径OC 垂直于弦AB 于D ,连接BE ,若AB=27,CD=1,则BE 的长是( )
A .5
B .6
C .7
D .8 10.下列二次根式中的最简二次根式是( )
A .30
B .12
C .8
D .0.5
11.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )
A .
B .
C .
D .
12.如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于E 、F ,连接PB 、PD .若AE=2,PF=8.则图中阴影部分的面积为( )
A .10
B .12
C .16
D .18
二、填空题
13.已知62x =
+,那么222x x -的值是_____.
14.如图,点A 在双曲线y=
4x
上,点B 在双曲线y=k
x (k≠0)上,AB ∥x 轴,过点A 作AD
⊥x 轴 于D .连接OB ,与AD 相交于点C ,若AC=2CD ,则k 的值为____.
15.3x +x 的取值范围是_____. 16.若a ,b 互为相反数,则22a b ab +=________. 17.分式方程
32x x 2
--+
2
2x
-=1的解为________. 18.农科院新培育出A 、B 两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下: 种子数量
100 200 500 1000 2000 A
出芽种子数 96 165 491 984 1965 发芽率 0.96 0.83 0.98 0.98 0.98 B
出芽种子数 96 192 486 977 1946 发芽率
0.96
0.96
0.97
0.98
0.97
下面有三个推断:
①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样; ②随着实验种子数量的增加,A 种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A 种子出芽的概率是0.98;
③在同样的地质环境下播种,A 种子的出芽率可能会高于B 种子.其中合理的是__________(只填序号).
19.如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D 恰好落在BC边上的点F处,那么cos∠EFC的值是.
20.二元一次方程组
6
27
x y
x y
+=


+=

的解为_____.
三、解答题
21.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:
(Ⅰ)图1中a的值为;
(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;
(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.
22.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;
C.仅家长自己参与; D.家长和学生都未参与.
请根据图中提供的信息,解答下列问题:
(1)在这次抽样调查中,共调查了________名学生;
(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;
(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数. 23.荆门市是著名的“鱼米之乡”.某水产经销商在荆门市长湖养殖场批发购进草鱼和乌鱼(俗称黑鱼)共75千克,且乌鱼的进货量大于40千克.已知草鱼的批发单价为8元/千克,乌鱼的批发单价与进货量的函数关系如图所示.
(1)请直接写出批发购进乌鱼所需总金额y (元)与进货量x (千克)之间的函数关系式;
(2)若经销商将购进的这批鱼当日零售,草鱼和乌鱼分别可卖出89%、95%,要使总零售量不低于进货量的93%,问该经销商应怎样安排进货,才能使进货费用最低?最低费用是多少?
24.阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平
方,如:2
32212+=()
,善于思考的小明进行了以下探索: 设(2
a b 2m 2
+=+(其中a b m n 、、、均为整数),则有
22a b 2m 2n 2+=++
∴22a m 2n b 2mn =+=,.这样小明就找到了一种把部分a b 2+法.
请你仿照小明的方法探索并解决下列问题: 当a b m n 、、、均为正整数时,若(2
a b 3m 3
+=+,用含m 、n 的式子分别表示
a b 、,得a = ,b = ;
(2)利用所探索的结论,找一组正整数a b m n 、、、,填空: + =( +
3)2;
(3)若(2
33
a m +=+,且a
b m n 、、、均为正整数,求a 的值.
25.如图1,已知二次函数y=ax 2
+3
2
x+c (a≠0)的图象与y 轴交于点A (0,4),与x 轴交于点B 、C ,点C 坐标为(8,0),连接AB 、AC .
(1)请直接写出二次函数y=ax 2
+
3
2
x+c 的表达式; (2)判断△ABC 的形状,并说明理由;
(3)若点N 在x 轴上运动,当以点A 、N 、C 为顶点的三角形是等腰三角形时,请写出此时点N 的坐标;
(4)如图2,若点N 在线段BC 上运动(不与点B 、C 重合),过点N 作NM∥AC,交AB 于点M ,当△AMN 面积最大时,求此时点N 的坐标.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.C 解析:C 【解析】 【分析】 【详解】
解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确; ②由横纵坐标看出,第一小时两人都跑了10千米,故②正确; ③由横纵坐标看出,乙比甲先到达终点,故③错误; ④由纵坐标看出,甲乙二人都跑了20千米,故④正确; 故选C .
2.A
解析:A 【解析】
试题分析:A .﹣2<﹣1,故正确; B .0>﹣1,故本选项错误; C .1>﹣1,故本选项错误; D .2>﹣1,故本选项错误; 故选A .
考点:有理数大小比较.
3.D
解析:D 【解析】
试题分析:根据题意,点A 、A′关于点C 对称,设点A 的坐标是(x ,y ),则
0122
a x
b y
++==,,解得2x a y b =-=-+,,∴点A 的坐标是(2)a b --+,
.故选D . 考点:坐标与图形变化-旋转.
4.D
【解析】
【分析】
连接OC、OA,利用圆周角定理得出∠AOC=60°,再利用垂径定理得出AB即可.
【详解】
连接OC、OA,
∵∠ABC=30°,
∴∠AOC=60°,
∵AB为弦,点C为»AB的中点,
∴OC⊥AB,
53
在Rt△OAE中,
∴AB=53,
故选D.
【点睛】
此题考查圆周角定理,关键是利用圆周角定理得出∠AOC=60°.
5.C
解析:C
【解析】
试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.
解:图(1)有一条对称轴,是轴对称图形,符合题意;
图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;
图(3)有二条对称轴,是轴对称图形,符合题意;
图(3)有五条对称轴,是轴对称图形,符合题意;
图(3)有一条对称轴,是轴对称图形,符合题意.
故轴对称图形有4个.
故选C.
考点:轴对称图形.
6.D
解析:D
【解析】
由被开方数为非负数可行关于x 的不等式,解不等式即可求得答案. 【详解】
由题意得,2x-1≥0, 解得:x ≥12
, 故选D. 【点睛】
本题考查了函数自变量的取值范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.
7.A
解析:A 【解析】
分析:根据点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,得到4=|2a +2|,即可解答.
详解:∵点A (a +2,4)和B (3,2a +2)到x 轴的距离相等, ∴4=|2a +2|,a +2≠3, 解得:a =−3, 故选A .
点睛:考查点的坐标的相关知识;用到的知识点为:到x 轴和y 轴的距离相等的点的横纵坐标相等或互为相反数.
8.D
解析:D 【解析】 由题意得:1212
k k
y y x x =
=-=- ,故选D. 9.B
解析:B 【解析】 【分析】
根据垂径定理求出AD,根据勾股定理列式求出半径 ,根据三角形中位线定理计算即可. 【详解】
解:∵半径OC 垂直于弦AB , ∴AD=DB=
1
2
在Rt △AOD 中,OA 2=(OC-CD)2+AD 2,即OA 2=(OA-1)2
)2, 解得,OA=4
∴OD=OC-CD=3,
∵AO=OE,AD=DB,
∴BE=2OD=6
故选B
【点睛】
本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键10.A
解析:A
【解析】
【分析】
根据最简二次根式的概念判断即可.
【详解】
A
B
C,不是最简二次根式;
D
,不是最简二次根式;
2
故选:A.
【点睛】
此题考查最简二次根式的概念,解题关键在于掌握(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.
11.D
解析:D
【解析】
【分析】
根据从上边看得到的图形是俯视图,可得答案.
【详解】
解:从上边看是一个圆形,圆形内部是一个虚线的正方形.
故选:D.
【点睛】
本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.
12.C
解析:C
【解析】
【分析】
首先根据矩形的特点,可以得到S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN,最终得到S矩形
= S矩形MPFD ,即可得S△PEB=S△PFD,从而得到阴影的面积.
EBNP
【详解】
作PM ⊥AD 于M ,交BC 于N .
则有四边形AEPM ,四边形DFPM ,四边形CFPN ,四边形BEPN 都是矩形, ∴S △ADC =S △ABC ,S △AMP =S △AEP ,S △PFC =S △PCN ∴S 矩形EBNP = S 矩形MPFD , 又∵S △PBE =
12S 矩形EBNP ,S △PFD =1
2
S 矩形MPFD , ∴S △DFP =S △PBE =
1
2
×2×8=8, ∴S 阴=8+8=16, 故选C . 【点睛】
本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S △PEB =S △PFD .
二、填空题
13.4【解析】【分析】将所给等式变形为然后两边分别平方利用完全平方公式即可求出答案【详解】∵∴∴∴∴故答案为:4【点睛】本题考查了二次根式的运算解题的关键是熟练运用二次根式的运算以及完全平方公式注意正确 解析:4 【解析】 【分析】
将所给等式变形为26x =
【详解】 ∵62x =

∴26x -=
∴(2
2
2
6x =,
∴22226x x -+=, ∴2224x x -=, 故答案为:4 【点睛】
本题考查了二次根式的运算,解题的关键是熟练运用二次根式的运算以及完全平方公式.注意正确的变形可以使得运算简便.
14.12【解析】【详解】解:设点A 的坐标为(a )则点B 的坐标为()∵AB ∥x
轴AC=2CD∴∠BAC=∠ODC∵∠ACB=∠DCO∴△ACB∽△DCO∴∵OD=a则AB=2a∴点B的横坐标是3a∴3a=
解析:12
【解析】
【详解】
解:设点A的坐标为(a,4
a
),则点B的坐标为(
ak
4

4
a
),
∵AB∥x轴,AC=2CD,∴∠BAC=∠ODC,
∵∠ACB=∠DCO,
∴△ACB∽△DCO,
∴AB AC2 DA CD1
==,
∵OD=a,则AB=2a,∴点B的横坐标是3a,
∴3a=ak
4

解得:k=12.
故答案为12.
15.x≥﹣3【解析】【分析】直接利用二次根式的定义求出x的取值范围【详解】解:若式子在实数范围内有意义则x+3≥0解得:x≥﹣3则x的取值范围是:x≥﹣3故答案为:x≥﹣3【点睛】此题主要考查了二次根式
解析:x≥﹣3
【解析】
【分析】
直接利用二次根式的定义求出x的取值范围.
【详解】
.在实数范围内有意义,
则x+3≥0,
解得:x≥﹣3,
则x的取值范围是:x≥﹣3.
故答案为:x≥﹣3.
【点睛】
此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.
16.0【解析】【分析】先提公因式得ab(a+b)而a+b=0任何数乘以0结果都为0【详解】解:∵=ab(a+b)而a+b=0∴原式=0故答案为0【点睛】本题考查了因式分解和有理数的乘法运算注意掌握任何数
解析:0
【解析】
【分析】
先提公因式得ab (a+b ),而a+b=0,任何数乘以0结果都为0.
【详解】
解:∵22a b ab += ab (a+b ),而a+b=0,
∴原式=0.
故答案为0,
【点睛】
本题考查了因式分解和有理数的乘法运算,注意掌握任何数乘以零结果都为零.
17.【解析】【分析】根据解分式方程的步骤即可解答【详解】方程两边都乘以得:解得:检验:当时所以分式方程的解为故答案为【点睛】考查了解分式方程解分式方程的基本思想是转化思想把分式方程转化为整式方程求解解分 解析:x 1=
【解析】
【分析】
根据解分式方程的步骤,即可解答.
【详解】
方程两边都乘以x 2-,得:32x 2x 2--=-,
解得:x 1=,
检验:当x 1=时,x 21210-=-=-≠,
所以分式方程的解为x 1=,
故答案为x 1=.
【点睛】
考查了解分式方程,()1解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解().2解分式方程一定注意要验根.
18.②③【解析】分析:根据随机事件发生的频率与概率的关系进行分析解答即可详解:(1)由表中的数据可知当实验种子数量为100时两种种子的发芽率虽然都是96但结合后续实验数据可知此时的发芽率并不稳定故不能确 解析:②③
【解析】分析:
根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.
详解:
(1)由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以①中的说法不合理;
(2)由表中数据可知,随着实验次数的增加,A 种种子发芽的频率逐渐稳定在98%左右,故可以估计A 种种子发芽的概率是98%,所以②中的说法是合理的;
(3)由表中数据可知,随着实验次数的增加,A 种种子发芽的频率逐渐稳定在98%左右,而B 种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A 种种子发芽率大于B 种种子发芽率,所以③中的说法是合理的.
故答案为:②③.
点睛:理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键. 19.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°AF=AD=5根据矩形的性质得到∠EFC=∠BAF 根据余弦的概念计算即可由翻转变换的性质
可知∠AFE=∠D=90°
AF=AD=5∴∠EF 解析:.
【解析】
试题分析:根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF ,根据余弦的概念计算即可.
由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,
∴∠EFC+∠AFB=90°,∵∠B=90°,
∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF ,cos ∠BAF==,
∴cos ∠EFC=,故答案为:.
考点:轴对称的性质,矩形的性质,余弦的概念. 20.【解析】【分析】由加减消元法或代入消元法都可求解【详解】②﹣①得③将③代入①得∴故答案为:【点睛】本题考查的是二元一次方程组的基本解法本题属于基础题比较简单
解析:15x y =⎧⎨=⎩
【解析】
【分析】
由加减消元法或代入消元法都可求解.
【详解】
627x y x y +=⎧⎨+=⎩①②
, ②﹣①得1x =③
将③代入①得5y =
∴15x y =⎧⎨=⎩
故答案为:15x y =⎧⎨
=⎩
【点睛】
本题考查的是二元一次方程组的基本解法,本题属于基础题,比较简单.
三、解答题
21.(1) 25 ; (2) 这组初赛成绩数据的平均数是1.61.;众数是1.65;中位数是1.60;(3)初赛成绩为1.65 m的运动员能进入复赛.
【解析】
【分析】
【详解】
试题分析:(1)、用整体1减去其它所占的百分比,即可求出a的值;(2)、根据平均数、众数和中位数的定义分别进行解答即可;(3)、根据中位数的意义可直接判断出能否进入复赛.
试题解析:(1)、根据题意得:1﹣20%﹣10%﹣15%﹣30%=25%;则a的值是25;
(2)、观察条形统计图得:
1.502 1.554 1.605 1.656 1.703
24563
x
⨯+⨯+⨯+⨯+⨯
=
++++
=1.61;
∵在这组数据中,1.65出现了6次,出现的次数最多,∴这组数据的众数是1.65;
将这组数据从小到大排列为,其中处于中间的两个数都是1.60,则这组数据的中位数是1.60.
(3)、能;∵共有20个人,中位数是第10、11个数的平均数,
∴根据中位数可以判断出能否进入前9名;
∵1.65m>1.60m,∴能进入复赛
考点:(1)、众数;(2)、扇形统计图;(3)、条形统计图;(4)、加权平均数;(5)、中位数22.(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.
【解析】
分析:(1)根据A类别人数及其所占百分比可得总人数;
(2)总人数减去A、C、D三个类别人数求得B的人数即可补全条形图,再用360°乘以C 类别人数占被调查人数的比例可得;
(3)用总人数乘以样本中D类别人数所占比例可得.
详解:(1)本次调查的总人数为80÷20%=400人;
(2)B类别人数为400-(80+60+20)=240,
补全条形图如下:
C 类所对应扇形的圆心角的度数为360°×60400
=54°; (3)估计该校2000名学生中“家长和学生都未参与”的人数为2000×0N F N ==100人. 点睛:本题考查了条形统计图、扇形统计图及用样本估计总体的知识,解题的关键是从统计图中整理出进一步解题的信息.
23.(1)y=26(2040)24(40)
x x x x ⎧⎨>⎩剟;(2)该经销商应购进草鱼25千克,乌鱼50千克,才能使进货费用最低,最低费用为1400元.
【解析】
【分析】
【详解】
(1)批发购进乌鱼所需总金额y (元)与进货量x (千克)之间的函数关系式
y=26(2040)24(40)x x x x ⎧⎨>⎩
剟; (2)设该经销商购进乌鱼x 千克,则购进草鱼(75﹣x )千克,所需进货费用为w 元. 由题意得:4089%(75)95%93%75x x x >⎧⎨⨯-+⨯⎩…
解得x≥50.
由题意得w=8(75﹣x )+24x=16x+600.
∵16>0,∴w 的值随x 的增大而增大.
∴当x=50时,75﹣x=25,W 最小=1400(元).
答:该经销商应购进草鱼25千克,乌鱼50千克,才能使进货费用最低,最低费用为1400元.
24.(1)22m 3n +,2mn ;(2)4,2,1,1(答案不唯一);(3)a =7或a =13.
【解析】
【分析】
【详解】
(1)
∵2(a m +=+,
∴2232a m n +=++,
∴a =m 2+3n 2,b =2mn .
故答案为m 2+3n 2,2mn .
(2)设m =1,n =2,∴a =m 2+3n 2=13,b =2mn =4.
故答案为13,4,1,2(答案不唯一).
(3)由题意,得a =m 2+3n 2,b =2mn .
∵4=2mn ,且m 、n 为正整数,
∴m =2,n =1或m =1,n =2,
∴a =22+3×
12=7,或a =12+3×22=13.
25.(1)y=﹣1
4
x2+
3
2
x+4;(2)△ABC是直角三角形.理由见解析;(3)点N的坐标分
别为(﹣8,0)、(8﹣45,0)、(3,0)、(8+45,0).(4)当△AMN面积最大时,N点坐标为(3,0).
【解析】
【分析】
(1)由点A、C的坐标利用待定系数法即可求出二次函数的解析式;(2)令二次函数解析式中y=0,求出点B的坐标,再由两点间的距离公式求出线段AB、AC、BC的长度,由三者满足AB2+AC2=BC2即可得出△ABC为直角三角形;(3)分别以A、C两点为圆心,AC长为半径画弧,与x轴交于三个点,由AC的垂直平分线与x轴交于一点,即可求得点N的坐标;(4)设点N的坐标为(n,0)(-2<n<8),通过分割图形法求面积,再根据相似三角形面积间的关系以及三角形的面积公式即可得出S△AMN关于n的二次函数关系式,根据二次函数的性质即可解决最值问题.
【详解】
(1)∵二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),
∴,
解得.
∴抛物线表达式:y=﹣x2+x+4;
(2)△ABC是直角三角形.
令y=0,则﹣x2+x+4=0,
解得x1=8,x2=﹣2,
∴点B的坐标为(﹣2,0),
由已知可得,
在Rt△ABO中AB2=BO2+AO2=22+42=20,
在Rt△AOC中AC2=AO2+CO2=42+82=80,
又∵BC=OB+OC=2+8=10,
∴在△ABC中AB2+AC2=20+80=102=BC2
∴△ABC是直角三角形.
(3)∵A(0,4),C(8,0),
∴AC==4,
①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),
②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)
③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),
综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).
(4)如图

设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,
∴MD∥OA,
∴△BMD∽△BAO,
∴=,
∵MN∥AC
∴=,
∴=,
∵OA=4,BC=10,BN=n+2
∴MD=(n+2),
∵S△AMN=S△ABN﹣S△BMN
=BN•OA﹣BN•MD
=(n+2)×4﹣×(n+2)2
=﹣(n﹣3)2+5,
当n=3时,△AMN面积最大是5,
∴N点坐标为(3,0).
∴当△AMN面积最大时,N点坐标为(3,0).
【点睛】
本题考查了二次函数的综合问题,熟练掌握二次函数的知识点是本题解题的关键.。

相关文档
最新文档